
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2019

How team awareness influences perceptions of developer How team awareness influences perceptions of developer

productivity productivity

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Fernando FIGUEIRA FILHO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
TREUDE, Christoph and FIGUEIRA FILHO, Fernando. How team awareness influences perceptions of
developer productivity. (2019). Rethinking productivity in software engineering. 169-178.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8958

This Book Chapter is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8958&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8958&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

169
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_15

CHAPTER 15

How Team Awareness
Influences Perceptions
of Developer Productivity
Christoph Treude, University of Adelaide, Australia

Fernando Figueira Filho, Federal University of Rio Grande do
Norte, Brazil

�Introduction
In their day-to-day work, software developers perform many different activities:

they use numerous tools to develop software artifacts ranging from source code

and models to documentation and test cases, they use other tools to manage and

coordinate their development work, and they spend a substantial amount of time

communicating and exchanging knowledge with other members on their teams and

the larger software development community. Making sense of this flood of activity and

information is becoming harder with every new artifact created. Yet, being aware of all

relevant information in a software project is crucial to enable productivity in software

development.

In formal terms, awareness is defined as “an understanding of the activities of others,

which provide context for your own activity.” In any collaborative work environment,

being aware of the work of other team members and how it can affect one’s own work

is crucial. Maintaining awareness ensures that individual contributions are relevant

to the group’s work in general. Awareness can be used to evaluate individual actions

against the group’s goals and progress, and it allows groups to manage the process of

collaborative working [1].

https://doi.org/10.1007/978-1-4842-4221-6_15

170

Contributing to a software project requires a multitude of different kinds of

awareness, ranging from high-level status information (e.g., What is the overall status

of the project? What are the current bottlenecks?) to more fine-grained information

(e.g., Who else is working on the same file right now and has uncommitted changes?

Who is affected by the source code I am writing at the moment?). Awareness includes

both short-term, momentary awareness (awareness of events at this particular point in

time, such as the current build status) and long-term, historical awareness (awareness

of past events, such as code evolution and team velocity). As the complexity of software

systems grows, maintaining awareness of all relevant context is becoming increasingly

challenging. To address this situation, many tools have been developed over the last

decades to help developers maintain awareness of everything that goes on in a project.

Given the plethora of information available, tools that support awareness for

software developers inevitably need to abstract some details and have to aggregate

information. This leads to risks. The aggregation of developer activity information has

the potentially unintended side effect of quantifying the developer’s work, enabling

productivity comparisons across developers and time. As an example, imagine a tool

that aims to provide high-level information about what a developer is working on at

the moment. Such a tool will likely be able to say that a developer is working on three

features (by counting the open issues assigned to this developer, for example), but it

might not be able to say that a developer is currently working on refactoring a database

connector, fixing a bug in the persistence layer of the application, and improving the

performance of a query (which would require an automated understanding of the

semantics of the open issues). Of course, a tool could simply list all open issues, but this

would lead to information overload.

In this chapter, we discuss this tension between awareness information and

productivity measures, and we advocate for the design of tools that enable awareness

without quantifying information. We also report on the findings from an empirical study

in which we asked developers about how to design such tools. The study revealed that

awareness can influence developers’ perceptions of the productivity of their colleagues

and that developers do not feel that productivity can be collapsed into a single metric.

We conclude that while automated tools for making sense of everything that goes on in

a software project are necessary to enable developer awareness, such tools need to focus

on summarizing instead of measuring information.

Chapter 15 How Team Awareness Influences Perceptions of Developer Productivity

171

�Awareness and Productivity
We first illustrate the relationship between team awareness and developer productivity,

using an existing categorization of awareness types as a guideline [2].

•	 Collaboration awareness: Collaboration awareness refers to the

perception of group availability, i.e., whether people are in the same

physical place, who is online/offline, and their virtual availability.

In software development—and in many other domains—these

concepts are directly related to productivity. If a member of a

software development team is perceived to be unavailable, it is easy

to conclude that they are not productive, whereas a team member

who is always online and/or in the same physical place would be

perceived as being productive.

•	 Location awareness: Location awareness refers to the geographical and

physical nature of spaces, e.g., where someone is physically located.

Similar to collaboration awareness, the physical location of team

members can be related to perceptions of their productivity. This might

be the case if co-workers who share the same office space are perceived

as having more or less productivity compared to others, but it might also

have cultural implications, e.g., if developers in an outsourcing location

are perceived differently simply based on their location.

•	 Context awareness: Context awareness allows a group of co-

workers to maintain a sense of what is going on in the virtual space.

In software development projects, context awareness can, for

example, refer to the context of a shared task, e.g., the progress of a

development team toward the next release. If the development team

is perceived as not being on track, this type of awareness can easily be

used to reach conclusions about a team's lack of productivity.

•	 Social awareness: According to Antunes et al., social awareness is

related to the understanding of “social practice, i.e., the others’ roles

and activities, or what and how the group members are contributing

to a task.” It is easy to see then how social awareness in a software

development team is linked to developer productivity. If a team

member’s contributions to a task are perceived as not good enough,

they will be considered as unproductive, and vice versa.

Chapter 15 How Team Awareness Influences Perceptions of Developer Productivity

172

•	 Workspace awareness: Workspace awareness is defined as the

up-to-the-moment understanding of another person’s interaction

with the shared workspace, i.e., awareness of people and how

they interact with the workspace rather than just awareness of the

workspace itself [3]. This type of awareness is also directly linked to

productivity: if a developer’s interactions with the shared workspace,

e.g., the issue tracking system of a software project, are not as

frequent or fruitful as expected, this developer will be seen as being

unproductive.

•	 Situation awareness: Situation awareness refers to being aware of

what is happening in the vicinity to understand how information,

events, and one’s own actions will impact goals and objectives.

Applied to software development, this definition could refer to

peripheral awareness of the work of other teams that are working

on the same product, awareness of updates to libraries that a

particular product relies on, or awareness of technology trends [4].

As with the other awareness types, this kind of awareness also links

to productivity: if another team is not delivering the feature they are

supposed to deliver or a critical bug in a library is not being fixed,

developers can be seen as unproductive.

�Enabling Awareness in Collaborative Software
Development
There are many different kinds of information that developers need to be aware of in any

software development project, as discussed in the previous section. However, with the

flood of activity and information in a software repository, it is impossible and also often

not necessary for a developer to maintain awareness of every aspect of a project. As a

result, a mechanism for filtering and aggregating relevant information is needed.

Many tools such as feeds and dashboards (see Chapter 16) have been developed

to help developers maintain awareness and aggregate relevant information. However,

these tools often focus on quantitative instead of qualitative aspects since it is arguably

easier to count the number of open issues than interpret what these issues are about,

for example. In the next sections, we discuss developers’ opinions on the aggregation of

awareness information using both quantitative and qualitative means.

Chapter 15 How Team Awareness Influences Perceptions of Developer Productivity

https://doi.org/10.1007/978-1-4842-4221-6_16

173

�Aggregating Awareness Information into Numbers
Automated tools for extracting, aggregating, and summarizing development activity are

essential to provide software teams with crucial awareness information. To investigate

how to design such tools, in earlier work [5] we asked developers how they would design

quantitative and qualitative aspects of such tools. We first summarize our findings with

regard to the quantitative aspects, which revealed the risk of misinterpreting awareness

information as productivity measures.

Our study participants stressed that no single metric, e.g., lines of code, number of

tasks, etc., would truly reflect the wide range of activities a developer may take action on

throughout the development life cycle of a software product. For instance, conceptual

work is hardly measurable and may go unnoticed just by monitoring a metric, as shown

in this example from one of our study participants: “It’s difficult to measure output.

Changing the architecture or doing a conceptual refactoring may have significant impact

but very little evidence on the code base.” Similarly, the difficulty of a task cannot be

measured in lines of code.

Software projects may go through different stages in their development cycle.

According to our study participants, these variabilities from project to project make

it difficult to devise any uniform, one-size-fits-all measurement system that would

work across different project contexts and distinct development workflows (challenges

detailed in Chapter 2). Also, developers may assume different roles in a single day. For

instance, interacting with customers and users was regarded by our study participants

as an activity that is difficult to measure, although it is an integral part of development

work: “We do systems for people in the first place.”

Another problem perceived by our study participants is that measures can be gamed

so that any automatic system aimed at measuring productivity would be potentially

exploitable. This applies in particular to simple measures such as the number of issues

or number of commits: “A poor-quality developer may be able to close more tickets than

anyone else, but a high-quality developer often closes fewer tickets but of those few,

almost none get reopened or result in regressions. For these reasons, metrics should seek

to track quality as much as they track quantity.”

Given the limited value of numbers as a means to provide developers with

meaningful information, we next investigate the potential of qualitative mechanisms, in

particular summarization, to improve the quality of awareness information.

Chapter 15 How Team Awareness Influences Perceptions of Developer Productivity

https://doi.org/10.1007/978-1-4842-4221-6_2

174

�Aggregating Awareness Information into Text
As we have discussed in the previous section, aggregating the work of software

developers into numbers has many disadvantages. However, information in a software

repository has to be aggregated to enable awareness without having to look at every

artifact created, modified, or deleted. With this in mind, in our earlier work [5], we

presented our study participants with the following scenario: “Assume it’s Monday

morning and you have just returned from a week-long vacation. One of your colleagues

is giving you an update on their development activities last week.” We then asked them

what information they would expect to be included in such a summary. In the following

paragraphs, we summarize the answers we received from developers.

Many of the events in the day-to-day work of software developers can be categorized

according to whether they are expected or unexpected. Expected events comprise

status updates that are generally not surprising to a software developer—such as

a development task moving from open to closed—while unexpected events are

unforeseen, for example the presence of a critical bug. Our participants requested that

both kinds of events should be included in summaries of development activity.

Summaries of expected events in software development projects are mostly

concerned with how different artifacts, such as development tasks or user stories, move

through the development cycle. For example, one participant requested what they called

“task state transition history—which tasks were taken, which were done, which were

tested.” An important dimension of expectations is planning—our participants were

also interested to hear about short-term and long-term plans as well as the goals driving

these plans.

Basic awareness tools for software developers typically support this kind of

awareness of development artifacts and plans. For example, a burndown chart

visualizes the actual work being done compared to a plan, and a kanban board shows

tasks along with their current status. However, these tools are still limited in their

expressiveness: A burndown chart cannot explain why a project is not on track, and

it can also easily be misinterpreted as measuring productivity. In addition, it can be

gamed, for example by overestimating user stories. Kanban boards can aggregate only

to a certain extent—if the number of tasks or work items included in the kanban board

becomes too large, it becomes hard to obtain a high-level overview of the project

status from looking at the board.

Chapter 15 How Team Awareness Influences Perceptions of Developer Productivity

175

If everything in a software project is progressing as expected, no particular action

outside of a developer’s routine might be required. However, things tend not to always go

according to plan in software projects. Requirements might change, a major refactoring

might be needed, or a critical bug might be discovered. In those situations, developers

need to act, which explains why anything unexpected should play a major role in a

summary of software development activity: “We cut our developer status meetings way

down and started stand up meetings focusing on problems and new findings rather than

dead-boring status. [The] only important point is when something is not on track, going

faster than expected and why.”

When we asked our participants about how to automatically detect such unexpected

events, several examples were mentioned, in particular related to the commit history:

“Commits that take particularly long might be interesting. If a developer hasn’t

committed anything in a while, his first commit after a long silence could be particularly

interesting, for example because it took him a long time to fix a bug. Also, important

commits might have unusual commit messages, for example including smileys, lots

of exclamation marks, or something like that…basically something indicating that the

developer was emotional about that particular commit.” While developer tools that

summarize expected events already exist—albeit often still focusing on numbers rather

than textual content—research on what constitutes important unexpected events in a

software project is still in its infancy.

�Rethinking Productivity and Team Awareness
Throughout a software project’s life cycle, developers generate a vast corpus of software

artifacts and perform a multitude of actions; however, only a fraction of those events are

relevant to one’s own activity. Automated methods for aggregating and summarizing

awareness information are important, as they potentially save developers from the

cumbersome task of manually inspecting a large number of events—or asking others—to

answer the various questions that may arise in one’s development work.

Automated methods for aggregating awareness information are likely to produce

quantitative over qualitative information since aggregating numbers (e.g., the number

of issues per developer) is much easier than aggregating textual information (e.g.,

what kinds of issues a developer is working on). Unsurprisingly, measures such as

lines of code and number of issues open/closed are available in most development

Chapter 15 How Team Awareness Influences Perceptions of Developer Productivity

176

tools, but many developers in our study found them too limited to be used as

awareness information and worried that such simple numbers may act as a proxy of

their productivity. In short, awareness can influence developers’ perceptions of the

productivity of their colleagues—and these perceptions are often not accurate if based

on the awareness information that tools commonly provide.

From the perspective of who receives awareness information, numeric measures

should not be provided in isolation: they should be augmented with useful information

about recent changes in the project that happened according to plan, i.e., expected

events, and most importantly, they should provide information about the unexpected.

As we noticed, awareness tool design has given greater emphasis to the former type of

information, leaving information about unexpected events to be gathered by developers

themselves. Similarly, awareness tools have fed developers more information about what

happened and less information about why things happened.

As empirical evidence shows, the design of automated awareness mechanisms

should consider the tension between team awareness and productivity measures in

collaborative software development. Developers’ information needs are indirectly

related to productivity aspects, yet the way information is typically presented by

awareness tools (e.g., kanban boards, burndown charts) can have negative effects as

they facilitate judgment on the productivity of developers. We found that the ultimate

goal of developers is not associated with productivity measurement: they seek to answer

questions that are impacting their own work and the expected flow of events. They want

to become aware of the unexpected so that they can adapt more easily and quickly.

While tools that help developers make sense of everything that goes on in a software

project are necessary to enable developer awareness, these tools currently favor

quantitative information over qualitative information. To accurately represent what

goes on in a software project, awareness tools need to focus on summarizing instead

of measuring information and be careful when presenting numbers that could be used

as an unintended proxy for productivity measures. We argue for the use of natural

language and text processing techniques to automatically summarize information from

a software project in textual form. Based on the findings of our study, we suggest that

such tools should categorize the events in a software project according to whether they

are expected or unexpected and use natural language processing to provide meaningful

summaries rather than numbers and graphs that are likely to be misinterpreted as

productivity measures.

Chapter 15 How Team Awareness Influences Perceptions of Developer Productivity

177

�Key ideas
The following are the key ideas from the chapter:

•	 Tools that help developers make sense of everything that goes on in a

software project are necessary to enable developer awareness.

•	 These tools currently favor quantitative information over qualitative

information but need to focus on summarizing instead of measuring

information.

•	 Team awareness can influence developers’ perceptions of their

colleagues’ productivity, and developers do not feel that productivity

can be collapsed into a single metric.

�References

	 [1]	 Paul Dourish and Victoria Bellotti. 1992. Awareness and

coordination in shared workspaces. In Proceedings of the 1992

ACM conference on Computer-supported cooperative work

(CSCW '92). ACM, New York, NY, USA, 107-114. DOI=https://

doi.org/10.1145/143457.143468.

	 [2]	 Pedro Antunes, Valeria Herskovic, Sergio F. Ochoa, José A. Pino,

Reviewing the quality of awareness support in collaborative

applications, Journal of Systems and Software, Volume 89, 2014,

Pages 146-169, ISSN 0164-1212, https://doi.org/10.1016/j.

jss.2013.11.1078.

	 [3]	 Gutwin, C. & Greenberg, S. Computer Supported Cooperative

Work (CSCW) (2002) 11: 411. https://doi.org/10.1023

/A:1021271517844.

Chapter 15 How Team Awareness Influences Perceptions of Developer Productivity

https://doi.org/10.1145/143457.143468
https://doi.org/10.1145/143457.143468
https://doi.org/10.1016/j.jss.2013.11.1078
https://doi.org/10.1016/j.jss.2013.11.1078
https://doi.org/10.1023/A:1021271517844
https://doi.org/10.1023/A:1021271517844

178

	 [4]	 Leif Singer, Fernando Figueira Filho, and Margaret-Anne

Storey. 2014. Software engineering at the speed of light: how

developers stay current using twitter. In Proceedings of the

36th International Conference on Software Engineering (ICSE

2014). ACM, New York, NY, USA, 211-221. DOI: https://doi.

org/10.1145/2568225.2568305.

	 [5]	 Christoph Treude, Fernando Figueira Filho, and Uirá Kulesza.

2015. Summarizing and measuring development activity. In

Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA,

625-636. DOI: https://doi.org/10.1145/2786805.2786827.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 15 How Team Awareness Influences Perceptions of Developer Productivity

https://doi.org/10.1145/2568225.2568305
https://doi.org/10.1145/2568225.2568305
https://doi.org/10.1145/2786805.2786827
http://creativecommons.org/licenses/by-nc-nd/4.0/

	How team awareness influences perceptions of developer productivity
	Citation

	Chapter 15: How Team Awareness Influences Perceptions of Developer Productivity
	Introduction
	Awareness and Productivity
	Enabling Awareness in Collaborative Software Development
	Aggregating Awareness Information into Numbers
	Aggregating Awareness Information into Text
	Rethinking Productivity and Team Awareness
	Key ideas
	References

