
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2016

Developers’ perceptions on object-oriented design and Developers’ perceptions on object-oriented design and

architectural roles architectural roles

Maurício ANICHE

Marco Aurélio GEROSA

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer and Systems Architecture Commons, and the Software Engineering Commons

Citation Citation
ANICHE, Maurício; GEROSA, Marco Aurélio; and TREUDE, Christoph. Developers’ perceptions on object-
oriented design and architectural roles. (2016). SBES '16: Proceedings of the 30th Brazilian Symposium
on Software Engineering, Maringá Brazil, September 19-23. 63-72.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8945

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8945&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Developers’ Perceptions on
Object-Oriented Design and Architectural Roles

Maurício Aniche, Marco Aurélio Gerosa
University of São Paulo

Department of Computer Science
São Paulo, Brazil

{aniche, gerosa}@ime.usp.br

Christoph Treude
University of Adelaide

School of Computer Science
Adelaide, Australia

christoph.treude@adelaide.edu.au

ABSTRACT
Software developers commonly rely on well-known software
architecture patterns, such as MVC, to build their applica-
tions. In many of these patterns, classes play specific roles
in the system, such as Controllers or Entities, which means
that each of these classes has specific characteristics in terms
of object-oriented class design and implementation. Indeed,
as we have shown in a previous study, architectural roles
are different from each other in terms of code metrics. In
this paper, we present a study in a software development
company in which we captured developers’ perceptions on
object-oriented design aspects of the architectural roles in
their system and whether these perceptions match the source
code metric analysis. We found that their developers do not
have a common perception of how their architectural roles
behave in terms of object-oriented design aspects, and that
their perceptions also do not match the results of the source
code metric analysis. This phenomenon also does not seem
to be related to developers’ experience. We find these re-
sults alarming, and thus, we suggest software development
teams to invest in education and knowledge sharing about
how their system’s architectural roles behave.

CCS Concepts
•Software and its engineering → Object oriented ar-
chitectures; Software evolution; Maintaining soft-
ware;

Keywords
object-oriented design, software architecture, code metrics

1. INTRODUCTION
Several software architecture patterns commonly rely on

specific building blocks (also known as architectural roles),
each carrying a specific responsibility. As an example, a
Model-View-Controller (MVC) system [22] contains classes
that play the Controller architectural role (responsible

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SBES ’16 Maringá, Brazil
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 12.345/678 9

for coordinating the flow between the model and view layers)
and the Model architectural role (responsible for represent-
ing the business concepts) roles. In practice, understand-
ing how each architectural role behaves in terms of object-
oriented design aspects is fundamental to maintenance ac-
tivities.

First, understanding the behavior of each architectural
role enables developers to make use of implementation prac-
tices that are specific to each of them. Indeed, we have
shown in previous studies that each architectural role has its
own set of specific good and bad practices [5, 4], e.g., Con-
trollers should not contain business rules and a Reposi-
tory should deal with a single Entity only.

Second, popular code analysis tools in industry, such as
PMD [37] and Sonarqube [41], are based on code metrics
which are, in a nutshell, heuristics to quantitatively measure
these aspects. However, these tools just calculate the metric
value; it is up to the developers to interpret the results and
actually decide whether a class is problematic. Suppose that
a developer sees some coupling measurement from a Con-
troller class. If s/he does not know that Controllers
are usually more coupled than other classes, s/he will blame
a class that is, in fact, not problematic when compared to
other Controllers. Other researchers also have shown the
importance of understanding the perceptions of software de-
velopers on different maintenance tasks [8, 45, 33].

In this paper, we conduct a study in a Brazilian software
development company that develops a large web system. By
means of a “card game”, a technique that we created to cap-
ture the developers’ perceptions on object-oriented design
aspects in their systems, we identify a set of rules, such as
“Controllers are more coupled than Entities”. After that, we
triangulate the results by comparing their perceptions to the
results of a source code metric analysis that we performed
in their system (which has more than 6,000 classes and 1
million lines of code).

Our results show that 1) developers do not share a com-
mon perception of how their architectural roles compare to
each other in terms of object-oriented aspects (coupling, co-
hesion, complexity and inheritance), and 2) their percep-
tions do not match the results from a source code analysis
of their system, and 3) this phenomenom also does not seem
to be related to developers’ experience.

This paper contributes with:

1. A study on the developers’ perceptions on how they
expect their architectural roles to behave in terms of
object-oriented design aspects, as well as a triangula-
tion with the results of a code analysis in their system.

2. A discussion on how to mitigate the lack of a shared
vision on the behavior of the architectural roles in their
system architecture in terms of object-oriented design
aspects.

3. An approach (namely “card game interviews”) to cap-
ture developers’ perceptions on the object-oriented de-
sign aspects of the architectural roles in their system.

This paper is divided as follows: in Section 2, we provide
the background on object-oriented design aspects, code met-
rics, and architectural roles used throughtout the paper; in
Section 3, we present our research questions as well as the
research method; in Section 4, we present the results of our
research; in Section 5, we discuss the results and how soft-
ware development teams can learn from it; in Section 6, we
present related work to this research; in Section 7, we discuss
how we mitigate threats to the validity of the study; and,
finally, in Section 8, we provide our concluding remarks.

2. BACKGROUND
In this section, we briefly introduce some definitions we

use throughout this research: object-oriented design aspects
(Section 2.1), code metrics (Section 2.2), and the architec-
tural roles of the studied software (Section 2.3).

2.1 Object-Oriented Design Aspects
To design a good object-oriented system, developers must

be aware of the different aspects of the class design. A good
class, among other attributes, is the one that has a good
balance between its coupling, cohesion, and complexity [28].

In the listing below, we provide a definition of the four
object-oriented design aspects used in this research, derived
from multiple authors [16, 27].

• Coupling. Classes can depend on other classes. This
implies a dependency between the two objects. A change
in one of them can impact the other. Thus, the more
coupled a class is, the more problematic it may be.

• Cohesion. Classes should have few responsibilities. After
all, the more responsibilities in a single class, the more
problems that class can have. The more cohesive a class
is, the higher its reuse can be.

• Complexity. The more complex a class is, the harder it
is to understand and maintain it.

• Inheritance. Classes can inherit both data and behavior
from other classes as a way to reuse code or specialize the
behavior of the base class.

2.2 Code Metrics
There exist many different source code metrics. We rely

on the Chidamber & Kemerer (CK) metrics suite [11], as (i)
it covers different aspects of object-oriented programming,
such as coupling (CBO, RFC), cohesion (LCOM), inheri-
tance (DIT, NOC), and complexity (WMC, NOM), and (ii)
it has already proven its usefulness in earlier studies [24,
10, 18]. The CK suite consists of the following class level
metrics, which are all related to the object-oriented design
aspects we mention in the previous sub-section:

• Number of Methods (NOM) - Complexity . The
count of number of methods in a class.

• Weighted Methods Per Class (WMC) - Complex-
ity . Sum of McCabe’s cyclomatic complexity [29] for each
method in the class.

• Depth of Inheritance Tree (DIT) - Inheritance. The
length of the path from a class to its highest superclass.

• Number of Children (NOC) - Inheritance. The num-
ber of direct sub-classes a class has.

• Coupling Between Object Classes (CBO) - Cou-
pling . The number of classes a class depends upon. It
counts classes used from both external libraries as well as
classes from the project.

• Response for a Class (RFC) - Coupling . It is the
count of all method invocations that happen in a class.

• Lack of Cohesion of Methods (LCOM) - Cohesion .
The count of the number of method pairs whose similar-
ity in terms of used attributes is zero minus the count of
method pairs whose same similarity is not zero.

2.3 Spring MVC Architectural Roles
We conducted this research in a software development

company that uses Spring MVC, a Java web development
framework, as the basis of their software architecture. As
its name states, the framework makes use of the Model-
View-Controller pattern [22]. A common MVC application
contains different “architectural roles”.

We define “architectural role” as a particular role that
classes can play in a system architecture. When a class
plays an architectural role in the system, its task is well-
defined, and usually classes are focused only on that. One
can note the difference between architectural roles and de-
sign patterns: while some design patterns can be optional in
the system, architectural roles are fundamental to that sys-
tem architecture, e.g., an MVC-based architecture requires
the existence of Controllers, while a Strategy design pat-
tern [42] can be optionally applied in the system.

In the following, we present the five main architectural
roles in Spring MVC:

• Controllers. Take care of the flow between the model
and the view layers.

• Entities. Represent a domain object (e.g., an Item or a
Product).

• Repositories. Responsible to encapsulate persistence
logic, similar to Data Access Objects [17].

• Services. Implemented when there is a need to offer an
operation that stands alone in the model, with no encap-
sulated state.

• Components. Represent small components, such as util-
ity classes. Practical examples can be UI formatting or
data conversion classes.

3. STUDY DESIGN
The main goal of this study is to understand the de-

velopers’ perceptions on their system’s architectural roles’
object-oriented design aspects and whether these percep-
tions match the results of a code metric analysis. We con-
ducted the study in a Brazilian software development com-
pany located in São Paulo. We interviewed 17 of their devel-
opers and analyzed their main Java system, which is com-
posed of more than 1 million lines of code.

In sub-section 3.1, we present our research questions, and
in sub-section 3.2, we discuss both the qualitative and the
quantitative method performed in this study.

3.1 Research Questions
RQ1: Do developers share a common perception

on the object-oriented design aspects in their sys-
tem’s architectural roles?

The feeling of a developer is always important when deal-
ing with software maintenance. Do developers feel any dif-
ference in terms of object-oriented design aspects in classes
during their daily development? As an example, do they
feel that some role A in the system is more coupled than
some other role B? To answer the question, we rely on “card
game” interviews with 17 professional developers. During
the interviews, developers are asked to explicitly compare
the behavior of classes in their system.

RQ2: Do developers’ perceptions match the code
metric analysis of their own project?

Do the results of a code metric analysis match the devel-
opers’ perceptions? To answer the question, we transform
their opinions into mathematical expressions (e.g., Con-
troller Coupling > Entities) and match these expressions
with the analysis of CK code metrics [11] extracted from
their own project.

3.2 Method
As a first step, we invited one of our industry partners

to be part of the study. The company works on a Java-
based Spring MVC web application. The product supports
supermarket stores in all their needs. The software has been
developed for 11 years, and has more than 1 million lines of
code in all its modules. We chose the company because (i)
they have a team composed by both experienced and begin-
ner developers which gives us the possibility of measuring
the impact of experience (ii) they develop in Java, which is
the language supported by our tools, (iii) their software con-
tains many classes that implement the studied architectural
roles (see Table 2), and (iv) they are based in São Paulo,
which enables us to personally interview the participants.

We invited participants to talk about how they perceive
the architectural roles of their system in terms of the afore-
mentioned object-oriented design aspects. We also made
them compare their perceptions among architectural roles,
i.e., instead of saying that Controllers are highly cou-
pled, and Entities are highly complex, which are highly
subjective, they should tell us that Controllers are more
coupled than Services, or that Entities are more complex
than Repositories. This way, we are able to explicitly com-
pare their answers to the results of the code metric analysis.
Note that participants did not discuss specific classes in their
systems (with which they might not have had any contact).
Instead, participants discussed existing architectural roles
in their system architecture. Thus, we avoid their possible
lack of knowledge on specific classes in the system, e.g., one
may not know the Controller A, but one understands what
a Controller is.

To answer RQ1, we developed an approach in which devel-
opers make use of cards to better express their perceptions
on their system’s design. From now on, we call this approach
“card game interview”, which we detail in the following para-
graphs.

On a table, we put 3 sets of cards as shown in Figure 1:

P

R1

R2

co
m
pu
te
r

Figure 1: Card game sketch. P=Interviewee, R1 and
R2=Researchers, Green cards=Architectural roles, Yellow
Cards=Comparison operators, Blue cards=OOP concepts.

1. Architectural roles deck. This set contains all
the common architectural roles in their software sys-
tem: Controllers, Services, Components, Enti-
ties, and Repositories. The goal of these cards is
to make developers compare two roles. We decided
to make them compare architectural roles instead of
single classes, as architectural roles are (i) generaliz-
able during a discussion, i.e., you can state that Con-
trollers are commonly more coupled than Reposi-
tories, without talking about some exceptional cases,
and (ii) we have shown in the past that developers have
different best practices for each of the MVC layers [5].

2. OOP concepts deck. This set contains four object-
oriented principles, which we want developers to use
when comparing the architectural roles: “coupling”,
“cohesion”, “complexity”, and “inheritance”.

3. Comparison operators deck. We provide develop-
ers with a set of cards with two comparison operators:
“higher than” and “lower than”.

An advantage of using cards to refer to architectural roles
and concepts is that cards remind participants about all the
roles and concepts being considered. In that way, instead of
thinking about a single role at a time, they are continuously
thinking about all of them before making an assumption.

Before beginning an interview, we explain to them how
the card game interview works: in each round, participants
select two cards from the architectural roles deck (e.g., Con-
troller and Repository), and put each one on one side
of the table (left and right). Then, they get one card from
the OOP concept deck and add a comparison operator to
it. The goal is to make them create rules in the following
format:

<role> <concept> <comparison> <role>

Examples of created rules are [Controller Coupling > En-
tity], and [Component Complexity < Service]. We told par-
ticipants to create any number of rules they want. To facil-
itate, they could use more than one role or concept at the
same time, creating rules like “Component Controller Com-
plexity < Entity”. For all the rules, they had to explain
the reasoning behind it. We asked the following question for

each rule: “Why do you think A is more [or less] B than C?”,
where A and C are the architectural roles, and B is an OOP
concept. The question for the first example above is: “Why
do you think Controllers are more coupled than Entities?”.

As we want to capture participants’ perceptions on each
architectural role as they were in the wild, we do not give
them any explanation about the OOP concepts or the archi-
tectural roles. We clearly state that participants should use
their own experience to create the rules. If a participant was
not familiar with a specific role, s/he had the choice of re-
moving it from the deck. In practice, the only architectural
role a few participants were not familiar with was Compo-
nent. According to them, “they do not use it very much in
their system”. We did not discuss about Components with
these participants.

We also designed the card game to give us the freedom
to ask them any other questions that seemed interesting,
according to their answers. During the interviews, as re-
searchers, we supported the process, but did not influence
the participants. Sometimes, we asked if they could create
a rule with some architectural role or concept they had not
used yet. For each participant, we randomized the order of
the cards in each deck, in order to reduce a possible bias of
one role (e.g., the first card in the deck) being used more
than others.

Two researchers were present during the card game. The
role of the first researcher was to conduct and support the
game with the participant, while the second researcher was
focused on taking notes of all the rules created. We decided
to take notes in a CSV (comma-separated values) with the
format: “participantId,roleA,concept,comparison,roleB”.

We interviewed 17 software developers. Interviews took
4:30 hours in total, and they were fully transcribed. All
of the participants were developers or technical leaders. No
managers or product owners were interviewed. After a man-
ual analysis on their answers, we decided to remove partici-
pants P1, P2 and P13, due to their apparent lack of under-
standing the OOP concepts used in this study. Specifically,
participants P2 and P13 provided a higher number of rules
without clear explanations about them, while P1 changed
his mind about the rules many times during the interview.
In Table 1, we present their experience in software devel-
opment. Participants have different levels of experience in
software development. 5 of them have more than 6 years of
experience, while 4 of them have been working as software
developers for the last 1 or 2 years.

To analyze the influence of experience, we divided par-
ticipants in two groups: experienced (more than 4 years of
experience) and non-experienced (less than 4 years of expe-
rience). We chose “4 years” as it divides the participants in
two sets with similar size (7 non-experienced and 7 expe-
rienced), which allows us to better compare the data from
both groups. We used the unpaired Wilcoxon signed rank
test [43] to compare the quantity of rules provided by par-
ticipants in each group.

To answer RQ2, we first got access to their source code,
and executed a code metrics tool. As we had access only
to their source code (and not to external libraries), we were
not able to compile the code. Thus, we made use of static
analysis to calculate the code metrics. As we did not find
a tool that measures all the CK metrics, we implemented
our tool [3], which is open source and freely available for
inspection.

Table 1: Participant’s experience in software development

Experience
(in years)

Participants (n = 14)

1-2 years P3, P6, P9, P10
2-4 years P5, P16, P17
4-6 years P7, P12, P15
6-8 years P14
8-10 years P4, P11
10+ years P8

Table 2: Our industry partner’s project’s numbers

Architectural Role # of classes

Controllers 681
Repositories 765
Services 1,139
Entities 854
Components 59
Other classes 6,308

As a first step in analyzing their source code, we identified
each class that belongs to one of the roles. If we were not
able to identify the role of a class, then we considered it as
“another role”, and discarded it from the rest of the study.
In Spring MVC, all classes that play one of the architec-
tural roles need to be annotated with one of the stereotypes
provided by the framework. Controller classes, for exam-
ple, need to be annotated with the @Controller annotation.
Other annotations are @Repository, @Component, @Entity,
and @Service. In Table 2, we show the number of classes
identified in each architectural role, as well as the number
of classes discarded.

We then measured all the CK metrics in these classes:
CBO, RFC, WMC, DIT, NOC, LCOM, and NOM. Next
step is to compare the code metric values for each archi-
tectural role. We combined the architectural roles in pairs
to see whether their metrics distribution is significantly dif-
ferent from each other. As Spring MVC systems have 5
different architectural roles (thus, 10 pairwise comparisons,
e.g., Controllers vs Services, Services vs Entities, etc.) and
the CK suite contains 7 different metrics, we performed 70
comparisons.

We used the unpaired Wilcoxon signed rank test [43]. The
ones that present a significant p-value are significantly dif-
ferent from each other. We do not correct the p-value with
strategies such as Bonferroni, because of its contradictory
use [35, 32]. We also calculate Cliff’s Delta effect size for
each comparison to identify the direction of the effect, i.e.,
A > B or A < B. A positive effect size indicates that
the first architectural role (A) presents higher values in the
distribution than the second architectural role (B) in the
comparison. We also measured Cliff’s Delta effect size of
the comparison. The higher the effect size, the larger the
difference among these two groups.

We matched each of the rules created by the participants
during the card game to the measured difference. For a rule
A > B in terms of X, where A and B are architectural
roles and X is an OOP aspect, we considered this rule to
be true (match) if the difference between the measurements
in A and B is significantly different (Wilcoxon < 0.05) and
the effect size is positively higher than negligible (according
to Romano et al.’s classification [38], > 0.147) (if the rule

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9
of participants

of

 r
ul

es

Figure 2: Histogram of rules shared among participants.

is A > B) or negatively smaller than negligible (< 0.147)
(if the rule is A < B) in at least one of the metrics that
are related to X. Each aspect has its own set of metrics in
the CK suite. We used the following map to convert con-
cepts to metrics (see Section 2.2): Complexity → {WMC,
NOM}, Coupling → {CBO, RFC}, Inheritance → {DIT,
NOC}, Cohesion → {LCOM}.

During the analysis, we inverted the positions of the ar-
chitectural roles when the rule was related to cohesion, as
the LCOM metric relates to the “lack of cohesion of a class”,
and the rules created by participants relate to “cohesion”
(the opposite).

To measure the influence of the developers’ experience in
both RQs, we calculated Fisher’s exact test [40] to check
whether the proportions of correct and incorrect answers
by both the experienced and non-experienced groups were
statistically different.

4. FINDINGS
In this section, we report our results for both RQ1 (Section

4.1) and RQ2 (Section 4.2).

4.1 RQ1: Developers’ Perceptions
In Table 3, we present the number of rules created during

our card game interviews. Participants create 30 distinct
rules for a total of 75 rules. Experienced programmers are
responsible for 39 of them, while non-experienced program-
mers are responsible for the remainding 36 rules. We do not
find a statistically significant difference in the quantity of an-
swers by both experienced and non-experienced developers
(p = 0.60).

Interestingly, as depicted in Figure 2, which we show the
histogram of rules created by the same participants, 14 rules
(out of the 75, thus, 18% of the distinct rules) are mentioned
by only a single participant. The same happens when we fil-
ter by experience: we find many rules mentioned by only one
developer. If we analyze the rules created by only experi-
enced developers (39 in total), we see that 13 rules (33%) are
mentioned by just one participant. When analyzing only the
non-experienced participants, 12 rules (33% out of 36 rules)
are mentioned by a single participant.

Complexity was the most common concept used in the
rules (25 out of 77), followed by Coupling (19), Inheritance

Table 3: Number of rules created by the participants

Experienced
participants

Non-experienced
participants

Cohesion 8 5
Complexity 15 10
Coupling 9 10
Inheritance 7 11
Total 39 36

Table 4: Top 5 most popular rules created by participants

Role A Metric Sign Role B
Participants

(n=14)

Service Complexity > Controller 9
Service Coupling > Controller 8
Entity Inheritance > Controller 5
Entity Inheritance > Service 5
Entity Complexity > Controller 4

(18), and Cohesion (13). In addition, Services are the most
popular architectural role among the rules, as it appears 51
times in rules (both in the left and the right side of the
rule). Entities (36), Controllers (34) are the next ones,
followed by Repositories (19) and Components (10). In
Table 4, we show the top 5 most mentioned rules, and below
we present the participants’ explanation for each of them.
We can see that only 2 rules are perceived by more than
50% of the participants.

According to them (and we cite P10 and P12), Services
are more complex than Controllers because the last one
just controls flow, and that should be simpler in terms of
complexity than Services, which hold the system’s com-
plexity. Also, P7, P14 (cited), P15, and P17 gave us strong
opinions on why a Service is more complex than all other
roles.

P10: Because I think all the complexity should be here
[in Services]. Controllers is just “it goes here, that goes
there”. And when it goes, than the complexity is there.

P12: Because a Controller should be a class that only
gets and manages, from where things come and go. So,
it is more a lean class. There must be less complexity in
it. It is like that phrase: thin controllers and fat models.
It is something like that.

P14: Because the [business] rules and even the design
patterns that I will use, I will be doing it all in the Ser-
vice. (...)

To explain why Entities are more complex, P6 affirmed
that they have many business and validation rules, while
other classes do not.

P6: Services are less complex than Entities. Because
Services do just one thing. Entities do a lot of validation,
have a lot of [business] rules related to itself.

Regarding coupling, P15 believes Services are more cou-
pled than the rest, because they deal with integration with
other services. On the other hand, P9 affirms that Con-
trollers are more coupled than Services, because they

Figure 3: Code metrics distribution in the system (bars, from left to right: Yellow=CBO, Blue=DIT, Black=LCOM,
Green=NOC, Orange=NOM, Purple=RFC, Pink=WMC). Striped bars = significant difference (p-value < 0.05), height =

Cliff’s Delta effect size.

contain more rules that depend upon other classes.

P9: Controllers are more coupled than Services. I’ve
seen some Controllers containing rules that depend upon
other guys, and if you are going to change these guys,
you end up breaking an infinity number of things.

P15: I think Services are the most coupled, mainly be-
cause it deals with integrations and things like that. Ev-
erything has to be sort of coupled (...), and depending on
the case, if you change it, you break the entire system,
as one Service can depend upon another Service.

Regarding inheritance, participants state that Entities
make use of it more than other roles, as Entities represent
business concepts, and the use of inheritance allows develop-
ers to derive other related business concepts (we quote P15
and P16). Also, according to them, the use of inheritance is
not normal in other roles. As an example, P2 clearly stated
that he does not see a reason for making use of inheritance
in Controllers. Interestingly, P1 said that, although it is
normal to use inheritance in Entities, they try to avoid it.

P15: Inheritance makes more sense in Entities, as you
can build “an object inside of the other”.

P16: Because you can add just basic data in an Entity,
and then other Entities [by means of inheritance] can
reuse them.

Interestingly, 5 rules have an exact opposite version men-
tioned by another participant. The Service Complexity >
Controller rule was created by 9 participants, while the rule
Controller Complexity > Service was created by a single

participant. In Table 5, we show the rules that had an
opposite version and the number of participants that cre-
ated them. The phenomenon also happens when we separate
per experience; experienced developers only diverged in one
rule (Entity has higher inheritance than Service, 2 partici-
pants against 1), while non-experienced developers diverged
in 2 rules (Service has higher complexity than Controllers,
4 participants vs 1, and Service has higher coupling than
Controllers, also 4 participants vs 1). However, although
it happens, we see that it is usually a single participant
that disagrees with the others. In the following paragraph,
we illustrate the participants’ opinions on the contradictory
rules.

P5 said that, although Services should contain business
rules, in practice, these rules are often written in Con-
trollers, making Controllers more complex than Ser-
vices. As we see in Table 5, nine participants think the
other way around. P9 believes Controllers are less cou-
pled than Services. According to him, it is more common
to “break” the behavior of a Controller when changing a
business rules than to break a Service. P14 affirmed that,
although inheritance is common in Entities, he thinks this
is more common in Services. As we see in Table 5, 5 other
participants believe in the opposite.

Thus, we answer RQ1: Do developers share a common
perception on the object-oriented design aspects in their sys-
tem’s architectural roles?

1. Developers do not have a common perception of how
their architectural roles work in terms of object-
oriented design aspects. Many perceptions are felt by a
single participant, while just a few are shared by many
of them.

Table 5: Top 5 rules with a contradictory ver-
sion. Qty=number of participants that created the rule,
Opp=number of participants that created the opposite ver-
sion.

Role A Metric Sign Role B Qty Opp

Service Complexity > Controller 9 1
Service Coupling > Controller 8 1
Entity Inheritance > Service 5 1
Service Complexity > Entity 3 1
Controller Complexity > Repository 1 1

2. Still, most of the perceptions that are shared by many
participants (in a few cases, shared by more than 50%
of participants) were contradicted by another partic-
ipant, indicating that not all of them share the same
vision.

3. By visual inspection, we observe that both experienced
and non-experienced groups are similar in terms of be-
havior. Thus, we were not able to affirm whether ex-
perience positively influences these results, as our sta-
tistical tests did not present significant results.

4.2 RQ2: Code Metric Analysis
In Figure 3, we present the pairwise comparison of each

metric and architectural role in the system. Each cell con-
tains a chart with 7 bars, one for each metric: CBO, DIT,
LCOM, NOC, NOM, RFC, and WMC, respectively. The
height of the bar represents Cliff’s Delta effect size. If the
bar is positive, then the architectural role in the row is sig-
nificantly greater than the architectural role in the column,
regarding that code metric. If the bar is negative, then the
architectual role in the row is significantly smaller than the
architectural role in the column. We do not show bars in
which the result is non-significant (p-value > 0.05). As
examples, (i) the yellow bar (CBO) in the Controller-
Repository bar chart has a value of 0.80 (large effect size),
meaning that Controllers have much higher values of
CBO than Repositories, and (ii) the purple bar (RFC)
in the Controller-Entity bar chart means that Con-
trollers have much higher values of RFC than Entities
(0.66 is considered a large effect size). Note that the pur-
ple bar in the Entity-Controller bar chart has a value
of -0.66. We exhibit both directions of the relationship to
facilitate the interpretation of the chart. We observe that 57
out of the 70 comparisons were significantly different. The
significant p-values mean that we are able to confidently
compare the effect size between roles. The complete list of
values can be found in our online appendix [6].

With these numbers in hand, we show the number of times
participants created a rule that matches with the result of
the code analysis, in Table 6. We see that their opinions
matched in 14 out of their 30 distinct rules (46%). Expe-
rienced and non-experienced developers also present a low
assertiveness rate. Fisher’s exact test does not show a differ-
ence in the proportions of assertiveness between both groups
of developers (p = 0.22).

Interestingly, as we discussed in the method, we consider
a rule to be true only and if only the effect size of the differ-
ence is significant and the effect size is higher than negligi-
ble. When analysing the data, we noticed that many rules
were considered “wrong” because of this. The most affected

rules are the ones that deal with “inheritance”, as in most
cases, the difference of the usage of inheritance among the
architectural roles is negligible.

In addition, even the “popular rules” (rules which many
participants mentioned, where we show the top 5 in Table 4)
do not entirely match. The rule Services are more complex
than Controllers (the most popular one, n = 9) and the
rule Services are more complex than Repositories (n = 4)
are true. However, the differences are negligible in the other
three rules among the top 5.

Thus, we answer RQ2: Do developers’ perceptions match
the code metric analysis in their own project?

1. Developers’ perceptions match the code metric analy-
sis in only 50% of the cases. We consider this to be a
low and worrisome number.

2. Even the perceptions that are shared among many par-
ticipants are wrong in many cases. From the top 5
most popular perceptions, only 2 matched.

3. We are not able to affirm whether experience can posi-
tively influence the assertiveness of the perception. By
means of visual inspection, we observe that both ex-
perienced and non-experienced groups present similar
low performance.

5. DISCUSSION
From our results, we learn one important thing: developers

do not have a common perception on how their architectural
roles compare in terms of object-oriented aspects. We con-
jecture two main problems that this issue can lead to: lack
of a common sense about specific best practices for each
architectural role, and in the interpretation of code metric
analysis. We discuss them in the following paragraphs.

The lack of perception about how each architectural role
behaves may lead developers to make use of different code
implementation patterns, i.e., some developers may not care
about coupling inside Controllers, while others may care.
During the interviews, we noticed that even the definition
of the object-oriented design aspects, such as coupling and
cohesion, varied among developers. Yet, the lack of knowl-
edge in many other important concepts in software devel-
opment has been reported by other researchers. Yamashita
and Moonen [45], as an example, conducted a survey with
85 professionals, and results indicate that 32% of developers
do not know or have limited knowledge about code smells.
Curiously, more than 40% of the participants in their survey
affirm that they are extremely familiar with object-oriented
design. Although this was not the focus of their research, we
wonder how much their participants actually know about it
in reality.

We also conjecture that this lack of common knowledge
can be harmful when developers are interpreting the results
of a code metric analysis. Indeed, if they do not share
a common vision of how their system should behave, how
should they evaluate the results of such analysis? At the end
of each interview, we asked participants about their opin-
ions on code metrics. To our surprise, most of them said
that, although the team has a Sonarqube (a tool that calcu-
lates code metrics and warns developers about problematic
classes) plugged into their continuous integration software,
they do not care about the reports. P6 stated that “we say

Table 6: Comparing the perceptions of developers and the code metrics analysis in their system

All participants
(unique rules=30)

Experienced
(unique rules=22)

Non-experienced
(unique rules=21)

Correct Wrong Correct Wrong Correct Wrong

Cohesion 3 5 2 5 1 3
Complexity 6 4 3 3 6 1
Coupling 4 2 3 2 4 1
Inheritance 1 5 0 4 1 4

Total 14 16 8 14 12 9
46% 54% 36% 64% 57% 43%

a lot [about code metrics], but we don’t use them in prac-
tice”. P13 also said that the other problem is to know how
to fix the possible problems that are pointed out by code
metrics. The number of false positives in tools is a current
problem [34], and we argue that this problem can be inten-
sified when developers do not share the same vision on how
each architectural role behaves in terms of object-oriented
design aspects.

Experience also appears to not be a factor of influence.
In this paper, we separated participants in less than 4 years
and more than 4 years. However, we also tried different
combinations, but none of them presented significance.

We find this result very alarming. Therefore, our sugges-
tion for software development teams is to invest in education
and knowledge sharing about how their architectural roles
compare to each other in terms of object-oriented design
aspects. Knowledge sharing and expertise coordination are
indeed related to team performance [15, 14, 7]. Therefore,
we suggest software development teams to discuss:

1. A shared definition of object-oriented concepts, such
as coupling, cohesion, and complexity.

2. How each architectural role should behave in terms of
these aspects, e.g., Services should be always cohe-
sive, or Controllers can present high coupling, but
should not contain business rules.

3. How they should expect each architectural role to be-
have during code metric analysis.

This study was conducted in a single software company.
We have no evidence that our findings generalize to other
companies or architectural patterns. Still, we argue our find-
ings are important for software companies to know that de-
velopers may have different perceptions about their system
architecture. Future work needs to be conducted in order to
validate whether these suggestions can improve their daily
work.

6. RELATED WORK
Code metrics are used in many other techniques. When

combined, code metrics can identify high-level code smells.
Marinescu [26] and Lanza and Marinescu [23] combine dif-
ferent metrics, thresholds, and logical operators to detect
different smells, such as God Classes, Feature Envy, and
Blob Classes. Other techniques follow the same idea. Moha
et al. [30] proposed a text-based description called DECOR,
in which smells are described by code metrics and thresh-
olds. Munro [31] and Alikacem and Sahraoui [1] proposed

similar approaches. Indeed, Khohm et al. [21] showed that
smelly classes are more prone to change and to defects than
other classes. Li and Shatnawi [25] also empirically evalu-
ated the effects of code smells and showed a high correlation
between defect-prone and some bad smells.

Other maintainability issues, such as change- or defect-
proneness of a class, can also be detected by means of code
metrics. Some studies show a relationship between a higher
code metric value in a CK metric and the defect- or change-
proneness of that class. WMC, CBO, LCOM, and RFC have
been related to defect-proneness [19, 39, 20], while WMC,
CBO, and RFC have been related to change-proneness [13,
9, 44]. D’Ambros et al. [12] show that different learning
algorithms can have a good performance predicting defect-
proneness when using CK metrics.

However, although code metrics can point to problematic
pieces of code, the perception of a developer about the prob-
lem may be not precise. A study from Palomba et al. [33]
showed that smells related to complex or long source code
are perceived as harmful by developers; other types of smells
are only perceived when their intensity is high. As said be-
fore, Yamashita and Moonen [45] conducted a survey with
85 professionals, and results indicate that 32% of developers
do not know or have limited knowledge about code smells.
Arcoverde et al. [8] performed a survey to understand how
developers react to the presence of code smells. The results
show that developers postpone the removal to avoid API
modifications. Peters and Zaidman [36] analyzed the be-
havior of developers regarding the life cycle of code smells
and results show that, even when developers are aware of
the presence of the smell, they do not refactor.

To the best of our knowledge, this is the first study that
captures the developers’ perceptions on object-oriented as-
pects in their system’s architectural roles and compares
these perceptions to the results of a code metric analysis
in their own software system.

7. THREATS TO VALIDITY
Construct validity. Threats to construct validity con-

cern the relation between the theory and the observation,
and in this work are mainly at risk due to the measurements
we performed. To collect the perceptions from developers,
we proposed the “card game interviews”. However, we can
not assure that participants mentioned everything they per-
ceive on the architectural roles. To mitigate the problem,
during the interviews, we supported them by making them
comfortable enough to create any rule they want, and by
reminding them about cards they have not used.

We also calculated CK metrics from their source code. As
said before, we made use of our internal tool. Thus, met-
rics may present small variations when compared to other
tools. It also happens with other tools [2], and we do not
think the small variation that might happen in each met-
ric/tool would affect the results because: (1) the difference
is probably small, as the original algorithm of the metric is
well-defined, and (2) both statistical tests used (Wilcoxon
and Cliff’s Delta) are strong against small variations.

Participants had different visions of coupling and cohe-
sion. We decided not to give them a common definition
before starting the interview, as we wanted to see how they
would behave in the wild. Although providing them with a
definition could change, or even improve the results in their
favor, we affirm that this would bias the results. Another
related threat might be that we chose the CK metric suite
to measure the OOP concepts. A different code metric suite
may imply different results in RQ2. However, we conjecture
it would not change the final message of this study.

Internal validity. Threats to internal validity concern
external factors we did not consider that could affect the
variables and the relations being investigated. We did not
take into account classes with no defined architectural role in
the system. In this case study, around 6,000 classes were ig-
nored. However, before starting the interviews, we reminded
them that we were going to discuss only classes with those
architectural roles. Thus, we do not believe they were influ-
enced by these other classes.

Also, we only asked participants to create rules using
“greater than”or“smaller than”. Further study is required to
understand whether participants would agree more in rules
with “equals to”.

External validity. Threats to external validity concern
the generalisation of results. As we performed a single case
study in one company, we do not affirm these results are
generalizable to other software development teams. Still,
our findings should be shared with other software develop-
ment companies, so that they can avoid these misconcep-
tions among their developers.

8. CONCLUSION
Designing a high quality object-oriented system is chal-

lenging. Understanding how architectural roles behave in
terms of object-oriented design aspects also is. In this pa-
per, we performed a study in a Brazilian software develop-
ment company. We studied the developers’ perceptions on
the object-oriented design aspects of their system’s architec-
tural roles and compared them to the results of a code met-
rics analysis. Our study is divided in two phases: in the first
part, we performed a“card game interview”, a technique that
we developed to collect their perceptions on object-oriented
aspects of their systems, with 17 developers. Then, we col-
lected code metrics from their software system, and matched
the results of the analysis with their perceptions.

We sum up our main findings:

1. Developers do not share a common perception of how
their system’s architectural roles are characterized in
terms of object-oriented design aspects.

2. Developers’ perceptions do not match the results of a
code metric analysis in their system source code.

3. Experience seems not to be a factor of influence. Thus,

even experienced developers do not have a common or
a more accurate perception of how architectural roles
behave.

Although we can not argue that our findings are generaliz-
able, we suggest software teams to invest in internal knowl-
edge sharing and coordination expertise so that all develop-
ers can be aware of how their system’s architectural roles
should work.

9. REFERENCES
[1] E. Alikacem and H. Sahraoui. Generic metric

extraction framework. In Proceedings of the 16th Intl.
Workshop on Software Measurement and Metrik
Kongress (IWSM/MetriKon), 2006.

[2] T. L. Alves, C. Ypma, and J. Visser. Deriving metric
thresholds from benchmark data. In Software
Maintenance (ICSM), IEEE Intl. Conf. on. IEEE,
2010.

[3] M. Aniche. Ck calculator.
http://www.github.com/mauricioaniche/ck.

[4] M. Aniche, G. Bavota, C. Treude, A. van Deursen,
and M. A. Gerosa. A validated set of smells in
model-view-controller architecture. In Software
Maintenance and Evolution (ICSME), 2016 IEEE
31th International COnverence on. IEEE, 2016.

[5] M. Aniche and M. Gerosa. Boas e más práticas em
desenvolvimento web com mvc: Resultados de um
questionário com profissionais. Workshop of Software
Visualization, Evolution and Maintenance, 2015.

[6] M. Aniche, C. Treude, and M. A. Gerosa. Appendix:
Developers’ perceptions on object-oriented design and
system architecture.
http://mauricioaniche.github.io/sbes2016.

[7] M. F. Aniche and G. de Azevedo Silveira. Increasing
learning in an agile environment: Lessons learned in
an agile team. In Agile Conference (AGILE), 2011,
pages 289–295. IEEE, 2011.

[8] R. Arcoverde, A. Garcia, and E. Figueiredo.
Understanding the longevity of code smells:
preliminary results of an explanatory survey. In
Proceedings of the 4th Workshop on Refactoring Tools,
pages 33–36. ACM, 2011.

[9] Y. Ayalew and K. Mguni. An assessment of
changeability of open source software. Computer and
Information Science, 6(3), 2013.

[10] V. R. Basili, L. C. Briand, and W. L. Melo. A
validation of object-oriented design metrics as quality
indicators. Software Engineering, IEEE Transactions
on, 22(10), 1996.

[11] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. Software Engineering,
IEEE Transactions on, 20(6), 1994.

[12] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating
defect prediction approaches: a benchmark and an
extensive comparison. Empirical Software Engineering,
17(4-5):531–577, 2012.

[13] S. Eski and F. Buzluca. An empirical study on
object-oriented metrics and software evolution in
order to reduce testing costs by predicting
change-prone classes. In Software Testing, Verification
and Validation Workshops (ICSTW), IEEE Fourth
Intl. Conf. on. IEEE, 2011.

[14] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and
J. D. Herbsleb. Team knowledge and coordination in
geographically distributed software development.
Journal of Management Information Systems,
24(1):135–169, 2007.

[15] S. Faraj and L. Sproull. Coordinating expertise in
software development teams. Management science,
46(12):1554–1568, 2000.

[16] M. Fowler. Refactoring: Improving the design of
existing code. In 11th European Conf.. Jyväskylä,
Finland, 1997.

[17] M. Fowler. Patterns of enterprise application
architecture. Addison-Wesley Longman Publishing
Co., Inc., 2002.

[18] T. Gyimothy, R. Ferenc, and I. Siket. Empirical
validation of object-oriented metrics on open source
software for fault prediction. Software Engineering,
IEEE Transactions on, 31(10), 2005.

[19] A. Janes, M. Scotto, W. Pedrycz, B. Russo,
M. Stefanovic, and G. Succi. Identification of
defect-prone classes in telecommunication software
systems using design metrics. Information sciences,
176(24), 2006.

[20] M. Jureczko and D. Spinellis. Using object-oriented
design metrics to predict software defects. Models and
Methods of System Dependability. Oficyna
Wydawnicza Politechniki Wroc lawskiej, 2010.

[21] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and
G. Antoniol. An exploratory study of the impact of
antipatterns on class change-and fault-proneness.
Empirical Software Engineering, 17(3), 2012.

[22] G. E. Krasner, S. T. Pope, et al. A description of the
model-view-controller user interface paradigm in the
smalltalk-80 system. Journal of object oriented
programming, 1(3), 1988.

[23] M. Lanza and R. Marinescu. Object-oriented metrics
in practice: using software metrics to characterize,
evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media, 2007.

[24] W. Li and S. Henry. Object-oriented metrics that
predict maintainability. Journal of systems and
software, 23(2), 1993.

[25] W. Li and R. Shatnawi. An empirical study of the bad
smells and class error probability in the post-release
object-oriented system evolution. Journal of systems
and software, 80(7):1120–1128, 2007.

[26] R. Marinescu. Detection strategies: Metrics-based
rules for detecting design flaws. In Software
Maintenance, 2004. Proceedings. 20th IEEE Intl.
Conference on, pages 350–359. IEEE, 2004.

[27] M. Martin and R. C. Martin. Agile principles,
patterns, and practices in C#. Pearson Education,
2006.

[28] R. C. Martin. Agile software development: principles,
patterns, and practices. Prentice Hall PTR, 2003.

[29] T. J. McCabe. A complexity measure. Software
Engineering, IEEE Transactions on, (4), 1976.

[30] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F.
Le Meur. Decor: A method for the specification and
detection of code and design smells. Software
Engineering, IEEE Transactions on, 36(1), 2010.

[31] M. J. Munro. Product metrics for automatic
identification of” bad smell” design problems in java
source-code. In Software Metrics, 11th IEEE Intl.
Symposium. IEEE, 2005.

[32] S. Nakagawa. A farewell to bonferroni: the problems
of low statistical power and publication bias.
Behavioral Ecology, 15(6), 2004.

[33] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and
A. De Lucia. Do they really smell bad? a study on
developers’ perception of bad code smells. In Software
Maintenance and Evolution (ICSME), IEEE Intl.
Conf. on. IEEE, 2014.

[34] S. Panichella, V. Arnaoudova, M. Di Penta, and
G. Antoniol. Would static analysis tools help
developers with code reviews? In Software Analysis,
Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on, pages 161–170.
IEEE, 2015.

[35] T. V. Perneger. What’s wrong with bonferroni
adjustments. BMJ: British Medical Journal,
316(7139), 1998.

[36] R. Peters and A. Zaidman. Evaluating the lifespan of
code smells using software repository mining. In
Software Maintenance and Reengineering (CSMR),
2012 16th European Conference on. IEEE, 2012.

[37] PMD. Pmd. http://pmd.github.io.

[38] J. Romano, J. D. Kromrey, J. Coraggio, and
J. Skowronek. Appropriate statistics for ordinal level
data: Should we really be using t-test and cohen’sd for
evaluating group differences on the nsse and other
surveys. In annual meeting of the Florida Association
of Institutional Research, 2006.

[39] R. Shatnawi and W. Li. The effectiveness of software
metrics in identifying error-prone classes in
post-release software evolution process. Journal of
systems and software, 81(11), 2008.

[40] D. J. Sheskin. Handbook of parametric and
nonparametric statistical procedures. crc Press, 2003.

[41] Sonarqube. Sonarqube. http://www.sonarqube.org/.

[42] J. Vlissides, R. Helm, R. Johnson, and E. Gamma.
Design patterns: Elements of reusable object-oriented
software. Reading: Addison-Wesley, 49(120):11, 1995.

[43] F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics bulletin, 1945.

[44] F. G. Wilkie and B. A. Kitchenham. Coupling
measures and change ripples in c++ application
software. Journal of Systems and Software, 52(2),
2000.

[45] A. Yamashita and L. Moonen. Do developers care
about code smells? an exploratory survey. In 2013
20th Working Conference on Reverse Engineering

(WCRE), pages 242–251. IEEE, 2013.

	Developers’ perceptions on object-oriented design and architectural roles
	Citation

	tmp.1720082600.pdf.eCDxy

