
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

3-2021 

Combining query reduction and expansion for text-retrieval-based Combining query reduction and expansion for text-retrieval-based 

bug localization bug localization 

Juan Manuel FLOREZ 

Oscar CHAPARRO 

Christoph TREUDE 
Singapore Management University, ctreude@smu.edu.sg 

Andrian MARCUS 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
FLOREZ, Juan Manuel; CHAPARRO, Oscar; TREUDE, Christoph; and MARCUS, Andrian. Combining query 
reduction and expansion for text-retrieval-based bug localization. (2021). Proceedings of the 2021 IEEE 
International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, 
March 9-12. 166-176. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8944 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8944&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8944&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Combining Query Reduction and Expansion for
Text-Retrieval-Based Bug Localization

Juan Manuel Florez1, Oscar Chaparro2, Christoph Treude3, Andrian Marcus1

1The University of Texas at Dallas, 2College of William & Mary, 3The University of Adelaide
jflorez@utdallas.edu, oscarch@wm.edu, christoph.treude@adelaide.edu.au, amarcus@utdallas.edu

Abstract—Automated text-retrieval-based bug localization
(TRBL) techniques normally use the full text of a bug report
to formulate a query and retrieve parts of the code that are
buggy. Previous research has shown that reducing the size of
the query increases the effectiveness of TRBL. On the other
hand, researchers also found improvements when expanding the
query (i.e., adding more terms). In this paper, we bring these
two views together to reformulate queries for TRBL. Specif-
ically, we improve discourse-based query reduction strategies,
by adopting a combinatorial approach and using task phrases
from bug reports, and combine them with a state-of-the-art
query expansion technique, resulting in 970 query reformulation
strategies. We investigate the benefits of these strategies for
localizing buggy code elements and define a new approach, called
QREX, based on the most effective strategy. We evaluated the
reformulation strategies, including QREX, on 1,217 queries from
different software systems to retrieve buggy code artifacts at
three code granularities, using five state-of-the-art automated
TRBL approaches. The results indicate that QREX increases
TRBL effectiveness by 4% - 12.6%, compared to applying query
reduction and expansion in isolation, and by 32.1%, compared
to the no-reformulation baseline.

I. INTRODUCTION

Many techniques for bug localization leverage the fact

that bug reports and source code share a substantial amount

of vocabulary and use text retrieval techniques to find the

buggy code artifacts [1–3]. A common problem faced by text-
retrieval-based bug localization (TRBL) techniques is that bug

reports are not written to be used as queries in a retrieval

task. Instead, bug reporters focus on describing the observed

(unexpected) software behavior (OB), the expected behavior

(EB), and the steps to reproduce (S2R) the bug, often adding

code snippets (CODE) and other information (OTHER), aim-

ing to help developers reproduce and understand the bugs. In

consequence, the performance of TRBL techniques is hindered

by the presence of information that acts as noise.

One way to address this problem is reformulating the

queries generated from bug reports (a.k.a. query reformu-

lation [4]), which is an effective approach for improving

TRBL [1, 5]. Two common reformulation methods are query
reduction and query expansion. The former removes non-

relevant terms from the initial query while the latter adds

extra relevant terms. A recent query reformulation approach,

BLIZZARD by Rahman et al. [6], selects the statistically

most important terms from a bug report and adds terms

extracted from the code documents retrieved by the entire

report (i.e., query expansion via pseudo-relevance feedback).

More recently, Chaparro et al. [7] proposed a query reduction

technique that relies on selecting the structural parts from a

bug report (OB, EB, S2R, CODE, or the report TITLE) and

discarding OTHER parts. At the same time, Haiduc et al. [8, 9]

showed that some queries benefit from reduction, while others

benefit from expansion.
A reasonable inference from this body of work is that

combining query reduction and expansion techniques may lead

to better query reformulations for TRBL. In this paper, we

investigate this conjecture by evaluating 970 query reformula-

tion strategies. These strategies come from the refinement of

a query reduction approach that selects terms from bug report

parts [7] combined with a query expansion technique [6].
The 970 query reformulation strategies were empirically

evaluated by using five state-of-the-art TRBL approaches and

1,217 bug reports from multiple software systems to retrieve

buggy code artifacts at three code granularities, namely file,

class, and method. This data was manually curated and used

in previous research [7], which allowed for comparing against

previously proposed reformulation strategies.
We named the best performing strategy (of the 970) QREX.

QREX first composes a reduced query by selecting (1) the

most information-rich structural parts of the bug report [7],

and (2) task phrases [10] from the remaining components. The

reduction step is an improvement over the approach proposed

by Chaparro et al. [7]. Finally, QREX selects the statistically

important terms from the reduced query and adds related terms

to produce a final query, using BLIZZARD [6]. QREX improves

the effectiveness of TRBL by 32.1% over the baseline where

the initial queries are not reformulated, and by 4% - 12.6%

compared to the two techniques [6, 7] used individually.
In summary, the main contributions of the paper are:

1) A comprehensive investigation of 970 query reformulation

strategies that implement query reduction and/or query

expansion techniques to reformulate initial queries, and

their impact on the effectiveness for TRBL; and

2) QREX, a new query reformulation technique for TRBL,

which blends query reduction and expansion techniques,

and is more effective than prior reformulation approaches

[6, 7]. QREX combines new and existing reformulation

techniques in an innovative way: (i) a new combinatorial
approach for selecting the structural parts of the bug report

for query reduction; (ii) a new reduction strategy that uses

terms from task phrases [10] found in the OTHER parts of

the bug report; and (iii) query expansion using BLIZZARD.
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II. QUERY REFORMULATION STRATEGIES

We introduce a set of query reformulation strategies that

combines query reduction and expansion. The query reduction

part uses a set of new query reduction strategies that extracts

task phrases from different parts of a bug report using a combi-
natorial approach, while the query expansion uses BLIZZARD

[6], a state-of-the-art query expansion approach.

We describe the strategies in this section, while Sections III

and IV report their comprehensive evaluation, which allowed

us to define QREX as the most effective of the strategies.

A. Query Reformulation Usage Scenario

Query reformulation strategies must be easy to use by

developers and their usage should be well defined. With this

in mind, we adapt the usage scenario proposed by Chaparro

et al. [7], which is based on four steps:

1) First, the developer issues an initial query (manually or

automatically) using the full text of the bug report to

return a set of N (e.g., 10) code candidates with the

TRBL technique of their choice (e.g., BRTracer [11]). The

developer may use additional information required by the

technique (stack traces from the bug reports, past bug

report information, etc.).
2) Then, the developer inspects the N returned candidates,

and if any of them is deemed buggy or if she opts to use

another bug localization strategy (e.g., dependency search)

that leads to the buggy code, then the process ends and

reformulating the query is not required.

3) Otherwise, the developer reformulates the initial query by,

first, using a query reduction strategy, and second, using

BLIZZARD to expand the reduced query. While this step

is developer-initiated, it can be automated by integrating

techniques such as DEMIBUD [12, 13], TaskNav [10], and

BLIZZARD [6]. The developer runs the reformulated query

with the same TRBL engine to obtain additional N code

artifacts. The N results returned by the initial query are not

included in the new N results retrieved by the reformulated

query because they were deemed non-buggy.

4) Finally, the developer investigates the new N results. If

a buggy code artifact is found within the result list (or

it leads to the buggy code), then the bug localization

process ends and the reformulation is successful. If still

no buggy code artifacts are found, the reformulation is

unsuccessful. At this point, the developer may employ a

different reformulation strategy or switch to other methods

for finding the buggy code.

B. The Content of Bug Reports

The proposed reformulation strategies leverage the structure

of bug reports for query reduction, similarly to the work of

Chaparro et al. [7]. A bug report is composed of different parts,

notably the report title (TITLE), the observed (unexpected)

system behavior (OB), the expected software behavior (EB),

the steps to reproduce the bug (S2R), and code snippets

(CODE). Chaparro et al. selected and combined the terms

found in these parts as the reduced query. Their results suggest

that these parts contain more relevant information for TRBL

than the remaining content of the bug report (OTHER).

We contend that not all terms in the OTHER parts of the bug

descriptions are irrelevant. We propose to extract task phrases
[10, 14] from the OTHER parts of the report and use them in

the query. We define OTHER as any natural language sentence

that is not included in the TITLE, OB, EB, S2R, or CODE.

Task phrases (a.k.a. tasks) are natural language expressions

in software documents (including bug reports) that describe

how to accomplish some action [10, 14], e.g., in a system

or the source code. Task phrases are in the form of verbs

associated with a direct object and/or a prepositional phrase.

Specifically, task phrases are composed of three elements:

[action] [object] [predicate]. The [action] is a

verb phrase that indicates the operation performed by an

actor (i.e., the end-user, developer, or software system); the

[object] is a noun phrase that corresponds to the entity

affected by the action; and the [predicate] is a prepositional

phrase that gives further details about the action or the object.

For example, in the sentence “set thumbnail size in templates”,

“set” is the [action], “thumbnail size” is the [object],

and “in templates” is the [predicate]. The [predicate]

can be absent (e.g., “set thumbnail size”). Task phrases can

be automatically extracted from the bug report parts using

existing tool support (e.g., TaskNav [10]).

C. Query Reduction Strategies

We propose a set of query reduction strategies different from

the ones proposed by Chaparro et al. [7]. In order to explain

the differences, we formally define a query reduction strategy.

We define the set of bug report components C =
{T,O,E, S,C,R}, where each element denotes one of the six

parts of a bug report we focus on: T=TITLE, O=OB, E=EB,

S=S2R, C=CODE, and R=OTHER. Task phrases are extracted

from these parts except C. We denote the set of task phrases

from each part as T = {Tt, Ot, Et, St, Rt}. For example, tasks

extracted from the OB are denoted as Ot.

We represent a bug report as the set B ⊆ (C ∪ T). A set

B1 = {T,E,Et, R,Rt} would represent a bug report that

contains TITLE, EB, and OTHER. This report also contains

task phrases in its EB and OTHER. Note that Tt is absent;

this means that there are no tasks in the TITLE of this bug

report. Also, this bug report is missing OB, S2R, and CODE.

If a component X is not present in the bug report, naturally

there will be no tasks from that component (Xt) either.

A query reduction strategy indicates whether a bug report

component should be included fully in the reformulated query,

partially included (i.e., only tasks from it should be included),

or completely omitted. More formally, we define a strategy as:

S ∈ (P (C ∪ T)−∅), �X ∈ C | X ∈ S ∧Xt ∈ S (1)

This means that a strategy is a combination of parts in C
and T with the property that if a full component is included in

the strategy (e.g., O), then tasks from that component cannot

be part of the strategy (i.e., Ot) and vice-versa. A missing

component in the strategy indicates that it is omitted from

the reduced query. For conciseness, we denote a reduction
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strategy as the concatenation of its components, e.g., Se =
{T,E,Rt} becomes TERt. This strategy indicates that the

reformulated query should include only the TITLE, EB, and

the tasks extracted from OTHER.

D. Combinatorial vs. Conjunctive Reformulations

Using the strategies defined above, we define two types of

query reduction approaches. This is both a formalization and

an improvement of the query reduction approach proposed by

Chaparro et al. [7]. Section III discusses the implication of our

improvement for the evaluation of the reformulation strategies.

A query reduction using strategy S applied to a bug report

B is defined in Equation (2).

r(S,B) = R⊂ (C ∪ T) (2)

The reformulated query (R) is obtained by selecting the

parts specified in S from the bug report B. If R is the empty

set, then B cannot be reformulated with the strategy S.

Our reformulations differ from those defined by Chaparro

et al. [7] in two major ways: (1) the inclusion of tasks
and OTHER, and (2) the applicability of the reformulations.

With respect to (1), our strategies include OTHER and tasks

extracted from the bug reports parts (i.e., the elements of T),

which are not considered by Chaparro et al. [7].

With respect to (2), the reformulations defined by Chaparro

et al. [7] can only be applied if and only if all parts from S
are present in B. We call such reformulation approaches con-
junctive, as they require all parts of the strategy to be present

in the bug report. In consequence, conjunctive reformulations

can only be applied to a subset of the bug reports, which limits

their applicability. For example, the best reformulation strategy

identified by Chaparro et al. [7] is TOE, but it can only be

applied to 22.5% of the bug reports (i.e., only so many reports

contain the T , O, and E components at the same time).

Conversely, we call our proposed reduction approaches

combinatorial, as they use the maximal subset of the parts

specified by S that are available in B. This means that in the

cases where a conjunctive reformulation cannot be applied

because some of the parts from S are not present in B, the

combinatorial approach will use the remaining elements from

S contained in B as the reformulated query. In consequence,

our reformulations can be applied to more bug reports, com-

pared to the conjunctive ones.

We formally define applying a combinatorial strategy as:

rcomb(S,B) = S ∩ B (3)

The combinatorial reduced query consists of the largest

subset of strategy (S) components found in the bug report B.

Similarly, we formally define applying a conjunctive strat-
egy to a bug report in Equation (4), which dictates that the

reduced query is generated only if all components from the

strategy S are present in the bug report B.

rconj(S,B) =

{
S if S ∩ B = S

∅ otherwise
(4)

As an example, consider the strategy S1 = {O,St}, which

indicates that the user should select the entire OB and the tasks

from the S2R. rcomb (S1, B) is the operation of applying S1 as

a combinatorial reformulation on a bug report. This operation

would result in one of the outcomes shown in Equation (5),

depending on the bug report.

rcomb(S1,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{O} if O ∈ B ∧ St /∈ B

{St} if O /∈ B ∧ St ∈ B

{O,St} if O ∈ B ∧ St ∈ B

∅ if O /∈ B ∧ St /∈ B

(5)

Note that the options are all possible combinations of select-

ing and not selecting each one of the components in S1, hence

the name combinatorial. In contrast, applying rconj (S1, B),
i.e., the conjunctive reformulation S1 on an arbitrary bug report

B is shown in Equation (6).

rconj(S1,B) =

{
{O,St} if O ∈ B ∧ St ∈ B

∅ otherwise
(6)

E. Query Reformulation Strategies

We define 485 query reduction strategies based on the pos-

sible reformulation approaches specified above: each element

of C, except CODE (i.e., five components), can be selected

entirely, partially (only task phrases), or omitted; the CODE

can be either selected or not selected. This translates into

35 × 2 = 486 possibilities. We do not consider S0 = ∅
(i.e., nothing is selected), resulting in 485 reduction strategies,

including the 31 strategies proposed by Chaparro et al. [7]. All

485 query reduction strategies can be applied using either the

combinatorial or the conjunctive approach.

We propose to combine query reduction with statistical term

selection and query expansion, using BLIZZARD [6] on the

reduced queries. BLIZZARD is a query reformulation approach

that leverages stack traces and the natural language found

in bug reports, as well as code identifiers from the reports

and source code. This information is represented in a graph

that encodes relationships among the terms. The PageRank

algorithm is then applied on the graph to determine the most

important terms for TRBL. Depending on the bug report,

BLIZZARD can select terms that compose the reformulated

query and/or add extra terms to it.

Combining BLIZZARD with the query reduction strategies

results in 485 additional strategies. We denote the use of

BLIZZARD in combination with a reduction strategy by using

the b postfix in the strategy. For example, using BLIZZARD

with TERt is denoted as TERtb. Thus, in total, we define

and investigate 970 query reformulation strategies.

F. Query Reformulation Example

Figure 1 shows an example of a bug report from the SWT

project [15]. The sentences corresponding to the bug report

structural components have been highlighted and color-coded.

The fragments of sentences corresponding to tasks appear un-

derlined between square brackets. If a developer were to apply

the combinatorial reformulation with strategy TOStRt, she

would select (either manually or automatically): (1) the entire

TITLE, and (2) the entire OB, and (3) the tasks from OTHER
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Fig. 1: Excerpt from bug report #81264 (SWT 3.1.) [15]

Bug report title: Table fails to setTopIndex after [new items are

added to the table] [TITLE]

Bug report description:
I am working on a table viewer that [keeps track of the scroll bar]
and [loads content into the table] dynamically as the user
[scrolls to the end] of the table. [Items could be added/removed]
from the table as the user scrolls.

Here’s my testcase to demonstrate the problem: [S2R]

public static void main(String[] args) {
...

} [CODE]

Table.setTopIndex fails to [position to the correct table item] if

[new items are added to the table] after the shell is opened. [OB]

Calling setTopIndex(40) should [move table item #40 to the top]

of the table. [EB]

Legend: TITLE CODE OB EB S2R [tasks]

(“keeps track of the scroll bar”, “loads content into the table”,

“scrolls to the end”, and “Items could be added/removed”).

Notice that the S2R sentences do not contain any task phrases

(i.e., St /∈ B). Still, the bug report is reformulated using

the combinatorial reformulation. In contrast, the conjunctive

reformulation with the same strategy cannot be applied in this

instance, as it requires all components to be present in the bug

report. Finally, once the bug report is reduced, BLIZZARD is

applied on the reduced query.

III. EMPIRICAL EVALUATION DESIGN

We conducted a comprehensive empirical study with four

goals in mind: (1) evaluating the new combinatorial reformula-

tions; (2) evaluating the use of task phrases for query reformu-

lation; (3) assessing the effect of using query expansion/term

selection; and (4) identifying the overall best reformulation

strategy for defining QREX. Given these goals, we define five

research questions (RQs):

• RQ1: What is the effect on TRBL of the combinatorial

reformulation approach, compared to the conjunctive one?

• RQ2: What is the effect on TRBL of adding the tasks from

OTHER into the existing reformulation strategies?

• RQ3: What is the effect on TRBL of using tasks from the

TITLE, OB, EB, and S2R for query reformulation?

• RQ4: What is the effect of applying query expansion/term

selection on the reduced queries?

• RQ5: Which are the query reformulation strategies that

lead to the best TRBL performance and how do they

compare to state-of-the-art reformulation approaches?

For answering the RQs we used 5 TRBL techniques (Sec-

tion III-A) to retrieve the buggy code artifacts for 1,217 low-
quality queries/bug reports (Section III-B). Then, we used the

proposed strategies to reformulate these queries, and compared

their performance against the baseline that does not reformu-

late the queries and existing reformulations (Section III-C).

A. TRBL Techniques

The proposed reformulation strategies are independent of

the TRBL technique, meaning that they can be used with any

existing TRBL approach. In order to strengthen the general-

ization of our evaluation, we use five TRBL approaches, also

used in prior empirical evaluations [7, 16]:

1) Lucene [17] combines the classical vector space model

and the boolean text retrieval model and it can be used

to retrieve code artifacts at any code granularity (i.e.,
methods, classes, or files).

2) Lobster [18] leverages stack traces from bug reports, by

boosting the relevance of code classes that appear in the

traces or near the trace elements in the program dependency

graph. Lobster works at class-level granularity.

3) BugLocator [19] leverages code information related to bugs

that were reported and fixed in the past and also takes into

account the length of code files. This technique boosts the

relevancy of code files that are textually similar to files

changed in previous bug fixes and to longer code files.

BugLocator works at file-level granularity.

4) BRTracer [11] augments BugLocator by utilizing stack

traces from bug reports and segmentation of code files.

Similar to Lobster, it increases the relevancy of code files

that appear in the traces. In addition, it compares segments

of code files to the bug report (as opposed to the whole

code file), and uses the highest similarity to represent the

entire code file. BRTracer works at file-level granularity.

5) Locus [20] uses fine-grained code segmentation of files

based on changes made in the project history. The relevancy

of code files is determined by the relevancy of the small

code segments and by the recency and frequency of these

changes. Locus works at file-level granularity.
This sample of TRBL approaches was chosen with the

intention of including multiple retrieval techniques that use

diverse sources of information. If a reformulation strategy

consistently improves the average performance for multiple

TRBL approaches, this will increase our confidence on the

robustness of the reformulation strategies, including QREX.

B. TRBL Data

We use the TRBL data used by Chaparro et al. [7], which

includes 1,405 queries generated from entire bug reports

(i.e., their title/summary and description). The data spans 198

versions of 30 open-source projects written in Java, which vary

in size and domain. Table I shows an overview of the dataset.

We used Chaparro et al.’s dataset for at least four reasons:

(1) its bug reports were manually analyzed by multiple people

to label the sentences corresponding to the TITLE, OB, EB,

S2R, and CODE; (2) it was adapted from multiple sources in

the existing research, including a recent TRBL reproducibility

study (Bench4BL [16]), and from query reformulation [21]

and fault localization [22] research; (3) it comes in three

code granularities: file, class, and method; and (4) low-quality
queries are already identified in the dataset; out of the 1,405

queries, 1,217 are low-quality, i.e., they fail to retrieve the
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TABLE I: Overview of the TRBL data used in the evaluation
Code # of # of # of # of

granularity systems* versions* queries* lqa queries
Class 13 16 360 270
File 11 99 832 158

Method 13 88 213 789
Total 30 198 1,405 1,217

* Total distinct items a low-quality

buggy code artifacts in the top-5 candidates returned by any

of the five TRBL approaches.

The dataset includes: (1) the corresponding fixed (a.k.a.,

buggy or relevant) code artifacts for each query, which rep-

resent the ground truth; (2) the source code corpora (prepro-

cessed and otherwise) for each project version, which represent

the document search space for TRBL; and (3) the original

bug reports used to generate the low-quality queries, which

have their sentences labeled as corresponding to the TITLE,

OB, EB, S2R, or CODE. From the labeled sentences we infer

which sentences correspond to OTHER information.

We used TaskNav [10] to automatically extract the task

phrases from the different parts of the bug reports. TaskNav

extracts tasks corresponding to the definition of task phrases

presented in Section II-B. Based on initial experimentation,

we found that configuring TaskNav with the following options

achieves a result closest to our tasks definition: (1) remove

TaskNav’s pre-defined list of programming verbs, which was

created for software documentation; and (2) extract only task

phrases starting with a direct object relationship.

Of the 1,217 bug reports, all have a TITLE and 67% include

tasks in TITLE; 38% of the reports contain CODE snippets,

97% have OB, 23% have EB, 51% have S2R, and 82% include

OTHER; 87% of the bug reports include tasks in OB, 18% in

EB, 43% in S2R, and 64% include tasks in OTHER.

We used the implementation of BLIZZARD provided in the

replication package of its publication [6]. We replicated BLIZ-

ZARD’s evaluation results, which can be found in our online

appendix [23]. BLIZZARD is applied on the reduced queries

when a reformulation strategy indicates so. BLIZZARD’s input

is the reduced query, the bug report, and the (indexed) code

corpus of the system. The output is a reformulated query

having a subset of the terms from the reduced query (term

selection) as well as extra terms (query expansion).

C. Query Execution and Measures

The empirical evaluation mimics the usage scenario de-

scribed in Section II-A, which is based on four steps. In step

one, the developer issues the initial query using the entire bug

report, which is used for retrieval. In step two, she inspects

the top-N results returned by a TRBL technique. If she does

not find any buggy code artifact, then, in step three, she

makes the choice of either reformulating the initial query by

using a reformulation strategy or using the same initial query

to retrieve N additional candidates (i.e., no reformulation).

Finally, in step four, she inspects the new N results looking

for the buggy artifacts.

Note that, in practice, query reformulation can be done in

an iterative fashion. We decided to control our experimental

setting to these four steps, which involve one query reformu-

lation step only (i.e., step three). This allowed us to closely

analyze the effects of the reformulations for TRBL.

The reformulated queries and the initial queries are executed

using the five TRBL engines. However, not all techniques

are designed to run on all code granularities, so we only

execute them where applicable. This leads to 7 combina-

tions of granularity and technique: Lucene-File, Lucene-Class,

Lucene-Method, BugLocator-File, BRTracer-File, Locus-File,

and Lobster-Class. Since the choice of N is important, we use

six thresholds for the evaluation: N ∈ {5, 10, 15, 20, 25, 30}.
We perform an evaluation of each reformulation for the low-
quality queries at each N for each combination of granularity

and technique. This means that the set of low-quality queries

change for each N , since they are those initial queries that fail

to retrieve the buggy artifacts in the top-N results (using any

of the five TRBL engines). In the end, we have 42 (7×6)

groups of retrieval results for each reformulation: one for

each combination of granularity and technique (7), and each

threshold N (6).

The retrieval effectiveness of both the initial queries (i.e.,
the no-reformulation baseline) and the reformulated ones is

compared using the metrics described below. When measuring

the effectiveness, we only consider the N results retrieved in

step three, which do not include the N results returned by

the initial query in step two. In other words, we measure the

ability of the reformulated queries in retrieving the buggy code

artifacts in the next N results.

This experimental setting is similar to that used by Chaparro

et al. [7]. However, there is one important difference in our

evaluation. Different reformulations can be applied to different

subsets of the queries. In consequence, in that work, the

effectiveness between two reformulations was not directly

compared. Instead, each reformulation was compared against

the no-reformulation baseline. In contrast, in order to allow the

direct comparison of reformulations, we change the evaluation

as follows. When a reformulation r (S,B) cannot be applied

to B (i.e., when r (S,B) = ∅), we use the next N results of

the initial query as the results of applying the strategy on that

bug. We do this for all reformulations: the new combinatorial

ones (which we propose) and the conjunctive ones (defined

by prior work). In this way, every strategy is applied to all

low-quality queries and they can be compared directly. This

decision approximates the reformulation usage scenario better,

considering that when a reformulation is not applicable, the

user would simply not reformulate and just look at N more

code artifacts retrieved by the initial query. Consequently, the

applicability of the reformulations is directly measured by the

retrieval effectiveness, as it is computed over the same set of

queries, rather than by a separate applicability measurement

as used by prior work [7].

We use well-known and widely used metrics to assess

the performance of the strategies [6, 7]. %HITS@N (a.k.a.
%H@N) is the percentage of queries for which at least one

relevant code document is retrieved in the top-N candidates (in

step three). %H@N values closer to one (1) indicate higher
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TRBL performance. Mean reciprocal rank (MRR) averages

1/rq across all queries, where rq is the rank of the first

relevant document retrieved by query q. As rq gets smaller

(the document ranks near the top of the result list), 1/rq and

MRR get closer to one (1). Mean average precision (MAP)

aggregates the average precision pq for each query q: avg(pq),
where pq is the average of the proportion of relevant code

documents for q found in the top-k results whenever a relevant

document is ranked in position k. As with MRR, a MAP value

closer to one (1) indicates higher TRBL performance.

We focus the evaluation on %H@N, as we consider that it

better reflects the reformulation usage scenario, given that it

considers only the top-N retrieved candidates (as the end-user

would do), as opposed to the entire list (as MRR and MAP

do). An improvement in MRR and MAP can be significant,

however, it is only relevant in this application if the improve-

ment is the consequence of better rankings in top-N rather

than outside the top-N candidates. Studying the variation of

%H@N is also easy to interpret: it indicates how many queries

are transformed from low-quality into high-quality or remain

high-quality through the reformulations. We present the results

of MRR and MAP, also, for the sake of completeness.

If the %H@N for the reformulated queries is higher than

the one for the initial queries, we can conclude that the refor-

mulation is more effective for retrieval than no reformulation.

If the measures are the other way around, we can conclude

that reformulation does not provide any benefit, as there is no

gain over investigating N more results returned by the initial

query. We apply the same reasoning when directly comparing

two reformulations against each other.

IV. EVALUATION RESULTS AND DISCUSSION

We analyze the results of the empirical evaluation and

answer the research questions. The complete results, statistical

tests, and used data are available in our online appendix [23].

We summarize the results achieved by the no-reformulation

baseline, averaging across thresholds, granularities, and TRBL

techniques. The baseline achieves 0.23 %H@N, 0.06 MRR,

and 0.07 MAP for ≈297 queries, on average. The performance

is low because the queries are low-quality, so they represent

the most challenging cases for automated TRBL.

A. RQ1: Combinatorial vs. Conjunctive Strategies

To answer RQ1, we need to establish in which cases a

combinatorial reformulation rcomb(S,B) performs better on

average than its conjunctive counterpart rconj(S,B). For this,

we focus on all reduction strategies except the strategies that

include a single component only (e.g., O), as for such strategies

the combinatorial and conjunctive reformulations are the same.

Since both types of reformulations target the query reduction

strategies, we do not consider the ones that use BLIZZARD.

In the end, we compared 474 pairs of strategies. Each strat-

egy in the pairs is used on all the queries, whose TRBL results

are grouped and averaged over 42 subsets, corresponding to

the combinations of threshold N , code granularity, and TRBL

technique. We average the metrics to obtain an overall TRBL

Fig. 2: Avg. %H@N for rconj(S,B) vs. rcomb(S,B). X-axis:

strategies, ordered by the combinatorial Avg. %H@N.

performance measurement. The Mann-Whitney test [24] was

used to compare the 42 values for each pair of strategies. We

consider the difference statistically significant if p-value<0.05.

Fig. 2 shows the comparison of avg. %HITS@N for the

combinatorial vs. conjunctive approaches, with the pairs of

reformulations organized from left to right in order of ascend-

ing combinatorial avg. %H@N. The detailed results of the

474 comparisons can be found in our online appendix [23].

Overall, we found that 178 (38%) combinatorial strategies

achieve higher avg. %H@N than their conjunctive counter-

parts. Out of these, 144 strategies (81% of 178) achieve

statistically significant improvement. The overall avg. %H@N

improvement of the combinatorial approach is 14.3%. The re-

maining 296 (62%) combinatorial strategies perform worse in

terms of %H@N than their conjunctive counterparts. However,

while most combinatorial reformulations do not improve over

their conjunctive counterparts, we observed a clear trend. All

178 combinatorial reformulations with improvement over the

conjunctive versions also achieve higher avg. %H@N than

the baseline. Conversely, from the remaining 296 strategies

where the combinatorial approach is not better, 218 (74%)

of the conjunctive strategies do not achieve a higher avg.

%H@N than the baseline. Furthermore, from the 237 (50% of

474) conjunctive strategies that improve over the baseline, 159

(67% of 237 or 89% of 178) of the combinatorial counterparts

achieve higher avg. %H@N. This means that combinatorial

reformulations significantly improve upon the best conjunctive

reformulations, while being ineffective in cases where the

conjunctive approach performs lower than the baseline.

In most cases, the combinatorial reformulations achieve

improvement in terms of MRR and MAP (303 and 301

out of 474 strategies for MRR and for MAP, respectively).

This improvement is statistically significant for 177 strategies

for both MRR and MAP. The average improvement across

strategies is 30% and 31% for MRR and MAP, respectively.

The relative improvement in terms of MRR and MAP is higher

than that in terms of avg. %H@N. However, we argue that

this improvement does not imply that the strategy is more

effective from the point of view of the developer, since most

of it happens outside of the top-N results. This is exactly
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Fig. 3: Avg. %H@N for r (S,B) vs. r (SRt,B). X-axis: strate-

gies, ordered by the Avg. %H@N with tasks from OTHER.

the kind of intuition captured by the %H@N metric, which

considers the top-N results only, hence our focus on it.

RQ1 answer: Combinatorial reformulations improve TRBL

performance in 178 of 474 (38%) cases by 14.3% avg.

HITS@N, compared to the conjunctive counterparts. These

reformulations achieve higher effectiveness than the base-

line. In 144 (81%) of the cases, the improvement is statis-

tically significant. From the remaining cases, 218 (74%) of

the conjunctive reformulations are ineffective to begin with

compared to the baseline, and so are the combinatorial ones.

Based on these results, we use only combinatorial reformu-

lations in evaluating the strategies from this point forward.

B. RQ2: Using Tasks from OTHER

As mentioned before, prior work [7] suggests that OTHER

parts of the bug report contain noisy terms, and excluding

them from the query improves TRBL. However, we argue that

OTHER still contains relevant information for TRBL, which

is present in task phrases. To answer RQ2, we examine the

effect of including tasks from OTHER as part of a strategy.

In this analysis, we compare strategy pairs (S, SRt) where

S is any combination of TITLE, OB, EB, S2R, the tasks from

these sources, and CODE; and SRt is the same strategy with

the addition of OTHERt. We do not consider strategies that

use BLIZZARD because we want to measure the effect of

OTHERt during query reduction, hence we compare 161 pairs

of strategies. The complete results can be found in our online

appendix [23], including the results for MRR and MAP.

As seen in Fig. 3, 132 of the 161 (82%) strategies result

in avg. %H@N improvement when tasks from OTHER (i.e.,
OTHERt) are used compared to when they are not. The

improvement for these reformulations is 2.6% avg. H@N,

which is statistically significant in 51 cases (39% of 132). Of

the 132 strategies, 86 (65%) improve over the no-reformulation

baseline. Of the 29 strategies that do not improve when

adding OTHERt, only 4 (14%) achieve improvement over the

baseline. This means that most of the strategies that do not

improve with OTHERt were ineffective to begin with.

Fig. 4: Avg. %H@N for r (YX,B) vs. r (YXt,B). X-axis:

strategies, ordered by the Avg. %H@N with tasks.

RQ2 answer: Adding tasks from OTHER to any strategy

improves the TRBL performance in 132 of 161 cases (82%)

with an average improvement of 2.6% HITS@N.

We briefly discuss a couple of cases in which adding tasks

from OTHER had the largest positive effect on performance.

In bug report #6009 from Derby [25], the focus on task phrases

effectively filtered out examples that were detrimental to the

retrieval. In bug report #1613 from OpenJPA [26], the majority

of the extracted task phrases stem from a sentence explaining

the underlying cause of the bug (“All persistent classes in an
inheritance hierarchy must use a single implicit field...”) rather

than its symptom (“MetaDataException...”), thus improving

the TRBL performance.

On the other hand, a case where task phrases had a negative

result is bug report #5424 from Derby [27]. In this report, task

phrases were only extracted from speculation around what was

likely not the cause of the bug (‘‘The test is newly converted
with DERBY-5084 so not likely a regression...”) instead of the

actual issue. In this case, the vocabulary of the tasks did not

match well the lexicon of the expected buggy code artifact.

C. RQ3: Using Tasks from non-OTHER Parts

To answer RQ3, we measure the effect of using tasks from

bug report parts different from OTHER. We compare pairs of

strategies (YX,YXt) where X is one of TITLE, OB, EB, or

S2R; and Y is a combination of components not containing

X (using tasks or full content). As before, we do not consider

the strategies that use BLIZZARD since we focus on query

reduction. The pairs of this kind amount to 648 pairs total.

Fig. 4 shows the results. Only 8 out of 648 (1.2%) YXt

strategies achieve higher avg. %H@N than the YX strategies

and none of them achieve higher avg. %H@N with statistical

significance. 640 of 648 (98.8%) YXt strategies achieve lower

avg. %H@N than the YX strategies, with 9.5% avg. %H@N

deterioration across strategies. 30 and 5 strategies achieve

(0.6% & 0.4%) improvement for MRR and MAP, respectively.

RQ3 answer: Using tasks from TITLE, OB, EB, or S2R

instead of the full component reduces TRBL performance

by 9.5% avg. HITS@N in 640 out of 648 cases (98.8%).
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Fig. 5: Avg. %H@N for r(S,B) vs. r(Sb,B). X-axis: strate-

gies, ordered by the Avg. %H@N with BLIZZARD.

The interpretation of this result is that parts of the bug report

that are not OTHER are dense in terms that are relevant to

TRBL. Removing terms from these parts of the bug report is

more likely than not to result in TRBL deterioration.

D. RQ4: Assessing Query Expansion/Term Selection

We answer RQ4 by comparing the TRBL performance of

using and not using query expansion/term selection through

BLIZZARD. We compare the strategy pairs (S, Sb), where S
is any of 485 reduction strategies and Sb is the application

of BLIZZARD on the reduced query generated by S. We have

in total 485 pairs and we present the results for avg. %H@N

improvement in Fig. 5. Once again, the complete results can

be found in the online appendix [23].

From the 485 strategies, 391 (80%) obtain higher TRBL per-

formance when BLIZZARD is used, in terms of avg. %H@N.

The improvement is 11% avg. H@N. In 295 cases (75% of

391), the %H@N improvement is statistically significant. The

average improvement, in terms of MRR and MAP, is 22.8%

and 21.2%, respectively. If BLIZZARD is used, 245 (62%

of 391) strategies achieve higher avg. %H@N than the no-

reformulation baseline, while when BLIZZARD is not used,

only 154 (39% of 391) improve over the baseline. From the

remaining 94 strategies with no improvement, 63 strategies

(67%) are not better than the baseline independently of the

application of BLIZZARD. For these cases, query reduction is

not better than the baseline and applying query expansion/term

selection on the reduced queries is not better either.

RQ4 answer: Applying query expansion/term selection

through BLIZZARD on the reduced queries improves the

TRBL performance in 391 of 485 cases (80%) with an

improvement of 11% (avg. %HITS@N). In 295 of these

cases (75%), the improvement is statistically significant.

E. RQ5: Best Reformulation Strategies

We analyze the combinatorial reformulations, based on all

the 970 reformulation strategies described in Section II-E. That

is, we consider strategies with and without tasks and with

TABLE II: Strategies with the highest avg. %H@N

Strategy Avg. Avg. improv. vs baseline
%H@N %H@N MRR MAP

TOERtb 0.30 32.09% 75.74% 75.10%
TORtb 0.30 31.70% 68.01% 69.24%
TOEStRtb 0.30 31.25% 76.08% 74.56%
TOEtRtb 0.30 31.20% 69.57% 70.90%
TOStRtb 0.30 30.76% 69.45% 69.64%

TABLE III: Strategies that achieve avg. %H@N improvement

for all techniques and all granularities.

Rank Strategy Avg. Avg. improv. vs baseline
%H@N %H@N MRR MAP

1 TOERtb 0.30 32.09% 75.74% 75.10%
4 TOEtRtb 0.30 31.20% 69.57% 70.90%
18 TOERt 0.29 27.61% 64.20% 62.48%
21 TOESRt 0.29 27.23% 66.24% 66.31%
29 TOEStRt 0.29 26.73% 65.38% 63.94%

and without BLIZZARD. We compare the strategies with state-

of-the-art reformulation techniques, namely BLIZZARD [6],

which is applied on the full bug report; and the best refor-

mulation identified by Chaparro et al. [7] (TOE) using the

combinatorial approach (as opposed to the conjunctive one

from [7], to enable direct performance comparison). We also

compare each strategy with the no-reformulation baseline. We

compute the avg. %H@N for each strategy, using the same

six N thresholds as before, across TRBL techniques and

granularities and we analyze the overall results as well as the

results for each TRBL technique and granularity, separately.

Table II shows the top-5 strategies that achieve the highest

avg. %H@N. The detailed results for all the other strategies

are available in the online appendix [23].

The top-17 best strategies use BLIZZARD, including the

ones shown in Table II, and achieve avg. %H@N between 29%

and 30%. From these, 12 strategies include tasks from OTHER

(Rt). The strategy that achieves the highest improvement (by

32.09% avg. HITS@N) over the no-reformulation baseline is

TOERtb, which achieves 30% avg. HITS@N (vs 22.8% of

the baseline – see Table V). The best non-BLIZZARD strategy

that does not use tasks (TOE) is ranked 24th with 28.9%

avg. HITS@N (27% improvement). This is the best strategy

proposed by Chaparro et al., which is more effective than

BLIZZARD alone, which achieves 26.7% avg. HITS@N and

is ranked 259th. The results show the advantage of combining

tasks from OTHER and BLIZZARD over the state of the art.

1) Detailed analysis: We analyze the results in more detail,

by identifying the strategies that achieve improvements for

all granularities and all techniques. Table III shows the top-5

of such strategies and their improvements. All five strategies

include tasks from OTHER (i.e., Rt) and the first two strategies

TABLE IV: Best strategies for each granularity-technique

GTa Strategy Avg. Avg. improv. vs baseline
%H@N %H@N MRR MAP

BRT-F TOEStRtb 0.24 4.73% 19.74% 21.61%
BL-F TOESRt 0.17 2.36% 2.25% 8.40%
LB-C TSCRt 0.38 107.36% 241.91% 241.37%
LC-F TOERt 0.39 26.25% 46.11% 48.41%
LU-C TOtESRtb 0.46 46.89% 116.03% 120.24%
LU-F TOEtRtb 0.30 40.88% 83.91% 81.28%
LU-M TOtSCRb 0.25 35.03% 59.05% 51.08%

aGranularity-Technique: F=File, C=Class, M=Method, LU=Lucene, LC=Locus,
BL=BugLocator, BRT=BRTracer, LB=Lobster
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TABLE V: Results for the best strategies (with Rt or b), the best strategies from prior work, and the no-reformulation baseline.

Strategy Avg. H@N Avg. % of queries Avg. % of baseline vs reformulated queries
# % Improv. Deter. Equal L → H H → L H → H L → L L+2N → H H → L2N

TOERtb 77.0 0.30 58.5% 38.3% 3.2% 14.0% 6.7% 16.1% 63.2% 8.7% 2.8%
TOEb 73.8 0.30 54.1% 42.4% 3.4% 14.2% 7.5% 15.3% 63.0% 9.2% 2.7%
TOERt 74.5 0.29 53.0% 31.7% 15.3% 11.5% 5.2% 17.6% 65.7% 6.9% 1.8%
TOE [7] 73.1 0.29 50.7% 35.6% 13.7% 12.2% 6.1% 16.7% 65.0% 7.7% 2.0%
BLIZZARD [6] 70.1 0.27 52.4% 43.6% 4.0% 10.6% 6.7% 16.1% 66.6% 6.1% 3.3%
Baseline 63.2 0.23 − − − − − − − − −

also include BLIZZARD , which are the 1st and 4th with the

highest overall TRBL performance. We observe that all these

strategies share the TITLE, the OB, the EB (in a few cases,

tasks from EB), and tasks from OTHER.

We also investigate the best strategy for each pair of tech-

nique and granularity independently and show the results in

Table IV. For six of seven technique-granularity combinations,

the best strategy includes tasks from OTHER (i.e., Rt). Four of

the seven strategies use BLIZZARD. The avg. %H@N achieved

by the best strategies across technique-granularity combina-

tions ranges from 17.5% to 45.8% (compared to the 17.1% -

31.6% avg. H@N of the baseline). TOERtb ranks between

position 2 and 12 for all technique-granularity combinations

except LB-C and LC-M, for which it ranks in positions 176

and 163, respectively. The TRBL performance achieved by

TOERtb ranges from 17.3% to 45.6% avg. HITS@N.

Table V compares the best reformulation strategies that use

tasks and/or BLIZZARD with the best approaches from prior

work. The results are sorted by avg. %H@N and show that our

proposed strategies are more effective. The table also provides

detailed results of the queries. It shows the proportion of

queries that the strategies improve (column #4), deteriorate

(column #5), and achieve equal avg. %H@N (column #6) with

respect to the no-reformulation baseline. The table reveals that

the best strategy (TOERtb) improves more queries (58.5%)

than the other strategies while deteriorating 38% of them.

Applying BLIZZARD has an effect on the queries that achieve

equal performance to the baseline, as the query proportion

goes down from ≈13%/15% to ≈3%. In fact, BLIZZARD alone

makes 4% of the queries to achieve the same performance

as the baseline. However, compared to the other strategies,

BLIZZARD’s deterioration rate is the highest (43.6%).

We also analyze the (avg.) proportion of queries that are

low-quality and become high-quality when they are refor-

mulated (column #7 from Table V: L → H). Unlike low-
quality queries, high-quality queries retrieve at least one buggy

code artifact within the top-N results (in the 3rd step of the

reformulation usage scenario described in Section II-A). We

analyze all possible transitions between low- and high-quality
queries (columns #7-10 from Table V). The results show that

TOERtb and TOEb achieve the highest L→ H rate (14%+)

while achieving an acceptable H → H query proportion

(≈15%-16%), compared to the other strategies. H → H
queries are those high-quality that remain high-quality after

reformulation. Table V reveals that these two strategies are

able to turn the low-quality queries that retrieve the buggy code

artifacts below the top-2N results into high-quality queries

(L+2N → H) in more cases than for the other strategies.

This is the best-case scenario of query improvement. Likewise,

these two strategies turn high-quality queries into L2N queries

(H → L2N ) in more cases than the other strategies. This is

the least-harmful scenario of deterioration, where high-quality
queries are deteriorated into low-quality ones that retrieve the

buggy code artifacts between positions N and 2N of the result

list. These results mean that these two strategies behave better

in the best-case scenarios of improvement and deterioration.

In other words, other strategies improve queries to a lesser

extent and deteriorate queries to a greater extent than TOERtb
and TOEb do. The results explain the overall avg. %H@N

performance achieved by these strategies, and the combination

of L→ H and H → H cases make TOERtb stand out over

TOEb as the best strategy overall.

RQ5 answer: TOERtb is the strategy with the highest

TRBL performance across all TRBL techniques and code

granularities (30.1% avg. HITS@N). This strategy outper-

forms state-of-the-art approaches by 4% (TOE [7]) and

12.6% (BLIZZARD [6]), and the no-reformulation baseline

by 32.1% avg. HITS@N. However, there are slightly bet-

ter strategies for some technique-granularity combinations.

Each combination has a different best strategy.

F. Definition of QREX

We construct QREX using the TOERtb strategy, which

employs the combinatorial reformulation approach. As shown

by the evaluation, QREX improves over the state of the art (on

average) and is robust over the selection of thresholds N , the

TRBL engine applied, and code granularity.

The user scenario for QREX corresponds to the 4-step

process detailed in Section II-A. Namely, the developer first

runs the TRBL engine of her choice with the full text of the

bug report. If she is unsuccessful in locating the buggy code

after examining the top-N results, she would select as many

of the following components as are available in the bug report:

the TITLE, OB, EB, and task phrases from OTHER. Finally,

the selected text will be input to BLIZZARD, and the resulting

reformulated query will be run again with the same TRBL

engine. We anticipate that selecting these components would

take developers only slightly longer than it would take them

to read the full report.

Our online appendix [23] reports the detailed TRBL perfor-

mance achieved by QREX for each N , engine, and granularity.

V. THREATS TO VALIDITY

Threats to internal validity stem from the data and TRBL

techniques used in our study. To mitigate these threats, we used

174

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:39:22 UTC from IEEE Xplore.  Restrictions apply. 



datasets and TRBL tools used in existing research [7, 16, 28].

The datasets were carefully curated by their authors to remove

spurious issues and buggy code artifacts. The identification of

bug report parts is another threat. We used the labeled data

provided by Chaparro et al. [7], who used a rigorous coding

process and reported a high inter-coder agreement. Another

threat is the use of TaskNav [10] for extracting tasks from

the bug reports. While TaskNav’s evaluations [10] reported

high detection precision, some extracted tasks may be false

positives and some others may have been missed by the tool.

Construct validity is affected by the metrics we chose to

compare reformulations. We use the rank of the 1st relevant

document as a proxy for the user finding a buggy code artifact

within the top-N results. This experimental setup is standard

in TRBL and query reformulation research [6, 7, 16, 29]. We

consider that the %H@N metric is straightforward to interpret

and it matches a realistic TRBL scenario better than MRR and

MAP do. Nonetheless, we report the MRR and MAP results.

To increase the external validity, we used TRBL data

consisting of 198 versions of 30 open-source software sys-

tems, from multiple domains and types (e.g., libraries, web

applications, etc.). These data were manually curated and used

in previous research. We used five different TRBL approaches,

which retrieve code at multiple granularity levels.

VI. RELATED WORK

Our research is motivated by the work of Chaparro et
al. [7, 28, 30], who showed that removing irrelevant query

terms can lead to substantial TRBL improvement. Mills et
al. [1] confirmed this finding and found that bug report

vocabulary is all that is required to formulate effective queries.

Chaparro et al. [7] found that selecting the title, the observed

behavior (OB), and the expected behavior (EB) from the bug

report is the strategy that performs best, yet its applicability

is affected by the absence of the EB in many bug reports.

Our work introduces a new way to identify relevant terms for

query reduction, based on task phrases from OTHER parts

of the report. Compared to Chaparro et al.’s approach, our

combinatorial strategies are more effective and, by definition,

more applicable because they depend less on uncommon

elements in bug reports (e.g., EB).

The work by Rahman et al. [6] is leveraged in our research.

We combine our reduction strategies with BLIZZARD, and we

empirically show that the combination leads to higher TRBL

performance than BLIZZARD alone. Related to this work, Rah-

man and colleagues developed approaches that identify search

terms based on (1) structured source code entities and their co-

occurrences [31, 32]; (2) TextRank and POSRank [33]; and (3)

mining and using Stack Overflow data for translating a query

into a list of API classes [34–36].

Lemos et al. [37] apply automatic query expansion using

WordNet and a thesaurus containing software-related word

relations. In follow-up work, Lemos et al. [38] found that in

some situations it is best to use keywords only, when these

are sufficient to semantically define the desired function.

Hill et al. [39] compared two approaches for incorporating

word proximity and order in retrieval: one based on ad-hoc

considerations and another based on Markov Random Field

(MRF) modeling. Sisman et al. [40] later confirmed that a

Markov-model-based approach can outperform bag of words.

In an earlier approach, Sisman and Kak [41] achieved signif-

icant improvements using a reformulation approach based on

pseudo-relevance feedback.

Gay et al. [29] used relevance feedback in TR-based concept

location in which developers judge search results and the

TR system uses this information to perform a new search.

Lu et al. [42] presented a similar approach to interactively

reformulate a query based on the relations between words in

source code.

Haiduc and colleagues [8, 9, 21] showed that different re-

formulation approaches are needed depending on the quality

of the queries, and some queries benefit from reduction while

others benefit from expansion. Mills et al. [5] showed that no

single bug report component (EB, OB, etc.) can be assumed

to contain optimal terms for TRBL. We support this finding

and show that a combinatorial selection of certain components

can lead to TRBL performance improvement on average.

VII. CONCLUSIONS AND FUTURE WORK

An empirical study of 970 query reformulation strategies on

1,217 bug reports from multiple software systems led to the

conclusion that the TITLE, OB, and EB are dense in relevant

terms for TRBL. More importantly, our results suggest that the

OTHER parts of a bug report also contain relevant information

for retrieving buggy code artifacts. We found that (part of) such

information is encoded in task phrases.

The evaluation of the 970 reformulation strategies allowed

us to define a new query reformulation approach for TRBL

applications (QREX), which uses query reduction on entire

bug reports used as initial queries, and then, it applies query

expansion/term selection on the reduced queries. Query re-

duction is done using a novel combinatorial selection of bug

report components and task phrases. QREX is more effective

and applicable than existing reformulation approaches.

In practice, QREX is meant to be used as a recommender

system that assists the developers during bug localization

when they use TRBL engines. When the developer wants to

reformulate the query (i.e., after inspecting N results), QREX

recommends the developer to select the TITLE, OB, EB, and

the tasks from OTHER parts of the bug report (if available)

and then apply BLIZZARD to expand the reduced query.

Our future work will focus on automating the reformulations

produced by QREX, as currently, developers need to use sev-

eral unconnected tools or manual reformulations. In addition,

we will evaluate the reformulation strategies using additional

query expansion approaches.
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