
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2015

Challenges in analyzing software documentation in Portuguese Challenges in analyzing software documentation in Portuguese

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Carlos A. PROLO

Fernando FIGUEIRA FILHO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
TREUDE, Christoph; PROLO, Carlos A.; and FIGUEIRA FILHO, Fernando. Challenges in analyzing software
documentation in Portuguese. (2015). Proceedings of the 2015 29th Brazilian Symposium on Software
Engineering, Belo Horizonte, Brazil, September 21-26. 179-184.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8943

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Challenges in Analyzing
Software Documentation in Portuguese

Christoph Treude, Carlos A. Prolo, Fernando Figueira Filho
Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte
Natal, RN, Brazil

Email: {ctreude,prolo,fernando}@dimap.ufrn.br

Abstract—Many tools that automatically analyze, summarize,
or transform software artifacts rely on natural language pro-
cessing tooling for the interpretation of natural language text
produced by software developers, such as documentation, code
comments, commit messages, or bug reports. Processing natural
language text produced by software developers is challenging
because of unique characteristics not found in other texts, such as
the presence of code terms and the systematic use of incomplete
sentences. In addition, texts produced by Portuguese-speaking
developers mix languages since many keywords and programming
concepts are referred to by their English name. In this paper, we
provide empirical insights into the challenges of analyzing soft-
ware artifacts written in Portuguese. We analyzed 100 question
titles from the Portuguese version of Stack Overflow with two
Portuguese language tools and identified multiple problems which
resulted in very few sentences being tagged completely correctly.
Based on these results, we propose heuristics to improve the
analysis of natural language text produced by software developers
in Portuguese.

Keywords—Documentation, natural language processing.

I. INTRODUCTION AND MOTIVATION

In a typical software development process, developers
perform several different activities: they use numerous tools
to develop software artifacts ranging from source code and
models to documentation and test scenarios; they use other
tools to manage and coordinate their development work; and
they spend a lot of time communicating with other members on
their team [28]. In addition to source code, developers produce
documents in natural language to disseminate knowledge in-
side and outside their development teams, including wikis [27],
blogs [17], social media sites [15], the Question and Answer
website Stack Overflow [16], or source code comments [22].

Several tools have been developed that automatically pro-
cess natural language documents produced by software de-
velopers, for example by inferring specification from docu-
mentation [29], linking information from bug tracking systems
and mailing lists to source code methods [14], summarizing
bug reports [19], or extracting tasks from documentation [25].
Many of these tools rely on natural language processing tools
such as the Stanford natural language processing toolkit [13]
to split sentences, detect words in a sentence, assign parts of
speech to words (such as adjective, verb, or noun), and to
detect grammatical dependencies between different parts of a
sentence (such as subject or direct object). Among these, part-
of-speech tagging is particularly important since other parts of
a natural language processing pipeline rely on it.

Previous work on analyzing natural language artifacts pro-
duced by software developers in English has developed heuris-
tics such as automatically tagging all domain terms and source
code terms as nouns [23], [25]. While these heuristics were
able to produce satisfactory results, analyzing natural language
artifacts produced by software developers is significantly more
challenging when these artifacts are not in English, particularly
because of the relatively lower quality of processing tools for
other languages and the mix of languages caused by many
technical terms still being referred to by their English name.
As an example, in the question “Qual é a diferença entre
inner join e outer join?” (What is the difference between inner
join and outer join?), a tool would have to switch languages
multiple times to detect “inner” as an English adjective, but
“e” as a Portuguese conjunction.

To shed light on the particular challenges when analyzing
natural language artifacts written by software developers in
Portuguese, we downloaded the 100 most popular questions
from the Portuguese version of Stack Overflow1 and analyzed
their titles with two Portuguese language tools. We then
analyzed the part-of-speech tags that each of the tools assigned
to the words in the question titles and annotated those that had
been tagged incorrectly. Part-of-speech tagging is at the core
of many software tools that use natural language processing to
automatically analyze natural language text produced by soft-
ware developers. For example, TaskNav, our previous work on
extracting task descriptions from software documentation [26],
would not be able to find meaningful tasks if the part-of-speech
tags were set incorrectly.

Part-of-speech tagging is considered a relatively easy task
in natural language processing with reported error rates of
less than 3% in English for taggers such as Schmid’s tree
tagger [20]. As a highly inflected language, Portuguese should
be expected to be even easier to tag since the great majority of
the words are unambiguous due to the richness of morpholog-
ical inflections. However, we found that only between 14 and
20% of the question titles were tagged fully correctly while
the remaining 80 to 86% (depending on the tool) had at least
one word tagged incorrectly. Out of a total of 974 words, the
tools tagged between 161 (17%) and 182 (19%) incorrectly.
We then categorized the different kinds of problems encoun-
tered by the tools and identified problems with words that
were ambiguous, interrogative, infrequent, capitalized, or code-
related. We propose several heuristics that have the potential
to improve the part-of-speech tagging of software artifacts

1http://pt.stackoverflow.com/, snapshot taken on March 31, 2015.

http://pt.stackoverflow.com/

written in Portuguese, in particular the establishment of a new
part-of-speech tag “Lexical Item” for words that represent
programming keywords, source code fragments, or technical
terms in a different language.

II. RELATED WORK

Work related to our research can be divided into work
on analyzing natural language artifacts produced by software
developers and work on the domain-specific analysis of natural
language text, both in English and Portuguese. However, since
very little previous work has specifically analyzed software
documentation in Portuguese, our analysis of related work
remains descriptive due to the lack of a baseline we could
compare our work to.

A. Analyzing Software Artifacts

Several researchers have attempted to extract information
from natural language artifacts produced by software devel-
opers. In an approach for inferring specifications from appli-
cation programming interface (API) documentation, Zhong et
al. used machine learning to detect actions and resources [29].
Panichella et al. developed an approach for automatically
linking paragraphs from bug tracking systems and mailing lists
to source code methods using a number of heuristics, such as
the presence of the words “call”, “execute”, or “invoke” [14].
Petrosyan et al. proposed an approach for discovering tuto-
rial sections that explain a given API type. They classified
fragmented tutorial sections using supervised text classification
based on linguistic and structural features [18].

In our previous work [25], [26], we developed a technique
for automatically extracting tasks from software documentation
by conceptualizing tasks as specific programming actions
that have been described in the documentation. We used the
grammatical dependencies between words in a sentence for
our task extraction algorithm. More than 70% of the tasks
we extracted were judged meaningful by at least one of two
developers. A field study with professional developers using
a search engine that presented the extracted tasks along with
concepts, code terms, and section headers showed that search
results identified through extracted tasks were more helpful to
developers than other search results.

B. Domain-specific Analysis of English Text

A crucial challenge when applying natural language pro-
cessing techniques to software artifacts, such as documen-
tation, source code comments, or commit messages, is that
these artifacts have unique characteristics not found in other
natural language text. In a study comparing the effectiveness
of six semantic similarity techniques on words from software
comments and identifiers, Sridhara et al. found that customiza-
tion of the similarity detection techniques was necessary to
ensure a good performance [21]. Gupta et al. presented a
part-of-speech tagger and syntactic chunker for source code
names taking into account programmers’ naming conventions,
and they identified grammatical constructions that characterize
a large number of program identifiers. Their approach led
to a significant improvement of part-of-speech tagging of
program identifiers [9]. In their description of a technique to
“automate test automation” which uses as input a sequence of

steps written in natural language and produces a sequence of
procedure calls as output, Thummalapenta et al. maintained a
repository of domain terms from the application under analysis
and explicitly tagged those terms as single nouns [23]. We used
a similar approach in our previous work [25], [26].

Domain adaptation of natural language processing has also
received attention in areas other than software development.
For example, Gimpel et al. proposed additional language
processing features that leverage domain-specific properties of
data from the micro-blogging service Twitter, such as orthogra-
phy, frequently-capitalized words, and phonetic normalization.
Their approach achieved almost 90% accuracy in tagging
Twitter data [8].

C. Domain-specific Analysis of Portuguese Text

We also identified some relatively recent domain-specific
work on Portuguese but none for the domain of software
development. Among this work, Lopes et al. conducted an
evaluation of compound term extraction from a corpus in
the domain of Pediatrics by extracting bigrams and trigrams
from a corpus of texts from the Portuguese journal Journal
de Pediatria using three different extraction methods. The
results of their analysis highlight the importance of verifying
a threshold in the extraction process [12]. Lopes et al. also
presented a tool [11] to extract relevant terms from Portuguese
texts. Their tool extracts the most frequent noun phrases from
an annotated corpus using the Palavras parser [2]. The tool
allows for customizing the term extraction through linguistic
and statistical criteria as well as for comparisons to manually
constructed reference lists. Based on a pre-processed corpus
of Portuguese texts, Ferreira et al. presented an automated
method for the extraction of domain specific non-taxonomic
relations [6]. To create domain-specific lexica, Fernandes et
al. proposed a method that relies on the identification of
unknown terms in a domain corpus. Their approach automat-
ically detects unknown terms and identifies domain specific
terms [4]. Hilgert et al. presented work on building domain-
specific bilingual dictionaries based on a non-domain-specific
method which they customized and parameterized. An eval-
uation on technical manuals in English and Portuguese with
human specialists found significant increases in the precision
of unigrams and multi-grams [10].

III. METHODOLOGY

In this section, we describe our methodology in terms of
data collection and analysis.

A. Data Collection

To collect software artifacts produced in Portuguese, we
accessed the Portuguese version of the Question and Answer
website Stack Overflow, which facilitates the exchange of
knowledge between programmers connected via the Internet.
Answers on Stack Overflow often become a substitute for of-
ficial product documentation when the official documentation
is sparse or not yet existent [24]. As of April 2015, Stack
Overflow contained almost 9.3 million questions, 15.5 million
answers, and over 4 million users. The Portuguese version is
much smaller, with almost 19 000 questions, 27 000 answers,
and more than 15 000 users. We downloaded the 100 question

TABLE I. THE 10 MOST POPULAR SENTENCES ON THE PORTUGUESE VERSION OF STACK OVERFLOW AND CORRESPONDING PART-OF-SPEECH TAGS.

question title TreeTagger output LX-Tagger output
1 Como fazer hash de Como/Conjunction fazer/Verb hash/Noun de/Preposition Como/Conjunction fazer/Verb hash/Adjective de/Preposition
senhas de forma segura senhas/Noun de/Preposition forma/Noun segura/Adjective senhas/Noun de/Preposition forma/Noun segura/Past Participle
? ?/Punctuation ?/Punctuation
2 As mensagens de As/Determiner mensagens/Noun de/Preposition As/Definite Article mensagens/Noun de/Preposition
erro devem se erro/Noun devem/Verb se/Pronoun erro/Noun devem/Verb se/Clitic
desculpar? desculpar/Verb ?/Punctuation desculpar/Verb ?/Punctuation
3 Como é feita a Como/Conjunction é/Verb feita/Verb a/Preposition Como/Conjunction é/Verb feita/Past Participle a/Definite Article
randomização pelo randomização/Verb pelo/Preposition+ randomização/Noun por /Preposition o/Definite Article
computador? computador/Noun ?/Punctuation computador/Noun ?/Punctuation
4 Por que devo usar Por/Preposition que/Interrogative devo/Verb usar/Verb Por/Preposition que/Relative devo/Verb usar/Verb
apenas um ”return” apenas/Adverb um/Determiner ”/Quote return/Verb ”/Quote apenas/Adverb um/Indefinite Article ”/Noun return/Adjective ”/Punctuation
em cada função em/Preposition cada/Pronoun função/Verb em/Preposition cada/Quantifier função/Noun
? ?/Punctuation ?/Punctuation
5 Por que não Por/Preposition que/Interrogative não/Verb Por/Preposition que/Relative não/Adverb
devemos usar funções devemos/Verb usar/Verb funções/Verb devemos/Verb usar/Verb funções/Noun
do tipo do/Preposition+Determiner tipo/Noun de /Preposition o/Definite Article tipo/Noun
mysql *? mysql */Noun ?/Punctuation mysql/Adjective /Clitic */Verb ?/Punctuation
6 Qual é a diferença Qual/Interrogative é/Verb a/Determiner diferença/Noun Qual/Interrogative é/Verb a/Definite Article diferença/Noun
de API, biblioteca de/Preposition API/Noun ,/Punctuation biblioteca/Noun de/Preposition API/Part of Name ,/Punctuation biblioteca/Noun
e Framework? e/Conjunction Framework/Noun ?/Punctuation e/Conjunction Framework/Part of Name ?/Punctuation
7 Como fazer um Como/Conjunction fazer/Verb um/Determiner Como/Conjunction fazer/Verb um/Indefinite Article
algoritmo fonético para algoritmo/Noun fonético/Verb para/Preposition algoritmo/Noun fonético/Adjective para/Preposition
o português o/Determiner português/Noun o/Definite Article português/Noun
brasileiro? brasileiro/Adjective ?/Punctuation brasileiro/Adjective ?/Punctuation
8 Diferenças entre Git, Diferenças/Verb entre/Preposition Git/Noun ,/Punctuation Diferenças/Part of Name entre/Preposition Git/Part of Name ,/Punctuation
SVN e CVS SVN/Noun e/Conjunction CVS/Noun SVN/Part of Name e/Conjunction CVS/Part of Name
9 Como inverter uma Como/Conjunction inverter/Verb uma/Determiner Como/Conjunction inverter/Verb uma/Indefinite Article
string em string/Noun em/Preposition string/Noun em/Preposition
javascript? javascript/Noun ?/Punctuation javascript/Noun ?/Punctuation
10 Como prevenir injeção de Como/Conjunction prevenir/Verb injeção/Verb de/Preposition Como/Conjunction prevenir/Verb injeção/Noun de/Preposition
código SQL no código/Verb SQL/Noun no/Preposition+Determiner código/Noun SQL/Part of Name em /Preposition o/Definite Article
meu código PHP meu/Adjective código/Verb PHP/Noun meu/Possessive código/Noun PHP/Part of Name

titles of the questions with the highest score on the Portuguese
version of Stack Overflow on March 31, 2015. The left-most
column of Table I shows the first ten of these question titles.
We then analyzed each question title with two part-of-speech
taggers for Portuguese: the tree tagger of Pablo Gamallo
Otero [7]2 which is a parameterized version of Schmid’s tree
tagger [20] for Portuguese (referred to as TreeTagger in the
remainder of this paper), and the shallow tagger of the LX-
Suite [3]3 (LX-Tagger). We chose these two tools since they
are available for free and because they represent two different
streams of taggers.

B. Data Analysis

The first author annotated the output of both tools for
each of the 100 question titles used as corpus in this study
by indicating for each word whether it had been tagged
correctly by the two tools. The correctness of this annotation
was verified by the other two authors of this paper. The
last two columns of Table I show the result for each of
the ten most popular question titles where incorrect tags are
indicated in bold. As can be seen from Table I, the tools use
slightly different tag sets: The LX-Tagger has more specific
part-of-speech tags and word features (past participle, clitic,
quantifier, part of name, possessive, definite / indefinite article)
while the TreeTagger is able to tag punctuation more precisely
(e.g., quote). In addition, the tokenization (i.e., splitting a
sentence into words) works slightly different. The LX-Tagger
splits contractions (such as “pelo”) into two words (“por”
and “o” in the example) and tags them separately. The same
applies to code terms. For example, the LX-Tagger breaks
“mySQL *” into three words whereas the TreeTagger treats

2Available at http://gramatica.usc.es/∼gamallo/php/tagger/TaggerPT.php.
3Available at http://lxcenter.di.fc.ul.pt/services/en/LXServicesSuite.html.

it as a single word. We took these particularities into account
during our annotation and only annotated a tag as incorrect if
there would have been a more appropriate tag available in the
tag set of the specific tool.

IV. RESULTS

TABLE II. TAGGING PROBLEMS.

TreeTagger LX-Tagger
failed to detect Code Term 44 35
failed to detect Interrogative 33 56
failed to detect Noun 62 21
failed to detect Punctuation 5 36
other 38 13
sum 182 161

Table II summarizes the results of our analysis. Out of
a total of 974 words, the TreeTagger tagged 182 (19%)
incorrectly, and the LX-Tagger tagged 161 (17%) incorrectly.
In total, the TreeTagger resulted in only 14 question titles for
which each word had been tagged correctly and the LX-Tagger
resulted in 20 correctly tagged sentences. In the following
sections, we discuss the different problems encountered by the
taggers in more detail.

A. Detection of Code Terms

A unique characteristic of software-related natural lan-
guage documents is the presence of code terms. Table III
shows examples of where the taggers struggled with code terms
interspersed with natural language text. In total, there were
44 cases within the 100 question titles where the TreeTagger
tagged a code term incorrectly and 35 cases where the LX-
Tagger had the same problem. For example, the LX-Tagger
assigned a variation of part-of-speech tags to the JavaScript

http://gramatica.usc.es/~gamallo/php/tagger/TaggerPT.php
http://lxcenter.di.fc.ul.pt/services/en/LXServicesSuite.html

TABLE III. DETECTION OF CODE TERMS.

1 Operador == e === em JavaScript (LX-Tagger)
Operador/Noun =/Adjective =/Punctuation e/Conjunction =/Verb =/Past Participle

=/Punctuation em/Preposition JavaScript/Part of Name
2 O que significa ”??!??!” em linguagem C? (TreeTagger)
O/Determiner que/Interrogative significa/Verb ”/Quote ?/Punctuation

?/Punctuation !/Punctuation ?/Punctuation ?/Punctuation !/Punctuation
”/Quote em/Preposition linguagem/Noun C/Noun ?/Punctuation

3 Quando se deve usar var no javascript? (TreeTagger)
Quando/Conjunction se/Clitic deve/Verb usar/Verb var/Infinitive

em /Preposition o/Definite Article javascript/Noun ?/Punctuation
4 Qual é a diferença entre inner join e outer join? (LX-Tagger)
Qual/Interrogative é/Verb a/Definite Article diferença/Noun entre/Preposition

inner/Verb join/Noun e/Conjunction outer/Verb join/Noun ?/Punctuation
5 Qual a diferença entre as funções var name = function() e function name()?

(LX-Tagger)
Qual/Interrogative a/Definite Article diferença/Noun entre/Preposition

as/Definite Article funções/Noun var/Infinitive name/Noun =/Punctuation
function/Interjection (/Part of Name)/Punctuation e/Conjunction
function/Adjective name/Noun (/Adjective)/Punctuation ?/Punctuation

assignment operators == and ===: adjective, punctuation,
verb, and past participle. Other examples include the treatment
of the C operator ??!??! as a series of punctuation marks by
the TreeTagger and the treatment of the programming keyword
var as an infinitive by the TreeTagger. It is debatable what the
correct tag should be for operators such as == or +=, keywords
such as if or for, and identifiers such as var or main. In
our study, we considered it wrong when operators were not
grouped and tagged as punctuation, and when keywords and
identifiers were not tagged as nouns.

A particular challenge is the treatment of programming
keywords that are also words in a natural language, such as
“inner” and “outer” in the fourth example. To be able to
assign the correct part-of-speech tags to the words in this
question title, a tool would first have to realize that out of ten
words in that question, four are in English. The last example
shows a situation where a sentence does not only contain single
code terms or keywords, but where entire code snippets are
interspersed with the question text. In this case, the tagger
assigned part-of-speech tags to the different parts of the code
snippets instead of treating each snippet as a single word.

B. Detection of Interrogatives

TABLE IV. DETECTION OF INTERROGATIVES.

1 Como escrever um código legı́vel e de fácil manutenção? (TreeTagger)
Como/Conjunction escrever/Verb um/Determiner código/Noun legı́vel/Adjective

e/Conjunction de/Preposition fácil/Verb manutenção/Verb ?/Punctuation
2 Como funcionam closures em javascript? (LX-Tagger)
Como/Adverb funcionam/Verb closures/Noun em/Preposition javascript/Noun

?/Punctuation
3 Onde devo colocar um código JavaScript em um documento HTML?

(TreeTagger)
Onde/Adverb devo/Verb colocar/Verb um/Determiner código/Adjective

JavaScript/Noun em/Preposition um/Determiner documento/Noun HTML/Noun
?/Punctuation

4 O que é Reflection, por que é útil? (LX-Tagger)
O/Definite Article que/Relative é/Verb Reflection/Part of Name ,/Punctuation

por/Preposition que/Relative é/Verb útil/Adjective ?/Punctuation
5 O que realmente é DDD e quando ele se aplica? (TreeTagger)
O/Determiner que/Interrogative realmente/Adverb é/Verb DDD/Noun

e/Conjunction quando/Conjunction ele/Pronoun se/Pronoun aplica/Verb
?/Punctuation

The part-of-speech taggers we chose for this study had
significant problems with detecting question words correctly:
The TreeTagger mis-classified 33 interrogative words and the
LX-Tagger mis-classified 56. Table IV shows examples of

question words that were tagged as conjunctions, adverbs, or
relative pronouns. Since this problem is not specific to software
development – although questions are naturally very common
on Question and Answer websites such as Stack Overflow –
we do not analyze this issue further for now.

C. Detection of Nouns

TABLE V. DETECTION OF NOUNS.

1 Exceções consomem muito processamento. (LX-Tagger)
Exceções/Part of Name consomem/Verb muito/Adverb processamento/Noun

./Punctuation
2 Quais são as técnicas para se fazer animações baseadas em scroll? (TreeTagger)
Quais/Interrogative são/Verb as/Determiner técnicas/Adjective para/Preposition

se/Pronoun fazer/Verb animações/Verb baseadas/Verb em/Preposition scroll/Noun
?/Punctuation

3 Requisição Ajax com Javascript puro (sem APIs) (LX-Tagger)
Requisição/Part of Name Ajax/Part of Name com/Preposition

Javascript/Part of Name puro/Adjective (/Punctuation sem/Preposition
APIs/Part of Name)/Punctuation

4 Um compilador C pode gerar um executável de 64 bits onde ponteiros são
32-bits? (TreeTagger)

Um/Determiner compilador/Adjective C/Noun pode/Verb gerar/Verb
um/Determiner executável/Adjective de/Preposition 64/Cardinal bits/Noun
onde/Interrogative ponteiros/Noun são/Verb 32-bits/Noun ?/Punctuation

5 Metodologias ágeis - um só programador (LX-Tagger)
Metodologias/Part of Name ágeis/Adjective -/Punctuation um/Indefinite Article

só/Adjective programador/Noun

In particular the TreeTagger failed to detect many software
development related nouns, sometimes due to capitalization
at the beginning of a sentence. The examples in Table V
show that all of the following words were not detected as
nouns by at least one of the tools in our study: “exceções”
(exceptions), “técnicas” (techniques), “animações” (anima-
tions), “requisição” (request), “compilador” (compiler), “ex-
ecutável” (executable), and “metodologias” (methodologies).
Instead, they were detected as parts of a name, adjectives,
or verbs. All of these nouns are frequently used in natural
language documents produced by software developers, and if a
part-of-speech tagger cannot identify them as nouns, automated
tools analyzing these documents will not function properly.

D. Detection of Punctuation

TABLE VI. DETECTION OF PUNCTUATION.

1 Dar um ”SELECT” antes de um ”INSERT” é uma forma segura de não
ter registros duplicados? (LX-Tagger)

Dar/Part of Name um/Indefinite Article ”/Noun SELECT/Part of Name
”/Punctuation antes/Preposition de/Preposition um/Indefinite Article ”/Noun
INSERT/Part of Name ”/Punctuation é/Verb uma/Indefinite Article forma/Noun
segura/Past Participle de/Preposition não/Adverb ter/Verb registros/Noun
duplicados/Past Participle ?/Punctuation

2 Pode-se fazer o navegador ”lembrar” de uma senha programaticamente?
(LX-Tagger)

Pode/Verb -se/Clitic fazer/Verb o/Definite Article navegador/Noun ”/Verb
lembrar/Verb ”/Punctuation de/Preposition uma/Indefinite Article senha/Noun
programaticamente/Adverb ?/Punctuation

3 Como funciona este if/else com ”?” e ”:”? (LX-Tagger)
Como/Conjunction funciona/Verb este/Demonstrative if/Noun //Symbol else/Noun

com/Preposition ”/Noun ?/Punctuation ”/Punctuation e/Conjunction
”/Part of Name :/Part of Name ”/Part of Name ?/Punctuation

4 Por que verde = azul + amarelo, mas no RGB amarelo = verde e vermelho?
(TreeTagger)

Por/Preposition que/Interrogative verde/Adjective =/Verb azul/Adjective +/Verb
amarelo/Adjective ,/Punctuation mas/Conjunction no/Preposition+Determiner
RGB/Noun amarelo/Adjective =/Verb verde/Adjective e/Conjunction
vermelho/Adjective ?/Punctuation

5 Qual é a diferença semântica entre e ? (LX-Tagger)
Qual/Interrogative é/Verb a/Definite Article diferença/Noun semântica/Adjective

entre/Preposition e/Conjunction ?/Punctuation

The correct tagging of punctuation turned out to be a
problem particularly for the LX-Tagger. As the examples in
Table VI show, quotation marks were tagged as nouns, verbs,
and parts of a name. The same applies to the colon symbol
(:). As the fourth example shows, the TreeTagger mis-classified
the symbols in the equation “verde = azul + amarelo” (green
= blue + yellow) as verbs. The last example shows that by
default, the LX-Tagger ignores content enclosed in less-than
(<) and greater-than (>) symbols and does not assign any
part-of-speech tag. As a result, HTML tags such as
and in the example are not assigned any tag.

E. Other Issues

TABLE VII. OTHER ISSUES.

1 Utilizar muitas interfaces é uma má prática de programação? (TreeTagger)
Utilizar/Verb muitas/Adjective interfaces/Noun é/Verb uma/Determiner má/Noun

prática/Verb de/Preposition programação/Verb ?/Punctuation
2 Quais as implicações de não declarar variáveis em PHP? (TreeTagger)
Quais/Interrogative as/Pronoun implicações/Verb de/Preposition não/Verb

declarar/Verb variáveis/Verb em/Preposition PHP/Noun ?/Punctuation
3 E qual a sacada em usá-las? (TreeTagger)
E/Conjunction qual/Interrogative a/Determiner sacada/Noun em/Preposition

usá-las/Determiner ?/Punctuation
4 É correto dar maior preferência a composição do que herança? (TreeTagger)
É/Verb correto/Adjective dar/Verb maior/Adjective preferência/Verb a/Preposition

composição/Verb do/Preposition+Determiner que/Interrogative herança/Noun
?/Punctuation

5 Como -1 pode ser maior que 4? (LX-Tagger)
Como/Adverb -/Punctuation 1/Digit pode/Verb ser/Verb maior/Adjective

que/Conjunction 4/Digit ?/Punctuation

Table VII shows examples of other issues we found during
our study but that occurred less frequently than the ones
mentioned in the previous sections. These issues can usually be
attributed to relatively complex sentence structures and include
the mis-classification of adjectives (e.g., “má”), articles (e.g.,
“as”), verbs (e.g., “usá-”), relative pronouns (e.g., “que”),
and digits (e.g., “-1”). It is important to note that one mis-
classified word often negatively affects the tagging of other
words in the same sentence. For example, in the second
example sentence, the TreeTagger failed to tag “implicações”
(implications) as a noun which led to the mis-classification of
the preceding definite article (“as”). To prevent such issues,
in the next section, we present our recommendations for
improving the part-of-speech tagging of software documents
produced by software developers in Portuguese.

V. RECOMMENDATIONS

We make four recommendations that have the potential to
improve the part-of-speech tagging discussed in the previous
sections.

A. Introducing a Lexical Item tag

Our first recommendation is the introduction of a new part-
of-speech tag which we call “Lexical Item”. The need for such
a tag is motivated by several scenarios where we were unable
to find a fitting tag in the current tag sets for a particular word.
For example, it is impossible to assign the “correct” part-of-
speech tag to the word “if” in the question title “Por que
em algumas situações if’s são considerados ruins?” (Why are
if’s considered bad in some situations?). The word “if” in the
English language is used as a subordinating conjunction which
can never have a plural form. Given the sentence structure in

the Portuguese question title, the word “if” should actually be
treated as a noun, with the plural “if’s”. Since neither solution
makes sense and current tools struggle to assign a part-of-
speech tag in such situations (the TreeTagger tagged “if” as a
verb and the LX-Tagger tagged it as an adjective), we propose
to tag the word instead as a “Lexical Item”. This tag would
be used for code snippets (such as “var name = function()”),
programming keywords (such as “if”), and technical terms
borrowed from another language (such as “inner join”).

B. Dictionary of Programming Keywords

Since programming keywords may or may not be words
in a natural language (for example, if is an English word
whereas int is not), a part-of-speech tagger would benefit
from a dictionary of programming keywords. Such a dictionary
could help identify keywords as “Lexical Items” and help with
the detection of code snippets (see next section). We found that
tools struggle with finding appropriate part-of-speech tags for
programming keywords. For example, return was tagged as
adjective by the LX-Tagger while heap and lib were tagged
as verbs by the TreeTagger. A multilingual dictionary [5] that
contains Portuguese words as well as common programming
keywords could avoid such problems.

C. Regular Expressions to Detect Code Terms

Several researchers have developed regular expressions for
identifying code snippets and code terms in natural language
text [1], [25]. We propose to combine these approaches with
part-of-speech tagging of natural language documents pro-
duced by software developers in Portuguese. In particular in
scenarios where a sentence contains entire code snippets, such
as in the question title “Qual a diferença entre as funções var
name = function() e function name()?” (What is the difference
between the functions var name = function() and function
name()?), regular expressions combined with programming
keywords could be used to indicate where the Portuguese text
ends and the source code starts. Entire code snippets could
then be grouped and tagged with a single part-of-speech tag
(i.e., the suggested “Lexical Item” tag).

D. Software-related Nouns

Both taggers struggled to correctly identify software-
related nouns, such as “animações” (animations), which was
tagged as a verb by the TreeTagger. Even though a Portuguese
word was used, it appears that part-of-speech tagging tools are
not trained on words that are rarely used outside of software
development. To address this concern, we propose to support
Portuguese part-of-speech taggers by providing a list of words
that are commonly used as nouns in natural language artifacts
produced by software developers.

VI. CONCLUSION AND FUTURE WORK

Tools that automatically analyze software artifacts written
in natural language, such as documentation, code comments,
or bug reports, rely on natural language processing tools for
the interpretation of text. Processing text produced by software
developers is challenging because of unique characteristics
not found in other texts, such as the presence of code terms
and the use of incomplete sentences. Artifacts produced in

Portuguese have the additional challenge of mixing Portuguese
text with English words for many programming concepts.
While we cannot claim that our results generalize beyond
the top 100 question titles from the Portuguese version of
the Question and Answer website Stack Overflow, the results
are a strong indication that part-of-speech tagging of software
artifacts written in Portuguese is challenging and that current
tools are unable to achieve reasonable results. We make several
recommendations for addressing this situation, ranging from
the introduction of a “Lexical Item” part-of-speech tag to the
use of dictionaries and regular expressions for the detection of
parts of a sentence that are not standard Portuguese.

In future work, we plan to deepen our analysis by con-
sidering other natural language artifacts produced by software
developers in Portuguese, such as bug reports and tutorials. We
will also implement the heuristics we recommend and evaluate
their performance on the data set used in this paper as well
as on other artifacts from the growing population of natural
language documents and annotations produced by software
developers, both in English and Portuguese. Increasing the
accuracy of part-of-speech tagging of natural language texts
will enable researchers and practitioners to automatically ana-
lyze these texts, ultimately leading to better artifacts and more
efficient development processes.

ACKNOWLEDGEMENTS

This work is partially supported by CNPq Jovens Talentos
grant 407455/2013-2, CNPq Universal grant 460904/2014-0,
and CAPES/PROAP.

REFERENCES

[1] A. Bacchelli, M. D’Ambros, and M. Lanza. Extracting source code
from e-mails. In 18th Int’l. Conf. on Programming Comprehension,
pages 24–33, 2010.

[2] E. Bick. The parsing system “Palavras”: Automatic grammatical
analysis of Portuguese in a constraint grammar framework. Aarhus
Universitetsforlag, 2000.

[3] A. Branco and J. R. Silva. A suite of shallow processing tools for Por-
tuguese: LX-Suite. In Proc. of the 11th Conf. of the European Chapter
of the Association for Comp. Linguistics: Posters & Demonstrations,
pages 179–182, 2006.

[4] P. Fernandes, L. O. Furquim, and L. Lopes. A supervised method to
enhance vocabulary with the creation of domain specific lexica. In
Proc. of the Int’l. Joint Conferences on Web Intelligence and Intelligent
Agent Technologies, pages 139–142, 2013.

[5] P. Fernandes, L. Lopes, C. A. Prolo, A. Sales, and R. Vieira. A fast,
memory efficient, scalable and multilingual dictionary retriever. In
Proc. of the Lang. Resources and Evaluation Conf., pages 2520–2524,
2012.

[6] V. H. Ferreira, L. Lopes, R. Vieira, and M. J. Finatto. Automatic
extraction of domain specific non-taxonomic relations from Portuguese
corpora. In Proc. of the Int’l. Joint Conferences on Web Intelligence
and Intelligent Agent Technologies, pages 135–138, 2013.

[7] P. Gamallo Otero and I. González López. A grammatical formalism
based on patterns of part-of-speech tags. Int’l. Journal of Corpus
Linguistics, 16(1):45–71, 2011.

[8] K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein,
M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith. Part-of-speech
tagging for Twitter: Annotation, features, and experiments. In Proc. of
the 49th Annual Meeting of the Association for Comp. Linguistics:
Human Lang. Technologies: short papers - Volume 2, pages 42–47,
2011.

[9] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker. Part-of-
speech tagging of program identifiers for improved text-based software
engineering tools. In Proc. of the 21st Int’l. Conf. on Programming
Comprehension, pages 3–12, 2013.

[10] L. Hilgert, L. Lopes, A. Freitas, R. Vieira, D. Hogetop, and A. Vanin.
Building domain specific bilingual dictionaries. In Proc. of the 9th
Int’l. Conf. on Lang. Resources and Evaluation, pages 2772–2777,
2014.

[11] L. Lopes, P. Fernandes, R. Vieira, G. Fedrizzi, and D. Martins.
EχATOLp–a tool for domain relevant terms extraction. In Proc. of
the Int’l. Conf. on Comp. Processing of the Portuguese Lang., 2010.

[12] L. Lopes, R. Vieira, M. J. Finatto, and D. Martins. Extracting compound
terms from domain corpora. Journal of the Brazilian Computer Society,
16(4):247–259, 2010.

[13] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky. The Stanford CoreNLP natural language processing
toolkit. In Proc. of 52nd Annual Meeting of the Association for
Comp. Linguistics: System Demonstrations, pages 55–60, 2014.

[14] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora.
Mining source code descriptions from developer communications. In
Proc. of the 20th Int’l. Conf. on Programming Comprehension, pages
63–72, 2012.

[15] C. Parnin and C. Treude. Measuring API documentation on the web. In
Proc. of the 2nd Int’l. workshop on Web 2.0 for Software Engineering,
pages 25–30, 2011.

[16] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey. Crowd documen-
tation: Exploring the coverage and the dynamics of API discussions on
Stack Overflow. Technical Report GIT-CS-12-05, Georgia Institute of
Technology, 2012.

[17] C. Parnin, C. Treude, and M.-A. Storey. Blogging developer knowledge:
Motivations, challenges, and future directions. In Proc. of the 21st
Int’l. Conf. on Programming Comprehension, pages 211–214, 2013.

[18] G. Petrosyan, M. P. Robillard, and R. de Mori. Discovering information
explaining API types using text classification. In Proc. of the 37th
Int’l. Conf. on Software Engineering, 2015. To appear.

[19] S. Rastkar, G. C. Murphy, and G. Murray. Automatic summarization
of bug reports. IEEE Trans. on Software Engineering, 40(4):366–380,
2014.

[20] H. Schmid. Probabilistic part-of-speech tagging using decision trees.
In Proc. of the Int’l. Conf. on New Methods in Lang. Processing,
volume 12, pages 44–49, 1994.

[21] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker. Identifying word
relations in software: A comparative study of semantic similarity tools.
In Proc. of the 16th Int’l. Conf. on Programming Comprehension, pages
123–132, 2008.

[22] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng, and M. Muller.
How software developers use tagging to support reminding and refind-
ing. IEEE Trans. on Software Engineering, 35(4):470–483, 2009.

[23] S. Thummalapenta, S. Sinha, D. Mukherjee, and S. Chandra. Automat-
ing test automation. Technical Report RI11014, IBM Research, 2011.

[24] C. Treude, O. Barzilay, and M.-A. Storey. How do programmers ask
and answer questions on the web? (NIER track). In Proc. of the 33rd
Int’l. Conf. on Software Engineering, pages 804–807, 2011.

[25] C. Treude, M. P. Robillard, and B. Dagenais. Extracting development
tasks to navigate software documentation. IEEE Trans. on Software
Engineering, 41(6):565–581, 2015.

[26] C. Treude, M. Sicard, M. Klocke, and M. P. Robillard. TaskNav:
Task-based navigation of software documentation. In Proc. of the 37th
Int’l. Conf. on Software Engineering, 2015. To appear.

[27] C. Treude and M.-A. Storey. Effective communication of software de-
velopment knowledge through community portals. In Proc. of the 19th
ACM SIGSOFT Symp. and the 13th European Conf. on Foundations of
Software Engineering, pages 91–101, 2011.

[28] C. Treude and M.-A. Storey. Work item tagging: Communicating
concerns in collaborative software development. IEEE Trans. on
Software Engineering, 38(1):19–34, 2012.

[29] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifica-
tions from natural language API documentation. In Proc. of the 24th
Int’l. Conf. on Automated Software Engineering, pages 307–318, 2009.

	Challenges in analyzing software documentation in Portuguese
	Citation

	Introduction and Motivation
	Related Work
	Analyzing Software Artifacts
	Domain-specific Analysis of English Text
	Domain-specific Analysis of Portuguese Text

	Methodology
	Data Collection
	Data Analysis

	Results
	Detection of Code Terms
	Detection of Interrogatives
	Detection of Nouns
	Detection of Punctuation
	Other Issues

	Recommendations
	Introducing a Lexical Item tag
	Dictionary of Programming Keywords
	Regular Expressions to Detect Code Terms
	Software-related Nouns

	Conclusion and Future Work
	References

