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Abstract—This paper presents a scenario-based approach for 

the evaluation of the quality attribute of performance, measured 

in terms of execution time (response time). The approach is 

implemented by a framework that uses dynamic analysis and 

repository mining techniques to provide an automated way for 

revealing potential sources of performance degradation of 

scenarios between releases of a software system. The approach 

defines four phases: (i) preparation – choosing the scenarios and 

preparing the target releases; (ii) dynamic analysis – determining 

the performance of scenarios and methods by calculating their 

execution time; (iii) degradation analysis – processing and 

comparing the results of the dynamic analysis for different 

releases; and (iv) repository mining – identifying development 

issues and commits associated with performance deviation. The 

paper also describes an evolutionary study of applying the 

approach to multiple releases of the Netty, Wicket and Jetty 

frameworks. The study analyzed seven releases of each system 

and addressed a total of 57 scenarios. Overall, we have found 14 

scenarios with significant performance deviation for Netty, 13 for 

Wicket, and 9 for Jetty, almost all of which could be attributed to 

a source code change. We also discuss feedback obtained from 

eight developers of Netty, Wicket and Jetty as result of a 

questionnaire. 

Index Terms—Performance, execution time, scenario, 

dynamic analysis, repository mining. 

I. INTRODUCTION 

The ability to understand and analyze how newly 

introduced changes impact the quality attributes of software 

systems when evolving them is an essential prerequisite for 

avoiding issues related to software erosion [1]. Degradation of 
quality attributes happens when a new release of a software 

system exhibits inferior measurements of quality attributes 

compared to previous releases. This work focuses on the 

quality attribute of performance, measured in terms of 

execution time (response time). We consider that performance 

refers to the responsiveness of the system, i.e., the time 

required to respond to events [2]. In order to measure 

performance, a set of different properties, including memory, 

disk and CPU usage, can be used for benchmark-based [3] or 

power consumption [4] [5] approaches. We chose execution 

time because it is a general and common property for the 

system responsiveness. 

Our proposal consists of a scenario-based approach for 

evaluating software performance in terms of execution time. A 
scenario is a high-level action that represents the way in which 

the stakeholders expect the system to be used [2]. This is a 

common definition that is adopted by software architecture 

evaluation methods which explore architectural analysis of 

quality attributes based on scenarios [2] [6] [7]. However, they 
only perform early evaluation, which happens before system 

implementation and involves manual analysis and review of 

scenarios [2]. Other architectural approaches that perform code 

analysis focus mainly on the structural compliance of the 

systems [8] [9] [10] [11]. 
Some proposals use mathematical models for predicting 

quality attributes [12] [13], which represents an approximation 
of the real impact of the evolution. In addition, a well-known 
way to measure execution time and other properties is using 
performance benchmarks, which consist of monitoring the 
global resources that software systems use to perform specific 
tasks. They are particularly useful in helping developers 
determine the limits of the system through load tests [3], which 
is not the focus of this work. Finally, some recent research 
studies are exploring software repository mining techniques to 
infer information about performance. For example, these 
studies explore how performance bugs are discovered, reported 
to and fixed by developers [14], how repositories of 
performance regression-causes can be used to identify new 
regressions [15], how mining performance regression testing 
repositories can automate performance analysis and detect 
problems that are often overlooked by performance analysts 
[16], and how performance analysis risk could be applied to 
prioritize performance regression tests [17]. These approaches 
do not provide enough details about the sources of the 
performance deviation, for example, the methods that have 
contributed to degrade the performance and the commits and 
development issues that were responsible for introducing 
changes to them. That is the main limitation of current 
approaches that our proposal addresses. 
 This paper presents a scenario-based approach for 
automating the performance analysis of multiple system 
releases considering the execution time of methods and 
scenarios. We applied the approach to three network/web 
application frameworks: Netty [18], Wicket [19] and Jetty [20]. 
The study analyzed seven releases of each system, considering 
57 scenarios in total. The approach automatically identified 14 
scenarios with significant performance deviation for Netty, 13 
for Wicket, and 9 for Jetty, almost all of which could be 
attributed to a source code change. When we asked eight 
contributors of Netty, Wicket and Jetty whether they had 
already been aware of these performance deviations 



 

 

(degradation or optimization), all of them indicated that this 
was not the case. This preliminary evidence suggests that our 
approach is able to identify performance deviations that 
developers are not aware of. 

The goal of the proposal is to provide an automated way for 

revealing performance deviations of scenarios of new releases, 

suggesting which code assets may cause performance variation 

and indicating commits and development issues responsible for 

changing them. Dynamic analysis and repository mining 

techniques are combined to achieve this goal, and we expect 

our approach and support framework to help developers 

identify ways to optimize the performance of their systems. 

The main contributions are: (i) the proposal of a scenario-based 

approach and tool for the automated analysis of performance 
deviation; (ii) the identification of the potential causes of 

performance deviation for Netty, Wicket and Jetty extracted 

from an evolutionary study through multiple releases; and (iii) 

a preliminary evaluation of the approach with eight 

contributors of Netty, Wicket and Jetty. 

The rest of this paper is organized as follows: Section 2 

presents an overview of the approach. Section 3 describes our 

study, including goals, research questions and results. Section 

4 discusses the obtained results. Section 5 presents the threats 

to validity of the study. Section 6 reports related work, and 

Section 7 concludes the paper. 

II. APPROACH AND FRAMEWORK OVERVIEW 

The proposed framework, implemented in the Java 

programming language, automates the evaluation approach by 

using dynamic analysis and software repository mining 

techniques. Figure 1 gives an overview of the approach. 
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Fig. 1. Approach phases and their inputs and outputs. 

The first phase requires the system’s source code and 

additional metadata. The framework uses Java annotations as 

metadata source to indicate relevant scenarios that will be 

monitored by the dynamic analysis during the system 

execution, which should be selected by specialists or reused 
from previous architectural evaluation processes. The 

annotation (@Scenario) identifies methods in the source code 

that represent execution entry points of scenarios of interest. 

An entry point is the method that starts the scenario execution. 

Thus, the preparation phase output is the target releases with 

the integrated metadata (see Figure 1). It is also possible to use 

other annotations, for example, @Test from JUnit 4. The 
preparation is still a manual process, but does not require much 

effort because only the start methods of scenarios require the 

annotation (i.e., one annotation per scenario). 

The second phase (dynamic analysis) requires the 

execution of the scenarios. The framework uses AspectJ to 

instrument the execution of the scenarios. This phase generates 

the dynamic analysis model, which is persisted in a database 

and contains information about the execution traces of the 

system modeled by a call graph that represents every execution 

of the selected scenarios for the target release. This call graph 

can be interpreted as a tree structure where each node is a call 

of a regular method or constructor, and the entry point methods 

represent the root nodes. Two databases, one for each release 

under comparison, are the outputs of this phase (see Figure 1). 

The degradation analysis is the third phase of the approach. 

It compares the system execution data (dynamic analysis 

model) extracted during dynamic analysis for two releases. The 
comparison reveals methods of the system that were degraded 

or optimized over the evolution. The framework implements 

two strategies to compare the execution time: arithmetic mean 

and statistic test. It is possible to choose one of these strategies 

or both (i.e., to generate both results). The outputs of this phase 

are reports with degraded and optimized scenarios/methods in 

terms of execution time (see Figure 1), considering one of the 

comparison strategies (arithmetic mean or statistic test). 

The first strategy compares the average execution time for 

each method in both releases. If the value in the newer release 

increased or decreased by 5% or more (this threshold can be 

configured in the framework), it considers that a performance 

deviation happened in the method. The second strategy uses a 

two-sided Mann-Whitney U-Test [21] to observe if two 

independent samples, which do not necessarily follow a normal 
distribution, have the same tendency. Our framework uses the 

U-Test to determine if the execution time of the methods of the 

target scenarios in the first release has the same tendency in the 

second release. For each method M, the first sample consists of 

the set of execution time values for the method in the first 

release, and the second sample consists of the set of values in 

the second release. Our null hypothesis is “the values of the 

execution time for method M have the same tendency in both 

releases”, while the alternative hypothesis is “the values of the 

execution time for method M do not have the same tendency”, 

in other words, they are different. 

For the statistic test, our case study considered a 

significance level (alpha) of 0.05. If the p-value calculated 

using the output of the test is equal to or less than the 
significance level, we can reject the null hypothesis and keep 

the alternative hypothesis, i.e., there is a performance deviation 

between the releases for the method M. In that case, since it is 

a two-sided test and since we already know that the samples 

are different, the average execution time is used to determine if 



 

 

it increased or decreased. Developers are usually interested in 

degradations, but flagging optimization cases is also interesting 

because developers could check if some expected 

modifications had indeed decreased the execution time. 

Despite the possibility of using the arithmetic mean strategy, 

we recommend the statistic test, since execution time is a very 
sensitive property and a pure mean strategy might not represent 

truly reliable values.  

The last phase mines data from the version control and 
issue tracking systems to find which specific commits changed 

the methods identified previously. The framework retrieves 

commits from the version control system for each class that 

contains methods detected as degraded or optimized. If the 

commit changed lines inside the method, the framework 

searches the commit log for issue numbers, which are used to 

complement the information from the commits. Since the 

approach is guided by scenarios, the framework only considers 

degraded or optimized methods that impact at least one 

degraded or optimized scenario. The final output (see Figure 1) 

contains degraded/optimized scenarios and changed methods 

potentially responsible for affecting them, and the associated 

code changes (commits and development issues). 

 This information allows developers to analyze commits and 
development issues in order to understand the modifications 

and the reasons why they introduced performance deviation. 

Currently, the framework provides implementations for the 

Subversion and Git version control systems, and for the 

GitHub, Jira, Bugzilla and Issuezilla issue track systems. 

III. EMPIRICAL STUDY: EVOLUTIONARY ANALYSIS 

In order to assess our approach, we conducted an empirical 

study that analyzed multiple evolutions of three different 

network/web application frameworks – Netty, Wicket and 

Jetty. The next subsections present the goals, research 

questions, procedures and results of the study. 

A. Goals and Research Questions 

The goal of our study was to assess the capacity of our 

approach to identify performance issues over multiple 

evolutions of existing systems and to check if the developers of 

these systems were aware of the issues. By using our approach, 

developers can be aware of performance issues and reduce 

them before distribution or deployment of new system releases. 

Methods and commits related to performance deviation that are 

discovered by our approach represent guidelines and 

recommendations that can be used to improve the system 

performance. Our study was guided by two research questions. 

RQ1. Can the proposed approach find corresponding 

source code changes in the scenarios with performance 

deviation? We expect that the approach will be able to identify 

performance issues over multiple releases of a target system 
and discover their sources. It is important to understand which 

modifications lead to performance problems and how they 

could be fixed or optimized. In order to characterize these 

results, we also identified modules of the system (packages or 

classes) that concentrated most of the sources and the types of 

the development issues (bug/defect, new feature, improvement 

and others) that are most likely to cause performance deviation 

in the target systems. This information is useful for 

development teams since it will tell them what aspects of a 

system they should pay particular attention to when evolving 

the implementation. 

RQ2. Are the developers aware of the performance issues 

that our approach was able to find? We would like to verify if 

developers were aware of the performance issues that our 

approach has found. We collected feedback from eight 

developers through surveys for each target system. 

B. Target Systems and Procedures 

Netty is an open-source asynchronous event-driven 

network application framework for rapid development. We 

chose seven releases of the fourth version of Netty, because it 

was the latest stable version when our study began. Thus, we 

selected the first and last release at that time, respectively, 

4.0.0.Final and 4.0.21.Final. Each intermediate release was 

chosen after manually analyzing the release notes, attempting 
to identify stable releases that concentrated more significant 

changes. The seven selected releases were 4.0.0.Final, 

4.0.6.Final, 4.0.10.Final, 4.0.15.Final, 4.0.17.Final, 

4.0.18.Final, and 4.0.21.Final. 

Wicket is an open-source web application framework 

developed by the Apache Foundation. We also selected seven 

releases, which represented the last ones at the time the study 

began. The selected releases were: 6.15.0, 6.16.0, 6.17.0, 

6.18.0, 7.0.0-M1, 7.0.0-M2 and 7.0.0-M4. We did not include 

the release 7.0.0-M3 because we were unable to execute it due 

to compilation issues. 

Jetty is an open-source framework that provides a web 

server and a Java servlet container. It is part of the Eclipse 

Project. The seven releases of Jetty that we selected were: 

9.2.6, 9.2.7, 9.2.8, 9.2.9, 9.2.10, 9.3.0.M0 and 9.3.0.M1. 

In order to run our framework on the target systems we 

have instantiated it to consider the specific version control and 

issue tracker systems that the target systems work with. All 

analyzed systems work with the Git version control system. On 

the other hand, they use different issue tracker systems: GitHub 

(Netty), Jira (Wicket), and Bugzilla (Jetty). 

For the preparation phase, we selected existing automated 

tests of each system as scenarios. These selected tests cover 
important functionalities of the system and are used to 

reproduce their execution over different releases. In this case, 

we have considered the tests cases as entry points of scenarios 

and we have grouped the results by test classes, since they 

exercise similar functionalities. We are not interested in 

performance deviations caused by changes in test packages 

because we want to reveal performance issues caused by the 

evolution of the application source code and not just because 

the tests have changed. In order to do that, the framework uses 

a keyword for excluding certain classes or packages. 

The target projects were configured to support AspectJ 

features and to include our framework libraries, but without 

any source code modification. The @Test annotation from 

JUnit was reused as scenario entry point annotation. The 
dynamic analysis was executed on the same computer for all 



 

 

releases in the exact same conditions and with all non-essential 

services disabled (e.g., updates, antivirus, indexing services, 

and virtual memory). The computer was an AMD Phenom II 

with 8GB of RAM memory running the Windows 7 operating 

system and Java version 7. We executed the test suite of each 

release ten times for Netty and Wicket, i.e., each target 
scenario was executed ten times. For Jetty, we execute the test 

suite 30 times because most of the tests are shorter compared to 

the other systems. 

After that, we grouped the seven releases of each system in 

six pairs of evolutions to execute the third and fourth phases. In 

this study, the statistic test strategy was applied instead of the 

arithmetic mean for comparison. As p-value for the U-Test, a 

significance level (alpha) of 0.05 was used. Finally, we 

conducted an inspection of the results to get a better 

understanding of them and to answer our research questions. 

C. Evolutionary Analysis Results 

 RQ1. Can the proposed approach find corresponding 

source code changes in the scenarios with performance 

deviation? We have identified 32 scenarios with performance 

deviation and corresponding source code changes out of 57 

(56%). Tables I, II and III summarize the results. An upward 

pointing arrow indicates an increase in execution time, while a 

downward pointing arrow indicates a decrease. Blue cells 

denote deviations greater than a predefined threshold for which 

we managed to associate source code changes. Yellow cells 

denote deviations we have considered not relevant because the 

variation was smaller than the predefined threshold (letter L), 

or because the changes were in parts of the source code we are 
not interested in such as the test packages (letter T). The red 

cells are deviations greater than the threshold, but they could 

not be associated to source code changes. In this case, it might 

be the result of external factors, for example, different libraries 

or settings, or an isolated measurement effect, as we discuss in 

Section V. We number evolutions from one to six (one 

evolution between each of the releases) for each system. 

 The thresholds were 15ms for Jetty and 100ms for Netty 

and Wicket. The Jetty threshold was chosen to be smaller 

because Jetty has shorter tests. These thresholds were applied 

in Tables I, II and III to discard very small variations, since 

they are probably irrelevant for developers. As we can see, for 

deviations greater than the thresholds (blue and red cells), the 

approach was able to find corresponding source code changes 
in most cases (blue cells), and only six cases did not have 

corresponding code changes (red cells). Thus, we can conclude 

that practically all deviations above the given thresholds can be 

correlated to source code changes (at least one commit), which 

is a strong indication that these deviations actually reflect 

changes in the system and are not random fluctuations in our 

measurements. 

It is interesting to note that most scenarios exhibited 

degradations (or optimizations) only for a specific release. 

There are only a few scenarios that had performance 

degradation for more than one release. For example, Netty had 

13 performance-degraded only in NE3, and Wicket had 6 

degradations, and 12 optimizations only in WE4 and WE6, 

respectively. Jetty had 9 degradations in JE5. 

Understanding the Performance Deviation Sources. Next, 

we detail the code changes corresponding to the performance 

deviations of the indicated scenarios. Table IV shows an 

example of the output with the methods that were changed and 

had variation in Wicket, which are the ones potentially 

responsible for performance deviation, including the method 
name, performance impact, commits and number of impacted 

scenarios. The results are ordered by the performance impact 

of each method, which is calculated as the arithmetic mean of 

the impact of the method in each scenario that it affects. The 

impact of a method is the total time it takes running in a 

particular scenario. This is just one strategy to show the results, 

and it does not necessarily imply that methods in the top of the 

table have not caused more performance issues. 

TABLE I. DEGRADED AND OPTIMIZED SCENARIOS OF NETTY. 
Scenarios (Test Classes) E1 E2 E3 E4 E5 E6 

Entry Point for DatagramUnicastTest 
  

↑ 
 

↓ ↑ 

Entry Point for SocketBufReleaseTest 
 

↓L ↑ ↑L ↓ 
 

Entry Point for SocketCancelWriteTest 
    

↓L ↑L 

Entry point for SocketConnectionAttemptTest 
   

↑L ↓L 
 

Entry Point for SocketEchoTest 
 

↑L ↑ ↑L ↓L ↑L 

Entry Point for SocketFileRegionTest 
 

↑L ↑ ↑L ↓L 
 

Entry Point for SocketFixedLengthEchoTest 
  

↑ ↑L ↓L 
 

Entry Point for SocketObjectEchoTest 
 

↑L ↑ ↑L ↓L 
 

Entry Point for SocketShutdownOutputByPeerTest ↓L ↑L ↑ ↑L ↓L 
 

Entry Point for SocketShutdownOutputBySelfTest 
 

↑L ↑ 
 

↓L 
 

Entry Point for SocketSpdyEchoTest 
 

↑L ↑ ↓T ↓L ↓ 

Entry Point for SocketSslEchoTest ↑ ↓ ↑ ↑L ↓ ↓ 

Entry Point for SocketStartTlsTest 
 

↑ ↑ ↑L ↓L ↓ 

Entry Point for SocketStringEchoTest ↑L 
 

↑ ↑L ↓L ↓ 

Entry point for UDTClientServerConnectionTest 
 

↑ 
    

Entry Point for WriteBeforeRegisteredTest 
 

↑L ↑ ↑L ↓L 
 

 

TABLE II. DEGRADED AND OPTIMIZED SCENARIOS OF WICKET.  

Scenarios (Test Classes) E1 E2 E3 E4 E5 E6 

Entry point for AjaxTest 
   

↑L 
 

↓ 

Entry point for ComprefTest 
   

↑ ↑L ↓ 

Entry point for EncodingTest 
 

↑L 
 

↑ 
 

↓ 

Entry point for FormInputTest 
   

↑ 
  

Entry point for GuestbookTest 
     

↓ 

Entry point for HangManTest ↑L 
  

↑ 
 

↓ 

Entry point for HelloWorldTest 
 

↓L 
   

↓ 

Entry point for ImagesTest 
     

↓ 

Entry point for LibraryTest 
     

↓ 

Entry point for LinkomaticTest 
   

↑ 
 

↓ 

Entry point for NiceUrlTest 
 

↑L ↓L ↑ 
 

↓ 

Entry point for Signin2Test 
     

↓ 

Entry point for TemplateTest 
     

↓ 

Entry point for WordGeneratorTest 
   

↓T 
  

 

TABLE III. DEGRADED AND OPTIMIZED SCENARIOS OF JETTY. 
Scenarios (Test Classes) E1 E2 E3 E4 E5 E6 

Entry point for AsyncContextListenersTest 
    

↑ 
 

Entry point for AsyncContextTest 
 

↓L ↑L ↓L ↑L ↓L 

Entry point for AsyncIOServletTest 
 

↓L 
 

↓L ↑ ↑L 

Entry point for AsyncServletLongPollTest 
    

↑ 
 

Entry point for AsyncServletTest 
   

↑L ↑L ↑L 

Entry point for DefaultServletRangesTest 
 

↑L 
  

↑ 
 

Entry point for DefaultServletTest 
    

↑L ↑T 

Entry point for DispatcherForwardTest 
   

↓L ↑ 
 

Entry point for DispatcherTest 
 

↑L ↓L ↓L ↑L ↑L 

Entry point for ErrorPageTest 
  

↑L 
 

↑ ↓L 

Entry point for InvokerTest 
    

↑ 
 

Entry point for RequestHeadersTest 
    

↑L 
 

Entry point for ResponseHeadersTest 
    

↑L 
 

Entry point for ServletContextHandlerTest 
    

↑ ↓L 

Entry point for ServletHandlerTest 
 

↑L 
 

↑L ↓L 
 

Entry point for SSLAsyncIOServletTest 
    

↑ 
 



 

 

 The scenario names and commit codes are not presented in 
Table IV due to space constraints. For the same reason, we will 

not detail every source code change that was found. The 

complete study data for all releases is available online [22]. 

The full description of commits can be found in the Netty [18], 

Wicket [19] and Jetty [20] version control systems. In the 

following, we describe part of the information that our 

approach automatically extracted from the repositories. 

 Netty: From release 4.0.0.Final to 4.0.6.Final (NE1). The 

framework found four commits and an improvement issue 

(#1606). Most of the changes affected the validatePromise() 

method by adding some extra code validation. A new way to 

instantiate the ChannelOutboundBuffer class in order to make 

its objects recycled was introduced in the newInstance() 

method. The commit added 7 and deleted 45 lines of code, 

respectively, and there is a performance improvement when 

objects from ChannelOutboundBuffer are recycled, and Netty 

avoids creating them again, but for new objects the 

performance decreased. 

Netty: From release 4.0.6.Final to 4.0.10.Final (NE2). 
All versions in between these releases were bug fixing with 

some improvements. The framework found five commits and 

three development issues, including one improvement (#1707) 

and two unlabeled issues (#1697 and #1832). An important 

unlabeled issue (#1697), also highlighted in the releases notes 

of 4.0.7.Final, fixed a bug related to buffer management. The 

solution introduced a new way to estimate the size of messages 

that should be written in buffers. Another interesting change 

introduced by a commit was intended to fix a callback problem 

when writing to a channel in 4.0.8.Final. 

Netty: From release 4.0.10.Final to 4.0.15.Final (NE3). 
For the third evolution, the framework detected that most of the 

scenarios were degraded (13 out of 20 scenarios). Seven 

commits and three development issues were found related to 
seven methods. The issues were two bug fixing (#1908 and 

#2060) and one unlabeled (#1947). The unlabeled issue 

(#1947) changed the DefaultChannelHandlerContext class in 

order to deal with a problem related to reject execution 

exceptions. It also added a new method named safeExecute() 

to the class, which affected part of the degraded scenarios 

during this evolution. One bug fixing issue (#1908) introduced 

changes to the method NioEventLoop.openSelector() to 

validate if internal objects are assignable. Another interesting 

change was a commit intended to improve the buffer leak 

report, which introduced wrappers. Now, a leak-aware buffer 

can detect and report memory leaks, as result of 1800 added 
lines and 17 changed files. Table I (NE3) shows the list of 

performance-degraded scenarios in this evolution. 

Netty: From release 4.0.17.Final to 4.0.18.Final (NE5). 
As shown in Table I (NE5), this evolution has optimized some 

scenarios. Two commits related to three development issues, 

including two improvements (#808 and #2264) and one new 

feature (#2311), were found. One of the modifications has 

introduced changes to the PoolThreadCache and PoolArena 

classes and is responsible for the optimization. According to 

the commit description, the changes “remove the 

synchronization bottleneck in PoolArena and so speed up 

things”. The problem was solved by improving the 

synchronization and implementing a thread-local cache for 

pooled buffers. 

Netty: From release 4.0.18.Final to 4.0.21.Final (NE6). 
The framework detected one commit responsible for the 

optimized scenarios (see Table I), which changed the 

DefaultChannelPipeline class to improve memory usage and 

initialization time. It refactored some source code and modified 

the strategy to generate the names of a communication channel. 

TABLE IV. SOURCES OF PERFORMANCE DEVIATION FOR WICKET. 
Evolution Methods Number of Scenarios Number of Commits Issues Performance  Impact 

WE4 

MarkupContainer.addedComponent 7 5 5410, 3335 605ms 

MarkupContainer.add 7 1 3335 603ms 

MarkupContainer.dequeue 7 10 3355 548ms 

Page.onBeforeRender 7 1 5426 406ms 

WebPageRenderer.isPageStateless 7 1 5426 400ms 

WebPageRenderer.shouldRenderPageAndWriteResponse 7 5 5426, 5484, 5522 380ms 

WebPageRenderer.respond 7 6 3347, 5309, 5426 370ms 

ListView.onPopulate 7 1 - 357ms 

MarkupContainer.newDequeueContext 7 1 - 331ms 

AbstractRepeater.dequeue 7 5 3335 215ms 

DefaultPageFactory.newPage 6 1 5215 159ms 

Page.renderPage 7 1 5426 144ms 

WebPageRenderer.renderPage 7 1 - 130ms 

MarkupContainer.onInitialize 7 1 - 118ms 

Component.internalRenderHead 7 1 4964 108ms 

Initializer.register 1 1 - 106ms 

MarkupContainer.dequeueAutoComponents 7 3 3335 105ms 

Initializer.createProxy 1 1 - 102ms 

Initializer.init 1 2 - 95ms 

MarkupCache.loadMarkupAndWatchForChanges 7 2 5294 54ms 

MarkupCache.loadMarkup 7 2 5294 53ms 

MarkupContainer.canDequeueTag 1 6 3335 35ms 

Component.setMetaData 1 1 5459 27ms 

JavaSerializer.deserialize 3 1 - 22ms 

WebPageRenderer.shouldRedirectToTargetUrl 1 4 5426 20ms 

XmlPullParser.parse 6 1 5398 16ms 

WE6 

WebPageRenderer.respond 12 2 5689 614ms 

MarkupContainer.dequeueAutoComponents 12 1 5730 356ms 

Application.initializeComponents 5 1 5713 342ms 

MarkupContainer.newDequeueContext 5 1 5730 47ms 

 



 

 

Wicket: From release 6.18.0 to 7.0.0-M1 (WE4). This 

was the only evolution with significant performance 

degradation for Wicket (see Table II). The framework found 38 

commits and 12 issues (one new feature, four improvements, 

and seven bugs). A new feature (#3335) implemented a 

queueing strategy for adding and extracting hierarchy 
information from markup. It added a substantial amount of new 

code to 14 files, including MarkupContainer, Page, and 

AbstractRepeater. Methods such as add(), 

addedComponent() and queue() introduced new validations. 

Obviously, new features and new code might cause execution 

time increases, but it is a team/developer decision to say if 

these increases are suitable or not. Our approach automatically 

detects the deviations and corresponding changes, so that 

developers can be aware of the specific consequences of their 

work. Another change caused by a bug fixing issue (#5426) 

corrected problems related to component states when they are 

rendering. One of the main classes changed was 

WebPageRenderer. An improvement issue (#3347) tried to 

simplify the way in which the WebPageRenderer.respond() 

method decides whether it will redirect or directly render the 

current page depending on several complex conditions. This 

issue resulted in 830 added lines and 95 deleted lines. 

Wicket: From release 7.0.0-M2 to 7.0.0-M4 (WE6). For 

this evolution, the framework detected only performance 

optimization in terms of execution time. We believe that the 

change from version 6.x to 7.x (WE4) introduced many 

problems and unsolved situations due to unstable code that was 

responsible for the degradation in previous releases, which 

were then addressed in this evolution. A bug fixing issue 

(#5689) changed a lot of source code in order to solve conflict 

problems in the WebPageRenderer class. An extra commit also 

changed this class in order to refactor and improve the respond 

method, replacing a big part of the code introduced by the issue 

#3347 in WE4. Another bug fixing issue (#5730) simplified 

and corrected the de-queueing component process. 

Jetty: From release 4.2.10 to 4.3.0.M0 (JE5). This was 

the only evolution in which the framework found significant 

performance deviation for Jetty. Changes were introduced in 

three methods and related to seven commits and one bug issue 

(#439375). The main changes were introduced by a commit 

that aimed to pre-encode HTTP fields. It modified 25 files with 

449 line additions and 147 line deletions, which was enough to 

affect all six blue scenarios from Table III. 

It is out of the scope of this paper to provide a detailed 

description of each commit and development issue found. We 

conducted a manual inspection of the results in order to better 

understand the changes and to ensure that they make sense. 

The data with all methods and issues are available online [22] 
and the links to version control and issue track systems can be 

found at the Netty [18], Wicket [19], and Jetty [20] websites. 

In order to characterize these results and to provide 
developers with a better understanding of them, Figures 2 and 

3 show how the total number of degraded and optimized 

methods of scenarios are spread over the packages for each 

evolution. The complete data that shows how these methods 

are spread over the classes is also available online [22]. 
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We identified only four packages that contain all 21 

methods responsible for performance deviations in Netty. 

According to Figure 2, the channel package concentrates the 

majority of the methods potentially responsible for the 

variations with a total of ten methods, which are distributed 

over ten classes. Thus, the channel package may represent one 

of the sensitive points for performance in Netty. 

For Wicket, the MarkupContainer and WebPageRenderer 

classes contain the majority of the methods responsible for 

performance deviations (ten and six, respectively). The classes 

inside the org.apache.wicket package also concentrated most 

of these methods, 15 in total (see Figure 3). These numbers are 

indicators that developers should pay particular attention when 
evolving these code assets because changing them might lead 

to performance deviation that could increase or decrease the 

execution time of methods and scenarios.  

For Jetty, we found only three methods that belong to the 

MimeTypes$Type, ServerConnector and PathResource classes 

from the org.eclipse.jetty.http, 

org.eclipse.jetty.server and 

org.eclipse.jetty.util.resource packages, respectively. 

Based on the results, we conclude that the channel package 

from Netty, and the MarkupContainer and WebPageRenderer 

classes as well as the org.apache.wicket package from 

Wicket are the parts of the systems that concentrate most of the 

sources of performance variation and represent elements that 

developers should pay attention to when evolving the systems. 

On the other hand, there was no package or class that 

concentrated most of the deviation-related changes for Jetty. 

To complete the characterization of the study results we 

also identified the following kinds of issues associated with 



 

 

deviations: (i) improvement (9 issues), (ii) bug/defect (12 

issues), (iii) new feature (2 issue), and (iv) unlabeled (3 issues). 

Defining the issue type is not mandatory in most of the issue 

tracker systems, and not all commits are associated with an 

issue. We found that 32 commits out of 66 – 10 for Netty, 16 

for Wicket and 6 for Jetty – are not linked to any issue. This 
represents almost 50% of the commits we found, which makes 

it difficult to draw conclusions about the types of issues that 

are most likely to cause performance deviation. Table V 

summarizes the types of issue for each system. 

TABLE V. KINDS OF ISSUES FOR EACH SYSTEM. 

Type Netty Wicket Jetty Total 

Unlabeled 3 0 0 3 

Improvement 4 5 0 9 

Bug/defect 2 9 1 12 

New Feature 1 1 0 2 

Total: 10 15 1 26 

 

RQ2. Are the developers aware of the performance issues 

that our approach was able to find? Performance deviation is 
difficult to notice, it may occur in a progressive way and some 

problems might be realized only after multiple evolutions. We 

collected feedback from eight developers using a web-based 

survey to investigate if they were aware of the deviations we 

found and to give us a preliminary perception of what they 

think about the usefulness of our approach and results. 

We prepared surveys for developers of Netty, Wicket and 

Jetty. They asked developers about tools and strategies they 

usually use to manage performance and if they were aware of 

some of the performance deviations that our approach found. 

The total number of developers, extracted from the contributor 

pages on GitHub, is 100, 30 and 20, for Netty, Wicket and 

Jetty, respectively. We contacted the developers that had 

published their email address, and received responses from 

four, three and one developer for those systems, respectively. 

For the scenarios with identified with performance 

degradation, we gave three examples with increase of time that 
we judged representative samples and important functionalities 

to the participants of each system and asked questions in order 

to investigate whether they already were aware of the 

variations. The examples were (extracted from Tables I, II and 

III): (i) Netty – WriteBeforeRegisteredTest, 

SocketEchoTest, and SocketObjectEchoTest; (ii) Wicket – 

HangManTest, NiceUrlTest, and LinkomaticTest; (iii) Jetty – 

AsyncServletLongPollTest, AsyncIOServletTest, and 

DispatcherForwardTest. 

On the last page of the survey, we presented an overview of 

the approach and we summarized the main study results with a 

table, similar to Table IV for Wicket. This information was 

used to introduce the approach and ask what participants think 

about it, including different strategies they would use, and to 

ask for additional comments. 

In response to the question “In your opinion, how important 

is execution time (response time) for the system?”, seven 
participants confirmed that performance in terms of execution 

time is important in the context of these systems, while only 

one was neutral about it. Some participants (3 out of 8) were 

aware that some releases had execution time issues when we 

asked them “Are you aware of any execution time variation 

(increase or decrease) in any of these releases: <list of target 

releases we selected for each system>?”. 

However, when we asked “We noticed that the execution 

time increased for several test cases between releases 6.18.0 

and 7.0.0M1. After that, the execution time decreased again 

between releases 7.0.0M2 and 7.0.0M4. This was the case for 

scenarios tested by classes such as HangManTest, 

NiceUrlTest, and LinkomaticTest. Are you aware of these 
execution time variation?” and “Considering the examples of 

the previous question (HangManTest, NiceUrlTest, and 

LinkomaticTest), what methods, commits, or development 

issues caused the increase in execution time?”, none of our 

participants were aware of the specific execution time 

variations that our approach had identified. We recognize these 

questions might be very difficult to answer, but it confirms that 

without a suitable performance analysis tool it is very difficult 

to indicate causes, even if developers are aware of the 

performance deviations. These questions were adapted for each 

system with the appropriate target releases and the three 

selected examples indicated previously. 

In addition, the majority of our participants (5 out of 8) 

indicated the usefulness of the approach, while two were 
neutral, and only one thought it was not very useful. Three 

participants also mentioned the profiling tool YourKit when we 

asked about tools they usually use for performance testing. 

However, this tool does not automatically compare execution 

time between releases, which is why one of the participants 

said about our work: “Nice tool if it is really automatic since 

currently comparison is a manual process”. In addition, one of 

the participants was going to check specific methods based on 

the data we provided in the survey: “It is interesting enough 

that I will be looking at MimeType$Type and checkAliasPath 

changes to double check we've not done anything stupid”. 

Some participants were concerned about micro-

benchmarking, mainly because of the use of test cases for 

performance testing, since test cases can be very small and may 

not have practical impact. We recognize that this may be a 
threat in our study especially for Jetty that has the smallest test 

cases. However, the use of test cases as scenarios was simply a 

choice we made for the evaluation study. Because of the usage 

of annotations, the approach is flexible and can instrument any 

part of the code. Thus, it is a limitation of the study rather than 

of the tool or approach. Nevertheless, it is interesting to notice 

that even when using test cases, the framework had found 

several performance degradations in scenarios.  

In this context, it is also important to analyze the 

significance of the deviation. For very small deviations, 

developers may not notice the variation and will not fix it in a 

future release because it actually does not matter. A 

workaround is to configure the framework to only report 

results with a specific minimum impact. This can be currently 

done by defining different values for predefined thresholds. 

We conclude that, in general, our approach can find 

performance deviations that developers are not aware of. They 
could realize such deviation by running a profiling tool, but 

these tools do not automate the comparison of different 



 

 

releases and they do not provide details about methods, 

commits, and issues responsible for deviations. Additional 

details and data regarding the survey are available online [22]. 

IV. DISCUSSION AND LIMITATIONS 

Empirical Study Conclusions. The results returned by the 

framework and our inspection show the feasibility of the 

proposed approach to evaluate performance of scenarios in 

terms of execution time. The approach identified degraded and 

optimized scenarios over the evolutions of Netty, Wicket and 
Jetty, and determined the potential causes of such variation by 

indicating code assets, development issues, and commits 

(RQ1). The feedback obtained through surveys indicated that 

developers are unaware of the performance variations we 

found (RQ2). In addition, we were able to characterize the 

modified methods responsible for the performance deviation by 

highlighting packages and classes where such methods were 

declared and associated issues. 

AspectJ instrumentation. Our framework uses AspectJ to 

instrument the execution of scenarios, intercepting the entry 

point methods – annotated with @Scenario in the first phase of 

the approach (see Section II) – to build the call graph and 

collect the execution time of scenarios and methods. AspectJ 

was the most appropriate way we found to cope with the 
complexity of dynamic analysis and it is a common solution 

adopted for other studies [11] [23]. Dynamic analysis generates 

a large amount of data, even for non-large-scale systems, 

which becomes a problem when the persistence of the traces 

that represent the call graph of the system execution is required 

for posterior analysis. To overcome this situation, a solution 

that integrates database persistence after each scenario 

execution should be used. In this context, implementing our 

own instrumentation mechanism that uses specific models for 

our needs proved to be more suitable than using the output of 

other profiling tools, such as YourKit, JProfiling, or JMH. 

Approach Execution Challenges. We recognize that our 

approach and current framework implementation have some 

execution challenges. The first one is the need for the manual 

annotation of the scenarios (when not using JUnit annotation), 
which requires architectural knowledge of the target software. 

For systems with automated functional tests, these can be used 

as evaluation scenarios. Another requirement is the availability 

of all code artifacts in different versions as well as traceability 

data between development issues and commits.  

Execution Time Limitations. The performance was 

measured only in terms of execution time. Other possible 

metrics for performance are memory consumption, disk 

activity, and CPU usage, for example. We are currently 

analyzing new performance properties for future studies, since 

we know that for some systems, memory, for example, might 

be a more relevant performance requirement. Another problem 

is that new lines of code caused by the addition of new features 

or bug fixes might potentially increase the execution time, 
which will be detected by the framework. However, it is 

important to realize that some deviations cannot be avoided, 

and, in such cases, the developers need to decide if the increase 

is suitable or not, or even be aware of the impact of such 

changes to the system scenarios. We consider that the primary 

use case of our approach is when it finds deviations which 

developers did not expect. This will allow them to investigate 

the deviations further. In case of expected deviations, our 

approach can confirm exactly which scenarios were affected. 

V. THREATS TO VALIDITY 

Measuring Risks. Our approach relies on multiple 

executions of scenarios to increase the confidence in the 

measurements. Even though we executed the test suite only ten 
times for each release (30 for Jetty) in the case study, a 

particular method might be executed much more often. For 

example, considering the repetitions, the Wicket method 

respond() (Table IV) was executed 30 times inside the Entry 

point for NiceUrlTest because it is called three times as part of 

the corresponding test case. On the other hand, the method 

addedComponent() was executed 1020 times inside the same 

entry point. In these cases, we are able to obtain samples that 

are more representative. This and other precautions, such as 

disabling every non-essential service of the environment, 

running each test in its own VM, using a random order for each 
repetition and conducting a manual inspection of the results 

help us to decrease the risks of measurement bias [24] due to 

the high sensitivity of measuring execution time. 

JUnit Tests and Micro-benchmarking. Some developers 

were concerned about micro-benchmarking, since test cases 

may not have practical impact for execution time because they 

were not written for performance-testing purposes. We 

recognize this threat, but the use of test cases as scenarios was 

simply a choice we made for the evaluation study. Developers 

could use the provided scenario annotations instead of the test 

annotation since the approach can instrument any part of the 

code. Thus, any strategy to exercise the scenarios will work. 

Despite the usage of such automated system tests in our study, 

they still allowed us to find degradation scenarios for the 

investigated systems.  

Impact of Instrumentation. The instrumentation process 

causes another threat related to the measurement strategy. It 

needs to intercept the methods during the system execution, 
which might affect the execution by contributing to increase 

the execution time. We have not measured the impact that 

instrumentation causes to execution time in this context, but we 

believe it does not form a problem since our analysis compares 

pairs of values of execution time from two releases, and the 

instrumentation should cause the same or very similar 

increases in both values. 

Rename Problem. The framework currently considers 

renamed code elements as new elements that will potentially 

affect the performance of scenarios. However, our manual 

inspection showed that for this evolutionary study, names were 

consistent in general. We could also highlight these methods 

for the developers to indicate which of them might not be new. 

It could be problematic for refactoring because the approach 
might indicate many changes, but as mentioned in the previous 

section (Execution Time Limitations), developers should 

already expect that. 



 

 

Results: Generalization and Limitation. Some results of 

our study cannot be generalized to other releases of the target 

systems.  For example, we tried to characterize the kinds of 

development issues that are most likely to contribute to 

performance deviation. The results showed it was bug/defect, 

but it is still a small amount of issues. We also recognize the 
low number of developers that participated in our surveys. 

However, while we cannot generalize these results, they offer 

preliminary evidence that our approach and support framework 

are able to find performance issues that developers are not 

aware of. In addition, we could not check if every commit 

flagged was correctly selected by the framework because to the 

best of our knowledge none of these systems have any kind 

repository to keep or flag performance regression changes. 

VI. RELATED WORK 

Any research work related to evolution and performance 

could be relevant for this work. However, we noticed that there 

has not been much work focusing on the identification of the 

sources of performance deviation, considering software 

evolution, dynamic analysis and mining software repositories. 

Thus, the main novelty of this work is the possibility of 
automatically indicating the causes of detected performance 

deviations for scenarios in terms of methods and corresponding 

source code changes, what is achieved by the combination 

between dynamic analysis and repository mining techniques. 

The next paragraphs detail some related research work. 

Malik et al. [3] propose strategies for helping performance 

analysts to more effectively compare results of load tests to 

find performance deviations in large-scale systems. They 

provide a reduced and manageable number of measurements, 

such as CPU and memory utilization, related to performance 

deviation by comparing two releases. Their case study is based 

on load tests from an industrial and an open source system. The 

identification of the problems introduced during the evolution 

are indicated in terms of measurements and their related 
elements. There is no mention of repository mining or attempts 

to identify the changes related to the performance problems. 

Koziolek et al. [25] present a methodology to predict the 
quality attributes of performance and reliability using response 

time and failure rate. They evaluate a large-scale control 

process system. The goal was to quantitatively predict the 

quality attributes for different architectural alternatives and 

then to choose the best alternative considering the trade-off 

among them. Their work differs from ours, which focuses on 

the analysis of existing system releases in order to detect 

existing performance deviation and their potential causes. 

Nguyen et al. [15] propose mining a regression-causes 

repository to identify causes of new performance regressions. 

The repository contains the results of performance tests and 

causes of past regressions. They use machine-learning 

techniques to determine the causes of new regressions based on 

data from the repository. The causes are a pre-defined set of 
situations extracted from bug reports that represent actions that 

usually cause performance regression, such as adding 

frequently executed logic or adding blocking I/O access. Thus, 

the authors are able to categorize causes of new performance 

regression based on past data. Our approach does not 

categorize causes of regressions, although it indicates a set of 

commits, which is a more detailed, and fine-grained result, but 

developers have to interpret the results themselves. Nguyen’s 

work does not mention any usage of dynamic analysis or 

repository mining for providing more fine-grained results. 
Foo et al. [16] introduce an automatic approach to derive 

performance signatures by capturing the correlations among 
metrics in performance regression repositories and comparing 
new test results against these correlations. The reports signal 
potential problematic metrics that violate the extracted 
performance signatures. Performance analysts can leverage the 
report to ensure better coverage in their assessments of 
performance regression tests and to derive the causes. Foo’s 
approach is able to reveal performance regressions related to 
different performance attributes, not only execution time, but 
the performance analysts still need to derive the causes 
manually, what could be time-consuming. In our approach, the 
framework is able to indicate the deviations in more fine-
grained way (methods) and the corresponding changes 
(commits and development issues). 

Ghaith et al. [26] conducted an experiment to show that a 

transaction profile approach, which the authors consider a load 

independent representation of transaction response time, can 
detect performance anomalies when applied to two different 

releases of a web application. The first release was used as a 

baseline, while a known anomaly was added to the second one 

to cause extra processing. Despite the similarity of comparing 

performance of software releases, the possibility of discovering 

potential causes of performance deviation is not present in their 

work and there is no indication for future support. 

Finally, there are some works focused on the impact of 

changes on software energy consumption [4] [5], which are 

also related to this work, since poor performance may increase 

software energy consumption. In this context, Hindle [4] has 

proposed a green mining methodology of relating software 

changes to power consumption. The main goal is to give 

recommendations based on past evidences extracted by looking 
at each change in a version control system and dynamically 

measuring its effects on power consumption and alerting 

developers before they make a software change that negatively 

affects power consumption. The power tests dynamically 

measure the resources used by the system in a global way by 

monitoring CPU, disk and memory usage of the entire system. 

Thus, it is not possible to give a detailed report relating the 

changes to specific code assets, such as methods. There is no 

mention if the approach can also help developers by indicating 

the sources when the changes have already been made and an 

energy consumption regression was introduced. 

VII. CONCLUSION 

This paper introduces a framework that automates an 

approach for scenario-based evaluation of performance. To 

demonstrate the feasibility of the proposed approach, we 
presented an evolutionary study aimed at performing a 

scenario-based evaluation of the quality attribute of 

performance, in terms of execution time, for multiple releases 

of Netty, Wicket and Jetty. Through the study results, we 



 

 

expect to help developers detect performance issues before 

releasing software systems, and easing the process of fixing 

these issues by identifying their causes. 

Based on the analysis over multiple releases, we found 13 

changed-degraded scenarios out of 20 analyzed scenarios for 

Netty, 6 out of 16 for Wicket, and 6 out of 21 for Jetty. The 

potential causes of these deviations were found in the form of 

methods, commits and issues. Our approach was able to 

identify scenarios with performance deviation that developers 
were unaware of and it also identified the classes and packages 

that contain most of the sources. Our results indicate that the 

approach is feasible and useful for helping developers to 

identify and understand the reasons of performance problems 

because it is able to substantially reduce the amount of 

information that developers have to analyze manually. Thus, 

the framework can be used as a preventive tool. 

We are working on several directions to improve our 

results: (i) planning how to use our approach in the 

development process of a software company; (ii) conducting 

new studies to measure the impact of the instrumentation 

process during system execution; and (iii) investigating which 

are the features of commits that are more likely to lead to 

performance deviation in terms of execution time. 
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