
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2015

Automating the performance deviation analysis for multiple Automating the performance deviation analysis for multiple

system releases: An evolutionary study system releases: An evolutionary study

Felipe PINTO

Uirá KULESZA

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
PINTO, Felipe; KULESZA, Uirá; and TREUDE, Christoph. Automating the performance deviation analysis for
multiple system releases: An evolutionary study. (2015). Proceedings of the 2015 IEEE 15th International
Working Conference on Source Code Analysis and Manipulation (SCAM), Bremen, Germany, September
27-28. 201-210.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8939

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8939&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Automating the Performance Deviation Analysis for

Multiple System Releases: An Evolutionary Study

Felipe Pinto¹ ², Uirá Kulesza¹, Christoph Treude¹

¹Federal University of Rio Grande do Norte, Natal, Brazil

²Federal Institute of Education, Science and Technology of Rio Grande do Norte, São Gonçalo do Amarante, Brazil
felipe.pinto@ifrn.edu.br, uira@dimap.ufrn.br, ctreude@dimap.ufrn.br

Abstract—This paper presents a scenario-based approach for

the evaluation of the quality attribute of performance, measured

in terms of execution time (response time). The approach is

implemented by a framework that uses dynamic analysis and

repository mining techniques to provide an automated way for

revealing potential sources of performance degradation of

scenarios between releases of a software system. The approach

defines four phases: (i) preparation – choosing the scenarios and

preparing the target releases; (ii) dynamic analysis – determining

the performance of scenarios and methods by calculating their

execution time; (iii) degradation analysis – processing and

comparing the results of the dynamic analysis for different

releases; and (iv) repository mining – identifying development

issues and commits associated with performance deviation. The

paper also describes an evolutionary study of applying the

approach to multiple releases of the Netty, Wicket and Jetty

frameworks. The study analyzed seven releases of each system

and addressed a total of 57 scenarios. Overall, we have found 14

scenarios with significant performance deviation for Netty, 13 for

Wicket, and 9 for Jetty, almost all of which could be attributed to

a source code change. We also discuss feedback obtained from

eight developers of Netty, Wicket and Jetty as result of a

questionnaire.

Index Terms—Performance, execution time, scenario,

dynamic analysis, repository mining.

I. INTRODUCTION

The ability to understand and analyze how newly

introduced changes impact the quality attributes of software

systems when evolving them is an essential prerequisite for

avoiding issues related to software erosion [1]. Degradation of
quality attributes happens when a new release of a software

system exhibits inferior measurements of quality attributes

compared to previous releases. This work focuses on the

quality attribute of performance, measured in terms of

execution time (response time). We consider that performance

refers to the responsiveness of the system, i.e., the time

required to respond to events [2]. In order to measure

performance, a set of different properties, including memory,

disk and CPU usage, can be used for benchmark-based [3] or

power consumption [4] [5] approaches. We chose execution

time because it is a general and common property for the

system responsiveness.

Our proposal consists of a scenario-based approach for

evaluating software performance in terms of execution time. A
scenario is a high-level action that represents the way in which

the stakeholders expect the system to be used [2]. This is a

common definition that is adopted by software architecture

evaluation methods which explore architectural analysis of

quality attributes based on scenarios [2] [6] [7]. However, they
only perform early evaluation, which happens before system

implementation and involves manual analysis and review of

scenarios [2]. Other architectural approaches that perform code

analysis focus mainly on the structural compliance of the

systems [8] [9] [10] [11].
Some proposals use mathematical models for predicting

quality attributes [12] [13], which represents an approximation
of the real impact of the evolution. In addition, a well-known
way to measure execution time and other properties is using
performance benchmarks, which consist of monitoring the
global resources that software systems use to perform specific
tasks. They are particularly useful in helping developers
determine the limits of the system through load tests [3], which
is not the focus of this work. Finally, some recent research
studies are exploring software repository mining techniques to
infer information about performance. For example, these
studies explore how performance bugs are discovered, reported
to and fixed by developers [14], how repositories of
performance regression-causes can be used to identify new
regressions [15], how mining performance regression testing
repositories can automate performance analysis and detect
problems that are often overlooked by performance analysts
[16], and how performance analysis risk could be applied to
prioritize performance regression tests [17]. These approaches
do not provide enough details about the sources of the
performance deviation, for example, the methods that have
contributed to degrade the performance and the commits and
development issues that were responsible for introducing
changes to them. That is the main limitation of current
approaches that our proposal addresses.
 This paper presents a scenario-based approach for
automating the performance analysis of multiple system
releases considering the execution time of methods and
scenarios. We applied the approach to three network/web
application frameworks: Netty [18], Wicket [19] and Jetty [20].
The study analyzed seven releases of each system, considering
57 scenarios in total. The approach automatically identified 14
scenarios with significant performance deviation for Netty, 13
for Wicket, and 9 for Jetty, almost all of which could be
attributed to a source code change. When we asked eight
contributors of Netty, Wicket and Jetty whether they had
already been aware of these performance deviations

(degradation or optimization), all of them indicated that this
was not the case. This preliminary evidence suggests that our
approach is able to identify performance deviations that
developers are not aware of.

The goal of the proposal is to provide an automated way for

revealing performance deviations of scenarios of new releases,

suggesting which code assets may cause performance variation

and indicating commits and development issues responsible for

changing them. Dynamic analysis and repository mining

techniques are combined to achieve this goal, and we expect

our approach and support framework to help developers

identify ways to optimize the performance of their systems.

The main contributions are: (i) the proposal of a scenario-based

approach and tool for the automated analysis of performance
deviation; (ii) the identification of the potential causes of

performance deviation for Netty, Wicket and Jetty extracted

from an evolutionary study through multiple releases; and (iii)

a preliminary evaluation of the approach with eight

contributors of Netty, Wicket and Jetty.

The rest of this paper is organized as follows: Section 2

presents an overview of the approach. Section 3 describes our

study, including goals, research questions and results. Section

4 discusses the obtained results. Section 5 presents the threats

to validity of the study. Section 6 reports related work, and

Section 7 concludes the paper.

II. APPROACH AND FRAMEWORK OVERVIEW

The proposed framework, implemented in the Java

programming language, automates the evaluation approach by

using dynamic analysis and software repository mining

techniques. Figure 1 gives an overview of the approach.

Phase 2

Dynamic Analysis

Release 1

and Metadata

Release 2

and Metadata

Performance

Measurements 1

Performance

Measurements 2

Phase 3

Degradation Analysis

Degraded

Methods

Degraded

Scenarios

Phase 4

Repository Mining

Issues of Degraded and Changed

Methods of Degraded Scenarios

Degraded and Changed

Methods of Degraded Scenarios

Version Control

System Data

Data RepositoryInput/Output Assets

Legend

Issue Track

System Data

Phases / Processes

Phase 1

System Preparation

Fig. 1. Approach phases and their inputs and outputs.

The first phase requires the system’s source code and

additional metadata. The framework uses Java annotations as

metadata source to indicate relevant scenarios that will be

monitored by the dynamic analysis during the system

execution, which should be selected by specialists or reused
from previous architectural evaluation processes. The

annotation (@Scenario) identifies methods in the source code

that represent execution entry points of scenarios of interest.

An entry point is the method that starts the scenario execution.

Thus, the preparation phase output is the target releases with

the integrated metadata (see Figure 1). It is also possible to use

other annotations, for example, @Test from JUnit 4. The
preparation is still a manual process, but does not require much

effort because only the start methods of scenarios require the

annotation (i.e., one annotation per scenario).

The second phase (dynamic analysis) requires the

execution of the scenarios. The framework uses AspectJ to

instrument the execution of the scenarios. This phase generates

the dynamic analysis model, which is persisted in a database

and contains information about the execution traces of the

system modeled by a call graph that represents every execution

of the selected scenarios for the target release. This call graph

can be interpreted as a tree structure where each node is a call

of a regular method or constructor, and the entry point methods

represent the root nodes. Two databases, one for each release

under comparison, are the outputs of this phase (see Figure 1).

The degradation analysis is the third phase of the approach.

It compares the system execution data (dynamic analysis

model) extracted during dynamic analysis for two releases. The
comparison reveals methods of the system that were degraded

or optimized over the evolution. The framework implements

two strategies to compare the execution time: arithmetic mean

and statistic test. It is possible to choose one of these strategies

or both (i.e., to generate both results). The outputs of this phase

are reports with degraded and optimized scenarios/methods in

terms of execution time (see Figure 1), considering one of the

comparison strategies (arithmetic mean or statistic test).

The first strategy compares the average execution time for

each method in both releases. If the value in the newer release

increased or decreased by 5% or more (this threshold can be

configured in the framework), it considers that a performance

deviation happened in the method. The second strategy uses a

two-sided Mann-Whitney U-Test [21] to observe if two

independent samples, which do not necessarily follow a normal
distribution, have the same tendency. Our framework uses the

U-Test to determine if the execution time of the methods of the

target scenarios in the first release has the same tendency in the

second release. For each method M, the first sample consists of

the set of execution time values for the method in the first

release, and the second sample consists of the set of values in

the second release. Our null hypothesis is “the values of the

execution time for method M have the same tendency in both

releases”, while the alternative hypothesis is “the values of the

execution time for method M do not have the same tendency”,

in other words, they are different.

For the statistic test, our case study considered a

significance level (alpha) of 0.05. If the p-value calculated

using the output of the test is equal to or less than the
significance level, we can reject the null hypothesis and keep

the alternative hypothesis, i.e., there is a performance deviation

between the releases for the method M. In that case, since it is

a two-sided test and since we already know that the samples

are different, the average execution time is used to determine if

it increased or decreased. Developers are usually interested in

degradations, but flagging optimization cases is also interesting

because developers could check if some expected

modifications had indeed decreased the execution time.

Despite the possibility of using the arithmetic mean strategy,

we recommend the statistic test, since execution time is a very
sensitive property and a pure mean strategy might not represent

truly reliable values.

The last phase mines data from the version control and
issue tracking systems to find which specific commits changed

the methods identified previously. The framework retrieves

commits from the version control system for each class that

contains methods detected as degraded or optimized. If the

commit changed lines inside the method, the framework

searches the commit log for issue numbers, which are used to

complement the information from the commits. Since the

approach is guided by scenarios, the framework only considers

degraded or optimized methods that impact at least one

degraded or optimized scenario. The final output (see Figure 1)

contains degraded/optimized scenarios and changed methods

potentially responsible for affecting them, and the associated

code changes (commits and development issues).

 This information allows developers to analyze commits and
development issues in order to understand the modifications

and the reasons why they introduced performance deviation.

Currently, the framework provides implementations for the

Subversion and Git version control systems, and for the

GitHub, Jira, Bugzilla and Issuezilla issue track systems.

III. EMPIRICAL STUDY: EVOLUTIONARY ANALYSIS

In order to assess our approach, we conducted an empirical

study that analyzed multiple evolutions of three different

network/web application frameworks – Netty, Wicket and

Jetty. The next subsections present the goals, research

questions, procedures and results of the study.

A. Goals and Research Questions

The goal of our study was to assess the capacity of our

approach to identify performance issues over multiple

evolutions of existing systems and to check if the developers of

these systems were aware of the issues. By using our approach,

developers can be aware of performance issues and reduce

them before distribution or deployment of new system releases.

Methods and commits related to performance deviation that are

discovered by our approach represent guidelines and

recommendations that can be used to improve the system

performance. Our study was guided by two research questions.

RQ1. Can the proposed approach find corresponding

source code changes in the scenarios with performance

deviation? We expect that the approach will be able to identify

performance issues over multiple releases of a target system
and discover their sources. It is important to understand which

modifications lead to performance problems and how they

could be fixed or optimized. In order to characterize these

results, we also identified modules of the system (packages or

classes) that concentrated most of the sources and the types of

the development issues (bug/defect, new feature, improvement

and others) that are most likely to cause performance deviation

in the target systems. This information is useful for

development teams since it will tell them what aspects of a

system they should pay particular attention to when evolving

the implementation.

RQ2. Are the developers aware of the performance issues

that our approach was able to find? We would like to verify if

developers were aware of the performance issues that our

approach has found. We collected feedback from eight

developers through surveys for each target system.

B. Target Systems and Procedures

Netty is an open-source asynchronous event-driven

network application framework for rapid development. We

chose seven releases of the fourth version of Netty, because it

was the latest stable version when our study began. Thus, we

selected the first and last release at that time, respectively,

4.0.0.Final and 4.0.21.Final. Each intermediate release was

chosen after manually analyzing the release notes, attempting
to identify stable releases that concentrated more significant

changes. The seven selected releases were 4.0.0.Final,

4.0.6.Final, 4.0.10.Final, 4.0.15.Final, 4.0.17.Final,

4.0.18.Final, and 4.0.21.Final.

Wicket is an open-source web application framework

developed by the Apache Foundation. We also selected seven

releases, which represented the last ones at the time the study

began. The selected releases were: 6.15.0, 6.16.0, 6.17.0,

6.18.0, 7.0.0-M1, 7.0.0-M2 and 7.0.0-M4. We did not include

the release 7.0.0-M3 because we were unable to execute it due

to compilation issues.

Jetty is an open-source framework that provides a web

server and a Java servlet container. It is part of the Eclipse

Project. The seven releases of Jetty that we selected were:

9.2.6, 9.2.7, 9.2.8, 9.2.9, 9.2.10, 9.3.0.M0 and 9.3.0.M1.

In order to run our framework on the target systems we

have instantiated it to consider the specific version control and

issue tracker systems that the target systems work with. All

analyzed systems work with the Git version control system. On

the other hand, they use different issue tracker systems: GitHub

(Netty), Jira (Wicket), and Bugzilla (Jetty).

For the preparation phase, we selected existing automated

tests of each system as scenarios. These selected tests cover
important functionalities of the system and are used to

reproduce their execution over different releases. In this case,

we have considered the tests cases as entry points of scenarios

and we have grouped the results by test classes, since they

exercise similar functionalities. We are not interested in

performance deviations caused by changes in test packages

because we want to reveal performance issues caused by the

evolution of the application source code and not just because

the tests have changed. In order to do that, the framework uses

a keyword for excluding certain classes or packages.

The target projects were configured to support AspectJ

features and to include our framework libraries, but without

any source code modification. The @Test annotation from

JUnit was reused as scenario entry point annotation. The
dynamic analysis was executed on the same computer for all

releases in the exact same conditions and with all non-essential

services disabled (e.g., updates, antivirus, indexing services,

and virtual memory). The computer was an AMD Phenom II

with 8GB of RAM memory running the Windows 7 operating

system and Java version 7. We executed the test suite of each

release ten times for Netty and Wicket, i.e., each target
scenario was executed ten times. For Jetty, we execute the test

suite 30 times because most of the tests are shorter compared to

the other systems.

After that, we grouped the seven releases of each system in

six pairs of evolutions to execute the third and fourth phases. In

this study, the statistic test strategy was applied instead of the

arithmetic mean for comparison. As p-value for the U-Test, a

significance level (alpha) of 0.05 was used. Finally, we

conducted an inspection of the results to get a better

understanding of them and to answer our research questions.

C. Evolutionary Analysis Results

 RQ1. Can the proposed approach find corresponding

source code changes in the scenarios with performance

deviation? We have identified 32 scenarios with performance

deviation and corresponding source code changes out of 57

(56%). Tables I, II and III summarize the results. An upward

pointing arrow indicates an increase in execution time, while a

downward pointing arrow indicates a decrease. Blue cells

denote deviations greater than a predefined threshold for which

we managed to associate source code changes. Yellow cells

denote deviations we have considered not relevant because the

variation was smaller than the predefined threshold (letter L),

or because the changes were in parts of the source code we are
not interested in such as the test packages (letter T). The red

cells are deviations greater than the threshold, but they could

not be associated to source code changes. In this case, it might

be the result of external factors, for example, different libraries

or settings, or an isolated measurement effect, as we discuss in

Section V. We number evolutions from one to six (one

evolution between each of the releases) for each system.

 The thresholds were 15ms for Jetty and 100ms for Netty

and Wicket. The Jetty threshold was chosen to be smaller

because Jetty has shorter tests. These thresholds were applied

in Tables I, II and III to discard very small variations, since

they are probably irrelevant for developers. As we can see, for

deviations greater than the thresholds (blue and red cells), the

approach was able to find corresponding source code changes
in most cases (blue cells), and only six cases did not have

corresponding code changes (red cells). Thus, we can conclude

that practically all deviations above the given thresholds can be

correlated to source code changes (at least one commit), which

is a strong indication that these deviations actually reflect

changes in the system and are not random fluctuations in our

measurements.

It is interesting to note that most scenarios exhibited

degradations (or optimizations) only for a specific release.

There are only a few scenarios that had performance

degradation for more than one release. For example, Netty had

13 performance-degraded only in NE3, and Wicket had 6

degradations, and 12 optimizations only in WE4 and WE6,

respectively. Jetty had 9 degradations in JE5.

Understanding the Performance Deviation Sources. Next,

we detail the code changes corresponding to the performance

deviations of the indicated scenarios. Table IV shows an

example of the output with the methods that were changed and

had variation in Wicket, which are the ones potentially

responsible for performance deviation, including the method
name, performance impact, commits and number of impacted

scenarios. The results are ordered by the performance impact

of each method, which is calculated as the arithmetic mean of

the impact of the method in each scenario that it affects. The

impact of a method is the total time it takes running in a

particular scenario. This is just one strategy to show the results,

and it does not necessarily imply that methods in the top of the

table have not caused more performance issues.

TABLE I. DEGRADED AND OPTIMIZED SCENARIOS OF NETTY.
Scenarios (Test Classes) E1 E2 E3 E4 E5 E6

Entry Point for DatagramUnicastTest

↑

↓ ↑

Entry Point for SocketBufReleaseTest

↓L ↑ ↑L ↓

Entry Point for SocketCancelWriteTest

↓L ↑L

Entry point for SocketConnectionAttemptTest

↑L ↓L

Entry Point for SocketEchoTest

↑L ↑ ↑L ↓L ↑L

Entry Point for SocketFileRegionTest

↑L ↑ ↑L ↓L

Entry Point for SocketFixedLengthEchoTest

↑ ↑L ↓L

Entry Point for SocketObjectEchoTest

↑L ↑ ↑L ↓L

Entry Point for SocketShutdownOutputByPeerTest ↓L ↑L ↑ ↑L ↓L

Entry Point for SocketShutdownOutputBySelfTest

↑L ↑

↓L

Entry Point for SocketSpdyEchoTest

↑L ↑ ↓T ↓L ↓

Entry Point for SocketSslEchoTest ↑ ↓ ↑ ↑L ↓ ↓

Entry Point for SocketStartTlsTest

↑ ↑ ↑L ↓L ↓

Entry Point for SocketStringEchoTest ↑L

↑ ↑L ↓L ↓

Entry point for UDTClientServerConnectionTest

↑

Entry Point for WriteBeforeRegisteredTest

↑L ↑ ↑L ↓L

TABLE II. DEGRADED AND OPTIMIZED SCENARIOS OF WICKET.

Scenarios (Test Classes) E1 E2 E3 E4 E5 E6

Entry point for AjaxTest

↑L

↓

Entry point for ComprefTest

↑ ↑L ↓

Entry point for EncodingTest

↑L

↑

↓

Entry point for FormInputTest

↑

Entry point for GuestbookTest

↓

Entry point for HangManTest ↑L

↑

↓

Entry point for HelloWorldTest

↓L

↓

Entry point for ImagesTest

↓

Entry point for LibraryTest

↓

Entry point for LinkomaticTest

↑

↓

Entry point for NiceUrlTest

↑L ↓L ↑

↓

Entry point for Signin2Test

↓

Entry point for TemplateTest

↓

Entry point for WordGeneratorTest

↓T

TABLE III. DEGRADED AND OPTIMIZED SCENARIOS OF JETTY.
Scenarios (Test Classes) E1 E2 E3 E4 E5 E6

Entry point for AsyncContextListenersTest

↑

Entry point for AsyncContextTest

↓L ↑L ↓L ↑L ↓L

Entry point for AsyncIOServletTest

↓L

↓L ↑ ↑L

Entry point for AsyncServletLongPollTest

↑

Entry point for AsyncServletTest

↑L ↑L ↑L

Entry point for DefaultServletRangesTest

↑L

↑

Entry point for DefaultServletTest

↑L ↑T

Entry point for DispatcherForwardTest

↓L ↑

Entry point for DispatcherTest

↑L ↓L ↓L ↑L ↑L

Entry point for ErrorPageTest

↑L

↑ ↓L

Entry point for InvokerTest

↑

Entry point for RequestHeadersTest

↑L

Entry point for ResponseHeadersTest

↑L

Entry point for ServletContextHandlerTest

↑ ↓L

Entry point for ServletHandlerTest

↑L

↑L ↓L

Entry point for SSLAsyncIOServletTest

↑

 The scenario names and commit codes are not presented in
Table IV due to space constraints. For the same reason, we will

not detail every source code change that was found. The

complete study data for all releases is available online [22].

The full description of commits can be found in the Netty [18],

Wicket [19] and Jetty [20] version control systems. In the

following, we describe part of the information that our

approach automatically extracted from the repositories.

 Netty: From release 4.0.0.Final to 4.0.6.Final (NE1). The

framework found four commits and an improvement issue

(#1606). Most of the changes affected the validatePromise()

method by adding some extra code validation. A new way to

instantiate the ChannelOutboundBuffer class in order to make

its objects recycled was introduced in the newInstance()

method. The commit added 7 and deleted 45 lines of code,

respectively, and there is a performance improvement when

objects from ChannelOutboundBuffer are recycled, and Netty

avoids creating them again, but for new objects the

performance decreased.

Netty: From release 4.0.6.Final to 4.0.10.Final (NE2).
All versions in between these releases were bug fixing with

some improvements. The framework found five commits and

three development issues, including one improvement (#1707)

and two unlabeled issues (#1697 and #1832). An important

unlabeled issue (#1697), also highlighted in the releases notes

of 4.0.7.Final, fixed a bug related to buffer management. The

solution introduced a new way to estimate the size of messages

that should be written in buffers. Another interesting change

introduced by a commit was intended to fix a callback problem

when writing to a channel in 4.0.8.Final.

Netty: From release 4.0.10.Final to 4.0.15.Final (NE3).
For the third evolution, the framework detected that most of the

scenarios were degraded (13 out of 20 scenarios). Seven

commits and three development issues were found related to
seven methods. The issues were two bug fixing (#1908 and

#2060) and one unlabeled (#1947). The unlabeled issue

(#1947) changed the DefaultChannelHandlerContext class in

order to deal with a problem related to reject execution

exceptions. It also added a new method named safeExecute()

to the class, which affected part of the degraded scenarios

during this evolution. One bug fixing issue (#1908) introduced

changes to the method NioEventLoop.openSelector() to

validate if internal objects are assignable. Another interesting

change was a commit intended to improve the buffer leak

report, which introduced wrappers. Now, a leak-aware buffer

can detect and report memory leaks, as result of 1800 added
lines and 17 changed files. Table I (NE3) shows the list of

performance-degraded scenarios in this evolution.

Netty: From release 4.0.17.Final to 4.0.18.Final (NE5).
As shown in Table I (NE5), this evolution has optimized some

scenarios. Two commits related to three development issues,

including two improvements (#808 and #2264) and one new

feature (#2311), were found. One of the modifications has

introduced changes to the PoolThreadCache and PoolArena

classes and is responsible for the optimization. According to

the commit description, the changes “remove the

synchronization bottleneck in PoolArena and so speed up

things”. The problem was solved by improving the

synchronization and implementing a thread-local cache for

pooled buffers.

Netty: From release 4.0.18.Final to 4.0.21.Final (NE6).
The framework detected one commit responsible for the

optimized scenarios (see Table I), which changed the

DefaultChannelPipeline class to improve memory usage and

initialization time. It refactored some source code and modified

the strategy to generate the names of a communication channel.

TABLE IV. SOURCES OF PERFORMANCE DEVIATION FOR WICKET.
Evolution Methods Number of Scenarios Number of Commits Issues Performance Impact

WE4

MarkupContainer.addedComponent 7 5 5410, 3335 605ms

MarkupContainer.add 7 1 3335 603ms

MarkupContainer.dequeue 7 10 3355 548ms

Page.onBeforeRender 7 1 5426 406ms

WebPageRenderer.isPageStateless 7 1 5426 400ms

WebPageRenderer.shouldRenderPageAndWriteResponse 7 5 5426, 5484, 5522 380ms

WebPageRenderer.respond 7 6 3347, 5309, 5426 370ms

ListView.onPopulate 7 1 - 357ms

MarkupContainer.newDequeueContext 7 1 - 331ms

AbstractRepeater.dequeue 7 5 3335 215ms

DefaultPageFactory.newPage 6 1 5215 159ms

Page.renderPage 7 1 5426 144ms

WebPageRenderer.renderPage 7 1 - 130ms

MarkupContainer.onInitialize 7 1 - 118ms

Component.internalRenderHead 7 1 4964 108ms

Initializer.register 1 1 - 106ms

MarkupContainer.dequeueAutoComponents 7 3 3335 105ms

Initializer.createProxy 1 1 - 102ms

Initializer.init 1 2 - 95ms

MarkupCache.loadMarkupAndWatchForChanges 7 2 5294 54ms

MarkupCache.loadMarkup 7 2 5294 53ms

MarkupContainer.canDequeueTag 1 6 3335 35ms

Component.setMetaData 1 1 5459 27ms

JavaSerializer.deserialize 3 1 - 22ms

WebPageRenderer.shouldRedirectToTargetUrl 1 4 5426 20ms

XmlPullParser.parse 6 1 5398 16ms

WE6

WebPageRenderer.respond 12 2 5689 614ms

MarkupContainer.dequeueAutoComponents 12 1 5730 356ms

Application.initializeComponents 5 1 5713 342ms

MarkupContainer.newDequeueContext 5 1 5730 47ms

Wicket: From release 6.18.0 to 7.0.0-M1 (WE4). This

was the only evolution with significant performance

degradation for Wicket (see Table II). The framework found 38

commits and 12 issues (one new feature, four improvements,

and seven bugs). A new feature (#3335) implemented a

queueing strategy for adding and extracting hierarchy
information from markup. It added a substantial amount of new

code to 14 files, including MarkupContainer, Page, and

AbstractRepeater. Methods such as add(),

addedComponent() and queue() introduced new validations.

Obviously, new features and new code might cause execution

time increases, but it is a team/developer decision to say if

these increases are suitable or not. Our approach automatically

detects the deviations and corresponding changes, so that

developers can be aware of the specific consequences of their

work. Another change caused by a bug fixing issue (#5426)

corrected problems related to component states when they are

rendering. One of the main classes changed was

WebPageRenderer. An improvement issue (#3347) tried to

simplify the way in which the WebPageRenderer.respond()

method decides whether it will redirect or directly render the

current page depending on several complex conditions. This

issue resulted in 830 added lines and 95 deleted lines.

Wicket: From release 7.0.0-M2 to 7.0.0-M4 (WE6). For

this evolution, the framework detected only performance

optimization in terms of execution time. We believe that the

change from version 6.x to 7.x (WE4) introduced many

problems and unsolved situations due to unstable code that was

responsible for the degradation in previous releases, which

were then addressed in this evolution. A bug fixing issue

(#5689) changed a lot of source code in order to solve conflict

problems in the WebPageRenderer class. An extra commit also

changed this class in order to refactor and improve the respond

method, replacing a big part of the code introduced by the issue

#3347 in WE4. Another bug fixing issue (#5730) simplified

and corrected the de-queueing component process.

Jetty: From release 4.2.10 to 4.3.0.M0 (JE5). This was

the only evolution in which the framework found significant

performance deviation for Jetty. Changes were introduced in

three methods and related to seven commits and one bug issue

(#439375). The main changes were introduced by a commit

that aimed to pre-encode HTTP fields. It modified 25 files with

449 line additions and 147 line deletions, which was enough to

affect all six blue scenarios from Table III.

It is out of the scope of this paper to provide a detailed

description of each commit and development issue found. We

conducted a manual inspection of the results in order to better

understand the changes and to ensure that they make sense.

The data with all methods and issues are available online [22]
and the links to version control and issue track systems can be

found at the Netty [18], Wicket [19], and Jetty [20] websites.

In order to characterize these results and to provide
developers with a better understanding of them, Figures 2 and

3 show how the total number of degraded and optimized

methods of scenarios are spread over the packages for each

evolution. The complete data that shows how these methods

are spread over the classes is also available online [22].

2 2

4

0 0

2

10

0 0

2

0

5

0

7

0 0 0 0

3

0

3

0 0
1

0 0 0
1

0
1
2
3
4
5
6
7
8
9

10

NE1 NE2 NE3 NE4 NE5 NE6 Total

Number of Methods by Packages (Netty)

io.netty.channel io.netty.buffer
io.netty.channel.socket.nio io.netty.channel.nio

Fig. 2. Number of Methods by Packages for Netty.

12

3

15

5

1

6
5

0

5

3

0

33

0

3

1
0

1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

WE4 WE6 Total

Number of Methods By Packages (Wicket)

org.apache.wicket org.apache.wicket.request org.apache.wicket.markup
org.apache.wicket.jmx org.apache.wicket.session org.apache.wicket.serialize

Fig. 3. Number of Methods by Packages for Wicket.

We identified only four packages that contain all 21

methods responsible for performance deviations in Netty.

According to Figure 2, the channel package concentrates the

majority of the methods potentially responsible for the

variations with a total of ten methods, which are distributed

over ten classes. Thus, the channel package may represent one

of the sensitive points for performance in Netty.

For Wicket, the MarkupContainer and WebPageRenderer

classes contain the majority of the methods responsible for

performance deviations (ten and six, respectively). The classes

inside the org.apache.wicket package also concentrated most

of these methods, 15 in total (see Figure 3). These numbers are

indicators that developers should pay particular attention when
evolving these code assets because changing them might lead

to performance deviation that could increase or decrease the

execution time of methods and scenarios.

For Jetty, we found only three methods that belong to the

MimeTypes$Type, ServerConnector and PathResource classes

from the org.eclipse.jetty.http,

org.eclipse.jetty.server and

org.eclipse.jetty.util.resource packages, respectively.

Based on the results, we conclude that the channel package

from Netty, and the MarkupContainer and WebPageRenderer

classes as well as the org.apache.wicket package from

Wicket are the parts of the systems that concentrate most of the

sources of performance variation and represent elements that

developers should pay attention to when evolving the systems.

On the other hand, there was no package or class that

concentrated most of the deviation-related changes for Jetty.

To complete the characterization of the study results we

also identified the following kinds of issues associated with

deviations: (i) improvement (9 issues), (ii) bug/defect (12

issues), (iii) new feature (2 issue), and (iv) unlabeled (3 issues).

Defining the issue type is not mandatory in most of the issue

tracker systems, and not all commits are associated with an

issue. We found that 32 commits out of 66 – 10 for Netty, 16

for Wicket and 6 for Jetty – are not linked to any issue. This
represents almost 50% of the commits we found, which makes

it difficult to draw conclusions about the types of issues that

are most likely to cause performance deviation. Table V

summarizes the types of issue for each system.

TABLE V. KINDS OF ISSUES FOR EACH SYSTEM.

Type Netty Wicket Jetty Total

Unlabeled 3 0 0 3

Improvement 4 5 0 9

Bug/defect 2 9 1 12

New Feature 1 1 0 2

Total: 10 15 1 26

RQ2. Are the developers aware of the performance issues

that our approach was able to find? Performance deviation is
difficult to notice, it may occur in a progressive way and some

problems might be realized only after multiple evolutions. We

collected feedback from eight developers using a web-based

survey to investigate if they were aware of the deviations we

found and to give us a preliminary perception of what they

think about the usefulness of our approach and results.

We prepared surveys for developers of Netty, Wicket and

Jetty. They asked developers about tools and strategies they

usually use to manage performance and if they were aware of

some of the performance deviations that our approach found.

The total number of developers, extracted from the contributor

pages on GitHub, is 100, 30 and 20, for Netty, Wicket and

Jetty, respectively. We contacted the developers that had

published their email address, and received responses from

four, three and one developer for those systems, respectively.

For the scenarios with identified with performance

degradation, we gave three examples with increase of time that
we judged representative samples and important functionalities

to the participants of each system and asked questions in order

to investigate whether they already were aware of the

variations. The examples were (extracted from Tables I, II and

III): (i) Netty – WriteBeforeRegisteredTest,

SocketEchoTest, and SocketObjectEchoTest; (ii) Wicket –

HangManTest, NiceUrlTest, and LinkomaticTest; (iii) Jetty –

AsyncServletLongPollTest, AsyncIOServletTest, and

DispatcherForwardTest.

On the last page of the survey, we presented an overview of

the approach and we summarized the main study results with a

table, similar to Table IV for Wicket. This information was

used to introduce the approach and ask what participants think

about it, including different strategies they would use, and to

ask for additional comments.

In response to the question “In your opinion, how important

is execution time (response time) for the system?”, seven
participants confirmed that performance in terms of execution

time is important in the context of these systems, while only

one was neutral about it. Some participants (3 out of 8) were

aware that some releases had execution time issues when we

asked them “Are you aware of any execution time variation

(increase or decrease) in any of these releases: <list of target

releases we selected for each system>?”.

However, when we asked “We noticed that the execution

time increased for several test cases between releases 6.18.0

and 7.0.0M1. After that, the execution time decreased again

between releases 7.0.0M2 and 7.0.0M4. This was the case for

scenarios tested by classes such as HangManTest,

NiceUrlTest, and LinkomaticTest. Are you aware of these
execution time variation?” and “Considering the examples of

the previous question (HangManTest, NiceUrlTest, and

LinkomaticTest), what methods, commits, or development

issues caused the increase in execution time?”, none of our

participants were aware of the specific execution time

variations that our approach had identified. We recognize these

questions might be very difficult to answer, but it confirms that

without a suitable performance analysis tool it is very difficult

to indicate causes, even if developers are aware of the

performance deviations. These questions were adapted for each

system with the appropriate target releases and the three

selected examples indicated previously.

In addition, the majority of our participants (5 out of 8)

indicated the usefulness of the approach, while two were
neutral, and only one thought it was not very useful. Three

participants also mentioned the profiling tool YourKit when we

asked about tools they usually use for performance testing.

However, this tool does not automatically compare execution

time between releases, which is why one of the participants

said about our work: “Nice tool if it is really automatic since

currently comparison is a manual process”. In addition, one of

the participants was going to check specific methods based on

the data we provided in the survey: “It is interesting enough

that I will be looking at MimeType$Type and checkAliasPath

changes to double check we've not done anything stupid”.

Some participants were concerned about micro-

benchmarking, mainly because of the use of test cases for

performance testing, since test cases can be very small and may

not have practical impact. We recognize that this may be a
threat in our study especially for Jetty that has the smallest test

cases. However, the use of test cases as scenarios was simply a

choice we made for the evaluation study. Because of the usage

of annotations, the approach is flexible and can instrument any

part of the code. Thus, it is a limitation of the study rather than

of the tool or approach. Nevertheless, it is interesting to notice

that even when using test cases, the framework had found

several performance degradations in scenarios.

In this context, it is also important to analyze the

significance of the deviation. For very small deviations,

developers may not notice the variation and will not fix it in a

future release because it actually does not matter. A

workaround is to configure the framework to only report

results with a specific minimum impact. This can be currently

done by defining different values for predefined thresholds.

We conclude that, in general, our approach can find

performance deviations that developers are not aware of. They
could realize such deviation by running a profiling tool, but

these tools do not automate the comparison of different

releases and they do not provide details about methods,

commits, and issues responsible for deviations. Additional

details and data regarding the survey are available online [22].

IV. DISCUSSION AND LIMITATIONS

Empirical Study Conclusions. The results returned by the

framework and our inspection show the feasibility of the

proposed approach to evaluate performance of scenarios in

terms of execution time. The approach identified degraded and

optimized scenarios over the evolutions of Netty, Wicket and
Jetty, and determined the potential causes of such variation by

indicating code assets, development issues, and commits

(RQ1). The feedback obtained through surveys indicated that

developers are unaware of the performance variations we

found (RQ2). In addition, we were able to characterize the

modified methods responsible for the performance deviation by

highlighting packages and classes where such methods were

declared and associated issues.

AspectJ instrumentation. Our framework uses AspectJ to

instrument the execution of scenarios, intercepting the entry

point methods – annotated with @Scenario in the first phase of

the approach (see Section II) – to build the call graph and

collect the execution time of scenarios and methods. AspectJ

was the most appropriate way we found to cope with the
complexity of dynamic analysis and it is a common solution

adopted for other studies [11] [23]. Dynamic analysis generates

a large amount of data, even for non-large-scale systems,

which becomes a problem when the persistence of the traces

that represent the call graph of the system execution is required

for posterior analysis. To overcome this situation, a solution

that integrates database persistence after each scenario

execution should be used. In this context, implementing our

own instrumentation mechanism that uses specific models for

our needs proved to be more suitable than using the output of

other profiling tools, such as YourKit, JProfiling, or JMH.

Approach Execution Challenges. We recognize that our

approach and current framework implementation have some

execution challenges. The first one is the need for the manual

annotation of the scenarios (when not using JUnit annotation),
which requires architectural knowledge of the target software.

For systems with automated functional tests, these can be used

as evaluation scenarios. Another requirement is the availability

of all code artifacts in different versions as well as traceability

data between development issues and commits.

Execution Time Limitations. The performance was

measured only in terms of execution time. Other possible

metrics for performance are memory consumption, disk

activity, and CPU usage, for example. We are currently

analyzing new performance properties for future studies, since

we know that for some systems, memory, for example, might

be a more relevant performance requirement. Another problem

is that new lines of code caused by the addition of new features

or bug fixes might potentially increase the execution time,
which will be detected by the framework. However, it is

important to realize that some deviations cannot be avoided,

and, in such cases, the developers need to decide if the increase

is suitable or not, or even be aware of the impact of such

changes to the system scenarios. We consider that the primary

use case of our approach is when it finds deviations which

developers did not expect. This will allow them to investigate

the deviations further. In case of expected deviations, our

approach can confirm exactly which scenarios were affected.

V. THREATS TO VALIDITY

Measuring Risks. Our approach relies on multiple

executions of scenarios to increase the confidence in the

measurements. Even though we executed the test suite only ten
times for each release (30 for Jetty) in the case study, a

particular method might be executed much more often. For

example, considering the repetitions, the Wicket method

respond() (Table IV) was executed 30 times inside the Entry

point for NiceUrlTest because it is called three times as part of

the corresponding test case. On the other hand, the method

addedComponent() was executed 1020 times inside the same

entry point. In these cases, we are able to obtain samples that

are more representative. This and other precautions, such as

disabling every non-essential service of the environment,

running each test in its own VM, using a random order for each
repetition and conducting a manual inspection of the results

help us to decrease the risks of measurement bias [24] due to

the high sensitivity of measuring execution time.

JUnit Tests and Micro-benchmarking. Some developers

were concerned about micro-benchmarking, since test cases

may not have practical impact for execution time because they

were not written for performance-testing purposes. We

recognize this threat, but the use of test cases as scenarios was

simply a choice we made for the evaluation study. Developers

could use the provided scenario annotations instead of the test

annotation since the approach can instrument any part of the

code. Thus, any strategy to exercise the scenarios will work.

Despite the usage of such automated system tests in our study,

they still allowed us to find degradation scenarios for the

investigated systems.

Impact of Instrumentation. The instrumentation process

causes another threat related to the measurement strategy. It

needs to intercept the methods during the system execution,
which might affect the execution by contributing to increase

the execution time. We have not measured the impact that

instrumentation causes to execution time in this context, but we

believe it does not form a problem since our analysis compares

pairs of values of execution time from two releases, and the

instrumentation should cause the same or very similar

increases in both values.

Rename Problem. The framework currently considers

renamed code elements as new elements that will potentially

affect the performance of scenarios. However, our manual

inspection showed that for this evolutionary study, names were

consistent in general. We could also highlight these methods

for the developers to indicate which of them might not be new.

It could be problematic for refactoring because the approach
might indicate many changes, but as mentioned in the previous

section (Execution Time Limitations), developers should

already expect that.

Results: Generalization and Limitation. Some results of

our study cannot be generalized to other releases of the target

systems. For example, we tried to characterize the kinds of

development issues that are most likely to contribute to

performance deviation. The results showed it was bug/defect,

but it is still a small amount of issues. We also recognize the
low number of developers that participated in our surveys.

However, while we cannot generalize these results, they offer

preliminary evidence that our approach and support framework

are able to find performance issues that developers are not

aware of. In addition, we could not check if every commit

flagged was correctly selected by the framework because to the

best of our knowledge none of these systems have any kind

repository to keep or flag performance regression changes.

VI. RELATED WORK

Any research work related to evolution and performance

could be relevant for this work. However, we noticed that there

has not been much work focusing on the identification of the

sources of performance deviation, considering software

evolution, dynamic analysis and mining software repositories.

Thus, the main novelty of this work is the possibility of
automatically indicating the causes of detected performance

deviations for scenarios in terms of methods and corresponding

source code changes, what is achieved by the combination

between dynamic analysis and repository mining techniques.

The next paragraphs detail some related research work.

Malik et al. [3] propose strategies for helping performance

analysts to more effectively compare results of load tests to

find performance deviations in large-scale systems. They

provide a reduced and manageable number of measurements,

such as CPU and memory utilization, related to performance

deviation by comparing two releases. Their case study is based

on load tests from an industrial and an open source system. The

identification of the problems introduced during the evolution

are indicated in terms of measurements and their related
elements. There is no mention of repository mining or attempts

to identify the changes related to the performance problems.

Koziolek et al. [25] present a methodology to predict the
quality attributes of performance and reliability using response

time and failure rate. They evaluate a large-scale control

process system. The goal was to quantitatively predict the

quality attributes for different architectural alternatives and

then to choose the best alternative considering the trade-off

among them. Their work differs from ours, which focuses on

the analysis of existing system releases in order to detect

existing performance deviation and their potential causes.

Nguyen et al. [15] propose mining a regression-causes

repository to identify causes of new performance regressions.

The repository contains the results of performance tests and

causes of past regressions. They use machine-learning

techniques to determine the causes of new regressions based on

data from the repository. The causes are a pre-defined set of
situations extracted from bug reports that represent actions that

usually cause performance regression, such as adding

frequently executed logic or adding blocking I/O access. Thus,

the authors are able to categorize causes of new performance

regression based on past data. Our approach does not

categorize causes of regressions, although it indicates a set of

commits, which is a more detailed, and fine-grained result, but

developers have to interpret the results themselves. Nguyen’s

work does not mention any usage of dynamic analysis or

repository mining for providing more fine-grained results.
Foo et al. [16] introduce an automatic approach to derive

performance signatures by capturing the correlations among
metrics in performance regression repositories and comparing
new test results against these correlations. The reports signal
potential problematic metrics that violate the extracted
performance signatures. Performance analysts can leverage the
report to ensure better coverage in their assessments of
performance regression tests and to derive the causes. Foo’s
approach is able to reveal performance regressions related to
different performance attributes, not only execution time, but
the performance analysts still need to derive the causes
manually, what could be time-consuming. In our approach, the
framework is able to indicate the deviations in more fine-
grained way (methods) and the corresponding changes
(commits and development issues).

Ghaith et al. [26] conducted an experiment to show that a

transaction profile approach, which the authors consider a load

independent representation of transaction response time, can
detect performance anomalies when applied to two different

releases of a web application. The first release was used as a

baseline, while a known anomaly was added to the second one

to cause extra processing. Despite the similarity of comparing

performance of software releases, the possibility of discovering

potential causes of performance deviation is not present in their

work and there is no indication for future support.

Finally, there are some works focused on the impact of

changes on software energy consumption [4] [5], which are

also related to this work, since poor performance may increase

software energy consumption. In this context, Hindle [4] has

proposed a green mining methodology of relating software

changes to power consumption. The main goal is to give

recommendations based on past evidences extracted by looking
at each change in a version control system and dynamically

measuring its effects on power consumption and alerting

developers before they make a software change that negatively

affects power consumption. The power tests dynamically

measure the resources used by the system in a global way by

monitoring CPU, disk and memory usage of the entire system.

Thus, it is not possible to give a detailed report relating the

changes to specific code assets, such as methods. There is no

mention if the approach can also help developers by indicating

the sources when the changes have already been made and an

energy consumption regression was introduced.

VII. CONCLUSION

This paper introduces a framework that automates an

approach for scenario-based evaluation of performance. To

demonstrate the feasibility of the proposed approach, we
presented an evolutionary study aimed at performing a

scenario-based evaluation of the quality attribute of

performance, in terms of execution time, for multiple releases

of Netty, Wicket and Jetty. Through the study results, we

expect to help developers detect performance issues before

releasing software systems, and easing the process of fixing

these issues by identifying their causes.

Based on the analysis over multiple releases, we found 13

changed-degraded scenarios out of 20 analyzed scenarios for

Netty, 6 out of 16 for Wicket, and 6 out of 21 for Jetty. The

potential causes of these deviations were found in the form of

methods, commits and issues. Our approach was able to

identify scenarios with performance deviation that developers
were unaware of and it also identified the classes and packages

that contain most of the sources. Our results indicate that the

approach is feasible and useful for helping developers to

identify and understand the reasons of performance problems

because it is able to substantially reduce the amount of

information that developers have to analyze manually. Thus,

the framework can be used as a preventive tool.

We are working on several directions to improve our

results: (i) planning how to use our approach in the

development process of a software company; (ii) conducting

new studies to measure the impact of the instrumentation

process during system execution; and (iii) investigating which

are the features of commits that are more likely to lead to

performance deviation in terms of execution time.

ACKNOWLEDGMENT

This work is partially supported by the Federal Institute of
Rio Grande do Norte (IFRN), the National Institute of Science
and Technology for Software Engineering (INES), CNPq
grants 573964/2008-4 and 552645/2011-7, and
CAPES/PROAP.

REFERENCES

[1] L. Silva, D. Balasubramaniam. Controlling software architecture

erosion: A survey. J. Syst. Softw. 85, 1 (January 2012), 132-151.

[2] P. Clements, R. Kazman, M. Klein. 2002. Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley.

[3] H. Malik, H. Hemmati, A. E. Hassan. Automatic detection of
performance deviations in the load testing of large scale
systems. In Proceedings of the ICSE 2013. IEEE Press,
Piscataway, NJ, USA, 1012-1021.

[4] A. Hindle. Green mining: a methodology of relating software
change to power consumption. In Proceedings of the Working
Conference on MSR 2012. IEEE Press, Piscataway, NJ, USA,
78-87.

[5] R. Perez-Castillo, M. Piattini. Analyzing the Harmful Effect of
God Class Refactoring on Power Consumption. IEEE Software.
31, 3 (April 2014), 48-54.

[6] M. Ali Babar, I. Gorton. Comparison of Scenario-Based
Software Architecture Evaluation Methods. In Proceedings of

the APSEC 2004. IEEE Computer Society, Washington, DC,
USA, 600-607.

[7] B. Roy, T. C. N. Graham. Methods for Evaluating Software
Architecture: A Survey. Technical Report 2008-545, School of
Computing, Queen's University at Kingston, Ontario, Canada.

[8] D. Ganesan, M. Lindvall, R. Cleaveland, R. Jetley, P. Jones, Y.
Zhang. Architecture Reconstruction and Analysis of Medical
Device Software. In Proceedings of the WICSA 2011. IEEE
Computer Society, Washington, DC, USA, 194-203.

[9] D. Ganesan, T. Keuler, Y. Nishimura. Architecture compliance
checking at run-time. Information and Software Technology. 51,
11 (November 2009), 1586-1600.

[10] M. Abi-Antoun, J. Aldrich. Static extraction and conformance
analysis of hierarchical runtime architectural structure using
annotations. In Proceedings of the OOPSLA 2009. ACM, New
York, NY, USA, 321-340.

[11] S. Ciraci, H. Sozer, B. Tekinerdogan. An Approach for
Detecting Inconsistencies between Behavioral Models of the
Software Architecture and the Code. In Proceedings of the
COMPSAC 2012. IEEE Computer Society, Washington, DC,
USA, 257-266.

[12] S. S. Gokhale. Architecture-Based Software Reliability
Analysis: Overview and Limitations. IEEE Trans. Dependable
Secur. Comput. 4, 1 (January 2007), 32-40.

[13] L. G. Williams and C. U. Smith. PASASM: a method for the

performance assessment of software architectures. In
Proceedings of the WOSP 2012. ACM, New York, NY, USA,
179-189.

[14] A. Nistor, T. Jiang and L. Tan. Discovering, reporting, and

fixing performance bugs. In Proceedings of the Working
Conference on MSR 2013. IEEE Press, Piscataway, NJ, USA,
237-246.

[15] T. H. D. Nguyen, M. Nagappan, A. E. Hassan, M. Nasser, P.
Flora. An industrial case study of automatically identifying

performance regression-causes. In Proceedings of the Working
Conference on MSR 2014. ACM, New York, USA, 232-241.

[16] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou, P.
Flora. Mining Performance Regression Testing Repositories for
Automated Performance Analysis. In Proceedings of the QSIC

2010. IEEE Computer Society, Washington, DC, USA, 32-41.

[17] P. Huang, X. Ma, D. Shen, and Y. Zhou. Performance
regression testing target prioritization via performance risk
analysis. In Proceedings of the ICSE 2014. ACM, New York,
NY, USA, 60-71.

[18] The Netty Project. August 2015: http://netty.io.

[19] Apache Wicket. August 2015: https://wicket.apache.org.

[20] Jetty Project. August 2015: http://eclipse.org/jetty.

[21] M. Neuhäuser. International Encyclopedia of Statistical Science:
Wilcoxon–Mann–Whitney Test. Lovric, Miodrag, 2014. ISBN
978-3-642-04897-5. Pages: 1656-1658.

[22] Automating the Performance Analysis for Multiple System

Releases: an Evolutionary Study. August 2015:
https://sites.google.com/site/perfevolutionarystudy.

[23] R. Holmes, D. Notkin. Identifying program, test, and
environmental changes that affect behaviour. In Proceedings of
the ICSE 2011. ACM, New York, NY, USA, 371-380.

[24] T. Mytkowicz, A. Diwan, M. Hauswirth, P. F. Sweeney.
Producing wrong data without doing anything obviously wrong!
In Proceedings of the ASPLOS 2009. ACM, New York, NY,
USA, 265-276.

[25] H. Koziolek, B. Schlich, S. Becker, M. Hauck. Performance and
reliability prediction for evolving service-oriented software
systems. Empirical Softw. Engg. 18, 4 (August 2013), 746-790.

[26] S. Ghaith, M. Wang, P. Perry, J. Murphy. Profile-Based, Load-
Independent Anomaly Detection and Analysis in Performance
Regression Testing of Software Systems. In Proceedings of the
CSMR 2014. IEEE Computer Society, Washington, DC, USA,
379-383.

	Automating the performance deviation analysis for multiple system releases: An evolutionary study
	Citation

	I. Introduction
	II. Approach and Framework Overview
	III. Empirical Study: Evolutionary Analysis
	A. Goals and Research Questions
	B. Target Systems and Procedures
	C. Evolutionary Analysis Results

	IV. Discussion and Limitations
	V. Threats to Validity
	VI. Related Work
	VII. Conclusion
	Acknowledgment
	References

