
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

4-2024 

Classifying source code: How far can compressor-based Classifying source code: How far can compressor-based 

classifiers go? classifiers go? 

Zhou YANG 
Singapore Management University, zhouyang.2021@phdcs.smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
YANG, Zhou. Classifying source code: How far can compressor-based classifiers go?. (2024). ICSE-
Companion '24: Proceedings of the 2024 IEEE/ACM 46th International Conference on Software 
Engineering, Lisbon, April 14-20. 450-452. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8920 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8920&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Classifying Source Code:
How Far Can Compressor-based Classifiers Go?

Zhou Yang
Singapore Management University

Singapore
zyang@smu.edu.sg

ABSTRACT

Pre-trained language models of code, which are built upon large-
scale datasets, millions of trainable parameters, and high computa-
tional resources cost, have achieved phenomenal success. Recently, 
researchers have proposed a compressor-based classifier (Cbc); it 
trains no parameters but is found to outperform BERT. We con-
duct the first empirical study to explore whether this lightweight 
alternative can accurately classify source code. Our study is more 
than applying Cbc to code-related tasks. We first identify an issue 
that the original implementation overestimates Cbc. After correc-
tion, Cbc’s performance on defect prediction drops from 80.7% to 
63.0%, which is still comparable to CodeBERT (63.7%). We find that 
hyperparameter settings affect the performance. Besides, results 
show that Cbc can outperform CodeBERT when the training data 
is small, making it a good alternative in low-resource settings.

KEYWORDS

Defect Software Prediction, Robustness, Efficient Learning
ACM Reference Format:

Zhou Yang. 2024. Classifying Source Code: How Far Can Compressor-based 
Classifiers Go? . In 2024 IEEE/ACM 46th International Conference on Software 
Engineering: Companion Proceedings (ICSE-Companion ’24), April 14–20, 2024, 
Lisbon, Portugal. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/ 
3639478.3641229

1 INTRODUCTION

As investigated by a recent survey [8], pre-trained language models 
(e.g., CodeBERT [5]) have demonstrated promising results in a 
variety of code-related tasks, including defect prediction. What is 
behind the success is the large-scale datasets, millions of trainable 
parameters, and high computational resources cost. For example, 
CodeBERT is a model with 125 million parameters trained on 8.5 
million datapoints with 16 NVIDIA Tesla V100 GPUs. Even fine-
tuning it on a small dataset (e.g., Devign [19] with 21,854 examples) 
takes 5 hours on a GTX 2080 GPU. Researchers [15] point out that 
such a large model is not suitable to be deployed in modern IDEs, 
encouraging us to explore lightweight alternatives.

Recently, Jiang et al. [9] propose a compressor-based classifier 
(Cbc), which requires no parameter to be trained. Jiang et al. [9] 
report promising results: Cbc outperforms or is comparable to

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3641229

BERT [3] in a variety of NLP datasets. Cbc is also faster than pre-
trained models: we find it takes only 10 mins to finish the evaluation
on Devign [19] dataset using a desktop CPU. We conduct the first
empirical study to evaluate Cbc on code-related tasks.

In this study, we first point out a potential issue in the Cbc
implementation that overestimates the model performance. After
correction, the accuracy of Cbc decreases from 80.7% to 63.0% on
a defect prediction task, but it is still comparable to CodeBERT
(63.7%), even higher than other models like CodeTrans (63.03%) [4]
and CoTexT (61.48%) [13]. Second, we further show that the hy-
perparameter settings affect the performance. We evaluate two
strategies to break the tie in the 𝑘NN classifier: (1) random selec-
tion and (2) decrement 𝑘 until a tie is broken; the former is found to
be more effective via a statistical test. Besides, the accuracy tends
to increase when 𝑘 increases. Third, we find that Cbc can outper-
form CodeBERT when the training data is small, making it a good
alternative in low-resource settings, in terms of both computational
resources and training data.

2 BACKGROUND AND RELATEDWORK

2.1 Compressor-based Classifier

In a nutshell, (Cbc) consists of three main components: (1) a lossless
compressor gzip [14], a compressor-based distance metric, and a
𝑘-Nearest-Neighbor classifier. The compressor first compresses
the inputs, aiming to represent the inputs with as less number of
bits as possible. Considering three inputs 𝑥1, 𝑥2, and 𝑥3, where
𝑥1 and 𝑥2 share the same label (e.g., both are defective), and 𝑥3
has a different label (e.g., non-defective). Let 𝐶 (𝑥1) represent the
length of the compressed 𝑥1 and 𝐶 (𝑥1𝑥2) represent the length of
the compressed 𝑥1 and 𝑥2 concatenated.𝐶 (𝑥1𝑥2) −𝐶 (𝑥1) can is the
additional bits required to encode 𝑥2 given 𝑥1. Intuitively, 𝐶 (𝑥1𝑥2) −
𝐶 (𝑥1) is expected to be smaller than 𝐶 (𝑥1𝑥3) − 𝐶 (𝑥1), since 𝑥1
and 𝑥2 share more common information than 𝑥1 and 𝑥3. Jiang et
al. [9] utilize another metric called normalized compression distance
(NCD) as a more precise approximation of the ‘information distance’
between two inputs, which is formally defined as:

NCD(𝑥1, 𝑥2) =
𝐶 (𝑥1𝑥2) −min(𝐶 (𝑥1),𝐶 (𝑥2))

max(𝐶 (𝑥1),𝐶 (𝑥2))
(1)

The smaller the NCD, the more likely 𝑥1 and 𝑥2 share the same label.
Then, a 𝑘NN classifier is used to classify a test input. It computes
the NCD between a test input and all the training inputs to identify
the 𝑘 nearest neighbors. The label of the test input is determined by
the majority of the labels of the 𝑘 nearest neighbors. In the original
implementation, 𝑘 is set as 2.

This work licensed under Creative Commons Attribution International 4.0 License.

450

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3641229&domain=pdf&date_stamp=2024-05-23


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Zhou Yang

0 5 10 15 20 25 30 35 40
Index

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

Va
lu

es

CodeBERT

Decrement Selection
Random Selection
CodeBERT

Figure 1. The classification accuracy of Cbc under different

𝑘 values and tie breaking strategies.

2.2 Related Work

A series of empirical studies [10] have shown the strong perfor-
mance of pre-trained language models of code in a variety of code-
related tasks, including code search, code summarization, defect
prediction, etc. For example, one of the most commonly evalu-
ated model is CodeBERT [5], which is an encoder-only model that
demonstrates strong performance in classifying source code. Given
an input (i.e., code snippet), it first converts the input into a vector
called code embeddings and then uses a classifier to predict the label.
Other relevant models include GraphCodeBERT [7], PLBART [1],
CodeT5 [18], etc. We choose an important and popular task, defect
prediction [19], to evaluate Cbc. We refer to a recent survey [8] for
a comprehensive review of pre-trained language models of code.

The compressor-based classifier we evaluate falls into a category
of works that use a compressor to approximate the distance between
two inputs [2, 9, 12]. Another line of work [6, 11] uses a compressor
to estimate entropy based on Shannon Information Theory for
text classification. The classifier evaluated in our study is the most
recent work and demonstrates promising results.

3 EMPIRICAL STUDY AND RESULTS

This paper presents the first empirical study to understand whether
Cbc can generalize to software engineering tasks. We use a defect
prediction dataset called Devign [19], consisting of 21,854 training
and 2,732 testing examples. More than applying Cbc to this dataset,
we conduct analyses not considered in the original study [9].

Correcting the Evaluation Metric. We find that the results re-
ported in the original paper [9] might be overestimated and not
achievable in practice. Specifically, they choose 𝑘 = 2 in the 𝑘NN
classifier and assumes that the classifier can always choose the
correct label if a tie happens (i.e., the one neighbor has label 1
and the other has label 0). This finding is also confirmed in the
discussion between the authors and interested users of Cbc [17].
To evaluate Cbc in a more realistic setting, we implement the 𝑘NN
classifier with multiple 𝑘 values and use two tie breaking strategies:
(1) random selection and (2) decrement 𝑘 until a tie is broken.

We first run Cbc with the original implementation [16] and
obtain a high test accuracy of 80.7%, much higher than the accuracy
achieved by CodeBERT (63.7%). We vary the 𝑘 value and use two tie

2500 5000 7500 10000 12500 15000 17500 20000
Training Size

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

Pe
rfo

rm
an

ce

CodeBERT
Compressor-based

Figure 2.How the performance of Cbc andCodeBERT change

when the training data size varies.

breaking strategies to simulate a more realistic evaluating setting.
The results are shown in Figure 1. We observe that the accuracy of
Cbc significantly drops. When 𝑘 = 2 and using random selection to
break the tie, the accuracy is 59.4%, lower than CodeBERT. When
𝑘 increases, which generally means that the classification is based
on a broader set of data points, the accuracy tends to increase. We
also observe that the random selection strategy seems to be more
effective than the decrement strategy. To validate this hypothesis,
we conduct a paired t-test and find that the difference is statistically
significant (𝑝 < 0.05). When 𝑘 = 20 and using random selection,
the accuracy is 63.0%, comparable to CodeBERT.

Data Size Analysis. Pre-trainedmodels usually require much train-
ing data to achieve a good performance, which also consumes many
computational resources on specialized hardware, i.e., GPUs. We
analyze how the performance of two models changes when the size
of training data varies. Figure 2 shows the results. The data points
for Cbc is obtained using the optimal hyperparameter setting found
in the previous analysis (i.e., 𝑘 = 20 and random selection). We can
observe a trend for both models that the accuracy increases when
more data is used. However, Cbc has a more stable increase than
CodeBERT. Due to the random nature of deep learning, the accuracy
of CodeBERT fluctuates more than Cbc. When the training data is
small (less than 6,000), Cbc achieves a better performance, indicat-
ing that Cbc can be a good alternative in low-resource settings, in
terms of both computational resources and training data.

4 CONCLUSION AND FUTUREWORK

This paper presents the first empirical study on applying compressor-
based classifiers to the defect prediction task. After correcting the
evaluation and comparing it with CodeBERT, we find that Cbc
can achieve a comparable performance to pre-trained models of
code. Further results show that Cbc can be a good alternative in
low-resource settings, where the training data is small and com-
putational resources are limited. We hope our study can inspire
more research on exploring lightweight alternatives to pre-trained
models of code. In the future, we plan to extend the study, includ-
ing evaluating generalizability on more datasets, analyzing how
different compressors affect the performance, etc.

451



Classifying Source Code:
How Far Can Compressor-based Classifiers Go? ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES

[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-
fied Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655–2668.

[2] David Pereira Coutinho and Mario AT Figueiredo. 2015. Text classification
using compression-based dissimilarity measures. International Journal of Pattern
Recognition and Artificial Intelligence 29, 05 (2015), 1553004.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[4] Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph
Angerer, Silvia Severini, Florian Matthes, and Burkhard Rost. 2021. CodeTrans:
Towards Cracking the Language of Silicon’s Code Through Self-Supervised Deep
Learning and High Performance Computing. arXiv:2104.02443 [cs.SE]

[5] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, 1536–1547.

[6] Eibe Frank, Chang Chui, and Ian H Witten. 2000. Text categorization using
compression models. (2000).

[7] DayaGuo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou,
Nan Duan, Alexey Svyatkovskiy, Shengyu Fu andz Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021.

[8] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2023. Large Language Models for
Software Engineering: A Systematic Literature Review. arXiv:2308.10620 [cs.SE]

[9] Zhiying Jiang,MatthewYang,Mikhail Tsirlin, Raphael Tang, Yiqin Dai, and Jimmy
Lin. 2023. “Low-Resource” Text Classification: A Parameter-Free Classification

Method with Compressors. In Findings of the Association for Computational
Linguistics: ACL 2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(Eds.). Association for Computational Linguistics, Toronto, Canada, 6810–6828.
https://doi.org/10.18653/v1/2023.findings-acl.426

[10] Hong Jin Kang, Tegawendé F. Bissyandé, and David Lo. 2020. Assessing the Gen-
eralizability of Code2vec Token Embeddings. In Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (San Diego, Califor-
nia) (ASE ’19). IEEE Press, 1–12. https://doi.org/10.1109/ASE.2019.00011

[11] Nitya Kasturi and Igor L Markov. 2022. Text Ranking and Classification using
Data Compression. In I (Still) Can’t Believe It’s Not Better! Workshop at NeurIPS
2021. PMLR, 48–53.

[12] Yuval Marton, Ning Wu, and Lisa Hellerstein. 2005. On compression-based text
classification. InAdvances in Information Retrieval: 27th European Conference on IR
Research, ECIR 2005, Santiago de Compostela, Spain, March 21-23, 2005. Proceedings
27. Springer, 300–314.

[13] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Anibal, Alec Peltekian,
and Yanfang Ye. 2021. CoTexT: Multi-task Learning with Code-Text Transformer.
arXiv:2105.08645 [cs.AI]

[14] GNU Project. 2023. GNU Gzip. https://www.gnu.org/software/gzip/
[15] Jieke Shi, Zhou Yang, BowenXu, Hong Jin Kang, and David Lo. 2023. Compressing

Pre-Trained Models of Code into 3 MB (ASE ’22). Association for Computing
Machinery, New York, NY, USA, Article 24, 12 pages. https://doi.org/10.1145/
3551349.3556964

[16] GitHub Users. 2023. npc_gzip. https://github.com/bazingagin/npc_gzip
[17] GitHub Users. 2023. Problem with accuracy calculation? https://github.com/

bazingagin/npc_gzip/issues/3
[18] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:

Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021.

[19] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. Curran Associates Inc., Red Hook, NY,
USA.

452


	Classifying source code: How far can compressor-based classifiers go?
	Citation

	Classifying Source Code: How Far Can Compressor-based Classifiers Go?

