
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2010

The implications of how we tag software artifacts: Exploring The implications of how we tag software artifacts: Exploring

different schemata and metadata for tags different schemata and metadata for tags

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Margaret-Anne STOREY

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
TREUDE, Christoph and STOREY, Margaret-Anne. The implications of how we tag software artifacts:
Exploring different schemata and metadata for tags. (2010). Web2SE '10: Proceedings of the 1st
Workshop on Web 2.0 for Software Engineering, Cape Town, South Africa, 2010 May 4. 12-13.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8916

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8916&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

The Implications of How We Tag Software Artifacts:
Exploring Different Schemata and Metadata for Tags

Christoph Treude, Margaret-Anne Storey
Dept. of Computer Science, University of Victoria

ctreude@uvic.ca, mstorey@uvic.ca

ABSTRACT
Social tagging has been adopted by software developers in
various contexts from source code to work items and build
definitions. While the success of tagging is usually at-
tributed to the simplicity of tags, the implementation details
of tagging systems vary significantly in terms of metadata,
schemata and semantics. In this position paper, we argue
that academia and industry should be aware of these differ-
ences and that we should start to examine their implications.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environ-
ments—Integrated environments

General Terms
Human Factors, Management

Keywords
Tagging, Schemata, Metadata

1. INTRODUCTION AND MOTIVATION
Social tagging has proven to be successful in many dif-

ferent areas from websites such as CiteULike1 or flickr2 to
recent integrated development environments (IDEs) for soft-
ware developers. A key success factor for tags is their sim-
plicity: tagging is a very easy way of organizing artifacts
such as work items or source code, and it does not come with
administrative overhead. Still, the details of how tags are re-
alized in different systems vary considerably. Early tagging
systems such as ICICLE [1] were based on a limited, con-
trolled vocabulary while recent systems such as IBM’s Jazz3

allow users to define their own keywords. The amount of

1http://www.citeulike.org/
2http://www.flickr.com/
3https://jazz.net/

metadata stored with a tag varies from no data at all to a
complete data set of tag author, time and context. In some
systems, tags can be hierarchical, and in other systems, the
same tag can be applied to artifacts of different types.

While there has been some research on the use of tags
in software development (e.g., [6, 7]), the effectiveness of
different semantics, schemata and metadata for tags is not
yet well understood. In this position paper, we examine
the different ways in which tagging systems have been im-
plemented in the context of software development, and we
argue that the details of the implementation play a key role
in their success. Moreover, we believe that simplicity is the
key characteristic that can make tagging systems succeed or
fail. We investigate how simplicity can be achieved through
different characteristics.

2. DIMENSIONS OF TAGGING SYSTEMS
The idea of analyzing different dimensions of tagging sys-

tems is not new. A very detailed taxonomy is given by Mar-
low et al. [2]. They identify the following seven dimensions
in the design of a tagging system:

• Tagging rights: Users can tag everybody’s resources
vs. users can only tag their own resources.

• Tagging support: Blind tagging (users cannot see each
other’s tags) vs. viewable tagging (users can see each
other’s tags) vs. suggestive tagging (the system sug-
gests tags to users).

• Aggregation: Bag model (allows duplicate tags per re-
source) vs. set model (no duplicates).

• Type of object: Type of the resource to be tagged.

• Source of material: Resource is supplied by the sys-
tems vs. resource is supplied by the users.

• Resource connectivity: Linked vs. grouped vs. none
(possible connections between the resources).

• Social connectivity: Linked vs. grouped vs. none (pos-
sible connections between the users).

While these dimensions apply to tagging systems used
by software developers, studying tagging systems used by
software developers such as ICICLE [1], TagSEA [6], IBM’s
Jazz, BITKit [3], Google Code4, ConcernMapper [5] and
Concern Graphs [4] reveals additional dimensions on top of
Marlow’s taxonomy.

4http://code.google.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Web2SE’10, May 4, 2010, Cape Town, South Africa.
Copyright © 2010 ACM 978-1-60558-975-6/10/05…$10.00.

12

3. DIMENSIONS OF TAGGING SYSTEMS
IN SOFTWARE DEVELOPMENT

In this section, we identify and discuss additional dimen-
sions of tagging systems in software development.

Pre-defined vs. user-defined.
Most current tagging systems are based on the concept of

tags as “freely-chosen keywords or terms that are associated
with or assigned to a piece of information” [7]. However, in
older tagging systems such as ICICLE [1], possible keywords
were pre-defined, and software developers were not able to
add new keywords to the system. In a dynamic environment
such as software development, the just-in-time addition of
new tags is the more promising approach.

Metadata.
Different tagging systems store different amounts of meta-

data. For example, in the case of tagging work items in
IBM’s Jazz, information such as the tag author and the time
a tag was applied to a work item can only be identified by
browsing the work item’s history. In other systems such as
TagSEA, the author and time can be explicitly added to
each tag instance, and tags can be searched by their authors
and creation time. In order to keep the simplicity, tag au-
thors should not be required to add metadata. However,
all metadata that can be recorded automatically should be
stored to provide additional context.

Semantics.
While most tagging systems treat keywords simply as

terms that are associated with artifacts, some systems go
beyond that and add semantics to tags. An interesting
approach is taken by labels in the issue tracker of Google
Code5, which goes beyond basic labels to support key-value
labels. Key-value labels contain one or more dashes, and the
part before the first dash is considered to be a field name
while the part after that dash is considered to be the value.
Studies will need to be conducted to understand how differ-
ent semantics affect software development processes.

Hierarchies.
Some tagging systems explicitly support tag hierarchies,

using a dot-notation (e.g., [6]). Keywords that have dots
in them can be treated as hierarchical, and they can be
displayed in tree-views. In other systems such as IBM’s Jazz,
some developers use the dot-notation even though there is
no explicit support for hierarchies. A flexible approach that
offers additional views when needed is promising.

Single type of resource vs. multiple types.
Software developers handle many different kinds of ar-

tifacts from source code and work items to build scripts.
Nevertheless, many tagging systems for software developers
only support tagging a single kind of artifact. One exception
is TagSEA. It allows software developers to tag locations in
source code – called waypoints – and artifacts such as files,
and it shows different kinds of artifacts in a single view. This
allows for grouping and relating different kinds of artifacts
while keeping the simplicity of tags.

5http://code.google.com/p/support/wiki/
IssueTracker#Labels

Integration.
Another dimension is the extent to which the tagging

mechanism is integrated with other tooling. Some systems
support social tagging of source code, but require the user
to post code fragments on public servers before tags can be
applied to code fragments (e.g., DZone Snippets6 and Byte-
Mycode7). In other systems such as IBM’s Jazz or TagSEA,
the tagging mechanism is part of the IDE. With the recent
trend of moving the IDE into the browser, tagging artifacts
online is a promising approach.

4. CONCLUSION
While social tagging has been adopted by software devel-

opers for organizing artifacts such as source code and work
items, the details of the implementation vary. To understand
if and how tagging can support software developers, we need
to examine the differences such as varying amounts of meta-
data and semantics. We have identified several dimensions
along which tagging systems in software development can be
classified. Future work lies in investigating the advantages
and shortcomings of different implementations.

5. REFERENCES
[1] L. Brothers, V. Sembugamoorthy, and M. Muller.

ICICLE: groupware for code inspection. In CSCW ’90:
Proc. of the Conf. on Computer-supported cooperative
work, pages 169–181, New York, 1990. ACM.

[2] C. Marlow, M. Naaman, D. Boyd, and M. Davis. Ht06,
tagging paper, taxonomy, flickr, academic article, to
read. In HYPERTEXT ’06: Proc. of the 17th Conf. on
Hypertext and hypermedia, pages 31–40, New York,
2006. ACM.

[3] H. Ossher, D. Amid, A. Anaby-Tavor, R. Bellamy,
M. Callery, M. Desmond, J. De Vries, A. Fisher,
S. Krasikov, I. Simmonds, and C. Swart. Using tagging
to identify and organize concerns during
pre-requirements analysis. In EA ’09: Proc. of the
ICSE Workshop on Aspect-Oriented Requirements
Engineering and Architecture Design, pages 25–30,
Washington, DC, 2009. IEEE.

[4] M. P. Robillard and G. C. Murphy. Concern graphs:
finding and describing concerns using structural
program dependencies. In ICSE ’02: Proc. of the 24th
Intl. Conf. on Software Engineering, pages 406–416,
New York, 2002. ACM.

[5] M. P. Robillard and F. Weigand-Warr. Concernmapper:
simple view-based separation of scattered concerns. In
eclipse ’05: Proc. of the OOPSLA workshop on Eclipse
technology eXchange, pages 65–69, New York, 2005.
ACM.

[6] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T.
Cheng, and M. Muller. How software developers use
tagging to support reminding and refinding. IEEE
Trans. on Software Engineering, 35(4):470–483, 2009.

[7] C. Treude and M.-A. Storey. How tagging helps bridge
the gap between social and technical aspects in
software development. In ICSE ’09: Proc. of the 31st
Intl. Conf. on Software Engineering, pages 12–22,
Washington, DC, 2009. IEEE.

6http://snippets.dzone.com/
7http://bytemycode.com/

13

	The implications of how we tag software artifacts: Exploring different schemata and metadata for tags
	Citation

	Web2SE: The Implications of How We Tag Software Artifacts: Exploring Different Schemata and Metadata for Tags

