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ABSTRACT
Recommender systems are a valuable tool for software engineers.
For example, they can provide developers with a ranked list of
files likely to contain a bug, or multiple auto-complete suggestions
for a given method stub. However, the way these recommender
systems interact with developers is often rudimentary—a long list
of recommendations only ranked by the model’s confidence. In this
vision paper, we lay out our research agenda for re-imagining how
recommender systems for software engineering communicate their
insights to developers. When issuing recommendations, our aim is
to recommend diverse rather than redundant solutions and present
them in ways that highlight their differences. We also want to
allow for seamless and interactive navigation of suggestions while
striving for holistic end-to-end evaluations. By doing so, we believe
that recommender systems can play an even more important role
in helping developers write better software.

CCS CONCEPTS
• Information systems→Recommender systems; Information
retrieval diversity; •Human-centered computing→ Interactive
systems and tools; Interaction paradigms; • Software and its
engineering → Source code generation.

KEYWORDS
Recommender systems, software engineering, user interaction, in-
formation retrieval diversity, information representation
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1 INTRODUCTION
A recommender system for software engineering is defined as “a
software application that provides information items estimated to
be valuable for a software engineering task in a given context” [31].
These systems aim to assist developers in various activities from
reusing code to writing effective bug reports. Recent years have wit-
nessed the use of machine learning and deep learning in many rec-
ommender systems, making them more accurate and efficient [28].
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In terms of output, recommender systems for software engineer-
ing are meant provide value by “exposing users to the most inter-
esting items, and by offering novelty, surprise, and relevance” [31].
What this description implicitly conveys is true in practice for many
recommender systems for software engineering: their benefits are
realised through their ability to recommend multiple items for a
given task in a given context. For example:

• Bug localisers provide a list of potentially buggy files ranked
according to the system’s confidence in the recommendation
(e.g., [35]).

• Source code recommenders or synthesizers suggest multi-
ple completions for the same source code context and task
(e.g., [6]).

• Query reformulators provide a list of suggestions for bet-
ter queries to allow more effective information retrieval
(e.g., [7]).

• API recommenders provide a list of relevant API elements,
such as methods, for a given scenario (e.g., [8]).

• Change location recommenders suggest multiple relevant
spots for supplementary bug fixes (e.g., [36]).

• Tag recommenders for Stack Overflow and similar sites rec-
ommend multiple tags per post (e.g., [22]).

• Recommenders for ‘who should fix this bug’ providemultiple
answers to this question [2].

The multi-output nature of recommender systems for software
engineering is also reflected in the evaluation criteria that have
been used in the research literature, such as the ratio of inputs
for which at least one relevant result is returned within the top-𝑘
results (Hits@K), the ranks of relevant results within a ranked list
(mean average precision), or the multiplicative inverse of the rank
of the first relevant result (mean reciprocal rank) [30].

In the field of software engineering, there has been a plethora
of work on improving the performance of recommender systems.
However, surprisingly little research has been conducted on how
these systems should communicate their insights to developers,
especially in cases where the recommender system provides mul-
tiple recommendations for a given task in a given context. Many
approaches in the literature are not accompanied by corresponding
user interfaces, and in the few cases where a user interface is in-
cluded, this is often limited to a list of recommendations ordered
by the recommender’s confidence in them. We argue that this does
not do justice to the complexity of many software engineering
tasks where multiple parallel recommendations need to be care-
fully compared and considered from multiple perspectives in order
to understand complex solution spaces. Instead, many user inter-
faces ascribe too much importance to their top recommendation,
often making navigation to further recommendations unnecessarily
cumbersome. We show examples of this in our next section.
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Re-imagining how multi-output recommenders for software en-
gineering communicate their insights to developers can unlock the
potential of recommender systems that have already been devel-
oped, as well as pave the way for new systems that explicitly cater
to the multi-solution nature of software engineering tasks. The
goals of our research agenda are:

Diversification Novelty and diversity have long been used
as metrics for the evaluation of information retrieval sys-
tems in other fields [10]. We argue that diversity also plays a
crucial role when exploring the solution space for software
engineering tasks—providing diverse recommendations pro-
motes serendipity and creativity [38] and can help resolve
ambiguity and avoid redundancy.

Representation In many software engineering tasks, such
as the synthesis of source code, small differences between
recommendations completely change the semantics of the so-
lution, as evidenced, for example, by small syntactic changes
(such as reversing a logical operator) leading to large seman-
tic changes [18], or the large number of single-statement
bugs in source code [20]. We argue that recommender sys-
tems should visually support developers in comparing and
contrasting multiple recommendations.

Navigation Recommender systems are often implemented as
a separate window or tab from the main application, with
multiple recommendations displayed at once. We argue for
an integrated approach that enables requests for further
recommendations that combine specific aspects of previous
ones. This would allow developers to easily navigate between
recommendations, similar to NLP2Code’s ‘cycle-through’
functionality [6]. This kind of navigation support is essential
to allow developers to adequately explore the solution space
before deciding which recommendation to follow.

Evaluation Like other machine-learning-enabled systems, we
argue that the evaluation of recommender systems for soft-
ware engineering needs to include “evaluating components
individually (including the model) as well as their integra-
tion and the entire system, often including evaluating and
monitoring the system online (in production)” [25]. In par-
ticular, we call for more research on how developers do or
do not make use of multiple recommendations issued for a
given task in a given context.

The remainder of this vision paper is structured as follows. We
provide three motivating examples in Section 2 before we describe
our research agenda in Section 3. Section 4 concludes this work.

2 MOTIVATING EXAMPLES
In this section, we describe three motivating examples from GitHub
Copilot1, BugLocalizer [35], and SEQUER [7].

2.1 GitHub Copilot
GitHub Copilot is an example of a source code recommender system
built by training a deep learning model on millions of open source
repositories: The source code of these repositories acts as training
data, allowing the model to learn “how to program” [9]. GitHub

1https://copilot.github.com/

Figure 1: Three suggestions by GitHub Copilot for
# deduplicate list
def

Copilot was released in October 2021 as a technical preview and
can be installed as a Visual Studio Code extension.2 Once installed,
GitHub Copilot automatically suggests the code that it thinks the
developer might want as the developer is typing.

While GitHub Copilot will always show its “best recommenda-
tion” in the editor,3 developers can press Ctrl + Enter to view up
to ten suggestions in a separate pane.4 Figure 1 shows a screenshot
of this pane, containing three of the ten suggestions that GitHub
Copilot issued for the following Python code:

# deduplicate list
def

The first of these suggestions was automatically inserted into the
source code as an inline suggestion and could be accepted by press-
ing the Tab key.

Considering the quality of the recommendations—all recommen-
dations appear to produce the desired behaviour—the way in which
the additional suggestions are communicated to a developer is sur-
prisingly rudimentary. In terms of diversity, the methods suggested

2https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
3https://github.blog/2022-03-29-github-copilot-now-available-for-visual-studio-
2022/
4https://github.com/github/copilot-docs/blob/main/docs/visualstudiocode/
gettingstarted.md
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Figure 2: BugLocalizer Main User Interface, from [35]

in the first two recommendations are identical apart from the iden-
tifier names, but as the third recommendation shows, this is not the
only way to complete the task. In terms of representation, the differ-
ences between the first two recommendations are not immediately
obvious: upon closer inspection, the first recommendation includes
a method invocation with an example list, which is missing in the
second recommendation. In terms of navigation, interactions be-
tween different recommendations are not taken into account, e.g., it
is not easily possible to choose the third recommendation but with
the example and print statement from the first recommendation.

2.2 BugLocalizer
Bug localisation is another popular research area in the context
of recommender systems for software engineering, defined as the
process of identifying where to make changes in response to a
bug report [24]. Research efforts in this area are often evaluated
in terms of performance metrics that take the multi-output nature
of the problem into account (e.g., Hits@K [30]), while research on
how to communicate the results of bug localisation to developers is
rare. A notable exception is BugLocalizer [35], an extension of the
Bugzilla issue tracking system aimed at disseminating research in
bug localisation to practitioners. Figure 2 shows its interface after
processing a bug report, indicating the “top-𝑘 files that are deemed
the most likely to be buggy among files in the latest commit of the
project’s git repository” [35].

Similarly to the previous example, we argue that the way in
which bug localisation results are currently communicated to devel-
opers does not unlock the full potential of the underlying models.
Although the paths and names of the files in Figure 2 suggest
diversity at least within the org.eclipse.swt package, the repre-
sentation does not help to understand how these recommendations
differ from each other, e.g., to what extent the changes in these
files were similar and/or related. In terms of navigation, it is not
possible to navigate the recommendations along axes such as the
call graph or package hierarchy, making the evaluation of each
recommendation a tedious and manual task.

2.3 SEQUER
Query reformulation is a popular research area in software engi-
neering [17], covering a wide range of developer tasks, from Stack
Overflow search [7] and search for software projects [21] to concept
location [29] and bug localisation [14]. In most of these scenarios,
the research tools show a list of recommendations for reformula-
tions to developers. Figure 3 shows an example of SEQUER [7], a
browser plugin that automatically analyses the query content on
Stack Overflow and recommends the top 10 query reformulation

Figure 3: SEQUER Browser Extension, from [7]

candidates to developers.5 SEQUER was trained on the Stack Over-
flow activity logs and has been shown to be able to automatically
correct misspelled terms, add language restrictions, remove overly
specific query terms, replace symbols with their corresponding text,
enclose domain-specific terms in double quotes, and simplify and
refine Stack Overflow queries.

SEQUER outperformed its baselines in terms of metrics, such
as the multiplicative inverse of the rank of the first relevant result
(mean reciprocal rank), but we argue that the interface between the
underlying model and developers has room for improvement. As
Figure 3 shows, reformulation recommendations can be diverse in
terms of characteristics such as programming languages, but this
diversity is not well represented. In the example, the first five recom-
mendations are specific to Python, the next four are specific to the
R programming language, and the last one concerns PowerShell.
In addition, several of the recommendations are redundant since
they only change the order of tokens, e.g., the first and third recom-
mendations. We believe that SEQUER could make better use of the
limited number of spots in its list of recommendations by favouring
diverse recommendations over redundant ones. In terms of navi-
gation, the interface does not offer navigation along axes such as
programming language, library, or API element. Like many similar
tools, the evaluation of SEQUER focused on the performance of the
underlying model, without an end-to-end evaluation to investigate
how developers make use of the tool’s multiple outputs.

3 RESEARCH AGENDA
In this section, we outline our envisioned methodology for ad-
dressing our research goals. These goals follow directly from our
motivating examples, but we acknowledge that there are likely
other goals worthy of investigation in this context.

3.1 Diversification
To address our goal of diversifying the output of multi-output rec-
ommenders for software engineering, we argue for the adoption
and customisation of work in the area of diversity optimisation for
other application domains, such as the evolution of diverse sets of
images [27]. Diversity optimisation is “a new family of optimisation
algorithms that, instead of searching for a single optimal solution
to solving a task, searches for a large collection of solutions that
all solve the task in a different way” [11]. Such optimisations re-
quire an underlying numeric representation of the problem domain,
5https://github.com/kbcao/sequer

https://github.com/kbcao/sequer
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similar to other software engineering tasks, such as vulnerability
prediction, where artefacts must be represented as numeric vectors
to be used as input for deep learning models [1]. Such representa-
tions are commonly based on syntax or semantics, e.g., learning
representations of source code at the level of tokens (e.g., abstract
syntax trees) or statements (e.g, control flow graphs), with recent
approaches combining low-level syntactic information from the
local context and high-level semantic information from the global
context into a single representation [19]. Representation of text-
based artefacts, such as file names or auto-complete suggestions,
can be achieved through domain-specific word embeddings [13].
We believe that the use of such techniques can increase the di-
versity of recommendations and enable developers to explore the
entire solution space for their tasks. Similar approaches have been
successful in the diversification of reply suggestions for instant
messaging systems [12] and emails [5] where more suggestions
have been shown to be particularly useful for non-native speakers
and in fostering creativity [34].

3.2 Representation
To improve the representation of multiple recommendations, we
argue for integrating concepts from change visualisation in the
context of software engineering into user interfaces of recom-
mender systems. For example, representing source code commits
by mixing text-based diff information with visual representation
and metrics characterising the changes has been well received by
developers [16]. A key difference between diff representation and
representing multiple recommendation is cardinality—a diff con-
cerns two versions (or three in the case of a three-way merge [15])
whereas recommender systems for software engineering tend to
return dozens of results for a given task in a given context. To over-
come this limitation, the adoption of variant graphs [32] from the
text processing community can allow the representation of com-
monality between recommendations and differences between them.
We envision the use of boldface to indicate commonality between
recommendations, as well as pop-over comments for explanations
of differences, similar to Casdoc [26].

3.3 Navigation
To enable effective navigation of multiple recommendations, we
argue for borrowing mechanisms from poker games. In any given
poker game, players must make the decision of which cards to
keep and which to discard [3]. This analogy can be used to help
developers navigate recommendations. For example, when given
recommendations about files that might be buggy, we envision that
developers are able to highlight parts of the file paths that they
would like to ‘keep’ before asking the recommender system to gen-
erate further recommendations. Similarly, in the scenario of source
code synthesis, we envision developers able to highlight parts of
the code that they would like to see again while discarding parts
that are irrelevant. In the scenario shown in Figure 1, a developer
might highlight the example list and print statement from the first
recommendation but ask the system for a different algorithm to
process the list. We also believe that an integrated ‘cycle-through’
functionality that shows recommendations in their context rather
than in a separate window or pane, similar to NLP2Code [6] and

NL2Code [37], will improve the navigation of multiple recommen-
dations.

3.4 Evaluation
To confirm that addressing the research goals presented above does
indeed improve how multi-output recommender systems for soft-
ware engineering communicate their insights to developers, we
argue for system and usability testing, similar to related work on
the evaluation of machine-learning-enabled systems [25]. Although
the software engineering research community has so far focused on
evaluating model performance [23], we lack behind other fields in
terms of real-world integration of these models [33]. Performance
metrics such as the ranks of relevant results within a list (mean
average precision) are insufficient to determine whether a single
recommendation or the interaction of multiple recommendations
led developers onto the right path for solving their tasks. There is
‘no silver bullet’ for many software engineering tasks [4] and it is
naïve to assume that a single recommendation will be sufficient to
solve a non-trivial software engineering task. We need to embrace
the multi-output nature of recommender systems for software engi-
neering and enable these systems to effectively communicate their
insights. Participant observations or interviews would be suitable
methods to assess whether we were able to achieve these goals, for
example [33].

4 CONCLUSION
The models that power automated recommender systems for soft-
ware engineering have seen impressive performance increases over
the last few years. However, these advances are not always ac-
companied by adequate ways in which the systems communicate
their insights to developers. This can lead to misunderstandings
and frustration on the part of developers who may not be able to
easily interpret or use the recommendations generated by these
systems. In this vision paper, we lay out our research agenda for
re-imagining how systems such as bug localisers, source code syn-
thesisers, and API recommenders can enable developers to navigate
the diverse solution spaces inherent in many software engineering
tasks. Our research agenda calls for recommending diverse rather
than redundant solutions, aligned with the ‘no silver bullet’ nature
of many software engineering tasks. We envision a representation
of recommendations that enables developers to effortlessly spot
similarities and differences, as well as interactions between multiple
recommendations, and navigation mechanisms that allow devel-
opers to ask for further recommendations that contain aspects of
items already recommended. To evaluate whether we are making
progress towards these goals, we will require holistic end-to-end
system and usability evaluations of recommender systems. We
believe that this work will not only improve the effectiveness of
recommender systems for software engineering but also help to
build a community of developers who are confident in their ability
to use automated tools for software engineering tasks.
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