
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2023

Problems in microservice development: supporting visualisation Problems in microservice development: supporting visualisation

Oscar MANGLARAS

Alex FARKAS

Peter FULE

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Markus WAGNER

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
MANGLARAS, Oscar; FARKAS, Alex; FULE, Peter; TREUDE, Christoph; and WAGNER, Markus. Problems in
microservice development: supporting visualisation. (2023). 2023 IEEE Working Conference on Software
Visualization (VISSOFT): Bogota, October 1-2: Proceedings. 62-72.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8908

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8908&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8908&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Problems in Microservice Development:
Supporting Visualisation

Oscar Manglaras
University of Adelaide
Adelaide, Australia

oscar.manglaras@adelaide.edu.au

Alex Farkas
University of Adelaide
Adelaide, Australia

alex.m.farkas@gmail.com

Peter Fule
Swordfish Computing
Adelaide, Australia

peter.fule@swordfish.com.au

Christoph Treude
The University of Melbourne

Melbourne, Australia

christoph.treude@unimelb.edu.au

Markus Wagner
Monash University
Clayton, Australia

markus.wagner@monash.edu

Abstract—In microservice architectures, developers can face
significant problems understanding the structure of the system
and how the different microservices interact. This difficulty
results from the distributed nature of the system, and the abun-
dance of inter-service communication within the architecture.
We want to determine if network visualisations can address
these problems given their ability to convey complex topologies.
However, to identify what architectural characteristics should be
visualised, and how this should be done, we must first determine
the needs of microservice developers. This paper identifies and
presents the impact and frequency of problems faced by a
cohort of microservice developers using the results of an online
survey. Our findings indicate that the most frequent problems
were topology related and the highest impact problems were
those related to system faults and data structures. Our results
support the use of network visualisations to address microservice
development problems and provide context that will allow future
visualisations of any type to better address these problems.

Index Terms—Microservices, development problems, documen-
tation, microservice visualisation.

I. INTRODUCTION

A microservice architecture is a type of distributed soft-

ware architecture composed of multiple, small, independent

services, called ‘microservices’, which each have a single

responsibility, but which together form a full application.

Microservices do this by communicating with each other

over lightweight network protocols [1]. Microservice archi-

tectures can allow for an agile development strategy and a

flexible, scalable system. With only a single responsibility,

each microservice can be kept small and relatively simple [2].

However, by simplifying each service, the complexity is

moved from the services themselves and into the communi-

cation architecture [3]. Understanding the resulting topology

of microservice communications can be vital when creating,

maintaining, and debugging services [4].

Network visualisations are one way to visualise and doc-

ument communication topologies [5]. Hence, they can also

be used to document the communication topology of a mi-

croservice architecture. It stands to reason that other types of

visualisation could be viable as well. Visualising microservice

architecture topologies is not new, there are various academic

and commercial tools that have chosen to do so [6]. However,

there is little research into what specific visual elements and

interactive features microservice developers would find useful

during their development tasks (Section II). Our ultimate

goal is to evaluate whether visualisations are an effective

way to support microservice development, and if so, which

development problems they are well suited to solve. However,

before doing so, we want to gain insight into what these

problems are, how frequently they are encountered, and how

impactful developers find them.

In this paper we present the methodology and results of an

online survey where we identify the impact and frequency of

various problems faced by developers during their develop-

ment tasks. We provided this survey to developers at a com-

pany called Swordfish Computing. They have multiple teams

that develop systems using microservice architectures. These

systems primarily use the publish/subscribe communication

paradigm [7]. We also asked developers to outline any existing

documentation tools they use and what their ideal tool would

be.

We found that the most impactful and frequent problems

relate to the data structures used by microservices and chan-

nels, the communications between microservices and chan-

nels, and the causes and effects of microservice faults. For

documentation tools, participants reported both textual and

graphical tools are used, with markdown and draw.io being the

most common. Participants’ ideal documentation tools showed

several common themes; visualisation and interactivity, min-

imising effort, and coupling the documentation with code.

Based on these results, network and trace visualisations would

address the primary concerns of microservice developers, and

developing ways to visualise data structures could be benefi-

cial. Additionally, a developer’s ideal visualisation would be

interactive and automatically generated from the source code

of the microservice.

62

2023 IEEE Working Conference on Software Visualization (VISSOFT)

2832-6555/23/$31.00 ©2023 IEEE
DOI 10.1109/VISSOFT60811.2023.00017

II. RELATED WORK

When identifying related work we looked for any research

that reported on challenges and problems faced by microser-

vice developers. We also searched for any evaluations of

microservice visualisation designs which may have uncovered

additional development tasks.

A. Challenges and Problems in Microservice Development

Viggiato et al. [8] did a survey of 122 developers from vari-

ous microservice related online communities. They performed

a mapping study of microservice developers to identify com-

mon microservice advantages and challenges. Four advantages

and four challenges were identified. Participants were asked

to rate the importance of each advantage and challenge from

1 (very important) to 4 (not important). These challenges,

along with the mean of their responses, were: testing the
whole system (x̄ = 2.259); complex distributed transactions
(x̄ = 2.301); service faults (x̄ = 2.553); expensive remote
calls (x̄ = 2.577). Additionally, 62% of respondents said they

worked with RESTful communication architectures.

Ghofrani and Lübke [9] conducted a survey with 25 mi-

croservice developers to identify challenges and concerns in

the design and development process. Some of the challenges

mentioned were “too many repositories to maintain”; “net-

working between dockers”; and “debugging a microservice

that relies on other services”. Another question was “Which

notation(s) do you use to describe your architecture?”. The

answers were graphical modelling language (35%); textual
modelling language (9%); domain modelling language (17%);

and none (39%). Additionally, they stated that “none of the

participants named any tool, technique, and [sic] framework

for modeling their [architecture]”.

Baskarada et al. [10] interviewed 19 developers to identify

the opportunities and challenges that come from adopting

a microservice architecture. The identified challenges were:

lack of relevant skills; existing software-as-a-service and
commercial-off-the-shelf software; organisational culture; gov-
ernance; organisational structure; monolith refactoring; data
management; orchestration and choreography; testing; and

performance.

Zhou et al. [11] conducted a series of interviews with 16 par-

ticipants across 12 companies to investigate how system faults

are handled. Nine participants stated that runtime verification

and debugging were the main maintenance challenges they

faced, and that they were heavily dependent on monitoring

and tracing infrastructure. Debugging was a major challenge

for “almost all of the participants”. The authors identified

numerous types of system faults and debugging approaches. Of

these approaches, trace and log visualisations were identified

as a particularly useful tool by developers. To test their

findings, they presented six graduate students with a series

of system faults for a familiar microservice system, presented

using text logs, visualised logs, and visualised traces. They

found that most faults could benefit from trace visualisations.

Mayer and Weinreich [12] developed a dashboard to display

information about a microservice architecture. To develop the

features for their dashboard, they ran a study that surveyed

and interviewed 15 participants from 12 companies who had

experience with microservices. Their study found that the

participants considered the most important information to

be the following: service APIs; service versions; number of
service instances; system metrics (CPU, memory, error rates,
etc); and service interactions and dependencies.

Engel et al. [13] conducted interviews with participants from

five microservice projects using a range of technologies and

microservices. The projects ranged from two microservices, to

approximately 50. The challenges discussed by experts of each

project were: keeping an overview of the whole architecture
(3 projects); service boundaries (2 projects); refactorings that
effect multiple services (2 projects); changes to a service
that affect other services (2 projects); cylcic dependencies (1

project); data consistency (1 project); and testing (1 project).

B. Microservice Visualisation Evaluations

In their Masters thesis [14], Frisell outlined an experimental

research study where they aimed to evaluate the effectiveness

of a microservice visualisation tool for the purposes of de-

bugging system faults. They worked to develop the tool with

a company, and described an interview study conducted by

the company regarding problems faced by their microservice

developers. Their findings were that developers: “wish for

a tool to make it easier to find the root cause to service

incidents as well as who is responsible”; “have problems

understanding who is responsible for bad/broken/wrong data”;

and that they “look at graphs from other services to understand

the problem”.

C. Limitations

These existing studies tend to focus on high level issues

such as developer inexperience, deployment co-ordination, and

architectural complexity which does not help to determine

what specific elements or relationships in a microservice

architecture developers find challenging to understand. Addi-

tionally, those that do, such as [12], [13], lack details about

the frequency or relative importance of problems.

III. METHODOLOGY

In this section we will detail how and why participants were

recruited, how the survey was designed and distributed, and

and how we analysed our results. In this and the following

sections we use italics to denote preset options we provided

or categories we have created, while “quoted italics” are used

to denote raw user input.

We have made the full survey available online1.

A. Recruitment & Incentives

Participants for the survey were recruited from the company

Swordfish Computing, which is co-funding this research. This

cohort was chosen because they develop multiple different mi-

croservice systems that have real-world, practical applications,

1https://doi.org/10.5281/zenodo.8245342

63

TABLE I: List of microservice development tasks from part 2 of the survey.

ID Category Short Name Question

T1 Topology microservices - incoming services What microservices are sending messages to this microservice?
T2 Topology microservices - outgoing services What microservices are receiving messages from this microservice?
T3 Topology microservices - connected channels What channels is this microservice published/subscribed to?
T4 Topology channels - connected microservices What microservices publish/subscribe to this channel?
T5 Topology microservices - connected brokers What message brokers is this microservice communicating with?
T6 Topology brokers - connected brokers What message brokers is this message broker communicating with?
T7 Topology microservices - shortest path What is the shortest communication path between two microservices?
T8 Topology microservices - communication type What type of communication is this microservice using? (pub/sub; REST;

etc)

P1 Deployment microservices - current hardware What host/hardware is this microservice running on?
P2 Deployment hardware - running microservices What microservices are running on this host/hardware?
P3 Deployment microservices - current instances How many instances of this microservice are running at any one time?

D1 Data & Definition microservices - data structures What microservices use this data structure?
D2 Data & Definition channels - data structures What is the data structure of messages in this channel?
D3 Data & Definition channels - structure of name How is the channel string structured?
D4 Data & Definition microservices - purpose What is the purpose of this microservice?
D5 Data & Definition channels - purpose What is the purpose of this channel?
D6 Data & Definition microservices - type What type of microservice is this?

V1 Development microservices - maintainers Who maintains this microservice?
V2 Development team - maintained services What microservices does this person/team maintain?
V3 Development microservices - languages and libraries What languages/libraries does this microservice use?

S1 Scenario microservice faults - affected services If this microservice goes down what other microservices will be affected?
S2 Scenario broker faults - affected services If this message broker goes down what microservices will be affected?
S3 Scenario microservice faults - causes If this microservice is not functioning correctly what other microservices

could be the cause?

and because our existing association with the company gave

us easy access to the participants.

To increase visibility, the survey was advertised to their

microservice development teams over Slack, the company’s

preferred messaging software. The survey was sent to the

entire population of microservice developers at Swordfish

Computing. At the time of our research in November 2022

this consisted of 29 people.

To encourage participation and improve the external validity

of our study, participants were given an indirect monetary

incentive to participate because Swordfish Computing allowed

the time spent completing the survey (~20 minutes) to be billed

as part of their wage. Participants were also told that the results

of the survey would be used to develop documentation tools

to help them with their development work, which may have

also acted as an incentive. Finally, participants were assured

that responses would be kept anonymous.

B. Distribution

We chose to distribute the survey online over Google Forms.

We concluded this was an effective method of distribution be-

cause our potential participants were experienced at computer

use, had access to internet devices through their employment,

and we had been informed that respondents were interested in

the topic of our research [15, Ch.4]. It was also a simple way

to meet our privacy and security requirements. The eligible

individuals were sent an email with a link to the survey and

given two weeks to respond.

TABLE II: List of demographic questions.

Question Type

How many years have you worked in software devel-
opment?

short answer

How many years have you worked in microservice
development?

short answer

What roles have you had in your team during microser-
vice development?

short answer

What development work do you do in relation to
microservices?

checkboxes and
short answer

C. Survey Design

1) Demographics: The demographic questions are shown

in Table II. The question What development work do you do in
relation to microservices? took the form of checkboxes where

participants could select multiple answers, as well as a short

answer box where participants could enter any type of work

that was missed by the options. The default options were:

Backend Implementation (programming); API Development;
Documentation; Deployment; Orchestration; Deployment; and

Architecture Design.

2) Problems in Microservice Development: This section at-

tempted to answer the question, what problems are developers
experiencing when developing microservices?. We presented

the participants with a large list of possible tasks (see Table I)

and asked participants to rate both the impact of the task

on their development time, and how frequently they face the

problem along an ordinal scale. The available responses for

impact were: ’no impact’, ’small impact’, ’moderate impact’,

64

’large impact’, and ’massive impact’. The responses for fre-

quency were: ’never’, ’yearly or less’, ’quarterly’, ’monthly’,

’weekly’, and ’daily’. For the rest of the paper we use

’problem’ and ’task’ interchangeably.

TABLE III: The glossary given to participants.

Term Definition

Pub/Sub A communication architecture where microservices
publish and subscribe to messages from specific chan-
nels rather than messaging each other directly.

RESTful A communication architecture where microservices
communicate directly over HTTP requests.

Channel Also called topics. Microservices publish or subscribe
to messages from specific channels in Pub/Sub archi-
tectures.

Message bro-
ker

You may also know this as a message bus. The
application that handles the routing and forwarding of
messages between microservices.

Microservice
type

Some projects group or design their microservices to
fit into certain categories such as functional; infras-
tructural; web server; database; etc.

Documentation
tool

Any resource that presents information about the
microservice architecture you are working on. This
can include text-based documentation; visual graphs;
interactive software; system logs; etc.

We developed this list based on the existing studies into

microservice challenges (Section II) and on feedback from

our pilot tests. A glossary (Table III) was included to reduce

the risk of participants misunderstanding our terminology. In

addition, we gave participants the chance to manually enter

any problems they faced which we had missed.

To reduce the risk of fatigue in participants, we split the

problems into categories [15, Ch.3]. Each topic was given an

individual page in the survey where participants were asked

to rate the impact and frequency of each task. For each topic

a short answer response box was provided for participants to

enter additional problems.

3) Documentation Tools: The final section asked the user

to detail any existing documentation tools they use, and to

describe what their ideal documentation tool would be. Our

definition of documentation tool can be found in Table III.

We used an intentionally broad definition because we did not

want to risk participants failing to write down a tool in case

they were unsure if it met our classification.

D. Data Vetting

As participants have access to sensitive data, Swordfish

Computing required that the responses be vetted to ensure

nothing was inadvertently leaked through the survey. This

process was done by a member of the research team who was

also an employee at Swordfish Computing. The only times this

vetting occurred was in the short-answer response questions

when participants mentioned the name of specific projects

or proprietary internal tools. In these cases the names were

substituted for generic terms like, ’internal documentation

tool’.

E. Data Analysis

1) Problems in Microservice Development: To analyse the

results of the tasks in Table I we visualised the answers in

the form of a horizontally stacked bar chart. In addition we

assigned a numerical value to each answer on the ordinal

impact and frequency scales. The impact scale went from 0

(No Impact) - 4 (Massive Impact). The frequency scale went

from 0 (Never) - 5 (Daily). Using these numerical values,

we could then calculate statistical values such as the mean,

median, and mode.

2) Documentation Tools: For the question, What existing
documentation tools do you use? we went through the re-

sponses and counted every tool mentioned. We then cate-

gorised these tools as: textual; graphical; interface file (such as

an AsyncAPI2 JSON file); and debugging tool. The main rea-

son for this categorisation was to make it easier to compare the

number of participants using textual vs graphical/visual tools,

which may have implications for future visualisation research.

An interface file is technically textual, but we have chosen

to categorise them differently because textual documentation

(i.e. markdown) is designed to be read by humans, whereas

an interface file (i.e. AsyncAPI) is designed to also be read

by machines.

The question, what would be your ideal documentation
tool? was analysed using a thematic analysis approach as

described in [16]. For each response we assigned codes that

represented the facts and opinions within the answer. This

consisted partially of simple codes that directly reflected

the contents of the response. For example the response:

“a tool that is completely automatic and does not require
any work to maintain” would be assigned a code “desires

automatic generation”. However, codes could also represent

higher level inferences, for example “automated, insightful,
visual” implies that the individual sees visualisation as an

insightful method of documentation. After refining the codes,

we searched for recurring themes in the codes and responses,

which we present in Section V-B2.

IV. DEMOGRAPHICS

In this section we have included the demographic infor-

mation of the participants to help characterise our data. The

list of demographic questions is presented in Table II. Some

data cleaning was necessary for the short answer response

questions.

A. Data Cleaning

The ‘years of experience’ answers needed to be converted

into numerical format; any responses such as “2 years” were

changed to “2”. Three responses were in the format “< 1”
or “less than a year”; these were changed to “0”.

Responses to the question, What roles have you had in your
team during microservice development? needed to be cleaned.

For example, software developer, developer, and software
development were all combined into developer. Similarly, tech

2https://www.asyncapi.com/docs

65

Fig. 1: Years worked in software development.

Fig. 2: Years worked in microservice development.

lead and senior/tech lead were combined into tech lead.

Responses that reflected a misunderstanding of the intent

of the question and instead listed tasks that they did were

instead categorised under other. Participants were allowed to

list multiple roles.

Responses to the question What development work do you
do in relation to microservices? did not need to be cleaned

as only one participant submitted an additional task this short

answer question.

B. Experience

Fig. 1 shows a histogram displaying the years of experience

in software development for the participants of the survey. This

shows that the company we surveyed has many junior devel-

opers working with microservices, and hence that our results

will be weighted towards the opinions of junior developers.

The mean for this data is 8.15 years, and the median is 5
years.

Fig. 2 shows a histogram displaying the years of experience

in microservice development for participants of the survey.

This chart is more heavily skewed towards fewer years with 18

(90%) participants reporting ≤ 2 years of experience. Hence,

our results are weighted towards the opinions of developers

inexperienced in microservice development. The mean for this

data is 1.525 years, and the median is 1 year.

C. Roles

Table IV shows the roles that participants reported. Partici-

pants were able to specify multiple roles, explaining why the

TABLE IV: Self-described development roles of participants.

Each participant can hold multiple roles.

Role # of total

Developer 10 0.50
Software Engineer 5 0.25
Tech lead 4 0.20
Junior Software Engineer 3 0.15
Data Scientist 1 0.05
Design and DevOps 1 0.05
Product Manager 1 0.05
Other 2 0.10

TABLE V: Type of development work done by each par-

ticipant. Each participant can select multiple types. Frontend
Development is the sole user-submitted work type.

Type of Work # of total

Backend Implementation (programming) 19 0.95
Documentation 18 0.90
Deployment 16 0.80
API Development 10 0.50
Architecture Design 13 0.65
Orchestration 11 0.55
Frontend Development (user submitted) 1 0.05

total number of responses for all roles exceeds 100%. The

two other responses did not state a role, but instead stated

specific tasks that they completed in their team, for example

one responded with: “implementation of features for multiple
services”, while the other responded: “only minor updates to
existing services”. The first individual later stated they were

involved in backend implementation and documentation and

had less than a year of experience. The other stated they

were involved in backend implementation, documentation,

deployment, and architecture design and had 20 years of

experience in software development.

These ambiguous responses were a fault in our question

design which did not get flagged in our pilot studies. In

hindsight a checkbox+short answer style of question as used

by the next question (What development work do you do in
relation to microservices?) might have been preferable. A list

of team roles could have been sourced by our contact at the

company prior to the survey distribution.

Table V shows the types of development work under-

taken by participants. Backend Implementation was the most

common response with a 95% positive response rate. Docu-

mentation was also very high with a 90% positive response

rate, which implies that the documentation process is the

responsibility of the whole team rather than just specific indi-

viduals. This number is encouraging for us as the widespread

documentation experience increases the value of responses to

our documentation tool questions. It may be notable that of

the two participants who did not report having worked in doc-

umentation, one did not respond to the ’ideal documentation’

question, and the other focused on the accessibility of the

documentation, rather than any aspect of the documentation

66

FrequencyImpact
None Small Moderate Large Massive

4 5 6 3

6 7 5 2

3 3 12 1

8 6 4 2

4 6 8 1 1

1 7 8 4

1 5 8 3 2

1 4 6 6 2

3 2 7 6 1

1 6 4 5 3

2 5 5 6 1

8 4 7 1

1 9 5 4

1 9 6 4

2 5 4 5 2

2 7 7 3

1 4 6 4 4

7 4 4 4

4 9 4 2

2 9 7 2

1 10 7 2

3 9 5 1 2

7 6 5 1

channels - data structures

microservices - incoming services

channels - connected microservices

microservices - outgoing services

microservices - connected channels

microservices - connected brokers

microservices - current instances

microservices - data structures

channels - structure of name

microservices - purpose

channels - purpose

microservices - languages and libraries

microservice faults - causes

hardware - running microservices

brokers - connected brokers

microservices - type

microservice faults - affected services
broker faults - affected services

maintainers - maintained services
microservices - maintainers

microservices - communication type
microservices - current hardware

microservices - shortest path

D2

T1

T4

T2

T3

T5

P3

D1

D3

D4

D5

V3

S3

P2

T6

D6

S1
S2

V2
V1

T8
P1

T7

Never ≤ Yearly Quarterly Monthly Weekly Daily

1 1 2 3 8 4

1 4 3 9 2

2 1 2 3 9 2

1 4 5 7 2

1 1 1 4 9 3

2 5 8 2 1

1 3 5 5 4 2

1 1 3 6 5 3

3 2 3 6 3 2

2 6 7 3 1

3 1 5 6 3 1

1 6 6 6 1

2 5 5 6 1

1 4 4 4 6 1

4 7 4 1 1

2 2 6 6 3

1 1 8 3 4 2

3 9 4 2 1

2 4 3 8 3

1 3 6 5 4 1

1 6 4 5 1 2

2 5 4 3 4 2

7 5 1 4 1

D2

T1

T4
T2

T3

T5
P3

D1

D3

D4

D5

V3
S3

P2

T6

D6

S1

S2

V2

V1

T8

P1

T7

channels - data structures

microservices - incoming services

channels - connected microservices
microservices - outgoing services

microservices - connected channels

microservices - connected brokers
microservices - current instances

microservices - data structures

channels - structure of name

microservices - purpose

channels - purpose

microservices - languages and libraries
microservice faults - causes

hardware - running microservices

brokers - connected brokers

microservices - type

microservice faults - affected services

broker faults - affected services

maintainers - maintained services

microservices - maintainers

microservices - communication type

microservices - current hardware

microservices - shortest path

Fig. 3: The impact and frequency responses for the problems in Table I. Each horizontally stacked bar chart shows the number

of people who selected each available answer for each problem. Each column is sorted by the mean, with the same problem

linked by a line through the centre.

process itself.

V. RESULTS

There were 29 developers who met the requirements to

participate in the survey. In total we received responses from

20 individuals, 69% of the full cohort.

A. Problems in Microservice Development

Fig. 3 contains the results for our list of problems in Table I.

The bar charts have been translated to create a diverging

scale that makes it easier to compare the relative number of

responses above and below the centre. The impact column is

centred on the moderate bar, which represents the middle or

’neutral’ option, while frequency is centred on monthly.

In Fig. 3, the point along the red separating line that the

links cross represents the halfway point between the position

of the problem in both columns. We can use this crossing point

as a primitive measure of the combined impact and frequency

of that problem. Using this measure, links that cross the line

closer to the top of the chart have a higher combined impact

and frequency than links that cross lower in the chart. We

have coloured the links using a blue → yellow colour scale

to signify the order they cross the line.

According to this metric, problem D2 (What is the data
structure of messages in this channel?) had the highest com-

bined impact and frequency. Participant responses indicated

the need to frequently identify the data structure for channels.

Of these, many did so weekly, and all but one response an-

swered that doing so had a moderate or higher impact on their

work. D2 was followed by a cluster of S3 (If this microservice
is not functioning correctly what other microservices could be
the cause?), T1 (What microservices are sending messages
to this microservice?), D1 (What microservices use this data
structure?), and then S1 (If this microservice goes down

what other microservices will be affected?) and T2 (What
microservices are sending messages to this microservice?).

Topology problems, specifically T1–T4 had high frequen-

cies, with nearly 75% of participants selecting monthly,

weekly, or daily. For problems T1, T3, and T4, over 50%

of participants who rated the problem dealt with the issues

weekly or daily.

All of the data & definition problems and scenario prob-

lems had medians of at least 2, meaning at least 50% of

respondents rated them as moderately impactful or greater.

This makes them the most consistently impactful categories

in the survey. Scenario problems were especially impactful,

all three of which had impact means in the top four. In

contrast, development and deployment problems tended to be

less impactful, with most problems showing that ≥ 50% of

respondents thought the problems had small to no impact. The

two exceptions were problem P3 (How many instances of this
microservice are running at any one time?) and V3 (What
languages/libraries does this microservice use?), which had

a more even spread of responses above and below moderate

impact.

The least impactful and frequent problem was T7 (What is
the shortest communication path between two microservices?),

which was rated noticeably lower than any of the other

problems. It was the only problem where the mode was ‘none’

for impact and/or ‘never’ for frequency. More than any of the

other listed problems, it seems like finding the shortest path

between two microservices is not something the participants

found relevant to their work, though even here there were six

people who rated the impact as moderate (5) or large (1), and

5 people who encountered the problem weekly (4) or daily

(1).

These results should be interpreted cautiously due to the

small sample size and relatively large range and standard

67

deviation of responses. The variation in the means and medians

is also relatively small, so we do not wish to place undue

importance on the exact values and orderings of the problems.

TABLE VI: List of additional problems submitted by partici-

pants.

No. Problem

01 Making sure messages are being sent in the correct data
format. (weekly)

02 Development across environments with different network ac-
cess (open; air-gapped). (quarterly)

03 Identifying breaks in a communication chain.
04 Identifying clusters of message brokers.
05 Understanding microservice interfaces.
06 What data flows where and how it is transformed.
07 Identifying bottlenecks in data transformations.
08 Solving connectivity and permission related issues.
09 Will the microservice run/compile on/for specific processor

architectures.
10 What is the status of the microservice? (dependency failures;

degraded nodes; hardware load; etc)
11 Handling varying message bus overhead of maintaining chan-

nels.
12 Debugging and integration testing.
13 Are services stateful and how is state maintained between

restarts?
14 How to keep services running reliably and how to idenitfy

when they are not.
15 Managing consistant units of measurement for values.
16 How to design a microservice that will tollerate bro-

kers/busses/dependencies going offline.

1) Additional development problems: Table VI contains a

list of additional problems identified by participants. Some

of these problems were stated by the same individual, but

no problem was mentioned by multiple individuals. This

may imply that we successfully listed the common problems

faced by microservice developers, but may otherwise be due

to participants’ unwillingness to write more than necessary.

Participants were asked to state the impact and frequency with

their answers. However, only two participants actually did so,

and only the frequency. These two problems have been listed

at the top of Table VI and the frequency has been placed in

brackets.

Many of these problems focus on live runtime information

and debugging, such as problems 03, 08, 10, 12, and 14.

Dynamic information problems are perhaps underrepresented

in our survey. Problem 01 is marked as weekly, making it the

only listed problem that we can be confident the respondent

encounters frequently. This problem is also very similar to

some of the data & definition problems from the main list,

especially D2 (What is the data structure of messages in
this channel?), which was one of the most impactful and

frequent problems we listed. However, problem 01 is focused

on validating, instead of just identifying, the data format.

This list represents problems that participants did not asso-

ciate with any of our survey categories. A future study looking

to build on this research could benefit from incorporating some

of these problems.

B. Documentation Tools

TABLE VII: Documentation tools in use.

Tool # Category

markdown 10 textual
draw.io 7 graphical
internal diagram generation tools 4 graphical
asyncapi 3 interface file
confluence 2 textual
IDE debugger 2 debugging tools
logs 2 debugging tools
MS word 2 textual
asyncapi->markdown converter 2 textual and interface file
comments 1 textual
sphinx 1 textual
latex 1 textual
git diffs 1 debugging tools
notepad 1 textual
files 1 textual
none 1 none

TABLE VIII: Documentation tools reported as being used by

category.

Category #

textual 13
graphical 10
interface file 3
debugging tool 2
none 1

1) Existing Documentation Tools: In total, there were 15

different tools reported by participants. These tools are listed in

Table VII, along with the category the tool fits within. As most

participants listed multiple tools, the total number of responses

for each tool sums to greater than 100%. In total 18 (90%) of

the participants answered this question.

The tool “internal diagram generation tools” is a catch-

all for proprietary tools used by participants that, due to

confidentiality, cannot be specified in detail. One participant

stated that they did not use any documentation tools in spite

of their answer earlier in the survey that they participated in

documentation work. It is possible that this person creates

documentation, but does not use it. IDE debuggers and log files

did not receive many responses despite meeting our definition

of documentation tool. It is possible that most participants

simply did not consider debuggers or system logs to be

documentation tools despite our definition.

Table VIII lists the number of responses for each cate-

gory. These response numbers are often less than the sum

of responses for each individual tool in that category, as

many participants listed multiple tools from the same category

in their answer. Grouping responses in this way shows us

that over 50% of respondents utilised textual or graphical

documentation, with textual documentation being the most

common with 13 (72%) responses, while graphical had 10

(56%) responses. Markdown3 was the most common textual

documentation tool, and the most common tool in general,

with 10 (56%) responses. Draw.io,4 a manual tool for drawing

3https://daringfireball.net/projects/markdown/
4https://www.diagrams.net/

68

graphs, was the most common graphical tool, and second most

common tool overall, with seven (39%) responses.

Participants seem to predominantly use manual tools for

creating documentation (markdown and draw.io), however

there were two participants who mentioned a tool that converts

asyncAPI files to markdown, and four participants spoke of an

internal tool that could generate graphs. It could be that these

tools are immature and therefore do not see wide adoption

within the company. Alternatively, it could be these tools

are managed by very small number of individuals, but the

outputs are distributed to other participants as markdown or

confluence documents, and who are hence unaware of the

source. However, given that 90% of participants answered

that they were involved in documentation work (Table V), the

majority would presumably still do manual documentation.

2) Ideal Documentation Tools: For this question we used

thematic analysis methods [16] to identify three common

themes in the responses. Unfortunately, only 13 of the par-

ticipants elected to answer this question.

Only one of the 13 responses did not fit into any of

these three themes. This individual stated they were unsure

what their “single” ideal tool would be, as “its always a
balance whether documenting for developers or end users”.

The survey question could perhaps have been improved to

clarify to participants that they were allowed to specify various

behaviours even if, in practice, these behaviours would not be

part of the same tool.

Theme 1: Visualisations and interactivity refers to the desire

for a new tool for displaying information in the form of

visualisations, or some other interactive format. We saw this

theme in six (46%) of our responses.

Responses with this theme can generally be split into those

which specified the type of data they wanted represented, and

those that specified how the data should be represented.

Visualisations were the most common way of representing

data, mentioned directly by three responses. One response

went into particular detail about why they wanted visualisa-

tions: “Any tool that can automate manual work, and enable
easy visualisation of a repository/service gets my vote as
visualisation helps me get up to speed with existing services
and work out how they work, where data is flowing, and
what/where I might need to check when debugging.” Another

stated that: “a visualisation tool similar to those used in
manufacturing industries to see the status of the plant, could
be beneficial for large scale microservice deployment”. The

third simply said they wished for their ideal tool to be:

“automated, insightful, visual”.

Well-known visualisations, such as node-link diagrams, can

be an effective way to visualise the connections and topology

of a network [5]. The high frequency of topology problems that

respondents reported (Fig. 3) provides a potential explanation

for why several saw visualisation as part of their ideal tool.

Other respondents did not specify visualisation, but still

implied a desire for a GUI tool for displaying information. One

participant responded with: “a web based interactive tool that
can search for services, check that their interfaces align, and

allow one to build a deployment skeleton for a series of brokers
and services”. While another stated that: “A dashboard which
can tap into a microservice architecture deployment and
present handy information such as services failing over, using
high memory, system logs for each service, attachable shells
for debugging, accompanied by plugins which support looking
into mqtt messages on a network (topic, sender & receiver of
messages, message content)”.

Theme 2: Minimising effort and the desire for automation
refers to the desire for a tool to be ‘easy to use’, and the

perception that automation would help to accomplish this goal.

This can be found in six (46%) of our responses.

Most participants did not specify the level of automation

they desired, simply that the process should be “easy to use”
and “enable easy visualisation”. One expressed a desire for

the tool to completely automate the process of automation: “[a
tool that] scans all code and generates all documentation with
zero effort from the developer”. Another was more measured,

conceding that the process would be automatic only after the

initial setup: “a tool that is completely automatic and does not
require any work to maintain once it understands my project
(initial config)”.

These responses imply that most participants that discussed

automation primarily care about reducing the burden of docu-

mentation and do not have a strong preference for the specific

approach used. Hence, participants see automation as a way,

perhaps even the way, to reduce their documentation burden.

Theme 3: Documentation should be tightly coupled with
code refers to the idea that documentation should be stored

with, written as, or generated from, the source code of a

microservice. We saw this theme across four (30%) of our

responses.

This concept is not new; documentation approaches such

as documentation as code [17], and continuous documenta-
tion [18] promote the coupling of documentation with code.

The claimed benefits of these approaches are that they help to

keep documentation up-to-date, allow developers to use their

familiar development tools for documentation, and separates

the content of the documentation from the presentation [18].

One response directly stated a desire for continuous doc-

umentation principles, saying that it: “would be great if [the
automated documentation tool] can be automatically executed
as part of the CI/CD pipeline so that documents can also be
reviewed, approved and in lockstep with the software release”.

However, most of the responses did not express interest in

the full benefits of documentation as code or continuous
documentation, instead focusing on a subset of benefits. One

response simply expressed the desire for documentation to be

stored in the same location as the code: “repository READMEs
is probably the most accessible as its it [sic] usually in the
same repository as the microservice’s source code”. Another

response highlighted version control and document generation:

“[documentation should be] created as plaintext (like mark-
down), stored in version control with the code so it’s easy
to update and can generate good looking static documents”.

These developers may only care about these features, or they

69

M01

M02

M04

M06

M07

M14

M16

M17

M06

M22

15
07

11

14

05

04

Fig. 4: A network visualisation that shows the connections

between microservices (unfilled nodes) and channels (filled

nodes). Uses edge highlighting to display the reachability of

nodes to (red) and from (blue) the selected (green) node.

Unreachable nodes have been blurred. For grayscale reference:

the three nodes on the lower right are red, the upper nodes are

blue, and the one linking the red and blue is green.

may be unfamiliar with other documentation as code and

continuous documentation concepts.

There is also overlap with theme 2 (minimising effort and

the desire for automation) when it comes to automatically

generating documentation from code in order to reduce the

burden on developers. This can involve converting a plain text

artifact like markdown into a rich text document, as shown

in one of the responses above. Another respondent, whose

response also fell into theme 1, proposes going a step further

and “[scan] all code and [generate] all documentation with
zero effort from the developer”, which removes the separation

between code and documentation entirely.

VI. IMPLICATIONS FOR VISUALISATION

Half of the participants reported that they use graphical vi-

sualisation tools, showing that developers are already actively

choosing to use visual forms of documentation. The common

theme of visualisations and interactivity further supports the

idea that developers want to use visualisations to support

microservice development. This theme also shows an interest

in interactive features, such as the ability to search and filter

microservices, and to perform monitoring and debugging tasks.

The theme of minimising effort and the desire for automation
shows that any attempt to visualise microservices should

automate as much of the visualisation process as possible.

If we also take into account theme 3, documentation should
be tightly coupled with code, then the ideal microservice

visualisation would be automatically generated simply by

scanning the source code.

The topology problems that participants encounter most fre-

quently involve identifying the connections between adjacent

microservices and channels. This information is the kind that

network visualisations are well suited to presenting [5], which

supports their use with microservice architectures. However,

most of the high frequency topology questions related to

connections between adjacent nodes rather than paths through

the topology, hence an adjacency matrix may be better suited

for these tasks than a node-link diagram. The cohort we

surveyed primarily develop microservice architectures that use

publish/subscribe communication. However, they still reported

frequently needing to identify the connections between mi-

croservices, instead of just connections to channels. This im-

plies that network visualisations without channel information

would still be useful in publish/subscribe architectures where

no direct communication between microservices takes place.

Microservice fault problems were among the most impact-

ful, both identifying the cause of a fault, and identifying which

other microservices a fault could affect. Visualisations that

support solving these issues would be useful to developers.

Zhou et al. [11] found that trace visualisations are effective

at helping to find the source of faults, but we are not aware

of research into visualising the services affected by a fault.

Network visualisations could be used to address this issue by

calculating and highlighting the reachability of microservices

from the faulty service. In contrast, researchers may not want

to devote significant resources into visualising the developers

or maintainers of microservices, nor on providing tools to find

the shortest path between services. Both of these problems had

among the lowest impact and frequencies in our results.

The data formats used by microservices and channels were

one of the most frequent and impactful problems in the survey.

However, we are not aware of any attempts to incorporate

this information into a microservice visualisation. Finding

effective ways to integrate data formats into network and

trace visualisations could be a valuable avenue of research.

Integrating live data such as hardware load and outages would

also address problems and requests of developers. This is

already a common feature among existing academic [12], [14]

and commercial tools56, so researchers have existing designs

they can use as inspiration.

Fig. 4 is an example we created of a visualisation that

attempts to address some of these implications. It is a net-

work diagram that shows both microservices and channels as

different types of nodes, and uses tapered lines as directed

edges [19]. It uses highlighting to visualise the reachability

of nodes to and from the selected node. This visualisation

addresses the frequent topology problems and the impact-

ful fault problems. However, further research is required to

evaluate the effectiveness of these visual encodings, as well

as to investigate other types of visualisations, including non-

network visualisations.

5https://www.weave.works/oss/scope/
6https://www.dynatrace.com/platform/applications-microservices-monitoring/

70

VII. LIMITATIONS AND THREATS TO VALIDITY

Because the participants of this survey all came from a sin-

gle company, the results of this survey cannot be used to make

generalisations about the wider population of microservice

developers. This, combined with the high standard deviations

for the problem questions, means we cannot show a high

degree of statistical confidence in our results. However, all

of our participants have experience developing practical, real-

world microservice applications, and the types of problems

we asked are general enough to be common across the

industry. Our results also showed parallels with the related

studies in Section II, such as the impact of system faults, and

challenges related to the connections and interactions between

microservices.

The demographics for our survey showed that most of our

participants had ≤ 2 years of experience in microservice

development, and half of our participants had ≤ 3 years of

experience in software development. Hence, our results are

biased towards the experience of junior software developers

over senior developers. However, as a recently defined soft-

ware architecture, this level of experience may be common for

microservice projects. Additionally, our participants work on

microservice projects that primarily use a publish/subscribe

messaging paradigm. Developers working on other types of

microservice architecture may have a different experience with

these problems.

There may be frequent and/or impactful problems that were

not included in our problem list. To mitigate this we performed

a pilot study with an experienced team lead at Swordfish

Computing, but problems may still have been missed. To

address the issue, we gave participants the option to manually

enter their own problems. The lack of any duplicate problems

submitted by participants implies that there were no major

problems that we missed, though the possibility does remain

that participants were averse to the long-answer question

format.

Our results for existing documentation tools may be threat-

ened by participants’ definition of ‘documentation tool’. While

our pilot tester did not flag the definition as ambiguous, it may

have been a mistake considering how few stated they used

IDE debuggers and logs. It is also possible that some of the

less common documentation tools such as MS Word or git

diffs are used by more participants, who simply forgot while

completing the survey. However, this does not affect our data

for other tools, such as Markdown and Draw.io, nor does it

affect the overall number of participants who reported using

textual vs graphical documentation. It is also possible that

some textual documentation like Markdown could contain em-

bedded diagrams, which could lead to an under-representation

of graphical tool use. However, this would not impact our

conclusion that both textual and graphical tools are widely

used by participants.

Our thematic analysis of participants’ ideal documentation

tools are limited by the low number of participants who chose

to answer the question, and by the short nature of many

responses. Our inability to ask follow-up questions means our

thematic analysis may not reflect the full thoughts and beliefs

of the participants. To mitigate this we chose simple themes

that would be difficult to misinterpret.

VIII. CONCLUSION

This study has surveyed a small group of microservice

developers at a single company to identify the impact and

frequency of problems they face during their development

work, as well as the documentation tools they currently use and

would like to use in the future. The findings suggest that for the

survey participants, the most impactful and frequent problems

faced relate to: the data structures used by microservices

and channels; the communications between microservices and

channels; and the causes and effects of service faults. Ad-

ditionally, our findings on documentation tools suggest that

textual and graphical documentation tools are both widely used

by participants, with markdown and draw.io being the most

commonly used tools. Our findings on ideal documentation

tools showed several common themes: participants want to

minimise the effort to document their code; they want the

documentation to be tightly coupled with code; and they are

interested in visualisation and interactivity.

The results of this study can be used to inform the design

of new microservice visualisations that better focus on the

problems faced by developers. More generally, the results

can be used to guide future research that seeks to develop

solutions to microservice development challenges. Based on

the results, network and trace visualisations would address

the most impactful and frequent issues faced by microservice

developers, but our results are applicable to any type of

visualisation. Visualisations would also be made more valuable

if data structure information could be integrated into the

visual data. Additionally, we find that a developer’s ideal

visualisation would be interactive and automatically generated

from the source code of the microservice.

REFERENCES

[1] L. Baresi and M. Garriga, “Microservices: The Evolution and
Extinction of Web Services?” A. Bucchiarone, N. Dragoni, S. Dustdar,
P. Lago, M. Mazzara, V. Rivera, and A. Sadovykh, Eds. Cham:
Springer International Publishing, 2020, pp. 3–28. [Online]. Available:
https://doi.org/10.1007/978-3-030-31646-4_1

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, Today, and
Tomorrow,” M. Mazzara and B. Meyer, Eds. Cham: Springer
International Publishing, 2017, pp. 195–216. [Online]. Available:
https://doi.org/10.1007/978-3-319-67425-4_12

[3] C. M. Aderaldo, N. C. Mendonça, C. Pahl, and P. Jamshidi,
“Benchmark Requirements for Microservices Architecture Research,”
in 2017 IEEE/ACM 1st International Workshop on Establishing
the Community-Wide Infrastructure for Architecture-Based Software
Engineering (ECASE), May 2017, pp. 8–13. [Online]. Available:
https://doi.org/10.1109/ECASE.2017.4

[4] S. Silva, J. Correia, A. Bento, F. Araujo, and R. Barbosa, “μ Viz:
Visualization of Microservices,” in 2021 25th International Conference
Information Visualisation (IV), Jul. 2021, pp. 120–128, iSSN: 2375-
0138. [Online]. Available: https://doi.org/10.1109/IV53921.2021.00028

[5] T. Munzner, Visualization Analysis and Design, 1st ed. Boca Raton:
A K Peters/CRC Press, Dec. 2014.

71

[6] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and
D. Taibi, “Microservice Architecture Reconstruction and Visualization
Techniques: A Review,” in 2022 IEEE International Conference
on Service-Oriented System Engineering (SOSE), Aug. 2022, pp.
39–48, iSSN: 2642-6587. [Online]. Available: https://doi.org/10.1109/
SOSE55356.2022.00011

[7] I. K. Aksakalli, T. Çelik, A. B. Can, and B. Tekinerdoğan,
“Deployment and communication patterns in microservice architectures:
A systematic literature review,” Journal of Systems and Software,
vol. 180, no. 111014, Oct. 2021. [Online]. Available: https:
//doi.org/10.1016/j.jss.2021.111014

[8] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo,
“Microservices in Practice: A Survey Study,” Tech. Rep., Aug.
2018, arXiv:1808.04836 [cs] type: article. [Online]. Available: https:
//doi.org/10.48550/arXiv.1808.04836

[9] J. Ghofrani and D. Lübke, “Challenges of Microservices Architecture:
A Survey on the State of the Practice,” ZEUS, pp. 1–8, 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:4803408

[10] S. Baškarada, V. Nguyen, and A. Koronios, “Architecting Microservices:
Practical Opportunities and Challenges,” Journal of Computer
Information Systems, vol. 60, no. 5, pp. 428–436, 2020. [Online].
Available: https://doi.org/10.1080/08874417.2018.1520056

[11] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding,
“Fault Analysis and Debugging of Microservice Systems: Industrial
Survey, Benchmark System, and Empirical Study,” IEEE Transactions
on Software Engineering, vol. 47, no. 2, pp. 243–260, Feb. 2021.
[Online]. Available: https://doi.org/10.1109/TSE.2018.2887384

[12] B. Mayer and R. Weinreich, “A Dashboard for Microservice Monitoring
and Management,” in 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), Apr. 2017, pp. 66–69. [Online].

Available: https://doi.org/10.1109/ICSAW.2017.44
[13] T. Engel, M. Langermeier, B. Bauer, and A. Hofmann, “Evaluation

of Microservice Architectures: A Metric and Tool-Based Approach,”
in Information Systems in the Big Data Era, ser. Lecture Notes in
Business Information Processing, J. Mendling and H. Mouratidis, Eds.
Cham: Springer International Publishing, 2018, pp. 74–89. [Online].
Available: https://doi.org/10.1007/978-3-319-92901-9_8

[14] M. Frisell, “Information visualization of microservice architecture
relations and system monitoring : A case study on the microservices of
a digital rights management company - an observability perspective,”
Master’s thesis, Royal Institute of Technology, Stockholm, Sweden,
2018. [Online]. Available: http://www.diva-portal.org/smash/record.jsf?
pid=diva2:1240044&dswid=-8254

[15] A. G. Fink, How To Conduct Surveys A Step-By-Step Guide, 6th ed.
Sage Publishing, 2017.

[16] V. Braun and V. Clarke, “Thematic analysis.”APA handbook of
research methods in psychology, Vol 2: Research designs: Quantitative,
qualitative, neuropsychological, and biological., p. 57, 2012. [Online].
Available: https://doi.org/10.1037/13620-004

[17] E. Holscher, “Docs as Code,” 2023. [Online]. Available: https:
//www.writethedocs.org/guide/docs-as-code/

[18] B. Andel, “Continuous Documentation: Automating Document
Preparation with your DevSecOps Pipeline,” in2022 IEEE 29th
Annual Software Technology Conference (STC), Oct. 2022, pp. 156–
165. [Online]. Available: https://doi.org/10.1109/STC55697.2022.00029

[19] D. Holten and J. J. van Wijk, “A user study on visualizing directed
edges in graphs,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’09. New York, NY, USA:
Association for Computing Machinery, Apr. 2009, pp. 2299–2308.
[Online]. Available: https://doi.org/10.1145/1518701.1519054

72

	Problems in microservice development: supporting visualisation
	Citation

	Problems in Microservice Development: Supporting Visualisation

