
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2020

POSIT: Simultaneously tagging natural and programming POSIT: Simultaneously tagging natural and programming

languages languages

Profir-Petru PÂRȚACHI

Santanu DASH

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Earl T. BARR

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
PÂRȚACHI, Profir-Petru; DASH, Santanu; TREUDE, Christoph; and BARR, Earl T.. POSIT: Simultaneously
tagging natural and programming languages. (2020). Proceedings of the 42nd International Conference
on Software Engineering, Seoul, South Korea, 2020, May 23-29. 1348-1358.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8907

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8907&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8907&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8907&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8907&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

POSIT: Simultaneously Tagging
Natural and Programming Languages

Profir-Petru Pârt,achi
profir-petru.partachi.16@ucl.ac.uk

University College London
London, United Kingdom

Santanu Kumar Dash
s.dash@surrey.ac.uk
University of Surrey

Guildford, Surrey, United Kingdom

Christoph Treude
christoph.treude@adelaide.edu.au

University of Adelaide
Adelaide, South Australia, Australia

Earl T. Barr
e.barr@ucl.ac.uk

University College London
London, United Kingdom

ABSTRACT

Software developers use a mix of source code and natural language
text to communicate with each other: Stack Overflow andDeveloper
mailing lists abound with this mixed text. Tagging this mixed text is
essential for making progress on two seminal software engineering
problems — traceability, and reuse via precise extraction of code
snippets from mixed text. In this paper, we borrow code-switching
techniques from Natural Language Processing and adapt them to
apply to mixed text to solve two problems: language identification
and token tagging. Our technique, POSIT, simultaneously provides
abstract syntax tree tags for source code tokens, part-of-speech tags
for natural language words, and predicts the source language of a
token in mixed text. To realize POSIT, we trained a biLSTM network
with a Conditional Random Field output layer using abstract syntax
tree tags from the CLANG compiler and part-of-speech tags from
the Standard Stanford part-of-speech tagger. POSIT improves the
state-of-the-art on language identification by 10.6% and PoS/AST
tagging by 23.7% in accuracy.

CCS CONCEPTS

• General and reference→ General conference proceedings;
• Software and its engineering → Documentation; Formal

language definitions.
KEYWORDS

part-of-speech Tagging, Mixed-Code, Code-Switching, Language
Identification

ACM Reference Format:

Profir-Petru Pârt,achi, Santanu Kumar Dash, Christoph Treude, and Earl
T. Barr. 2020. POSIT: Simultaneously Tagging Natural and Programming
Languages . In 42nd International Conference on Software Engineering (ICSE
’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3377811.3380440

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380440

1 INTRODUCTION

Programmers often mix natural language and code when talking
about the source code. Such mixed text is commonly found in mail-
ing lists, documentation, bug discussions, and online fora such as
Stack Overflow. Searching andmining mixed text is inevitable when
tackling seminal software engineering problems, like traceability
and code reuse. Most development tools are monolingual or work at
a level of abstraction that does not exploit language-specific infor-
mation. Few tools directly handle mixed text because the differences
between natural languages and formal languages call for different
techniques and tools. Disentangling the languages in mixed text,
while simultaneously accounting for cross language interactions,
is key to exploiting mixed text: it will lay the foundation for new
tools that directly handle mixed text and enable the use of exist-
ing monolingual tools on pure text snippets extracted from mixed
text. Mixed-text-aware tooling will help bind specifications to their
implementation or help link bug reports to code.

Themixed text tagging problem is the task of tagging each token
in a text that mixes at least one natural language with several formal
languages. It has two subproblems: identifying a token’s origin
language (language tagging) and identifying the token’s part of
speech (PoS) or its abstract syntax tree (AST) tag (PoS/AST tagging).
A token may have multiple PoS/AST tags. In the sentence “I foo-ed
the String ‘Bar’.”, ‘foo’ is a verb in English and a method name
(of an object of type String). Therefore, PoS/AST tagging involves
building a map that pairs a language to the token’s PoS/AST node
in that language, for each language operative over that token.

We present POSIT to solve the 1+1 mixed text tagging problem:
POSIT distinguishes a Natural language (English) from program-
ming language snippets and tags each text or code snippet under its
language’s grammar. To this end, POSIT jointly solves both the lan-
guage segmentation and tagging subproblems. POSIT employs tech-
niques from Natural Language Processing (NLP) for code-switched1
text. Code-switching occurs when multilingual individuals simul-
taneously use two (or more) languages. This happens when they
want to use the semantics of the embedded language in the host
language. Within the NLP space, such mixed text data tends to
be bi- and rarely tri-lingual. Unique to our setting is, as our data
taught us, the mixing of more than three languages, one natural
1The fact that the NLP literature uses the word “code” in their name for the problem
of handling text that mixes multiple natural languages is unfortunate in our context.
They mean code in the sense of coding theory.

https://doi.org/10.1145/3377811.3380440
https://doi.org/10.1145/3377811.3380440

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Profir-Petru Pârt,achi, Santanu Kumar Dash, Christoph Treude, and Earl T. Barr

and often many formal ones — in our corpus, many posts combine
a programming language, file paths, diffs, JSON, and URLs.

To validate POSIT, we compare it to Ponzanelli et al.’s pioneer-
ing work StORMeD [22], the first context-free approach for mixed
text. They use an island grammar to parse Java, JSON and XML
snippets embedded within English. As English is relegated to water,
StORMeD neglects natural language, builds ASTs for its islands,
then augments them with natural language snippets to create het-
erogenous ASTs. POSIT tags both natural languages and formal
languages, but does not build trees. Both techniques identify lan-
guage shifts and both tools label code snippets with their AST labels.
POSIT is designed from the ground up to handle untagged mixed
text after training. StORMeD looks for tags and resorts to heuristics
in their absence. On the language identification task, StORMeD
achieves an accuracy of 71%; on the same dataset, POSIT achieves
81.6%. To compare StORMeD and POSIT on the PoS/AST tagging
task, we extracted AST tags from the StORMeD output. Despite
not being designed for this task, StORMeD establishes the existing
state of the art and achieves 61.9% against POSIT’s 85.6%. POSIT
outperforms StORMeD here, in part, because it finds many more
small code snippets in mixed text. In short, POSIT advances the
state-of-the-art on mixed text tagging.

POSIT is not restricted to Java. On the entire Stack Overflow
corpus (Java and non-Java posts), POSIT achieves an accuracy of
98.7% for language identification and 96.4% for PoS or AST tag-
ging. A manual examination of POSIT’s output on Stack Over-
flow posts containing 3,233 tokens showed performance consistent
with POSIT’s results on the evaluation set: 95.1% accuracy on lan-
guage tagging and 93.7% on PoS/AST tagging. To assess whether
POSIT generalises beyond its two training corpora, we manually
validated it on e-mails from the Linux Kernel mailing list. Here,
POSIT achieved 76.6% accuracy on language tagging and 76.5% on
PoS/AST tagging.

POSIT is directly applicable to downstream applications. First,
its language identification achieves 95% balanced accuracy when
predicting missed code labels and could be the basis of a tool that au-
tomatically validates posts before submission. Second, TaskNav [29]
is a tool that extracts mixed text for development tasks. POSIT’s
language identification and PoS/AST tagging enables TaskNav to
extract more than two new, reasonable tasks per document: on a
corpus of 30 LKML e-mails, it extracts 97 new tasks, 65 of which
are reasonable.

Our main contributions follow:
• We have built the first corpus for mixed text that is tagged
at token granularity for English and C/C++.

• We present POSIT, an NLP-based code-switching approach
for the mixed text tagging problem;

• POSIT can directly improve downstream applications: it can
improve the code tagging of Stack Overflow posts and it
improves TaskNav, a task extractor.

We make our implementation and the code-comment corpus
used for evaluation available at https://github.com/PPPI/POSIT.

2 MOTIVATING EXAMPLE

The mix of source code and natural language in the various doc-
uments produced and consumed by software developers presents

On Fri, 24 Aug 2018 02:16:12 +0900 XXX <xxx@xxx.xxx>
wrote:
[...]
Looking at the change that broke this we have:
<-diff removed for brevity->
Where "real" was added as a parameter to
__copy_instruction. Note that we pass in "dest
+ len" but not "real + len" as you patch fixes.
__copy_instruction was changed by the bad commit
with:
<-diff removed for brevity->
[...]

Figure 1: Example e-mail snippet from the Linux Kernel

mailing list. It discusses a patch that fixes a kernel freeze.

Here the fix is performed by updating the RIP address by

adding len to the real value during the copying loop. Code

tokens are labelled by the authors using the patches as con-

text and rendered using monospace.

WhereADV "real"
string_literal
∗ wasVERB

addedVERB asADP aDET parameterNOUN toADP

__copy_instructionmethod_name
∗ .. NoteNOUN thatADP

wePRON passVERB inADP “dest + len”string_literal∗
butCONJ notADV “real + len”

string_literal
∗ asADP youPRON

patchVERB fixesNOUN .. __copy_instructionmethod_name
∗

wasVERB changedVERB byADP theDET badADJ
commitNOUN withADP :.

Figure 2: POSIT’s output fromwhichTaskNav++ extracts the

tasks (pass in “dest + len”) and (pass in “real + len”).We show

the PoS/AST tags as superscript and mark tokens with ∗ if

they are identified as code. POSIT spots the two mention-

roles of code tokens as ‘string_literal’s.

many challenges to tools that aim to help developers make sense of
these documents automatically. An example is TaskNav [29], a tool
that supports task-based navigation of software documentation by
automatically extracting task phrases from a documentation corpus
and by surfacing these task phrases in an interactive auto-complete
interface. For the extraction of task phrases, TaskNav relies on
grammatical dependencies between tokens in software documenta-
tion that, in turn, relies on correct parsing of the underlying text. To
handle the unique characteristics of software documentation caused
by the mix of code and natural language, the TaskNav developers
hand-crafted a number of regular expressions to detect code tokens
as well as a number of heuristics for sentence completion, such as
adding “This method” at the beginning of sentences with missing
subject. These heuristics are specific to a programming language
(Python in TaskNav’s case) and a particular kind of document, such
as API documentation dominated by method descriptions.

https://github.com/PPPI/POSIT

POSIT: Simultaneously Tagging

Natural and Programming Languages ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

POSIT has the potential to augment tools such as TaskNav to
reliably extract task phrases from any document that mixes code
and natural language. As an example, in Figure 1, we can see an
e-mail excerpt from the LKML2. TaskNav only manages to extract
trivial task phrases from this excerpt (e.g., “patch fixes”) and misses
task phrases related to the code tokens of dest, real, and len
due to incorrect parsing of the sentence beginning with “Note
that ...”. After augmenting TaskNav with POSIT, the new version,
which we call TaskNav++, manages to extract two additional task
phrases: (pass in “dest + len”) and (pass in “real + len”); we present
POSIT’s output on this sentence in Figure 2. These additional task
phrases extracted with the help of POSIT will help developers find
resources relevant to the tasks they are working on, e.g., when they
are searching for resources explaining which parameters to use in
which scenario. We discuss the performance of TaskNav++ in more
detail in Section 6.2.

3 MIXED TEXT TAGGING

Tags are the non-terminals that produce terminals in a language’s
grammar. Given mixed text with 𝑘 natural languages and 𝑙 formal
languages, let a token’s tag map bind the token to a tag for each of
the 𝑘 + 𝑙 languages. We consider a formal language to be one which,
to a first approximation, has a context-free grammar. The mixed
text tagging problem is then the problem of building a token’s tag
map. For example, in the sentence, “’lieben’ means love in German”,
’lieben’ is a subject in the frame language English and a verb in
German. Moving to a coding example, in a sentence such as “I foo-
ed the String ’Bar’.”, we observe ’foo’ to be a verb in English and a
method name (of an object of type String).

A general solution produces a list of pairs: part-of-speech tags for
each of the 𝑘 natural languages together with the natural language
for which we have the tag, and AST tags for each of the 𝑙 formal
languages together with the language within which we have the
AST tag. We also consider two special tags Ω and 𝜖 that are fresh
relative to the set of all tags within all natural and formal languages.
We use 𝜖 to indicate that a particular language has no candidate tag,
while Ω is paired with the origin language, answering the first task
of our problem. In the first example above, ’lieben”s tag map is [(Ω,
De), (Verb, De), (Noun, En), (𝜖 , C)], if we consider English, German
and C. In the code example, ’foo’s’ tag map is [(Ω, C), (𝜖 , De), (Verb,
En), (method_name, C)]. In multilingual scenarios, a token might
have a tag candidate for every language.

The mixed text tagging problem is context-sensitive. We argue
below that determining the token’s origin language is context-
sensitive for a single token code-switch. The proof rests on a series
of definitions from linguistics which we state next. To bootstrap, a
morpheme is an atomic unit of meaning in a language. Morphemes
differ from words in that they may or may not be free, or stand
alone. We source these definitions from Poplack [24].

“Code-switching is the alternation of two languages in a single dis-
course, sentence or constituent. . . . [deletia] . . . [It] was characterised
according the degree of integration of items from one language (𝐿1)
to the phonological, morphological, and syntactic patterns of the
other (𝐿2)” [24, §2 ¶2]. We use 𝐿1 to refer to the frame language and

2https://lkml.org/lkml/2018/8/24/19

𝐿2 to the embedded one. Further, context-switching has two restric-
tions on when it may occur. It can only occur after free morphemes.
The second restriction is that code-switching occurs at points where
juxtapositions between 𝐿1 and 𝐿2 do not violate the syntactic rules
of either language. Code-switching allows integrating items from
𝐿2 into 𝐿1 along any one of phonological, morphological, or syntac-
tic axis, but not all three simultaneously. This last case is considered
to be mono-lingual 𝐿1.

Adaptation occurs when an item from 𝐿2 changes when used in
𝐿1 to obey 𝐿1’s rules. Adaptation has three forms: morphological,
phonological, and syntactical. Morphological adaptation represents
modifying the spelling of 𝐿2 items to fit 𝐿1 patterns. Phonological
adaptation represents changing the pronunciation of an 𝐿2 item in
an 𝐿1 context. Syntactic adaptation represents modifying 𝐿2 items
embedded in a discourse, sentence, or constituent in 𝐿1 to obey 𝐿1’s
syntax. Finally, 𝐿2 items can be used in 𝐿1 without adaptation. In
this case, these items often reference the code-entity by name and
are used as a ‘noun’ in 𝐿1.

We now consider three cases: (I) 𝐿2 items are morphologically
adapted to 𝐿1, (II) 𝐿2 items are syntactically adapted to 𝐿1, and (III)
no adaptation of 𝐿2 items occurs before their use in 𝐿1. We do not
consider phonological adaptation of 𝐿2 items into 𝐿1 as that is not
observable in text.

Case I: Morphological Adaptation. Consider using affixation to
convert foo/ class to foo−ify/verb to denote the action of con-
verting to the class foo. In this case, foo−ify behaves as a bona
fide word in 𝐿1. Such examples obey the free-morpheme restric-
tion mentioned above. This enables it to be a separate, stand-alone
morpheme/item within 𝐿1. The juxtaposition restriction, further
ensures that this parses within 𝐿1. Lacking a context to indicate
foo’s origin, a parsers would need to assume that it is from 𝐿1.

Case II: Syntactic Adaptation. This case manifests similarly to
morphological adaptation, such as tense agreement, or, potentially,
as word order restrictions. If spelling changes do occur, this case
reprises the morphological adaptation case. If the only adaptation
is word order, then the task becomes spotting a 𝐿2 token that has
stayed unchanged in a 𝐿1 sentence or constituent. This is impossible
in general if the two language’s vocabularies overlap.

Case III: No Adaptation. If no adaptation occurs, then the for-
mal token occurs in 𝐿1. This reduces to the second subcase of the
syntactic adaptation case.

4 POSIT

POSIT starts from the biLSTM-CRF model presented in Huang
et al. [14], augments it to have a character-level encoding as seen
in Winata et al. [32] and adds two learning targets as in Soto and
Hirschberg [26]. Figure 4 presents the resulting network. The net-
work architecture employed by POSIT is capable of learning to
provide a language tag for any 𝑘 + 𝑙 languages considered. This
model is capable of considering the context in the input using the
LSTMs, it can bias its subsequence choices as it predicts tags based
on the predictions made thus far, and the character-level encoding
allows it to learn token morphology features beyond those that we
may expose to it directly as a feature vector.

https://lkml.org/lkml/2018/8/24/19

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Profir-Petru Pârt,achi, Santanu Kumar Dash, Christoph Treude, and Earl T. Barr

(a) Character-level embeddings

(b) Feature vector embeddings

Figure 3: Computation of embeddings at the character level and from coding naming and spelling convention features. In

the bottom most layer, the circles represent an embedding operation on characters or features to a high-dimensional space.

The middle layer represents the forward LSTM and the top most layer — the backward LSTM. At the word level, character

and feature vector embeddings are represented by the concatenation of the final states of the forward and backward LSTMs

represented by [·; ·] in the diagrams above.

So for the values x = 2; y = 1; z = 0, x or y or z would resolve to 2

A
D
V

A
D
P

D
ET

N
O
U
N

ra
w
_i
d
en
ti
fi
er

eq
u
al

n
u
m
er
ic
_c
o
n
st
an
t

. ra
w
_i
d
en
ti
fi
er

eq
u
al

n
u
m
er
ic
_c
o
n
st
an
t

. ra
w
_i
d
en
ti
fi
er

eq
u
al

n
u
m
er
ic
_c
o
n
st
an
t

So fo
r

th
e

va
lu
es x = 2 ; y = 1 ; z = 0

forward

backward

Figure 4: A representation of the neural network used for

predicting English PoS tags together with compiler derived

AST tags. The shaded cells represent LSTM cells, arrows rep-

resent the flow of information in the network. The top layer

represents a linear Conditional Random Field (CRF) and the

transition probabilities are used together with a Viterbi de-

code to obtain the final output. The first layer is represented

by Equation (1) and converts the tokenised sentences into

vector representations.

Feature Space. We rely on source code attributes to separate
code from natural language while tagging both simultaneously. We
derive vector embeddings for individual characters to model subtle
variations in how natural language is used within source code
snippets. Examples of such variations are numbered variables such
as i1 or i2 that often index axes during multi-dimensional array
operations. Another such variation arises in the naming of loop
control variables where the iterator could be referred to in diverse,
but related ways, as i , it or iter . These variations create out-of-
vocabulary (OOV) words which inhibit modelling of the mixed text.
The confounding effects of spelling mistakes and inconsistencies
in the NLP literature have been independently observed by Winata
et al. [32]. They proposed a bilingual character bidirectional RNN to

model OOV words. POSIT uses this approach to capture character
level information and address diversity in identifier names.

Additionally, we consider the structural morphology of the to-
kens. Code tokens are represented differently to natural language
tokens. This is due to coding conventions in naming variables. We
utilise these norms in developing a representation for the token.
Specifically, we encode common conventions and spelling features
into a feature vector. We record if the token is: (1) UPPER CASE, (2)
Title Case, (3) lower case, (4) CamelCase, (5) snake_case; or if any
character: (6) other than the first one is upper case, (7) is a digit,
or (8) is a symbol. It may surprise you that font, while often used
by humans to segment mixed text, is not in our token morphology
feature vector. We did not use it as it is not available in our datasets.
For the purposes of code reuse, we use a sequential model over this
vector as well, similar to the character level vector, although there
is no inherent sequentiality to this data. By ablating the high-level
model features, we found that this token morphology feature vector
did not significantly improve model performance (Section 5.3).

Encoding and Architecture. At a glance, our network, which
we present diagrammatically in Figure 4, works as follows:

x(𝑡) = [fw (𝑤𝑡); fc (𝑤𝑡); ff (𝑤𝑡)], (1)

h(𝑡) = 𝑓 (Wx(𝑡) + Uh(𝑡 − 1)), (2)

y(𝑡) = 𝑔(Vh(𝑡)). (3)
In Equation (1), we have three sources of information: character-
level encodings (fc (𝑤𝑡)), token-level encodings (fw (𝑤𝑡)) and a fea-
ture vector over token morphology (ff (𝑤𝑡)). Each captures proper-
ties at a different level of granularity. To preserve information, we
embed each source independently into a vector space, represented
by the three 𝑓 functions. For both the feature vector and the charac-
ters within a word, we compute a representation by passing them
as sequences through the biLSTM network in Figure 3. This figure
represents the internals of fc (𝑤𝑡) and ff (𝑤𝑡) from Equation (1) and
allows the model to learn patterns within sequences of characters
as well as coding naming or spelling conventions cooccurrence

POSIT: Simultaneously Tagging

Natural and Programming Languages ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

patterns. The results of these two biLSTMs together with a word
embedding function fw are concatenated to become the input to
the main biLSTM, x(𝑡) in Equation (1). This enables the network
to learn, based on a corpus, semantics for each token. This vector
represents the input cells in our full network overview in Figure 4,
which is enclosed in the box.

We pass the input vector x(𝑡) through a biLSTM. The biLSTM
considers both left and right tokens when predicting tags. Each
cell performs the actions of Equation (2) and Equation (3), with
the remark that the backwards-LSTM has the index reversed. This
allows the network to consider context up to sentence boundaries.
We then make use of the standard softmax function:

softmax(z)𝑗 =
𝑒𝑧 𝑗

Σ𝐾
𝑘=1𝑒

𝑧𝑘
for 𝑗 = 1, ..., 𝐾 ; (4)

which allows us to generate output probabilities over our learning
targets as such:

p(tag𝑡 | tag𝑡−1) = softmax(y(𝑡)), (5)

p(lid𝑡 | lid𝑡−1) = softmax(2LP(h(𝑡))), (6)
Equation (6) represents language ID transition probabilities, and
Equation (5) — tag transition probabilities. In Equation (6), 2LP
represents a 2-layer Multi Layer Perceptron. We make use of these
transition probabilities in the CRF layer to output Language IDs
and tags for each token while considering predictions made thus far.
The trained eye may recognise in Equation (5) and Equation (6) the
transition probabilities of two Markov chains. Indeed, we obtain
the optimal output sequence by Viterbi-decoding [30]. While Equa-
tion (5) may seem to indicate that only single tags can be output by
this architecture, this is not true. Given enough data, we can map
tuples of tags to new fresh tags and decode at output time. This
may not be as efficient as performing multi-tag output directly.

To train the network, we use the negative log-likelihood of
the actual sequence being decoded from the CRF network and
we backpropagate this through the network. Since we have two
training goals, we combine them in the loss function by performing
a weighted sum of the negative log-likelihood losses for each indi-
vidual task, then train the network to perform both tasks jointly.
When deployed, POSIT makes use of the CLANG lexer python port
to generate the token input required by 𝑓𝑤 , 𝑓𝑐 , and 𝑓𝑓 .

5 EVALUATION

For each token, POSIT makes two predictions: language IDs and
PoS/AST tags. The former task represents correctly identifying
where to add </code>-tags. This measures how well POSIT seg-
ments English and code. Section 5.2 reports POSIT’s performance
on this task on the evaluation set. For PoS/AST tag prediction, we
focus on POSIT’s ability to provide tags describing the function
of tokens for both modalities reliably. To measure POSIT’s perfor-
mance here, we consider how well the model predicts the tags for a
withheld evaluation dataset, which Section 5.2. presents along with
the English-code segmentation result.

POSIT implements the network discussed in Section 4 in Ten-
sorFlow [4]. It uses the Adaptive Moment Estimation (Adam) [16]
optimiser to assign the weights in the network. We trained it up
to 30 epochs or until we did not observe improvement in three
consecutive epochs. We used micro-batches of 64, a learning rate

of 10−2, and learning decay rate of 0.95. We use a 100 dimensional
word embedding space and a 50 dimensional embedding space for
characters. The LSTM hidden state is 96 dimensional for the word
representation, 48 dimensional for characters and 4 for the token
morphology feature vector. The output of the tag CRF is the con-
catenation of all final biLSTM states. We use a 2 layer perceptron
with 64 and 8 dimensional hidden layers for language ID prediction.
We apply a dropout of 0.5. Section 5.2 uses this implementation for
validation and Section 5.3 uses it for ablation. The model’s source
code is available at https://github.com/PPPI/POSIT.

All POSIT runs, training and evaluation, were performed on a
high-end laptop using an Intel i7-8750H CPU clocked at 3.9GHz,
24.0 GB of RAM and a Nvidia 1070 GPU with 8 GB of VRAM.

The state-of-the-art tool StORMeD,whichwe use for comparison,
is available as a webservice, which we use by augmenting the demo
files made available at https://stormed.inf.usi.ch/#service.

5.1 Corpus Construction

For our evaluation, we make use of two corpora. We use both to
train POSIT, and we evaluate on each to see the performance in
two important use-cases, a natural language frame language with
embedded code and the reverse. Table 1 presents their statistics.

The first corpus is the Stack Overflow Data-dump [2] that Stack
Overflow makes available online as an XML-file. It contains the
HTML of Stack Overflow posts with code tokens marked using
</code>- as well as </pre class="code">-tags. These tags enable
us to construct a ground-truth for the English-code segmentation
task. To obtain the PoS tags for English tokens, we use the tokeniser
and Standard Stanford part-of-speech tagger present in NLTK [8].
For AST tags, we use a python port of the CLANG lexer and label
tokens using a frequency table built from the second, CodeComment
corpus. This additionally ensures that both corpora have the same
set of AST tags. We allow matches up to a Levenstein distance of
three for them; we choose three from spot-checking the results
of various distances: after three, the lists were long and noisy. We
address the internal threat introduced by our corpus labelling in
Section 7.2.

We built the second, CodeComment corpus [3], from the CLANG
compilation of 11 native libraries from the Android Open Source
Project (AOSP): boringssl, libcxx, libjpeg-turbo, libmpeg2, libpcap,
libpng, netcat, netperf, opencv, tcpdump and zlib. We chose these
libraries in a manner that diversifies across application areas, such
as codecs, network utilities, productivity, and graphics. We wrote a
CLANG compiler plugin to harvest all comments and the snippets
in the source code around those comments. Our compiler pass
further harvests token AST tags for individual tokens in the source
code snippets. In-line comments are often pure English; however,
documentation strings, before the snippets with which they are
associated, contain references to code tokens in the snippet. We
further process the output of the plugin offline where we parse
doc-strings to decompose intra-sentential mixed text and add part-
of-speech tags to the pure English text. Thus, by construction, we
have both tag and language ID ground-truth data.We allowmatches
up to 3 edits away to account for misspellings that may exist in
doc-strings. The former ground-truth is obtained from CLANG
during the compilation of the projects, while English comments are

https://github.com/PPPI/POSIT
https://stormed.inf.usi.ch/#service

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Profir-Petru Pârt,achi, Santanu Kumar Dash, Christoph Treude, and Earl T. Barr

Table 1: Corpus statistics for the two corpora considered together with the Training and Development and Evaluation splits.

We performed majority class (English) undersampling only for the Stack Overflow training corpus.

Corpus Name Tokens Sentences English Only Sentences Code Only Sentences Mixed Sentences
Train&Dev Eval Train&Dev Eval Train&Dev Eval Train&Dev Eval Train&Dev Eval

Stack Overflow 7645103 2612261 214945 195021 55.8% 57.0% 32.6% 38.0% 11.6% 4.9%
CodeComments 132189 176418 21681 8677 11.3% 11.0% 79.4% 79.6% 9.4% 9.3%
Total 7777292 2788679 236626 203698 51.7% 55.1% 36.9% 39.7% 11.4% 5.1%

tokenised and labelled using NLTK as above. For code tokens in
comments, we override their language ID and tag using information
about them from the snippet associated with the comment.

A consequence of using CLANG to source our AST tags is that
we are limited to the mixed text tagging problem with a single
natural language (𝑘 = 1) and a single formal language (𝑙 = 1). This
limitation is a property of the data and not the model.

5.2 Predicting Tags

Here, we explore POSIT’s accuracy on the language identification
and PoS/AST tagging subtasks of the mixed text tagging problem.
We adapt StORMeD for use as our baseline and compare its perfor-
mance against that of POSIT. We note, even after adaption for the
AST tagging task for which it was not designed, StORMeD is the ex-
isting state-of-the-art. We close by reporting POSIT’s performance
on non-Java posts.

To comparewith the existing tool StORMeD,we restrict our Stack
Overflow corpus to Java posts, because Ponzanelli et al. designed
StORMeD to handle Java, JSON, and XML. Further, StORMeD and
POSIT do not solve the same problems. StORMeD parses mixed
posts into HAST trees; POSIT tags sequences. Thus, we flatten
StORMeD’s HASTs and use the AST label of the parent of terminal
nodes as the tag. Because StORMeD builds HASTs for Java, JSON
or XML while POSIT uses CLANG to tag code tokens, we built a
map from StORMeD’s AST tag set to ours3. As this mapping may
be imperfect, StORMeD’s observed performance on the PoS/AST
tagging task is a lowerbound (Section 7.2).

For the language identification task, StORMeD exposes a ’tagger’
webservice. Given mixed text in HTML, it replies with a string that
has </code> HTML-tags added. We parse this reply to obtain our
token-level language tags as in Section 5.1. For PoS/AST tagging,
StORMeD exposes a ’parse’ webservice. Given a StackOverflowpost
with with correctly labelled code in HTML (Section 5.1), this service
generates HASTs.We flatten and translate these HASTs as described
above. To use these services, we break our evaluation corpus up
into 2000 calls to StORMeD’s webservices, 1000 for the language
identification task, and the other 1000 for HAST generation. This
allows us to comply with its terms of service.

Language Tagging. Here, we compare how well StORMeD and
POSIT segment English and code in the Java Stack Overflow corpus.
Unlike StORMeD’s original setting, we elide user-provided code
token labels, both from StORMeD and POSIT to avoid data leakage.
Predicting them is the very task we are measuring. The authors of

3The mapping can be found online at https://github.com/PPPI/POSIT/blob/
92ef801e5183e3f304da423ad50f58fdd7369090/src/baseline/StORMeD/stormed_
evaluate.py#L33.

StORMeD account for this scenario [22, §II.A]. Although StORMeD
must initially treat the input as a text fragment node, StORMeD
still runs an island grammar parser to find code snippets embedded
within it. Despite being asked to perform on a task for which it
was not designed, due to the elision of user-provided code labels,
StORMeD performs very well on our evaluation set and, indeed, as
pioneering, post-regex work, defined the previous state of the art
on this task. In this setting, StORMeD obtains 71% accuracy, POSIT
achieves 81.6%.

PoS/AST Tagging. Here, we use StORMeD as a baseline to bench-
mark POSIT’s performance on predicting PoS/AST tags for each
token. Granted, on the text fragment nodes, we are actually mea-
suring the performance of the NLTK PoS tagger. Unlike the first
task, we allow StORMeD to use user-provided code-labels for this
subtask. POSIT, however, solves the two subtasks jointly, so giving
it these labels as input remains a data leak. Therefore, we do not
provide them to POSIT. After flattening and mapping HAST labels
to our label universe, as described above, StORMeD achieves a more
than respectable accuracy of 61.9%, while POSIT achieves 85.6%.

On a uniform sample set of 30 posts from queries to StORMeD,
we observed StORMeD to struggle with single word tokens or other
short code snippets embedded within a sentence, especially when
these, like foo, bar, do not match peculiar-to-code naming conven-
tions. While this is also a more difficult task for POSIT as well, it
fares better. Consider the sentence ‘Class A has a one-to-many
relationship to B. Hence, A has an attribute collectionOfB .’. Here,
StORMeD spots Class A and collectionOfB , the uses of A and B as
stand-alone tokens slips passed the heuristics. POSIT manages to
spot all four code tokens. POSIT’s use of word embeddings, allows
it to learn typical one word variable names and find unmarked
code tokens that escape StORMeD’s heuristics, such as all lower-
case function names that are defined in a larger snippet within the
post. For its part, StORMeD handled documentation strings well,
identifying when code tokens are referenced within them. POSIT
preferred to treat the doc-string as being fully in a natural language,
missing code references that existed within them even when they
contained special mark-up, such as @.

Beyond Java, JSON, and XML. POSIT is not restricted to Java,
so we report its performance on the entire Stack Overflow corpus
and on the CodeComment corpus. The former measures the perfor-
mance on mixed text which has English as a frame language; the
latter measures the performance on mixed text with source code as
the frame language. On the complete Stack Overflow corpus, POSIT
achieves an accuracy of 97.7% when asked to identify the language
of the token and an accuracy of 93.8% when predicting PoS/AST
tags. We calculated the first accuracy against user-provided code

https://github.com/PPPI/POSIT/blob/92ef801e5183e3f304da423ad50f58fdd7369090/src/baseline/StORMeD/stormed_evaluate.py#L33
https://github.com/PPPI/POSIT/blob/92ef801e5183e3f304da423ad50f58fdd7369090/src/baseline/StORMeD/stormed_evaluate.py#L33
https://github.com/PPPI/POSIT/blob/92ef801e5183e3f304da423ad50f58fdd7369090/src/baseline/StORMeD/stormed_evaluate.py#L33

POSIT: Simultaneously Tagging

Natural and Programming Languages ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

tags and the second against our constructed tags (Section 5.1). On
the CodeComment corpus, we tweak POSIT’s training. As exam-
ples within this corpus tend to be longer, we reduce the number
of micro-batches to 16. After training on CodeComment, POSIT
achieves an accuracy of 99.7% for language identification and an
accuracy of 98.9% for PoS/AST tag predictions.

5.3 Model Ablation

POSIT depends on three kinds of embeddings — character, token,
and token morphology — and CRF layer prior to decoding (Equa-
tion (1)).We can ablate all except the token embeddings, our bedrock
embedding. We used the same experimental set-up described at the
beginning of this section, with one exception: When ablating the
CRF layer, we replaced it with a 2-Layer Perceptron whose output
we then apply softmax to.

Table 2 shows the results. Keeping only the CRF-layer reduces
the time per epoch from 3:30 hours to 1:03 hours (the first bolded
row). On average, POSIT’s model requires 6 to 7 epochs until it stops
improving on the development set, so we stop. This configuration
reduces training time by ∼14 hours. Further, it slightly increases
performance. Only using the CRF, however, manual spot-checking
reveals that POSIT incorrectly assigns token that obey common
coding conventions and method call tokens as English. This is due
to English to code class imbalance, and inspecting Table 1 makes
this clear. The best performing model under human assessment of
uniformly sampled token (the second bolded row) removes only
the token morphology feature vector. Essentially, this model drops
precisely those heuristics that we anecdotally know humans use
when performing this task. Since dropping either the character or
the token morphology embeddings yields almost identical perfor-
mance, we hypothesise that POSIT learns these human heuristics,
and perhaps others, in the character embeddings. We choose to
keep character embeddings, despite training cost, for this reason.

6 POSIT APPLIED

POSIT can improve downstream tasks. First, we show how POSIT
accurately suggests code tags to separate code from natural lan-
guage, such as Stack Overflow’s backticks. POSIT achieves 95%
balanced accuracy on this task. Developers could use these accu-
rate suggestions to improve their posts before submitting them;
researchers could use them to preprocess and clean data before
using it in downstream applications. For instance, Yin et al. [33]
start from a parallel corpus of Natural Language and Snippet pairs
and seek to align it. POSIT could help them extend their initial
corpus beyond StackOverflow by segmenting mixed text into pairs.
Second, we show how POSIT’s language identification and PoS tag-
ging predictions enable TaskNav — a tool that supports task-based
navigation of software documentation by automatically extracting
task phrases from a documentation corpus and by surfacing these
task phrases in an interactive auto-complete interface — to extract
new and more detailed tasks. We conduct these demonstrations
using POSIT’s best performing configuration, which ignores token
morphology (Section 5.3).

6.1 Predicting Code Tags

Modern developer fora, notably Stack Overflow, provide tags for
separating code and NL text. These tags are an unusual form of
punctuation, so it is, perhaps, not surprising that developers often
neglect to add them. Whatever the reason, these tags are often
missing [21]. POSIT can help improve post quality by serving as
the basis of a post linter that suggests code tags. A developer could
use such a linter before submitting their post or the server could
use this linter to reject posts.

Our Stack Overflow corpus contains posts that have been edited
solely to add missing code tags. To show POSIT accuracy at suggest-
ing missing code tags, we extracted these posts using the SOTorrent
dataset [6]. First, we selected all posts that contain a revision with
the message “code formatting”. We uniformly, and without replace-
ment, sampled this set for 30 candidates. We kept only those posts
that made whitespace edits and introduced single or triple backticks.
By construction, this corpus has a user-defined ground truth for
code tags. We use the post before the revision as input and compare
against the post after the revision to validate. POSIT manages to
achieve a balanced accuracy of 95% on the code label prediction
task on this corpus.

6.2 TaskNav++

To demonstrate the usefulness of POSIT’s code-aware part-of-
speech tagging, we augment Treude et al.’s TaskNav [29] to use
POSIT’s language identification and its PoS/AST tags.

To construct TaskNav++, we replaced TaskNav’s Stanford NLP
PoS tagger with POSIT. Like TaskNav, TaskNav++ maps AST tags
to “NN”. TaskNav uses the Penn Treebank [17] tag set; POSIT uses
training data labelled with Universal tag set tags [19]. These tags
sets differ; notably, the Penn Treebank tags are more granular.
To expose POSIT’s tags to TaskNav’s rules to use those rules in
TaskNav++, we converted our tags to the Penn Treebank tag set.
This conversion harms TaskNav++’s performance, because it uses
the Java Stanford Standard NLP library which expects more granu-
lar tags, although it can handle the coarser tags POSIT gives it.

To compare TaskNav and TaskNav++, we asked both systems to
extract tasks from the same Linux Kernel Mailing List corpus that
we manually analysed (Section 7.1). TaskNav++ finds 97 new tasks
in the 30 threads or 3.2 new tasks per thread. Of these, 65 (67.0%)
are reasonable tasks for the e-mail they were extracted from. Two
of the authors performed the labelling of these tasks, we achieved
a Cohen Kappa of 0.21, indicating fair agreement. Treude et al.
also report low agreement regarding what is a relevant task [29].
To resolve disagreements, we consider a task reasonable if either
author labelled it as such. The ratio of reasonable tasks is in the
same range as that reported in the TaskNav work, viz. 71% of the
tasks TaskNav extracted from two documentation corpora were
considered meaningful by at least one of two developers of the
respective systems. TaskNav prioritises recall over precision to
enable developers to use the extracted tasks as navigation cues.
POSIT’s ability to identify more than two additional reasonable
tasks per email thread contributes towards this goal.

Inspecting the tasks extracted, we find that some tasks benefit
from POSIT’s tokenisation. For example in ‘remove excessive untag-
ging in gup’ vs ‘remove excessive untagging in gup.c’ the standard

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Profir-Petru Pârt,achi, Santanu Kumar Dash, Christoph Treude, and Earl T. Barr

Table 2: The result on the evaluation set for the different ablation configurations. All configurations use the token embedding

as it is our core embedding. Observe that using only theCRF layer performs best on the language identification and the POSIT’s

tagging tasks.

High-level features Language ID Accuracy Tagging Accuracy Mean Accuracy Time per Epoch (hh:mm)

Only token embeddings 0.209 0.923 0.568 00:37
Only CRF 0.970 0.926 0.948 01:03

Only feature vector 0.450 0.928 0.689 00:45
Only character embeddings 0.312 0.923 0.617 02:32
No CRF 0.409 0.913 0.661 02:59
No feature vector 0.966 0.924 0.945 03:19

No character embeddings 0.966 0.919 0.943 01:39
All features 0.970 0.917 0.944 03:30

tokeniser assumed that the use of ‘.’ in ‘gup.c’ indicates the end of
a sentence. Our tokenisation also helps correctly preserve mention
uses of code tokens: ‘pass in “real + len”’ and ‘pass in “dest + len”’,
and even English-only mention uses: ‘call writeback bits “tags”’,
‘split trampoline buffer into “temporary” destination buffer’. In all
these cases, either TaskNav finds an incorrect version of the task
(‘add len to real rip’) or simply loses the double-quotes indicating a
mention use (for the English-only mention cases).

POSIT’s restriction to a single formal language proved to be a
double-edged sword. It helped separate patches that are in-lined
with e-mails in our manual analysis of POSIT on the LKML (Sec-
tion 7.1), while here we can see that it is problematic. By train-
ing only on a single programming language, POSIT misidenti-
fies change-log and file-path lines as code. This propagates to
TaskNav++, which in turn incorrectly adds these as tasks since
POSIT stashes the path or change-log into a single code element.
At times, this behaviour was also beneficial, such as annotating the
code in the task: ‘read <tt>extent [i]</tt>’, this comes at the cost
of generating incorrect tasks such as: ‘change android <tt>/ ion /
ion.c | 60 +++ +++ +++ +++ +++ +++ +</tt>’. We hypothesise that
a solution to the general mixed text tagging problem would avoid
this problem by explicitly training to identify file paths.

7 DISCUSSION

In this section, we first perform a deep dive into POSIT’s output
and performance. Then we address threats to POSIT’s model, its
training, and methodology.

7.1 POSIT Deep Dive

POSIT is unlikely to be the last tool to tackle the mixed text tagging
problem. To better understand what POSIT does well and where it
can be improved, we manually assessed its output on two corpora:
a random uniform sample of 10 Stack Overflow posts from our
evaluation set and a random uniform sample of 10 e-mails from the
Linux Kernel Mailing List sent during August 2018. The Stack Over-
flow sample contains 3,233 tokens while the LKML — 17,451. We
finish by showing POSIT’s output on a small Stack Overflow post.
Broadly, POSIT’s failures are largely due to tokenisation problems,
class imbalance, and lack of labels. Concerning the label problem,
our data actually consists of a single natural language and several
formal languages, one of which is a programming language, the oth-
ers include diffs, URLs, mail headers, and file paths. This negatively

impacted TaskNav++ by exposing diff headers and file paths as code
elements, inducing incorrect tasks to be extracted. Our deep dive
also revealed that POSIT accurately PoS-tags English, accurately
AST-tags lone code tokens, and learned to identify diffs as formal,
despite lack of labels.

To pre-process training data, POSIT uses two tokenisers: the stan-
dard NLTK tokeniser and a Python port of the CLANG lexer. POSIT
uses labels (Stack Overflow’s code tags) in the training to switch
between them. In the data, we observed that POSIT had tagged
some double-quotation marks as Nouns. Since the user-provided
code labels are noisy [21], we hypothesise the application of the
code tokeniser to English caused this misprediction. Designed to
dispense with code-labels, POSIT exclusively relies on the CLANG
lexer port during evaluation. Unsurprisingly, then, we observed
POSIT incorrectly tagging punctuation as code-unknown as mul-
tiple punctuation tokens are grouped into single tokens that do
not normally exist in English. We suspect this to due to applying
English tokenisation to code snippets. Clearly, POSIT would benefit
from tokenisation tailored for mixed text.

Within code segments, we also observed that POSIT had a pro-
clivity to tag tokens as ‘raw_identifier’. This indicates that context
did not always propagate the ‘method_name’, or ‘variable’ tags
across sentence boundaries. As the ‘raw_identifier’ tag was the
go-to AST label for code, it suggests a class imbalance in our train-
ing data with regards to this label. Indeed, we observed POSIT to
only tag a token as ‘method_name’ if it was followed by tokens
that signify calling syntax — argument lists, including the empty
argument list () .

This deep dive revealed a double-edged sword. Our sample con-
tained snippets that represent diffs, URLs or file paths. POSIT’s
training data does not labels these formal languages nor did tokeni-
sation always preserve URLs and file paths. Nonetheless, POSIT
managed to correctly segment diffs by marking them as code, per-
forming this task exceptionally well on the LKML sample. URLs and
file paths were seen as English unless the resource names matched a
naming convention for code. For URLs, POSIT tagged key-argument
pairs (post_id=42) as (‘variable’, ‘operation’, ‘raw_identifier’). Later
in Section 6.2, POSIT’s tendency to segment diffs as code was detri-
mental, since it stashed diff headers into a single code token, causing
TaskNav++ to produce incorrect tasks.

POSIT: Simultaneously Tagging

Natural and Programming Languages ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

An additional observation during our manual investigation is the
incorrect type of tag relative to the language of the token. Consider
the following:

English Code
PoS output 33.4% 1.5%
AST output 5.6% 59.5%

We obtain these numbers by considering the agreement between
the language identification task and the type of tag output for the
Stack Overflow posts and LKML mails used in this deep dive. We
can see that for 7.1% of the tokens (908) in our manual investigation
POSIT outputs the wrong type of label given the language predic-
tion. This was also observed by the authors for cases where one
of the predictions was wrong while the other was correct, such as
tagging a Noun as such while marking it as code. This is because
we separated the two tasks after the biLSTM and trained them inde-
pendently. We hypothesise that adding an additional loss term that
penalises desynchronising these tasks would solve this problem.
Alternatively, one could consider a more hierarchical approach, for
example first predicting the language id, then predicating the tag
output conditioned on this language id prediction.

For monolingual sentences, either English or code, POSIT cor-
rectly PoS- or AST-tagged the sequences. Spare the occasional
hiccup at switching from English to code a single token too late,
POSIT correctly detected the larger contiguous snippets. As code
snippets ended, POSIT was almost always immediate to switch back
to identifying tokens as English. For smaller embedded code snip-
pets, POSIT correctly identified almost all method calls that were
followed by argument lists, including ‘()’. POSIT almost always cor-
rectly identified operators and keywords even when used on their
own in a mention role in the host language. Further, single token
mentions of typical example function names, like foo or bar, code
elements that followed naming conventions, or code tokens that
were used in larger snippets within the same post were correctly
identified as code.

In Figure 5, we observe 91% tag accuracy for English and 66.7%
tag accuracy for code. The language segmentation is 76.7% accurate.
POSIT correctly identifies the two larger code snippets as code
except for the first token in each: ‘#define’ and ‘if’. It fails to spot
do ... while as code, perhaps due to do and while being used
within English sufficiently often to obscure the mention-role of the
construct. On the other hand, it correctly spots f (X) as code since
f and X are rarely used on their own in English.

7.2 Threats to Validity

The external threats to POSIT’s validity relate mainly to the corpora,
including the noisy nature of StackOverflow data [20], and the
potential of the model to overfit. POSIT generalises to the extent
to which its training data is representative. To avoid overfitting,
we use a development set and an early stopping criterion (three
epochs without improvement), as is conventional.

In Section 6.1, we show that despite the noisy training labels,
POSIT is capable of predicating code-tags/spans that users origi-
nally forgot to provide. We also explore POSIT’s performance on a
corpus that is likely to differ from both training corpora, the Linux
Kernel Mailing List (LKML) which was used during the deep dive
(Section 7.1). This validation was performed manually due to lack

There are two ways of fixing the problem. The first is to
use a comma to sequence statements within the macro
without robbing it of its ability to act like an expression.
#define BAR(X) f(X), g(X)

The above version of bar BAR expands the above code into
what follows, which is syntactically correct.
if (corge)

f(corge), g(corge);
else

gralt();

This does not work if instead of f(X) you have a more
complicated body of code that needs to go in its own block,
say for example to declare local variables. In the most
general case the solution is to use something like do ...
while to cause the macro to be a single statement that
takes a semicolon without confusion.

Figure 5: Example sentence taken from Stack Overflow

which freely mixes English and very short code snippets,

here rendered usingmonospaced font.We can see both inter-

sentential code-switching, such as the macro definition and

the short example if statement snippet, as well as intra-

sentential code-switching, the mention of the code token

f(X) and the code construct ‘do ... while’.

of a ground truth; automatically generating a ground truth for this
data would not escape the internal threats presented below. On this
corpus, POSIT achieves a language identification accuracy of 76.6%
and a PoS/AST tagging accuracy of 76.5%. Two of the authors have
performed the labelling of this task and the Cohen kappa agree-
ment [10] for the manual classification is 0.783, which indicates
substantial agreement. We resolved disagreements by considering
an output correct if both authors labelled it as such.

Neural networks are a form of supervised learning and require la-
bels. We labelled our training in two ways, using one procedure for
language labels and another for PoS/AST tags. Both procedures are
subject to a threat to their construct validity. The language labels
are user-provided and thus subject to noise, PoS tags are derived
from an imperfect PoS tagger, and AST tags are added heuristically.
For language labels, we both manually labelled data and exploited
a human oracle. We manually labelled a uniformly sampled subset
of 10 posts with 3,233 tokens from our Stack Overflow evaluation
data, then manually assessed POSIT’s performance on this sub-
set. Two authors performed the manual labelling and achieved a
Cohen kappa of 0.711 indicating substantial agreement. A similar
procedure was applied to the LKML labelling task. On this valida-
tion, POSIT achieved 93.8 accuracy. Our Stack Overflow corpus
contains revision histories. We searched this history for versions
whose edit comment is “code formatting”. We then manually fil-
tered the resulting versions to those that only add code token labels
(defined in Section 6.1). POSIT achieved 95% balanced accuracy on
this validation. For the PoS/AST tagging task, we manually added
the PoS/AST tags on the same 10 Stack Overflow posts, we used
above. Here, POSIT achieved 93.7%.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Profir-Petru Pârt,achi, Santanu Kumar Dash, Christoph Treude, and Earl T. Barr

In Section 5.2, we used StORMeD as a baseline for POSIT. As
previously discussed, StORMeD was not designed for our task and
handles Java, JSON, and XML. Adapting to our setting introduces an
internal threat. To address this threat, we evaluated both StORMeD
and POSIT only on those Stack Overflow posts tagged as Java. These
tags are noisy [11, 20]. When evaluating StORMeD, its authors,
Ponzanelli et al. used the same filter.We alsomap the StORMeDAST
tag set to ours4. If the true mapping is a relation, not a function, then
this would understate StORMeD’s performance. This is unlikely
because Java ASTs and CLANGASTs are not that dissimilar. Further,
POSITmust also contendwith this noise.When building TaskNav++
(Section 6.2), we use a more coarse grained PoS tag set than the
original TaskNav potentially reducing its performance.

8 RELATEDWORK

In software engineering research, part-of-speech tagging has been
directly applied for identifier naming [7], code summarisation [12,
13], concept localisation [5], traceability-link recovery [9], and
bug fixing [27]. We first review natural language processing (NLP)
research on code-switching, the natural language analogue of the
mixed text problem. This is work on which we based POSIT. Then
we discuss initial efforts to establish analogues for parts of speech
categories for code and use them to tag code tokens. We close with
the pioneering work on StORMeD, the first context-free work to
automatically tackle the mixed text tagging problem.

NLP researchers are growing more interested in code-switching
text and speech5. The main roadblock had been the lack of high-
quality labelled corpora. Previously, such data was scarce because
code-switching was stigmatised [24]. The advent of social media,
has reduced the stigma and provided code-switching data, espe-
cially text that mixes English with another language [31]. High
quality datasets of code-switched utterances are now under produc-
tion [1]. For the task of part-of-speech (PoS) tagging code-switching
text, Solorio and Liu [25] presented the first statistical approach to
the task of part-of-speech (PoS) tagging code-switching text. On a
Spanglish corpus, they heuristically combine PoS taggers trained
on larger monolingual corpora and obtain 85% accuracy. Jamatia
et al. [15], working on an English-Hindi corpus gathered from Face-
book and Twitter, recreated Solorio’s and Liu’s tagger and they
proposed a tagger using Conditional Random Fields. The former
performed better at 72% vs 71.6%. In 2018, Soto and Hirschberg [26]
proposed a neural network approach, opting to solve two related
problems simultaneously: part-of-speech tagging and Language
ID tagging. They combined a biLSTM with a CRF network at both
outputs and fused the two learning targets by simply summing the
respective losses. This network achieves a test accuracy of 90.25% on
the inter-sentential code-switched dataset from Miami Bangor [1].
POSIT builds upon their model extended with Winata et al.’s [32]
handling of OOV tokens, as discussed in Section 4.

Operating directly on source code (not mixed text), Newman
et al. [18] sought to discover categories for source code identifiers
analogous to PoS tags. Specifically, they looked for source code
equivalents to Proper Nouns, Nouns, Pronouns, Adjectives, and
4The mapping can be found online at https://github.com/PPPI/POSIT/blob/
92ef801e5183e3f304da423ad50f58fdd7369090/src/baseline/StORMeD/stormed_
evaluate.py#L33.
5The NLP term for text and speech that mixed multiple natural languages.

Verbs. They derive their categories from 1) Abstract syntax trees, 2)
how the tokens impact memory, 3) where they are declared, and 4)
what type they have. They report the prevalence of these categories
in source-code. Their goal was to map these code categories to
PoS tags, thereby building a bridge for applying NLP techniques to
code for tasks such as program comprehension. Treude et al. [28]
described the challenges of analysing software documentation writ-
ten in Portuguese which commonly mixes two natural languages
(Portuguese and English) as well as code. They suggested the intro-
duction of a new part-of-speech tag called Lexical Item to capture
cases where the “correct” tag cannot be determined easily due to
language switching.

Ponzanelli et al. are the first to go beyond using regular expres-
sions to parse mixed text. When customising LexRank [23], a sum-
marisation tool for mixed text, they employed an island grammar
that parses Java and stack-trace islands embedded in natural lan-
guage, which is relegated to water. They followed up LexRank
with StORMeD, a tool that uses an island grammar to parse Java,
JSON, and XML islands in mixed text Stack Overflow posts, again
relegating natural language to water [22]. StORMeD produces het-
erogeneous abstract syntax trees (AST), which are ASTs decorated
with natural language snippets.

StORMeD relies on Stack Overflow’s code tags; when these tags
are present, island grammars are a natural choice for parsing mixed
text. Mixed text is noisy and Stack Overflow posts are no excep-
tion [21]. To handle this noise, StORMeD resorts to heuristics (anti-
patterns in the nomenclature of island grammars), which they build
into their island grammar’s recognition of islands. For instance,
if whitespace separates a method identifier from its ’(’, they toss
that method identifier into water. To identify class names that ap-
pear in isolation, they use three heuristics: the name is a class if
it is a fully qualified name with no internal spaces, contains two
instances of CamelCase, or syntactically matches a Java generic
type annotation over builtins. They use similar rules to handle Java
annotation because Stack Overflow also uses ‘@’ to mention users
in posts. Heuristics, by definition, do solve a problem in general.
For example, the generic method names often used in examples —
foo, bar, or buzz — slip past their heuristics when appearing alone
in the host language. This is true even when the post defines the
method. Indeed, we show that no island grammar, which, by defini-
tion, extend a context-free grammar, can solve this Sisyphean task
for mixed text, because we show this task to be context-sensitive
in Section 3. Island grammar’s anti-patterns do not make island
grammars context-sensitive.

StORMeD and POSIT solve related but different mixed text prob-
lems. StORMeD recovers natural language, unprocessed, from the
water, builds ASTs for its islands, then decorates those ASTs with
natural language snippets to build its HAST. In contrast, POSIT
tags both natural languages and formal languages, but does not
build trees. StORMeD and POSIT do overlap on two subtasks of
mixed text tagging: language identification and AST-tagging code.
To compare them on these tasks, we had to adapt StORMeD. Es-
sentially, we traverse the HASTs and consider the first parent of a
terminal node to be the AST tag. We map these from the StORMeD
tag set to ours (Section 5.2). POSIT advances the state of the art on
these two tasks (Section 5.2).

https://github.com/PPPI/POSIT/blob/92ef801e5183e3f304da423ad50f58fdd7369090/src/baseline/StORMeD/stormed_evaluate.py#L33
https://github.com/PPPI/POSIT/blob/92ef801e5183e3f304da423ad50f58fdd7369090/src/baseline/StORMeD/stormed_evaluate.py#L33
https://github.com/PPPI/POSIT/blob/92ef801e5183e3f304da423ad50f58fdd7369090/src/baseline/StORMeD/stormed_evaluate.py#L33

POSIT: Simultaneously Tagging

Natural and Programming Languages ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

As a notable service to the community, Ponzanelli et al. both
provided a corpus of HASTs and StORMeD as an excellent, well-
maintained web service. Their HAST corpus is a structured dataset
that allows researchers a quick start on mining mixed text: it spares
them from tedious pre-processing and permits the quick extraction
and processing of code-snippets, for tasks like summarisation. We
have published our corpus at https://github.com/PPPI/POSIT to
complement theirs. Our project, which culminated in POSIT, would
not have been possible without these contributions.

9 CONCLUSION

We have defined the problem of tagging mixed text. We present
POSIT, implemented using a biLSTM-CRF Neural Network and
compared it to Ponzanelli et al.’s pioneering work, StORMeD [22]
on Java posts in Stack Overflow. We show that POSIT accurately
identifies English and code tokens (81.6%), then accurately tags
those tokens with their part-of-speech tag for English or their AST
tag for code (85.6%). We show that POSIT can help developers by
improving two downstream tasks: suggesting missing code labels
in mixed text (with 95% accuracy) and extracting tasks from mixed
text through TaskNav++, which exploits POSIT’s output to find
more than two new reasonable tasks per document.

POSIT and our CodeComment corpus are available at https:
//github.com/PPPI/POSIT.

10 ACKNOWLEDGEMENTS

We thank Ponzanelli et al. for developing andmaintaining StORMeD,
a powerful and easy-to-use tool, and for their prompt technical as-
sistance with the StORMeD webservice. This research is supported
by the EPSRC Ref. EP/J017515/1.

REFERENCES

[1] 2011. Bangor Talk Miami Corpus. http://www.bangortalk.org.uk/speakers.php?
c=miami.

[2] 2018. Stack Exchange Data Dump. https://archive.org/details/stackexchange.
[Online; accessed 05-Sep-2018].

[3] 2019. Code Comment Corpus. https://github.com/PPPI/POSIT/blob/master/data/
corpora/lucid.zip. [Online; accessed 24-Jan-2020].

[4] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

[5] Surafel Lemma Abebe and Paolo Tonella. 2010. Natural language parsing of
program element names for concept extraction. In IEEE 18th Int. Conf. on Prog.
Comp. (ICPC) 2010. IEEE, 156–159.

[6] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018.
Sotorrent: Reconstructing and analyzing the evolution of Stack Overflow posts.
In Proc. 15th Int. Conf. Min. Soft. Rep. ACM, 319–330.

[7] Dave Binkley, Matthew Hearn, and Dawn Lawrie. 2011. Improving identifier
informativeness using part of speech information. In Proceeding 8th Work. Conf.
Min. Softw. Repos. - MSR ’11. ACM Press, New York, New York, USA, 203. https:
//doi.org/10.1145/1985441.1985471

[8] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
with Python. O’Reilly Media.

[9] Giovanni Capobianco, Andrea De Lucia, Rocco Oliveto, Annibale Panichella,
and Sebastiano Panichella. 2013. Improving IR-based traceability recovery via

noun-based indexing of software artifacts. Journal of Software: Evolution and
Process 25, 7 (2013), 743–762.

[10] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational
and Psychological Measurement 20, 1 (1960), 37–46. https://doi.org/10.1177/
001316446002000104 arXiv:https://doi.org/10.1177/001316446002000104

[11] Jens Dietrich, Markus Luczak-Roesch, and Elroy Dalefield. 2019. Man vs machine:
a study into language identification of stack overflow code snippets. In Proc. 16th
Int. Conf. Min. Soft. Repo. IEEE Press, 205–209.

[12] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting Program
Comprehension with Source Code Summarization. In Proc. 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 2 (Cape Town, South
Africa) (ICSE ’10). ACM, New York, NY, USA, 223–226. https://doi.org/10.1145/
1810295.1810335

[13] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. 2010. On the Use of Automated
Text Summarization Techniques for Summarizing Source Code. In 2010 17thWork.
Conf. on Rev. Eng. 35–44. https://doi.org/10.1109/WCRE.2010.13

[14] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for
Sequence Tagging. (2015). https://doi.org/10.1061/(ASCE)CO.1943-7862.0000274.
arXiv:1508.01991

[15] Anupam Jamatia, Björn Gambäck, and Amitava Das. 2015. part-of-speech tagging
for code-mixed english-hindi twitter and facebook chat messages. In Proc. Int.
Conf. Rec. Adv. in Nat. Lang. Proc. 239–248.

[16] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014). http://dblp.uni-trier.de/db/journals/corr/
corr1412.html#KingmaB14

[17] Mitchell Marcus, Beatrice Santorini, andMary AnnMarcinkiewicz. 1993. Building
a large annotated corpus of English: The Penn Treebank. (1993).

[18] Christian D Newman, Reem S Alsuhaibani, Michael L Collard, and Jonathan I
Maletic. 2017. Lexical Categories for Source Code Identifiers. SANER’17 (2017).

[19] Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011. A universal part-of-speech
tagset. arXiv preprint arXiv:1104.2086 (2011).

[20] Luca Ponzanelli. 2014. Holistic recommender systems for software engineering.
In Companion Proc. 36th Int. Conf. Soft. Eng. 686–689.

[21] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, Michele Lanza, and David
Fullerton. 2014. Improving low quality stack overflow post detection. In 2014
IEEE Int. Conf. Soft. Maint. Evol. IEEE, 541–544.

[22] Luca Ponzanelli, Andrea Mocci, and Michele Lanza. 2015. StORMeD: Stack
overflow ready made data. IEEE Int. Work. Conf. Min. Softw. Repos. 2015-Augus
(2015), 474–477. https://doi.org/10.1109/MSR.2015.67

[23] Luca Ponzanelli, Andrea Mocci, and Michele Lanza. 2015. Summarizing complex
development artifacts by mining heterogeneous data. IEEE Int. Work. Conf. Min.
Softw. Repos. 2015-Augus (2015), 401–405. https://doi.org/10.1109/MSR.2015.49

[24] Shana Poplack. 1980. Sometimes I’ll start a sentence in Spanish Y TERMINO
EN ESPAÑOL: toward a typology of code-switching 1. Linguistics 18 (01 1980),
581–618. https://doi.org/10.1515/ling.1980.18.7-8.581

[25] Thamar Solorio and Yang Liu. 2008. part-of-speech tagging for English-Spanish
code-switched text. In Proc. Conf. on Emp. Meth. in Nat. Lang. Proc. Association
for Computational Linguistics, 1051–1060.

[26] Victor Soto and Julia Hirschberg. 2018. Joint part-of-speech and Language ID
Tagging for Code-Switched Data. (2018), 1–10.

[27] Yuan Tian and David Lo. 2015. A comparative study on the effectiveness of
part-of-speech tagging techniques on bug reports. In SANER’15. IEEE, 570–574.

[28] Christoph Treude, Carlos A Prolo, and Fernando Figueira Filho. 2015. Challenges
in analyzing software documentation in Portuguese. In Proc. 29th Bra. Sym. Soft.
Eng. IEEE, 179–184.

[29] Christoph Treude, Mathieu Sicard, Marc Klocke, and Martin Robillard. 2015.
TaskNav: Task-based Navigation of Software Documentation. In Proc. 37th Int.
Conf. Soft. Eng. - Volume 2 (Florence, Italy) (ICSE ’15). IEEE Press, Piscataway, NJ,
USA, 649–652. http://dl.acm.org/citation.cfm?id=2819009.2819128

[30] A. Viterbi. 1967. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory 13, 2
(April 1967), 260–269. https://doi.org/10.1109/TIT.1967.1054010

[31] Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika Bali, andMonojit Choudhury.
2014. Pos tagging of english-hindi code-mixed social media content. In Proc. 2014
Conf. on Emp. Meth. in Nat. Lang. Proc. (EMNLP). 974–979.

[32] Genta Indra Winata, Chien-Sheng Wu, Andrea Madotto, and Pascale Fung. 2018.
Bilingual Character Representation for Efficiently Addressing Out-of-Vocabulary
Words in Code-Switching Named Entity Recognition. In Proc. Third Workshop
Comp. Appr. Ling. Code-Switching. Association for Computational Linguistics,
Melbourne, Australia, 110–114. https://doi.org/10.18653/v1/W18-3214

[33] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and GrahamNeubig.
2018. Learning to mine aligned code and natural language pairs from stack
overflow. Proc. - Int. Conf. Softw. Eng. (2018), 476–486. https://doi.org/10.1145/
3196398.3196408 arXiv:1805.08949

https://github.com/PPPI/POSIT
https://github.com/PPPI/POSIT
https://github.com/PPPI/POSIT
http://www.bangortalk.org.uk/speakers.php?c= miami
http://www.bangortalk.org.uk/speakers.php?c= miami
https://archive.org/details/stackexchange
https://github.com/PPPI/POSIT/blob/master/data/corpora/lucid.zip
https://github.com/PPPI/POSIT/blob/master/data/corpora/lucid.zip
http://tensorflow.org/
https://doi.org/10.1145/1985441.1985471
https://doi.org/10.1145/1985441.1985471
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
http://arxiv.org/abs/https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/1810295.1810335
https://doi.org/10.1145/1810295.1810335
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000274.
http://arxiv.org/abs/1508.01991
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
https://doi.org/10.1109/MSR.2015.67
https://doi.org/10.1109/MSR.2015.49
https://doi.org/10.1515/ling.1980.18.7-8.581
http://dl.acm.org/citation.cfm?id=2819009.2819128
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.18653/v1/W18-3214
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
http://arxiv.org/abs/1805.08949

	POSIT: Simultaneously tagging natural and programming languages
	Citation

	/var/tmp/StampPDF/AWlId2sDiR/tmp.1719475822.pdf.0SN8W

