
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2010

Mashup environments in software engineering Mashup environments in software engineering

Lars GRAMMEL

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Margaret-Anne STOREY

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
GRAMMEL, Lars; TREUDE, Christoph; and STOREY, Margaret-Anne. Mashup environments in software
engineering. (2010). Web2SE '10: Proceedings of the 1st Workshop on Web 2.0 for Software Engineering,
Cape Town, South Africa, 2010 May 4. 24-25.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8904

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8904&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Mashup Environments in Software Engineering

Lars Grammel, Christoph Treude, Margaret-Anne Storey
Department of Computer Science, University of Victoria

lars.grammel@gmail.com, ctreude@uvic.ca, mstorey@uvic.ca

ABSTRACT
Too often, software engineering (SE) tool research is focused on
creating small, stand-alone tools that address rarely understood
developer needs. We believe that research should instead provide
developers with flexible environments and interoperable tools,
and then study how developers appropriate and tailor these tools
in practice. Although there has been some prior work on this, we
feel that flexible tool environments for SE have not yet been fully
explored. In particular, we propose adopting the Web 2.0 idea of
mashups and mashup environments to support SE practitioners in
analytic activities involving multiple information sources.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Integrated Environments

General Terms
Human Factors

Keywords
Mashup, software engineering

1. INTRODUCTION
Too often, software engineering (SE) tool research is focused on
creating small, stand-alone tools that address rarely understood
developer needs. Even worse, many of those tools are evaluated in
artificial laboratory settings, if evaluated at all. Thus, our
understanding of the real developers’ needs and of tool support to
address them in industrial environments is fairly limited.

In contrast, SE practitioners implement their own pragmatic
solutions using informal mechanisms such as dashboards [7].
When implementing these solutions, they are often unaware of
related research, and vice versa, researchers are often unaware of
solutions created by practitioners. Overcoming this unfortunate
disconnect could help propel both SE research and SE practice.
Studying these ad-hoc solutions could provide valuable insights
into the needs of software developers and the design space of tool
support, which could in turn lead to improved SE environments.

We propose that research should provide developers with flexible
environments and interoperable tools, and we propose to study
how developers appropriate and tailor these tools in practice.
Although there has been some prior work on this, e.g. [7], we feel
that flexible tool environments for SE have not yet been fully
explored. Modern, plug-in based IDEs such as Eclipse and Jazz
have been a major step towards this goal, and have already
sparked many research projects that have found their way into
daily SE work. However, lightweight automation of development
tasks and flexible composition of different information sources
would be useful in many daily SE activities.

This flexibility cannot be provided by plug-ins and development
perspectives in current IDEs. In this paper, we envision how
mashups could help with flexible and lightweight composition of
SE information sources for analytical activities.

2. INFORMATION MASHUPS IN SE
Many activities in SE require searching, collecting and analyzing
different kinds of information [2]. For example, in their daily code
investigation tasks, software developers use a variety of
information sources such as source code, issue trackers, and email
[4]. The information sources are usually accessed through a
variety of different tools and ways [4, 7]. This lack of integration
puts the burden of integrating the information on the developer
[4], and can lead to disorientation through thrashing [1] and to
losing track of relevant information pieces [5]. Thus, there is a
need for supporting the developers in collecting and analyzing
information in an integrated, yet flexible fashion [4, 5, 6].
However, current tool support is limited even for combining
different pieces of information from a single source [6].

We propose to adopt the Web 2.0 idea of mashups and mashup
development environments [3] to support SE practitioners in
analytic activities. Mashups are a lightweight approach of
combining several data sources that are exposed as web-based
services [3]. We believe that using appropriated mashup
environments for analytical tasks in SE is beneficial, because such
environments could enable developers to rapidly create task-
oriented, situational information mashups just-in-time. Such light-
weight mashups are easily modified as insights from the analyzed
information are gained, which facilitates analytical activities. By
having mashups as first class artifacts, they can be shared between
developers, tailored by other developers to suit their individual
preferences and reused in different circumstances.

We think that SE practice will benefit from using mashups by
improved automation, collaboration, traceability, and
documentation. For SE research, mashups are beneficial because
they can provide a whole new set of artifacts that can be analyzed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Web2SE’10, May 4, 2010, Cape Town, South Africa.
Copyright © 2010 ACM 978-1-60558-975-6/10/05…$10.00.

24

to gain insights into a broad range of software engineering
activities. This increased tangibility of SE process artifacts can
help bridge the gap between research and industry.

3. RELATED WORK
Supporting developers in leveraging multiple information sources
has recently received some attention by the SE research
community. Holmes and Begel have developed Deep Intellisense,
a tool for summarizing historical information about source code
based on change sets, email, issue tracking data etc. [4]. However,
while Holmes and Begel highlight the importance of flexibility of
interaction, their tool cannot be tailored by the developers beyond
arranging the layout of the three different views, and information
seeking has to start from source code elements [4]. Fritz and
Murphy created a tool that allows developers to answer questions
by flexibly choosing different kinds of information and their
composition order [2]. While this tool provides more flexibility, it
is a single IDE widget and does not support storing its state or
switching and combining different views such as timelines [2].
Based on their study of how developers seek, relate and collect
information in software maintenance activities, Ko et al. propose
creating a ‘conceptual workspace’ that supports collecting task-
related information fragments and seeing them side-by-side [5].
We believe that such a flexible information workspace could be
created by using mashup technologies, as we will outline next.

4. A MASHUP ENVIRONMENT FOR SE
We are developing an information mashup environment that
enables developers to easily collect and analyze information from
different data sources and thus aids their exploratory analytical
activities. It will support the following features: IDE integration
for adding information fragments; information visualization
widgets; interactive construction of mashups using drag and drop;
storing and sharing of mashups; export of configured widgets to
dashboards; and tracking user interaction for insight provenance
and traceability. A mockup scenario in which a developer
explores which work items and which source code is related to the
user interface polishing that took place before a major release is
shown in. The arrows indicate one way of navigating the
developer might use during the analysis.
The architecture of the information mashup environment is
outlined in Figure 2. It is implemented using the Google Web
Toolkit (GWT), and consumes data exposed by web-based APIs.
By building adapters, other information sources can be used as
well. The client part runs in modern web browsers. To provide
IDE integration, we are planning to create a plug-in for the
Eclipse platform.

5. STUDYING MASHUP ENVIRONMENTS
We believe that mashup environments, besides being useful for
SE practitioners, would provide valuable data for SE researchers.
For example, mining the mashup construction histories can bring
insight into how programmers explore artifacts in analytical
activities. We think that data mining and field studies of mashup
environment usage provide promising avenues for future research.
On a higher level, we need to research how to design SE mashup
environments such that we can collect the data needed for these
studies, and how security should be handled in SE mashup
environments when integrating company-external resources.

Figure 1: Mockup scenario with work item tags over time (1),
work items (2), source code (3) and dependencies (4)

Figure 2: Architecture of information mashup environment

6. REFERENCES
[1] B. de Alwis and G. C. Murphy. Using visual momentum to

explain disorientation in the eclipse ide. In VLHCC '06:
Proc. of the Symp. on Visual Languages and Human-Centric
Computing, pages 51–54, Washington, DC, 2006. IEEE.

[2] T. Fritz and G. C. Murphy. Using information fragments to
answer the questions developers ask. In ICSE '10: Proc. of
the 32nd Intl. Conf. on Software Engineering, New York,
2010. ACM. To appear.

[3] L. Grammel and M.-A. Storey. An End User Perspective on
Mashup Makers. Technical Report DCS-324-IR, University
of Victoria, September 2008.

[4] R. Holmes and A. Begel. Deep intellisense: a tool for
rehydrating evaporated information. In MSR '08: Proc. of the
Intl. working Conf. on Mining software repositories, pages
23–26, New York, 2008. ACM.

[5] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An
exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks.
IEEE Trans. Softw. Eng., 32(12):971–987, 2006.

[6] J. Sillito, G. C. Murphy, and K. De Volder. Asking and
answering questions during a programming change task.
IEEE Trans. Softw. Eng., 34(4):434–451, 2008.

[7] C. Treude and M.-A. Storey. Awareness 2.0: Staying aware
of projects, developers and tasks using dashboards and feeds.
In ICSE '10: Proc. of the 32nd Intl. Conf. on Software
Engineering, New York, 2010. ACM. To appear.

25

	Mashup environments in software engineering
	Citation

	Web2SE: Mashup Environments in Software Engineering

