
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2022

In war and peace: The impact of world politics on software In war and peace: The impact of world politics on software

ecosystems ecosystems

Raula KULA

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
KULA, Raula and TREUDE, Christoph. In war and peace: The impact of world politics on software
ecosystems. (2022). ESEC/FSE '22: Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Singapore, Singapore,
November 14-18. 1600-1604.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8901

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8901&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8901&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

In War and Peace:
The Impact of World Politics on Software Ecosystems

Raula Gaikovina Kula
Nara Institute of Science and Technology, Japan

raula-k@is.naist.jp

Christoph Treude
University of Melbourne, Australia
christoph.treude@unimelb.edu.au

ABSTRACT
Reliance on third-party libraries is now commonplace in contem-
porary software engineering. Being open source in nature, these
libraries should advocate for a world where the freedoms and op-
portunities of open source software can be enjoyed by all. Yet, there
is a growing concern related to maintainers using their influence to
make political stances (i.e., referred to as protestware). In this paper,
we reflect on the impact of world politics on software ecosystems,
especially in the context of the ongoing War in Ukraine. We show
three cases where world politics has had an impact on a software
ecosystem, and how these incidents may result in either benign or
malignant consequences. We further point to specific opportunities
for research, and conclude with a research agenda with ten research
questions to guide future research directions.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Social and professional topics; • Security and privacy
→ Social aspects of security and privacy;

KEYWORDS
Libraries, Software Ecosystem, Protestware, Supply Chain Attacks

ACM Reference Format:
Raula Gaikovina Kula and Christoph Treude. 2022. In War and Peace: The
Impact of World Politics on Software Ecosystems. In Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’22), November 14–
18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3540250.3560882

1 INTRODUCTION
Contemporary software is not built in isolation.With the emergence
of third-party libraries, and massive software repositories, now
more than ever developers are able to quickly adopt functionality
into their applications, avoiding the time-consuming and error-
prone task of writing and testing from scratch.

The success of these libraries is made possible through the con-
cept of Open Source Software (OSS). OSS allows software to be free

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3560882

for anyone to use, which is incorporated into everything from in-
dependent projects to mainstream, proprietary consumer software.
Being OSS, libraries are typically maintained by one or a hand-
ful of volunteers, and they benefit from having further volunteer
contributors, as generally the developers in a software ecosystem
should be able to help each other by pointing out issues and con-
tributing new features. Libraries harness the power of distributed
peer review and transparency of process, promising higher quality,
better reliability, greater flexibility, and lower cost. Projects build
reputation over time, with developers gaining trust in using these
libraries. Each ecosystem has their own culture of maintainers, who
are empowered to approve and publish contributed code changes.
Evidence of the impact of libraries is seen with the growing size
of NPM with more than one million packages [23], for example,
and the growing support for these ecosystems, e.g., GitHub’s 2020
acquisition of NPM.1

Problems arise when a maintainer feels empowered to sabotage
their own projects, thus weaponizing their library as protestware,
e.g., with the intention to make users of their library aware of some
political stance, or situation. Responses from practitioners to such
protestware have been mixed. According to a developer blog that
was later republished by the IEEE Computer Society [12], practition-
ers have expressed their concerns, stating that “It’s ill-considered
and user-hostile, and can trivially go wrong. Weaponizing open source
to inject malware, no matter how well intentioned, is still injecting
malware”.Others question whether this is Open Source anymore, as
a OSS licence clearly states that there should be “No Discrimination
Against Persons or Groups. The license must not discriminate against
any person or group of persons” [18]. The official statement from
the Open Source Initiative (OSI) community lays the responsibil-
ity to maintainers, stating that “Protest is an important element of
free speech that should be protected. Openness and inclusivity are
cornerstones of the culture of open source, and the tools of open source
communities are designed for global access and participation. Instead
of malware, there are so many outlets for open source communities to
be creative without harming everyone who happens to load the up-
date. Longer term, the downsides of vandalizing open source projects
far outweigh any possible benefit, and the blowback will ultimately
damage the projects and contributors responsible. Use your power,
yes—but use it wisely” [25].

The purpose of this article is to point the software engineering
research community to open questions regarding how researchers
can investigate, address, and regulate such kinds of protestware. In
light of the War in Ukraine, we present three motivating scenar-
ios where world politics has had impact on software ecosystems,
highlighting the side affects, and then present an agenda on how

1https://github.blog/2020-03-16-npm-is-joining-github/

1600

https://doi.org/10.1145/3540250.3560882
https://doi.org/10.1145/3540250.3560882
https://doi.org/10.1145/3540250.3560882
https://github.blog/2020-03-16-npm-is-joining-github/

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Raula Gaikovina Kula and Christoph Treude

to dissect and respond to such behaviour during software engi-
neering practices. Another blog [7] raises growing concerns within
an ecosystem: “Protestware can deliver similar anti-war messages,
but within the open-source community there are worries that the
possibility of sabotage — especially if it goes further than simple
anti-invasion messaging and starts destroying data — can undermine
the open-source ecosystem. Although it is less well known than com-
mercial software, open-source software is enormously important to
running every facet of the internet”. Our vision is that the lines of
research outlined in this article can contribute towards building
resilient and yet open software ecosystems.

2 MOTIVATING CASES
In this section, we discuss three cases where protestware has had an
impact on a software ecosystem. Specifically, we focus on theWar in
Ukraine, and three different effects that resulted from maintainers
making a political stance. The first case involves the malignant
effects of protestware. The second case is a benign case where
protestware had no malicious intent to harm the users of a library.
In the last case, we take a look at a case where sanctions were
placed on accounts that were related to world politics.

2.1 Case 1: Malignant Protestware
A developer of the JavaScript library node-ipc [8], which is used
by the popular vue.js framework, deliberately introduced a critical
security vulnerability that, for some netizens, would destroy their
computers’ files. The library is fetched about a million times a
week from the NPM registry, and is described as an “inter-process
communication module for Node, supporting Unix sockets, TCP,
TLS, and UDP”. Seemingly, the maintainer intentionally changed
his code to overwrite the host system’s data, then changed the
code to display a message calling for world peace, as a protest
against Russia’s invasion of Ukraine. GitHub declared this a critical
vulnerability, which was tracked as CVE-2022-23812 [1].

The malicious code was intended to overwrite arbitrary files
dependent upon the geo-location of the user’s IP address, attacking
software in specific locations. Concretely, the affected versions
10.1.1 and 10.1.2 of the library check whether the host machine has
an IP address in Russia or Belarus, and if so overwrites every file it
could with a heart symbol. Version 10.1.3 was released soon after
without this destructive functionality, while 10.1.1 and 10.1.2 were
removed from the NPM registry.

There was a strong response from the community, including
frustrations that led to insightful discussions. One example from a
contributor on the GitHub Discussions channel is shown below [2]:

I’m very happy to see that the principles and character
of many in tech (FOSS especially) remain clear enough
to recognize how completely wrong this was. Of course,
if the marketplace of current things keeps hammering
away at this, it will benefit a small number of corporate
giants (misplaced trust/safety). I hope we all start seeing
these patterns as we grapple with a general blurring of
lines between tools for marketing and weaponry. It’s
essential to ask: what’s the outcome and who benefits?
I like to ask the faux ideologues “who agrees with you?”
“Isn’t it strange how well aligned you are with a small

number of very visible, influential, and powerful or-
ganizations?” “What’s the fight and who is on which
side, again?” It’s about competency, not power. Power
feeds and is fueled by egocentrism (plainly, weak van-
ity). Competency comes from discovering your natural
gifts and applying them.

Another user from that Github Discussion quoted how this af-
fected the Open Source Community [2]:

The trust factor of open source, which was based on
goodwill of the developers is now practically gone, and
now, more and more people are realizing that one
day, their library/application can possibly be exploited
to do/say whatever some random dev on the internet
thought was ‘the right thing to do’.

The maintainer defended his module on GitHub, saying “this is all
public, documented, licensed and open source”. Earlier, there were
more than 20 issues flagged against node-ipc about its behavior.
Some of the comments referred to the creation as “protestware, while
others might call it malware”.

2.2 Case 2: Benign Protestware
We present two cases where the protestware does not have mali-
cious intent, but aims at increasing awareness. For the first case,
the same maintainer of the node-ipc library then created the pea-
cenotwar library [9]. As explained by the maintainer, it serves as
a non-violent protest against Russia’s aggression. Instead of mali-
cious deletion of files, the module adds a message of peace on users’
desktops [10]. The maintainer was quoted in the README file2:

I pledge that this module, to the best of my knowledge
and skills, does not do any damage to anyone’s data.
If you do not like what this module does, please just
lock your dependencies to any of my work or other’s
which includes this module, to a version you have code
reviewed and deemed acceptable for your needs. Also,
please code-review your other modules for vulnerabili-
ties.

When accepted, this code was included:
1 v a r i a b l e " pu t in_khuy lo " {

d e s c r i p t i o n = "Do you agree t h a t Pu t i n doesn ' t
r e s p e c t Ukra in i an s o v e r e i g n t y and t e r r i t o r i a l
i n t e g r i t y ? More i n f o : h t t p s : / / en . w i k i p ed i a . org /
wik i / Pu t in_khuy lo ! "

3 type = boo l
d e f a u l t = t r u e }

Another example is given by a maintainer of the terraform modules
for AWS who added their own protest in the licence file, with
“Additional terms of use for users from Russia and Belarus” [11]:

By using the code provided in this repository you agree
with the following:
- Russia has illegally annexed Crimea in 2014 and
brought the war in Donbas followed by full-scale inva-
sion of Ukraine in 2022.
- Russia has brought sorrow and devastations to millions

2https://github.com/RIAEvangelist/peacenotwar

1601

https://github.com/RIAEvangelist/peacenotwar

In War and Peace: The Impact of World Politics on Software Ecosystems ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

of Ukrainians, killed hundreds of innocent people, dam-
aged thousands of buildings, and forced several million
people to flee.

These two libraries are examples of protestware that are not
intended to be malignant, compared to the case described in the
previous section.

2.3 Case 3: Developer Sanctions
The third case is not related to a single librarymaintainer, but affects
a software ecosystem more broadly. We report two instances. The
first is the decision of MongoDB not to sell its products to Russian
buyers [33], using the following statement:

The breadth of the new sanctions from the US and inter-
nationally is unprecedented, and MongoDB has taken
action to comply with them. We will not sell our cloud
services to customers in Russia and Belarus and we will
not sell any more MongoDB software to customers in
Russia or Belarus.

MongoDB’s decision appears to hinge on an interpretation of
Western sanctions that say SaaS subscriptions represent a sale. In
order to comply with sanctions, MongoDB decided it should not
continue to offer its wares, not even as a service. Interestingly,
Oracle also stated on Twitter3 that it is ending support for Russian
users, Even Microsoft joined Apple and SAP in suspending sales in
Russia.4

In another instance of developer sanctions, at first GitHub sus-
pended Russian accounts. According to a blog post from a devel-
oper [5], “suspending an account” on GitHub meant deleting all
activity for a user—which results in (1) every pull request from the
suspended account being deleted, (2) every issue opened by the
suspended account being deleted, and (3) every comment or discus-
sion from the suspended account being deleted. In effect, the user’s
entire activity and history evaporated. The bigger issue was that
GitHub had not provided any warning to the library maintainers.
As explained by a maintainer in a blog post [5]:

I recently took over as a lead maintainer for two popu-
lar projects in the Apple developer community, Quick
and Nimble. I just released version 5.0 of Quick a few
days ago. During the week leading up to the release, I
was reviewing and merging many pull requests. But
when it came time to write the release notes, I noticed
very bizarre behavior. Mysteriously, some pull requests
were deleted. Poof. Gone. Then I realized that an entire
contributor’s presence had disappeared — all of their
comments on issues were missing, all of the issues they
opened were gone, all of the pull requests they opened
had vanished. Every piece of activity related to the user
was gone.

GitHub later reached out to this maintainer, letting them know
that it had restored the missing pull requests, issues, comments,
etc. from the Russian developers whose accounts had been sus-
pended. User profiles were also restored, although GitHub did not
specifically mention that the accounts had been suspended [4].
3https://tinyurl.com/8admb86d
4https://www.siliconrepublic.com/enterprise/microsoft-sales-russia-ukraine-
cyberattacks

3 OTHER MAINTAINER STANCES
The War in Ukraine is not the first time that open-source maintain-
ers have used their open source libraries as a platform for protest.
For example, Faker.js5 and Colors.js6 created problems for users
of Amazon’s Cloud Development Kit. Big companies, critics have
long said, benefit from open source ecosystems without adequately
compensating developers for their time. In turn, developers respon-
sible for the software are unfairly strained. The maintainer of these
two JavaScript libraries with more than 21,000 dependent apps and
more than 22 million weekly downloads, intentionally released an
update that produced an infinite loop that caused dependent apps
to spew gibberish, prefaced by the words “Liberty Liberty Liberty”.
His stance was made clear in the README file: “Take this as an
opportunity to send me a six-figure yearly contract or fork the
project and have someone else work on it” [3].

These cases show that protestware is not only relevant in the
context of political conflicts, but has a long history of capturing
and communicating the opinions of open source maintainers.

4 RESEARCH AGENDA
In this section, we present our research agenda. We have presented
three motivating scenarios where world politics has had an impact
on a software ecosystem. These cases form initial evidence on
the current state of practice, and how the nature of open source
software and protestware will affect the software supply chain,
trust, and resilience within an ecosystem. In this context, a software
supply chain attack occurs when a compromised library distributes
malicious code to applications that depend on it.7

As discussed in Section 3, there is anecdotal evidence from blogs
and developer discussions on the topic, yet there have been very
few research studies that articulate the impact of protestware on
software engineering. From these motivating cases, the following
questions about the possible implications have emerged. We discuss
each of these potential implications below in turn, and suggest ten
research questions that could form the basis of future research
projects.

4.1 Dissecting the status quo of Protestware
Evidence from this paper shows the thin line that exists between
protestware and malware. As mentioned by the OSI community,
protest is an important element of free speech, with openness and in-
clusivity being cornerstones of the culture of open source. However,
vandalizing open source projects threatens any possible benefit,
and might damage the projects and contributors responsible. Our
first four research questions target the potential of protestware.

(1) How effective is protestware at communicating political mes-
sages?

(2) What is the immediate impact of protestware on a software
ecosystem?

(3) Who is affected by protestware, and what relationship do
they have with the protestware maintainer, if any?

5https://fakerjs.dev/
6https://colorjs.io/
7https://capec.mitre.org/data/definitions/437.html

1602

https://tinyurl.com/8admb86d
https://www.siliconrepublic.com/enterprise/microsoft-sales-russia-ukraine-cyberattacks
https://www.siliconrepublic.com/enterprise/microsoft-sales-russia-ukraine-cyberattacks
https://fakerjs.dev/
https://colorjs.io/
https://capec.mitre.org/data/definitions/437.html

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Raula Gaikovina Kula and Christoph Treude

(4) What mitigation strategies do projects use for securing or
repairing their supply chains, and how effective are those
mitigation strategies?

Through in-depth studies of cases such as the ones introduced in
Section 2, we propose research questions aimed at understanding
the status quo of protestware, to build the foundations for further
work on increasing resilience and trust in software ecosystems. We
propose to survey developers that rely on the modified projects
to determine whether protestware managed to achieve its goals
of political messaging. Maintainers interested in taking political
action are confronted with dilemmas of instrumental vs. value ratio-
nality, i.e., selecting the most effective and efficient means to reach
given ends (instrumental rationality) or acting without considering
the foreseeable consequences in the service of conviction (value
rationality) [24, 26]. Is the creation of protestware a legitimate
means to pursue a political agenda? Answers to such questions
lie beyond traditional software engineering research, but we can
investigate whether the message is received as intended, and what
its immediate consequences are. Who is affected? A small number
of developers who have a working relationship with the acting
maintainer (e.g., through reciprocal contributions to each others’
code), or an entire ecosystem? Using case studies, we can further
investigate which strategies other players in a software ecosystem
have employed to work around protestware and/or mitigate its im-
pact, with the ultimate goal of learning how to increase resilience
in the future.

4.2 Increasing Supply Chain Resilience
In response to the attacks on supply chains, the Linux Founda-
tion’s partner group – Open Source Security Foundation (OpenSSF),
Google, and Microsoft joined forces to work with security experts
and use automated security testing to improve open-source security
in a project called the Alpha-Omega Project [6]. This is a global
effort to secure code, and has sparked other efforts such as weak
links analysis [32]. Hence, our next three research questions are
related to the supply chain.

(5) How effective are redundancies in supply chains at increas-
ing resilience?

(6) How do changes which turn libraries into protestware differ
from other software evolution?

(7) How accurately can we automatically detect protestware?
Efforts to increase supply chain resilience could form a spec-

trum from manual efforts to minimise the impact of protestware
by reducing the reliance on external libraries [30] or introduc-
ing redundancies into supply chains [15] to automated tools for
protestware detection and mitigation, similar to vulnerability detec-
tion [22]. To pave the way for automated detection and mitigation,
we propose research questions related to unique characteristics of
patches which turn a library into protestware (e.g., are such patches
‘surprising’ to a language model trained on past patches? [13]) as
well as automated prediction, borrowing methods from the defect
prediction literature [29].

4.3 Managing Trust and Responsibility
Prior work has established that the success of a library is based
on the library itself, which involves the assumption of a module’s

functional and non-functional correctness. For instance, system
maintainers need to trust the reliability of non-functional attributes
such as security and stability of an adopted library [19]. This trust
in components is well-known in other fields, such as Dependable
and Secure Computing [16, 17, 31]. However, we argue that trust
also falls back on the maintainer. The final three research questions
are aimed at maintainers and their role in an ecosystem as a whole.

(8) What are the responsibilities of maintainers, as perceived by
other stakeholders in a software ecosystem?

(9) How does protestware affect trust into a library and entire
ecosystems?

(10) How is protestware regulated at ecosystem level?
Recent anecdotes, such as a Fortune-500 company unabashedly

requesting a curl maintainer’s immediate response about the Log4J
vulnerability [27], highlight the current confusion about what ex-
actly are the responsibilities of a great open-source maintainer [14].
The recent emergence of protestware only adds to this confusion—
do maintainers act irresponsibly if they use open source for political
action? We propose to capture the perceptions of different play-
ers in a software ecosystem about these responsibilities and how
protestware can affect trust in libraries and ecosystems. It is impor-
tant that software ecosystems are resilient to threats against their
culture, thus becoming sustainable [21]. As mentioned in Section 1,
open source licences contain statements about discrimination [18],
but they are not explicit about protestware. We also propose to
investigate how codes of conduct [28] at project and ecosystem
level can play a role in regulating the management of protestware.

5 DISCUSSION AND CONCLUSION
Protests are a powerful way for people to make their voices heard.
They can be used to call attention to injustices, and to demand
change. In the world of open source software, protests take the
form of “protestware”. In highly inter-connected and large software
ecosystems, where the average package can directly depend on
more than five other packages (NPM [20]), the impact of protest-
ware on the entire ecosystem can be devastating, especially if it
is malignant in nature. Using the context of the ongoing War in
Ukraine, we have argued how and why protestware does have an
impact on software ecosystems, and we have outlined a comprehen-
sive research agenda for understanding and addressing protestware
and its implications on ecosystem resilience, trust, and responsibil-
ity.

To answer the research questions posed above, we need a system-
atic research approach. To confirm the anecdotal evidence, we need
methods to define and detect different forms of protestware. Per-
ceptions of developers as well as viewpoints of large Fortune-500
companies would need to be sought, e.g., via surveys or interviews.
Furthermore, political stances can become a sensitive topic, so care
needs to be taken in the design on how to effectively gather and
interpret our results. Our hope is that answering these questions
will help us understand how to sustain and build resilient software
ecosystems.

ACKNOWLEDGEMENT
This work is supported by Japanese Society for the Promotion of
Science (JSPS) KAKENHI Grant Numbers 20K19774 and 20H05706.

1603

In War and Peace: The Impact of World Politics on Software Ecosystems ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

REFERENCES
[1] 2022. CVE-2022-23812. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2022-23812. (Accessed on 05/11/2022).
[2] 2022. Discussion on node-ipc. https://github.com/RIAEvangelist/node-ipc/

discussions/505. (Accessed on 05/11/2022).
[3] 2022. Faker Protest message. http://web.archive.org/web/20210704022108/https:

/github.com/Marak/faker.js/issues/1046. (Accessed on 05/11/2022).
[4] 2022. Github response to the war in Ukraine. https://github.blog/2022-03-02-

our-response-to-the-war-in-ukraine/. (Accessed on 05/11/2022).
[5] 2022. GitHub suspending Russian accounts deleted project history and pull

requests. https://www.jessesquires.com/blog/2022/04/19/github-suspending-
russian-accounts/. (Accessed on 05/11/2022).

[6] 2022. GitHub suspending Russian accounts deleted project history and pull re-
quests. https://openssf.org/community/alpha-omega/. (Accessed on 05/11/2022).

[7] 2022. n. https://www.bleepingcomputer.com/news/security/third-npm-
protestware-event-source-polyfill-calls-russia-out/. (Accessed on 05/11/2022).

[8] 2022. node-ipc GitHub Repository. https://github.com/RIAEvangelist/node-ipc.
(Accessed on 05/11/2022).

[9] 2022. peacenotwar GitHub Repository. https://github.com/RIAEvangelist/
peacenotwar. (Accessed on 05/11/2022).

[10] 2022. peacenotwar message. https://github.com/medikoo/es5-ext/commit/
28de285ed433b45113f01e4ce7c74e9a356b2af2. (Accessed on 05/11/2022).

[11] 2022. Terraform added Terms of Use. https://github.com/
terraform-aws-modules/terraform-aws-ec2-instance/commit/
6867788411a202b61187f9935e9eaa72a18f0bbe. (Accessed on 05/11/2022).

[12] Gerald Benischke. 2022. On the Weaponization of Open Source.
https://www.computer.org/publications/tech-news/community-voices/on-the-
weaponization-of-open-source. (Accessed on 05/11/2022).

[13] James Caddy, Markus Wagner, Christoph Treude, Earl T Barr, and Miltiadis
Allamanis. 2022. Is Surprisal in Issue Trackers Actionable? arXiv preprint
arXiv:2204.07363 (2022). https://doi.org/10.48550/arXiv.2204.07363

[14] Edson Dias, Paulo Meirelles, Fernando Castor, Igor Steinmacher, Igor Wiese, and
Gustavo Pinto. 2021. What Makes a Great Maintainer of Open Source Projects?.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 982–994. https://doi.org/10.1109/ICSE43902.2021.00093

[15] Abdelouahed Gherbi, Robert Charpentier, and Mario Couture. 2011. Software
diversity for future systems security. CrossTalk: The Journal of Defense Software
Engineering 24, 5 (2011), 10–13. https://doi.org/10.1.1.445.6492

[16] R. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. 2004. Propaga-
tion of Trust and Distrust. In Proceedings of the 13th International Conference on
World Wide Web (New York, NY, USA) (WWW ’04). Association for Computing
Machinery, New York, NY, USA, 403–412. https://doi.org/10.1145/988672.988727

[17] W. Hasselbring and R. Reussner. 2006. Toward trustworthy software systems.
Computer 39, 4 (2006), 91–92. https://doi.org/10.1109/MC.2006.142

[18] Open Source Initiative. 2007. The Open Source Definition. https://opensource.
org/osd. (Accessed on 05/11/2022).

[19] Raula Gaikovina Kula, Daniel M. German, Takashi Ishio, and Katsuro Inoue.
2015. Trusting a library: A study of the latency to adopt the latest Maven release.
In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and

Reengineering (SANER). 520–524. https://doi.org/10.1109/SANER.2015.7081869
[20] Raula Gaikovina Kula, Ali Ouni, Daniel M German, and Katsuro Inoue. 2017.

On the impact of micro-packages: An empirical study of the npm javascript
ecosystem. arXiv preprint arXiv:1709.04638 (2017). https://doi.org/10.48550/arXiv.
1709.04638

[21] Raula Gaikovina Kula and Gregorio Robles. 2019. The Life and Death of Software
Ecosystems. In Towards Engineering Free/Libre Open Source Software (FLOSS)
Ecosystems for Impact and Sustainability. Springer, 97–105. https://doi.org/10.
1007/978-981-13-7099-1_6

[22] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
Vulpecker: an automated vulnerability detection system based on code similarity
analysis. In Proceedings of the 32nd Annual Conference on Computer Security
Applications. 201–213. https://doi.org/10.1145/2991079.2991102

[23] Suhaib Mujahid, Rabe Abdalkareem, and Emad Shihab. 2022. What are the
characteristics of highly-selected packages? A case study on the npm ecosystem.
arXiv preprint arXiv:2204.04562 (2022). https://doi.org/10.48550/arXiv.2204.04562

[24] Guy Oakes. 2003. Max Weber on value rationality and value spheres: Critical
remarks. Journal of Classical Sociology 3, 1 (2003), 27–45. https://doi.org/10.1177/
1468795X03003001693

[25] Open Source Initiative Statement on Protestware. 2007. The Open Source Defini-
tion. https://blog.opensource.org/open-source-protestware-harms-open-source/.
(Accessed on 05/11/2022).

[26] Mark R Rutgers and Petra Schreurs. 2006. The morality of value-and purpose-
rationality: The Kantian roots ofWeber’s foundational distinction. Administration
& Society 38, 4 (2006), 403–421. https://doi.org/10.1177/0095399706290632

[27] Daniel Stenberg. 2022. LOGJ4 SECURITY INQUIRY – RESPONSE
REQUIRED. https://daniel.haxx.se/blog/2022/01/24/logj4-security-inquiry-
response-required/. (Accessed on 05/11/2022).

[28] Parastou Tourani, Bram Adams, and Alexander Serebrenik. 2017. Code of conduct
in open source projects. In 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER). IEEE, 24–33. https://doi.org/10.
1109/SANER.2017.7884606

[29] Zhiyuan Wan, Xin Xia, Ahmed E Hassan, David Lo, Jianwei Yin, and Xiaohu
Yang. 2018. Perceptions, expectations, and challenges in defect prediction. IEEE
Transactions on Software Engineering 46, 11 (2018), 1241–1266. https://doi.org/10.
1109/TSE.2018.2877678

[30] Bowen Xu, Le An, Ferdian Thung, Foutse Khomh, and David Lo. 2020. Why rein-
venting the wheels? An empirical study on library reuse and re-implementation.
Empirical Software Engineering 25, 1 (2020), 755–789. https://doi.org/10.1007/
s10664-019-09771-0

[31] Zheng Yan and Christian Prehofer. 2011. Autonomic Trust Management for a
Component-Based Software System. IEEE Transactions on Dependable and Secure
Computing 8, 6 (2011), 810–823. https://doi.org/10.1109/TDSC.2010.47

[32] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and L. Williams.
2022. What are Weak Links in the npm Supply Chain?. In 2022 IEEE/ACM
44th International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE Computer Society, Los Alamitos, CA, USA, 331–340.
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794068

[33] Dimko Zhluktenko. 2022. Tweet. https://twitter.com/dim0kq/status/
1502372427589996545. (Accessed on 05/11/2022).

1604

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23812
https://github.com/RIAEvangelist/node-ipc/discussions/505
https://github.com/RIAEvangelist/node-ipc/discussions/505
http://web.archive.org/web/20210704022108/https:/github.com/Marak/faker.js/issues/1046
http://web.archive.org/web/20210704022108/https:/github.com/Marak/faker.js/issues/1046
https://github.blog/2022-03-02-our-response-to-the-war-in-ukraine/
https://github.blog/2022-03-02-our-response-to-the-war-in-ukraine/
https://www.jessesquires.com/blog/2022/04/19/github-suspending-russian-accounts/
https://www.jessesquires.com/blog/2022/04/19/github-suspending-russian-accounts/
https://openssf.org/community/alpha-omega/
https://www.bleepingcomputer.com/news/security/third-npm-protestware-event-source-polyfill-calls-russia-out/
https://www.bleepingcomputer.com/news/security/third-npm-protestware-event-source-polyfill-calls-russia-out/
https://github.com/RIAEvangelist/node-ipc
https://github.com/RIAEvangelist/peacenotwar
https://github.com/RIAEvangelist/peacenotwar
https://github.com/medikoo/es5-ext/commit/28de285ed433b45113f01e4ce7c74e9a356b2af2
https://github.com/medikoo/es5-ext/commit/28de285ed433b45113f01e4ce7c74e9a356b2af2
https://github.com/terraform-aws-modules/terraform-aws-ec2-instance/commit/6867788411a202b61187f9935e9eaa72a18f0bbe
https://github.com/terraform-aws-modules/terraform-aws-ec2-instance/commit/6867788411a202b61187f9935e9eaa72a18f0bbe
https://github.com/terraform-aws-modules/terraform-aws-ec2-instance/commit/6867788411a202b61187f9935e9eaa72a18f0bbe
https://www.computer.org/publications/tech-news/community-voices/on-the-weaponization-of-open-source
https://www.computer.org/publications/tech-news/community-voices/on-the-weaponization-of-open-source
https://doi.org/10.48550/arXiv.2204.07363
https://doi.org/10.1109/ICSE43902.2021.00093
https://doi.org/10.1.1.445.6492
https://doi.org/10.1145/988672.988727
https://doi.org/10.1109/MC.2006.142
https://opensource.org/osd
https://opensource.org/osd
https://doi.org/10.1109/SANER.2015.7081869
https://doi.org/10.48550/arXiv.1709.04638
https://doi.org/10.48550/arXiv.1709.04638
https://doi.org/10.1007/978-981-13-7099-1_6
https://doi.org/10.1007/978-981-13-7099-1_6
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.48550/arXiv.2204.04562
https://doi.org/10.1177/1468795X03003001693
https://doi.org/10.1177/1468795X03003001693
https://blog.opensource.org/open-source-protestware-harms-open-source/
https://doi.org/10.1177/0095399706290632
https://daniel.haxx.se/blog/2022/01/24/logj4-security-inquiry-response-required/
https://daniel.haxx.se/blog/2022/01/24/logj4-security-inquiry-response-required/
https://doi.org/10.1109/SANER.2017.7884606
https://doi.org/10.1109/SANER.2017.7884606
https://doi.org/10.1109/TSE.2018.2877678
https://doi.org/10.1109/TSE.2018.2877678
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1109/TDSC.2010.47
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794068
https://twitter.com/dim0kq/status/1502372427589996545
https://twitter.com/dim0kq/status/1502372427589996545

	In war and peace: The impact of world politics on software ecosystems
	Citation

	Abstract
	1 Introduction
	2 Motivating Cases
	2.1 Case 1: Malignant Protestware
	2.2 Case 2: Benign Protestware
	2.3 Case 3: Developer Sanctions

	3 Other Maintainer Stances
	4 Research Agenda
	4.1 Dissecting the status quo of Protestware
	4.2 Increasing Supply Chain Resilience
	4.3 Managing Trust and Responsibility

	5 Discussion and Conclusion
	References

