
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2020

Generating concept based API element comparison using a Generating concept based API element comparison using a

knowledge graph knowledge graph

Yang LIU

Mingwei LIU

Xin PENG

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Zhenchang XING

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering

Commons

Citation Citation
LIU, Yang; LIU, Mingwei; PENG, Xin; TREUDE, Christoph; XING, Zhenchang; and ZHANG, Xiaoxin.
Generating concept based API element comparison using a knowledge graph. (2020). Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering (ASE): Virtual Conference,
2020 September 21-25. 834-845.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8899

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8899&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yang LIU, Mingwei LIU, Xin PENG, Christoph TREUDE, Zhenchang XING, and Xiaoxin ZHANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8899

https://ink.library.smu.edu.sg/sis_research/8899

Generating Concept based API Element Comparison Using a
Knowledge Graph

Yang Liu∗

Fudan University

China

Mingwei Liu∗

Fudan University

China

Xin Peng∗†

Fudan University

China

Christoph Treude
The University of Adelaide

Australia

Zhenchang Xing
Australian National University

Australia

Xiaoxin Zhang∗

Fudan University

China

ABSTRACT

Developers are concerned with the comparison of similar APIs in

terms of their commonalities and (often subtle) differences. Our em-

pirical study of Stack Overflow questions and API documentation

confirms that API comparison questions are common and can often

be answered by knowledge contained in API reference documenta-

tion. Our study also identifies eight types of API statements that are

useful for API comparison. Based on these findings, we propose a

knowledge graph based approach APIComp that automatically ex-

tracts API knowledge from API reference documentation to support

the comparison of a pair of API classes or methods from different

aspects. Our approach includes an offline phase for constructing an

API knowledge graph, and an online phase for generating an API

comparison result for a given pair of API elements. Our evaluation

shows that the quality of different kinds of extracted knowledge

in the API knowledge graph is generally high. Furthermore, the

comparison results generated by APIComp are significantly better

than those generated by a baseline approach based on heuristic

rules and text similarity, and our generated API comparison results

are useful for helping developers in API selection tasks.

CCS CONCEPTS

• Software and its engineering→Documentation; •Comput-

ing methodologies→ Information extraction.

KEYWORDS

API, Knowledge Graph, Documentation, Knowledge Extraction

∗Y. Liu, M. Liu, X. Peng, and X. Zhang are with the School of Computer Science and
Shanghai Key Laboratory of Data Science, Fudan University, and the Shanghai Institute
of Intelligent Electronics & Systems, China.
†X. Peng is the corresponding author (pengxin@fudan.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416628

ACM Reference Format:

Yang Liu, Mingwei Liu, Xin Peng, Christoph Treude, Zhenchang Xing,

and Xiaoxin Zhang. 2020. Generating Concept based API Element Com-

parison Using a Knowledge Graph. In 35th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE ’20), September 21–25,

2020, Virtual Event, Australia. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3324884.3416628

1 INTRODUCTION

Frameworks and libraries often have APIs that provide similar func-

tionalities, but have subtle differences. For example, java.lang.String-

Buffer and java.lang.StringBuilder can be used for string construc-

tion, but StringBuffer is thread-safe while StringBuilder is not. Over-

looking such subtle differences between similar APIs may result

in program errors, e.g., using java.lang.StringBuilder in a multi-

thread context. Therefore, developers are often concerned with

the comparison of similar APIs. In fact, API comparison questions

are common on SO (Stack Overflow). For example, as of March 3,

2019, 13,228 questions tagged with “java” have either the strings

“difference between” or “vs” in their title. Among these questions,

38% (5,075 of 13,228) questions do not have an accepted answer.

API reference documentation contains rich knowledge of a vari-

ety of aspects of an API, such as functionalities, constraints, direc-

tives, caveats, and resource specifications [3, 7, 8, 15, 22, 31, 32]. In

an empirical study with 100 JDKAPI comparison questions from SO,

we found that the JDK API reference documentation covers 74%

of the points made in the answers to these questions, covering

different aspects of API knowledge. We also found that knowledge

is scattered within the document of one API element (e.g., class)

and across the documents of related API elements, leading to many

challenges for API comparison knowledge discovery and summa-

rization. First, API reference documentation has information over-

loading issues. For example, the API document of java.nio.file.Files1

contains 1,003 sentences. Second, API reference documentation con-

tains diverse types of API knowledge, not all of which are related to

API comparison. Third, API reference documentation contains het-

erogeneous information: code snippets, various aliases (e.g., “string

buffer” in the text for java.lang.StringBuffer), and co-references

(e.g., “this class” may reference different API classes depending on

the context).

To assist developers in API selection tasks and automatically gen-

erate the comparison of API classes or methods by extracting API

1https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html

834

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

comparison knowledge from API reference documentation, deep

understanding of the semantics of the API description text is neces-

sary. Moreover, lots of API knowledge is not only in the text, but also

in the code structure, e.g., classes implementing java.io.Serializable

are serializable. How can we effectively mine such knowledge from

both code and text? How to normalize and structure the mined API-

comparison knowledge is another big challenge, since the same

knowledge may be described in different ways in different parts

of the API reference documentation. e.g., “A thread-safe, mutable

sequence of characters” is the first sentence of java.lang.StringBuffer

and “A StringBuffer is like a String, but can be modified” is the sec-

ond sentence, but they describe the overlapping knowledge about

java.lang.StringBuffer. That is “can be modified” implies the charac-

teristic “mutable”. Last but not least, we need a way to automatically

infer the commonalities and differences of APIs based on the mined

API knowledge to answer API comparison questions.

To tackle these challenges, we propose a knowledge graph based

approach APIComp that automatically extracts API comparison

knowledge from API reference documentation to support the com-

parison of a pair of API classes or methods from different aspects

(i.e., functionality, characteristic, and categorization). APIComp con-

sists of an offline phase for API knowledge graph construction and

an online phase for API comparison service. The offline phase takes

as input API reference documentation and produces an API knowl-

edge graph. The online phase generates API comparison results

for a given pair of API elements. Our knowledge graph helps to

establish extensive relations between API information in different

ways, e.g., linking the noun concepts related to APIs to the concepts

from a general knowledge graph (e.g.,Wikidata [25]). In this way,

we can gather API knowledge from different places and in diverse

forms, and describe it in a standardized format and present it in an

intuitive table for API comparison (see Figure 4).

We evaluated the quality of the key steps for API knowledge

graph construction and the effectiveness and usefulness of API com-

parison results generated by APIComp. Our experimental results

show that the quality of different kinds of knowledge in the API

knowledge graph is generally high. The comparison results gener-

ated by APIComp outperform the comparison results generated by a

text similarity based baseline in completeness, conciseness, and un-

derstandability while covering more answer points. Moreover, we

designed 12 API selection tasks that require API comparison knowl-

edge of similar APIs and asked 12 participants to solve the tasks

with APIComp and without APIComp (i.e., using the Google search

engine). Our user study shows that participants that used API-

Comp can solve tasks faster and more accurately compared to those

using Google. This shows that APIComp can help developers in

real-world API selection tasks. Details of the empirical study and

evaluation can be found in our replication package [1].

This paper makes the following contributions:

1) We conducted an empirical study and revealed that API com-

parison questions can be answered by 8 types of API statements

from API reference documentation;

2) We proposed an approach APIComp that automatically ex-

tracts API comparison knowledge from API reference documenta-

tion to support the comparison of a pair of API elements;

3)We constructed an API knowledge graph for JDK 1.8 (including

188,163 entities and 339,770 relations for 44,809 API classes and

methods) and one for Android 27 (including 271,162 entities and

572,098 relations for 77,084 API classes and methods);

4) We evaluated the quality of the key steps for API knowledge

graph construction and the effectiveness and usefulness of API

comparison results generated by APIComp.

2 EMPIRICAL STUDY

To understand what information developers are looking for when

comparing APIs and how we could design an approach to assist

developers by providing such comparisons automatically, we con-

ducted an empirical study to investigate whether and where the

API reference documentation contains information useful for an-

swering API comparison questions asked on SO. We answered the

following research questions:

RQ1: What API comparison information is available on SO?

RQ2: How much useful information does the API reference

documentation contain for answering API comparison questions

and how scattered is this information in API documentation?

RQ3: What statement types can relevant information for an-

swering API comparison questions be classified into?

2.1 Study Design

2.1.1 Data Preparation. To retrieve questions about API compar-

ison, we selected questions from the SO data dump [20] tagged

with “java” that had either of the strings “difference between” or

“vs” in the title. We chose Java since the JDK is one of the most

popular APIs. We obtained 13,228 such questions. Note that this

underestimates the total number of API comparison questions due

to our choice of search strings. For this empirical study, we only

kept questions with an accepted answer and a score of greater than

10, leading to a total of 1,487 questions. Because we focus on API

class/method comparison, we manually removed questions that

were not about comparing two JDK API classes/methods by ex-

cluding (1) questions aimed at comparing aspects that are not API

classes/methods (2) questions involving non-JDK APIs and (3) ques-

tions aimed at comparing more than two APIs. The manual removal

was conducted by two students independently (one PhD and one

MS student, both with more than five years Java experience), with

a Cohen’s Kappa agreement [10] of 0.897, i.e., almost perfect agree-

ment. We only kept questions that had been annotated as relevant

by both students, resulting in 215 questions. Note that the total

number of API comparison questions on SO is much higher—the

number of 215 is the result of strict filtering (e.g., filtering out all

threads with a score ≤ 10) to reduce the person power required

for manual annotation. To further reduce the effort, we randomly

selected 100 API comparison questions out of the 215 questions for

subsequent analysis.

2.1.2 Protocol. To answer API comparison questions on SO, users

usually summarize information about a certain aspect of the com-

pared APIs (e.g., “Hashtable does not allow null keys or values”)

or directly compare APIs on a certain aspect (e.g., “Hashtable is

synchronized, whereas HashMap is not”). We call this kind of in-

formation in SO answers answer points. Each answer point can be

represented as a sentence and a sentence in an answer may contain

835

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

multiple answer points. For each of the 100 API comparison ques-

tions, we manually extracted answer points from accepted answers,

following these criteria:

1) Extraction of answer points must be performed in order from

the first sentence of the accepted answer to the last.

2) Answer points must be related to at least one of the two API

elements being compared.

3) Extracted answer points must be complete or missing compo-

nents must be completed, and pronouns must be replaced with the

referenced objects.

4) The extracted answer points must be as atomic as possible,

describing the knowledge of a single aspect of the API.

Splitting, simplification, completion, and rephrasing of the orig-

inal sentence are allowed, e.g., two answer points “Hashtable is

synchronized” and “HashMap is not synchronized” are extracted

from the sentence “Hashtable is synchronized, whereas HashMap is

not”. If a sentence directly compares two API elements, one answer

point is extracted. For example, from “I think the LinkedHashMap

has to be faster than HashMap in traversal due to a superior nextEn-

try implementation in its Iterator.”, we will extract “LinkedHashMap

is faster than HashMap in traversal”, i.e., we make simplifications

to the original sentence but retain the basic semantics. This kind of

rephrasing has two advantages: (1) to enable better determination

of whether the answer point information exists in the API reference

documentation (e.g., “Hashtable is synchronized, whereas HashMap

is not” may not be described by one sentence in HashMap’s refer-

ence documentation or HashTable’s reference documentation, but

each documentation page might describe one half – extracting the

original sentence as two answer points makes it easier to find the

corresponding information appearing in the API reference docu-

mentatio); and (2) to make it easier for us to classify an answer

point into a single statement type (cf. RQ3).

For each answer point extracted, we then investigate whether

and where the information is available in some form in the API

reference documentation by reading the corresponding API refer-

ence documentation of JDK 1.8. The documents considered are not

limited to the documentation of the API classes and methods being

compared, but also include other documents that may be relevant

(e.g., documents of parent classes). For investigating where in the

API reference documentation the information from an answer point

is located, we define the documentation of a class as the whole page

of API class documentation including the description of all its mem-

bers, and the documentation of a method as the description of the

method and the entire leading section of the class it belongs to.

If more than one page contains the information described by the

answer point, we record all pages. Our replication package contains

typical examples of extracted answer points and corresponding API

documentation.

We conduct the annotation of the 100 questions in two phases:

small-scale annotation by two annotators and large-scale annota-

tion by one annotator, following the qualitative research design

of previous work (e.g., [4]). During the small-scale annotation, we

asked two students (one PhD and one MS student, both with at

least five years of Java experience) to extract answer points in-

dependently for 20 randomly selected questions. Since different

students might use different languages to describe the same answer

point, one of the authors examined the answer points extracted

to determine whether they were identical (i.e., either used the ex-

act same language or used similar language to describe the same

point, e.g., “BufferedReader achieves greater efficiency than Input-

StreamReader”, “BufferedReader is more efficient than InputStream-

Reader”) and to resolve conflicts where needed. Using this protocol,

we obtained 54 unique answer points after arbitration, out of which

49 (91%) were extracted by both students. Then for each of the 54

answer points, the same two students investigated whether the

corresponding information is available in the API reference docu-

mentation, and if so, where. We computed the agreement between

the two students for answering whether the information is included

in API reference documentation, resulting in a Cohen’s Kappa co-

efficient [10] of 0.764 (i.e., substantial agreement). For the location

of the information in API reference documentation, we combined

the answers of both students. The remaining 80 API comparison

questions were only annotated by one student (i.e., large-scale an-

notation) following the guidelines summarized from the small-scale

annotation.

For answering RQ3, we determined the statement type that the

answer points can be classified into by qualitatively analyzing an-

swer points using open coding. The coding was done by three

authors of this paper together and started with one seed code

(i.e., functionality, the most important knowledge type in API ref-

erence documentation [9]). For each answer point, three authors

decided which code the answer point can be classified into by dis-

cussion. If an answer point could not be classified into an existing

code, we created a new code or modified the definition and name

of an existing code. If a new code was created or an existing code

was modified, we re-annotated all answer points that had been

annotated before. We stopped once all answer points had been

classified into an existing statement type, i.e., code. To verify that

our statement type classification is correct and complete, we in-

vited two MS students (not involved in previous annotation) with

more than five years’ experience of Java development to use our

statement types to annotate all answer points of the 100 questions.

The annotation was performed by both students independently and

if they thought that an answer point cannot be classified into any

existing statement type, they classified it as unknown. We analyzed

the annotation results and none of answer points was annotated as

unknown (i.e., no new code is needed) and there are no “not-used”

codes (i.e., all codes are useful). The Cohen’s Kappa coefficient [10]

is 0.880 (i.e., almost perfect agreement). As a result, we consider the

statement type classification to be correct and complete.

2.2 Result and Analysis

2.2.1 Answer for RQ1. 255 answer points were extracted from the

accepted answers of 100 questions. The most common case is two

answer points for one answer (38%), with a maximum of six per

answer (one case). 54 questions are about comparing API classes

and 46 questions are about comparing API methods.

2.2.2 Answer for RQ2. The information for 189 of the 255 answer

points (74%) is available in the API reference documentation. For 85

questions, at least one answer point is available in the API reference

documentation. We conclude that most API comparison questions

could be completely or partially answered by the API knowledge

in API reference documentation.

836

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Conceptual Schema of API Statements

For the 85 questions with at least one answer point available

in the API reference documentation, we counted how many doc-

uments the developer would need to check to answer them. As

a result, 20 questions could be answered by only checking one

document; but the other 65 questions could only be answered by

checking two or more documents (4 at most). In other words, in

76.5% of cases, the information for answering an API comparison

question is scattered across documentation of different API ele-

ments. This further motivates our work on providing developers

with an automated approach for extracting and summarizing API

comparison knowledge from API reference documentation.

2.2.3 Answer for RQ3. Table 1 shows the definitions and examples

of eight statement types with the number of answer points. Related

concepts and their relations can be explained by the conceptual

schema shown in Figure 1. These eight statement types are further

classified into three aspects: 1) Categorization, including concept

classification, membership; 2) Functionality, including functional-

ity specification, behavior specification, functionality comparison;

3) Characteristic, including characteristic specification, character-

istic comparison, constraint.

3 APPROACH

The results of the empirical study imply the necessity and possibil-

ity of automatically discovering and summarizing API comparison

knowledge in the API reference documentation. We can extract rele-

vant API statements and classify them into different types. With the

support of relevant knowledge (including concepts and relations)

we can align the API statements of two API elements to generate

useful API comparison results. We propose a knowledge graph

based approach for comparing two API elements. The approach

(called APIComp) consists of an offline phase for API knowledge

graph construction and an online phase for generating API com-

parison results (see Figure 2).

API Knowledge Graph Construction. Our API knowledge

graph follows the conceptual scheme shown in Figure 1, which is

obtained by disassembling the relationships among the subjects,

predicates, objects, and conditions involved in the eight types of

API statements. We first extract the API structure from the API

reference documentation, including API elements (e.g., packages,

classes, interfaces, methods) and their relations (e.g., containment,

inheritance, implementation). We extract description sentences

Figure 2: Overview of APIComp

for API elements from the documentation. Based on predefined

templates, we use rule-based techniques to extract template nor-

malized API statements from the API structure and API description

sentences. The extracted API statements include various concepts

(e.g., actions and objects of functionality specifications). To relate

API statements to each other and provide concept explanations

for them, we further extend the concepts and relations by intro-

ducing general concepts that are related to API statements and by

identifying additional relations. The general concepts are extracted

from general knowledge graphs (i.e., WikiData [25]) and linked

with related concepts of API statements. The additional relations

are identified between API statements based on both lexical and

semantic analysis. The extracted API structure and API statements

as well as the extended concepts and relations constitute the API

knowledge graph. We describe the details of these steps below.

API Comparison Service. We first align API statements of

two given API elements based on the API knowledge graph. The

alignment identifies corresponding and comparable API statements

for two APIs. The comparison results for the two API elements are

generated based on the aligned API statements. The results include

a table (see Figure 4) showing the commonalities and differences of

the two API elements with explanations for the involved concepts.

Figure 3: An Example of API Knowledge Graph

3.1 Running Example

Figure 3 shows part of the knowledge graph for the JDK API, where

rectangles, white ellipses, and gray ellipses denote API elements,

API statements, and extended concepts, respectively. The knowl-

edge graph includes three kinds of knowledge, i.e., API structure,

API statements, and extended concepts and relations. The API struc-

ture in Figure 3 describes two API classes (java.lang.StringBuilder

and java.lang.StringBuffer), related interfaces and methods, and

various relations (e.g., implementation) between them (see Sec. 3.2).

837

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

Table 1: API Statement Types Identified in Our Empirical Study
Statement Type Definition Example Class Method Total

Concept Classification Describe that an API element is an instance of a category by concept PrintWriter is a stream of characters 36 3 39

Membership Describe that an API element belongs to a category push operation is part of Stack 1 3 4

Functionality Specification Describe what an API element can or cannot do SocketChannel reads from sockets 41 50 91

Behavior Specification Describe specific behaviors of an API element under a certain condition FileWriter makes system call when calling to write 8 20 28

Functionality Comparison
Compare the functionalities of twoAPI elements by three relations (equivalent to, similar
to, different from)

java.util.Properties is like java.util.Map 6 7 13

Characteristic
Specification

Describe the characteristics of an API element, its property (e.g., StringBuffer capacity)
or functionality

Hashtable is synchronized 23 13 36

Characteristic
Comparison

Compare the characteristics of two API elements, their properties or functionalities BufferedWriter is more efficient than FileWriter 20 8 28

Constraint
Describe the constraints of an API element or its property using permission verbs (e.g., al-
low, prohibit, guarantee, limit)

HashSet allows null object 13 3 16

Total 148 107 255

Note: Numbers in the table indicate the number of answer points with corresponding statement type for API comparison questions of classes and methods respectively

Figure 4: An Example of API Comparison Results

The API statements in Figure 3 describe the categories, functionali-

ties, and characteristics of the two classes, which are extracted from

two sources, i.e., API description sentences and API structure (see

Sec. 3.4). For example, the characteristic specification “appendable”

and the concept classification “char sequence” of the two classes

are extracted from their class-interface implementation relations

with java.lang.Appendable and java.lang.CharSequence respectively;

the characteristic specifications “thread-safe”, “mutable”, and “safe

for use by multiple threads” of java.lang.StringBuffer are extracted

from its description sentences “A thread-safe, mutable sequence of

characters.” and “String buffers are safe for use by multiple threads.”

from the documentation after sentence completion and API men-

tion resolution (see Sec. 3.3). The extended concepts and relations

in Figure 3 conceptually relate API statements (see Sec. 3.5). For

example, the relations of opposite characteristic specifications and

the shared equivalent characteristic specifications (e.g., “modifi-

able” and “mutable”) are identified to conceptually relate the API

statements of the two classes. Moreover, general concepts may

also be introduced and linked with the concepts in API statements.

e.g., “char sequence” is linked to the WikiData concept “sequence

(ordered list)”2.

Based on the API knowledge graph, APIComp can generate com-

parison results for any two API elements. For example, the compari-

son results for java.lang.StringBuilder and java.lang.StringBuffer are

shown in Figure 4 (excerpt), where pink represents concept classifi-

cation, orange represents membership, green represents character-

istic specification, and blue represents functionality specification.

To generate the result, we first align the API statements of the

two classes (see Sec. 3.6), e.g., “safe for use by multiple threads”

and “unsafe for use by multiple threads” are aligned based on their

opposite relation and semantic similarity; the category “character

sequence”, the characteristics “serializable”, “appendable” of both

classes are aligned based on their equivalence relations. Based on

2https://www.wikidata.org/wiki/Q133250

the alignment, a comparison results table is generated by summa-

rizing the commonalities and differences of the two API elements

(see Sec. 3.7).

3.2 API Structure Extraction

From the API reference documentation we extract four types of API

elements, i.e., packages, classes, interfaces, and methods, as well

as the following relations between them: containment relations

between packages, classes/interfaces, andmethods; inheritance re-

lations between classes/interfaces; and implementation relations

between classes and interfaces. These API elements and relations

can be extracted from the corresponding declarations in the docu-

mentation based on their structure.

3.3 API Description Sentence Extraction

To extract description sentences for an API element, we split its text

description into sentences. Then we identify and remove sentences

that include code statements for reducing noise. To facilitate the

extraction of API statements we conduct additional processing,

namely sentence completion and APImention resolution, to provide

more complete description sentences. After that we filter out short

sentences that include no more than two words.

3.3.1 Sentence Completion. The first sentence of the text descrip-

tion of an API element usually provides a brief summary, such

as “A thread-safe, mutable sequence of characters.” for java.lang.-

StringBuffer. These sentences are often incomplete and lack subjects

or predicates. We use an NLP tool (i.e., Spacy) to analyze and iden-

tify incomplete sentences based on the following two criteria: it

is a declarative sentence; and it has no subject or predicate. For a

sentence that has no subject we add the fully-qualified name of the

corresponding API element as the subject and if the sentence has

no predicate we further add “is” as the predicate.

3.3.2 API Mention Resolution. To facilitate the extraction of API

statements we need to replace all the mentions of an API element

with its fully qualified name. First we identify all aliases of an API

element and replace all occurrences of these aliases in description

sentences with the fully qualified name of the corresponding API

element. For each API element we recognize the following aliases:

1) the short name (i.e., the part after the last dot of the fully-

qualified name) of the API element, e.g., “StringBuilder”;

2) the fully-qualified name or short name of the API element

(method) without parameters, e.g., “java.lang.StringBuilder.append”

and “StringBuilder.append”;

3) the phrase obtained by splitting the short name of the API

element by camel case and underscore, e.g., “string builder”;

838

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

4) the phrase obtained by adding the type of the API element

(i.e., package, class, interface, or method) after an alias, e.g., “String-

Builder class” and “string builder class”.

Then we use a coreference resolution tool (i.e., NeuralCoref3) to

resolve pronouns which refer to API elements.

3.4 API Statement Extraction

We design a series of heuristic rules to extract API statements from

description sentences and the API structure. These rules are sum-

marized by analyzing the description sentences and API structure

identified in the empirical study. The word conversion involved in

the rules is implemented using WordNet [12].

3.4.1 Extracting from Description Sentences. For each description

sentence, we first parse it into simple sentences, then use heuristic

rules to extract API statements, and finally normalize the extracted

API statements. The process is described below.

We use Spacy to do POS tagging and dependency parsing for

the sentence. If the sentence is a compound sentence with mul-

tiple predicates, we split it into multiple simple sentences with

only one predicate by iteratively executing the following rule based

on the dependency tree: for each subordinate clause, if it is an

adverbial clause then keep it together with the major clause, oth-

erwise remove it from the sentence, complete its subject if miss-

ing, and treat it as a separate sentence. For example, the sentence

“java.lang.StringBuffer is like a java.lang.String, but can bemodified.”

will be split into two simple sentences “java.lang.StringBuffer is like

a java.lang.String” and “java.lang.StringBuffer can be modified”.

Three authors manually analyzed the description sentences from

the two packages most involved in the 100 API comparison ques-

tions from Sec. 2.1 (i.e., java.io and java.util), and summarized lin-

guistic patterns iteratively by creating new patterns or modifying

and merging existing patterns until all patterns were stable. The

resulting 27 linguistic patterns are shown in Table 2. Each linguistic

pattern is used as a heuristic rule for API statement extraction. For

example, based on the pattern “AE1 be [similar as/similar to/like]

AE2” (where AE1 and AE2 represent two API elements) we can

extract a functionality comparison “similar to java.lang.String” for

java.lang.StringBuffer from the sentence “A StringBuffer is like a

String.”. Note that multiple API statements of different types may be

extracted from a simple sentence using different linguistic patterns.

For example, we can extract a category classification “sequence of

characters” and two characteristic specifications “thread-safe” and

“mutable” for java.lang.StringBuffer from “java.lang.StringBuffer is

a thread-safe, mutable sequence of characters.”.

To facilitate the alignment of API statements we further nor-

malize the phrases in the extracted API statements. First, remove

articles at the beginning, such as “a”, “an”, and “the”. Second, for a

noun phrase having the form “NP1 of NP2”, “NP2’s NP1, or “NP2’

NP1”, we unify them into the form “NP2 NP1”. For example, “se-

quence of characters” will be converted into “character sequence”.

Third, we convert nouns and verbs to their base forms using Word-

Net. Fourth, we convert adverbs and passive forms of verbs in

characteristic expressions to their adjective forms using WordNet.

For example, “can be modified” will be converted into “modifiable”.

3https://github.com/huggingface/neuralcoref

3.4.2 Extracting from API Structure. The following rules extract

API statements from the names of API elements and their inher-

itance/implementation relations. These rules consider the short

names of API elements split by camel case and underscore.

Rule 1: Extracting Functionality Specification fromClass-

/Interface Name. If the name of a class or interface C includes a

noun or noun phrase N1 followed by another noun N2 and N2 can
be converted to a verb, then extract a functionality specification

for C with the verb form of N2 as the action and N1 as the object
(e.g., “build string” for java.lang.StringBuilder).

Rule 2: Extracting Functionality Specification fromMethod

Name. If the name of a methodM includes a verb V followed by a

noun or noun phrase N , then extract a functionality specification
forM withV as the action and N as the object (e.g., “set length” for

java.lang.StringBuilder.setLength(int)).

Rule 3: ExtractingCharacteristic Specification fromClass-

/Interface Name. If the name of a class or interface C includes

adjectives, then for each adjective extract a characteristic speci-

fication for C with the adjective as the characteristic expression.

(e.g., “writable” for javafx.scene.image.WritableImage).

Rule 4: Extracting Characteristic Specification from In-

heritance/Implementation Relation. If a class/interface C1 in-
herits from or implements another class/interface C2 and the name
of C2 ends with an adjective, then extract a characteristic spec-
ification for C1 with C2’s name as the characteristic expression
(e.g., “serializable” for java.lang.StringBuilder from its implementa-

tion relation with java.io.Serializable).

Rule 5: Extracting Category Classification from Inherita-

nce/Implementation Relation. If a class/interface C1 inherits
from or implements another class/interface C2 and the name of C2
is a noun or noun phrase N , then extract a category classification
for C1 with N as the category (e.g., “char sequence” for java.lang.-

StringBuilder from implements java.lang.CharSequence).

3.5 Concept and Relation Extension

Different API statements may use different language to express

the same or similar knowledge. To facilitate the alignment of API

statements we need to establish conceptual relations between them.

In addition, to bridge conceptual gaps we also need to introduce

additional concepts and relations from a general knowledge graph.

3.5.1 Equal/Opposite Characteristics. Some API statements de-

scribe equal or opposite characteristics of API elements, for example

“mutable” and “modifiable” are equal while “safe for use by multi-

ple threads” and “unsafe for use by multiple threads” are opposite.

These relations can be discovered by identifying synonyms and

antonyms in the adjectives of API characteristics using a lexical

database (e.g.,WordNet [12]) and thesaurus (e.g., Thesaurus4). For

two API characteristicsAC1 andAC2 that have the same conditions
or no conditions, we use the following rules to identify possible

equal/opposite characteristic relations between them:

1) if the adjectives of AC1 and AC2 are synonyms in WordNet
or Thesaurus (e.g., “mutable” and “modifiable”), or have the same

etymology (e.g., “synchronized” and “synchronous”), add a relation

<AC1, same as, AC2>;

4https://www.thesaurus.com

839

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

Table 2: Linguistic Patterns for Extracting API Statements from Description Sentences

Statement Type Linguistic Pattern Example

Concept Classification AE [be/represent] (a/an) JJ* NP The GridLayout class is a layout manager.

Membership [AE/NP] [belong to/be part of/be a member of/have] [AE/NP] Queue is a member of the Java Collections Framework.

Functionality Specification

AE VB ((ADP) NP)+ (RB) BufferedReader reads text from a character-input stream.
AE be [used/designed/provided] to VB ((ADP) NP)+ ClassDesc is used to marshal java.lang.Class objects over IIOP.
AE be [used/designed/provided] for VBG ((ADP) NP)+ SynthPainter is used for painting portions of JComponents.
AE be (JJ/NP) for VBG ((ADP) NP)+ AsynchronousFileChannel is an asynchronous channel for reading file.
AE be (JJ/NP) to VB ((ADP) NP)+ The CertPathBuilder is able to restore prior path validation states.
NP be VBN by AE The modeling of HTML is provided by the class HTMLDocument.
AE be VBN ((ADP) NP)+ Image.getSource() is called by the image filtering classes and by methods .
AE1 VB ((ADP) NP)+ RBR than AE2 (COND) BufferedWriter writes file faster than OutputStreamWriter.

Behavior Specification

AE VB ((ADP) NP)+ (RB) COND isCellEditable(EventObject) returns true if anEvent is not a MouseEvent.
AE be [used/designed/provided] to VB ((ADP) NP)+ COND TypeVisitor is used to operate on a type when the kind of type is unknown at compile time.
AE be [used/designed/provided] for VBG ((ADP) NP)+ COND FileReader is used for reading file when IO is ready.
AE be (JJ/NP) to VB ((ADP) NP)+ COND The ImageProducer is free to ignore this call if it cannot resend the data in that order.
AE be (JJ/NP) for VBG ((ADP) NP)+ COND FileInputStream is for reading streams of bytes during threads communicate.
NP be VBN by AE COND File descriptor is modified by FileWriter when the thread starts.
AE be VBN ((ADP) NP)+ COND Object.finalize() is called by the garbage collector on an object when garbage collection determines.

Functionality Comparison

AE1 be [same as/equivalent to] AE2 String.copyValueOf(char[]) is equivalent to String.valueOf(char[]).
AE1 be [similar as/similar to/like] AE2 A StringBuffer is like a String.
AE1 be [different from/unlike] AE2 InsufficientResourcesException is different from LimitExceededException .

Characteristic Specification

AE be [a/an] JJ+ NP (COND) StringBuilder is a mutable sequence of characters.
AE be JJ (COND) Instances of StringBuffer are thread-safe and mutable.
AE [can/could] be VBN (COND) StringBuffer could be modified.
AE VB ((ADP) NP)+ RB (COND) Filereader reads file efficiently.

Characteristic Comparison
AE1 be JJR than AE2 (COND) ArrayDeque is faster than LinkedList when used as a queue.
AE1 VB ((ADP) NP)+ RBR than AE2 (COND) BufferedWriter writes file faster than OutputStreamWriter.

Constraint AE PV NP IdentityHashMap allows null values and the null key.

Note: AE (API element), NP (noun phrase), VB (verb), ADP (adposition), RB (adverb), RBR (adverb, comparative), JJ (adjective), JJR (adjective, comparative), VBN (past participle), VBG (present participle),

PV (permission verb, e.g., allow/guarantee/prohibit/limit), COND (condition, including adverbial clause, prepositional phrase).

2) if the adjectives of AC1 and AC2 are antonyms in WordNet or
Thesaurus (e.g., “safe” and “dangerous”), or one can be transformed

into the other by adding negative prefixes (e.g., “un”, “dis”, “anti”,

“ir”, “im”, “in”, “non”), add a relation <AC1, opposite of, AC2>.

3.5.2 Noun Concept Categorization. API statements involve many

noun concepts, e.g., category in concept classification and mem-

bership. The names of these concepts may imply categorization

relations, e.g., <buffered writer, is, writer> and <character sequence

length, belong to, character sequence>. For two noun concepts C1
and C2 in the extracted API statements, we use the following two
rules to identify possible categorization relations between them:

1) if C1’s name is shorter than and the prefix of C2’s name and
there are no other longer concepts that satisfy this rule for C1, add
a relation <C2, belong to, C1>;
2) if C1’s name is shorter than and the suffix of C2’s name and

there are no other longer concepts that satisfy this rule for C1, add
a relation <C2, is, C1>.

3.5.3 General Concepts and Relations. API statements involvemany

noun concepts that are included in general knowledge graphs like

Wikidata [25]. Relevant concepts and relations in general knowl-

edge graphs provide additional knowledge for API alignment. For

example, Wikidata provides knowledge like string is a sequence

of characters and a data type, and “str” is an alias of “string”. This

knowledge not only helps to connect different API statements, but

also provides the required concept explanations. To harvest this

knowledge we need to link the concepts in API statements to those

inWikidata. This concept linking cannot be easily resolved by name

matching, as polysemants are popular among Wikidata concepts.

e.g., besides data type, “string” can also be a family name [28], a

musical instrument part [29], or a physical phenomenon [30].

To decide whether a conceptCA in API statements can be linked

to a concept CW in Wikidata, we consider: 1) whether the topic

of CW is relevant to the API reference documentation; 2) whether

the local contexts of CA and CW are similar. We measure both

aspects based on the vector representations of words learned using

a Word2Vec [11] model. We use the 100-dimensional Word2Vec

model pretrained on the Wikipedia corpus5 and tune the model

based on the corpus of all API description sentences using gensim6.

The topics of the API reference documentation are represented

by the names and aliases of all noun concepts involved in API

statements. The local context ofCA is reflected by its neighbouring

concepts and itself in the API knowledge graph. Similarly the local

context of CW is reflected by its neighbouring concepts and itself

in Wikidata.

3.6 API Statement Alignment

Given two API elements, we collect related API statements and

identify corresponding statements that can be aligned.

For an API element we collect and consider all its API state-

ments for alignment. If it is a class, we also collect and consider

the API statements of the classes/interfaces that it inherits from

or implements and the functionality specifications of its member

methods. For example, for java.lang.StringBuffer we consider the

characteristic “readable”, as it is the characteristic of the interface

java.lang.CharSequence which it implements. Then we merge du-

plicate API statements, e.g., in cases where the same statement was

collected from a class and its parent class. To determine whether a

statement S1 of an API element E1 can be aligned with a statement
S2 of another API element E2, we calculate their relevance based
on both conceptual distance and text similarity.

The conceptual distance between S1 and S2 is measured based
on their distance in the knowledge graph. Each API statement has a

core entity in the knowledge graph as shown in Figure 1: for concept

classification or membership, it is the category; for functionality

specification, it is the functionality; for behavior specification, it

is the behavior; for functionality comparison, it is the other API

5https://github.com/3Top/word2vec-api
6https://radimrehurek.com/gensim

840

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

element in the comparison; for characteristic specification or con-

straint, it is the characteristic. The distance between S1 and S2 can
be measured as the length of the shortest path between their core

entities in the knowledge graph.

The text similarity between S1 and S2 is measured by the simi-
larity of their description words. The description words of an API

statement S are the names and aliases of all concepts in Graph(S).
We use the same Word2Vec model as in Sec. 3.5.3 to measure the

text similarity between S1 and S2 by: 1) generating a vector for
S1 and S2 respectively by averaging the vectors of its description
words; and 2) calculating cosine similarity between the two vectors.

Then the conceptual distance and text similarity between S1 and
S2 can be calculated as Equation 1 and Equation 2 respectively,

where Simcos (VS1 ,VS2) is the cosine similarity between the vectors
of S1 and S2. The combined distance can be calculated as Equation 3,
wherew1 andw2 are two weights satisfyingw1 +w2 = 1.w1 and

w2 are set to 0.6 and 0.4 respectively by tuning on a test set.

Relconcept (S1, S2) = 1/(distance(S1, S2) + 1) (1)

Reltext (S1, S2) = (Simcos (VS1, VS2) + 1)/2 (2)

Relcombined (S1, S2) = w1 × Relconcept (S1, S2) +w2 × Reltext (S1, S2) (3)

Finally we determine the alignment between the API statements

of E1 and E2. First, we generate a set of candidate pairs and each pair
has two API statements from E1 and E2 respectively. To ensure that
only corresponding and comparable API statements are aligned,

we divide the API statements into four kinds: 1) concept classifi-

cation; 2) membership; 3) functionality specification (including its

characteristic), behavior specification, functionality comparison; 4)

characteristic specification, characteristic comparison, constraint.

Only API statements of the same kind can be aligned between two

API elements. Second, we remove all candidate pairs whose dis-

tance is lower than a threshold (i.e., 0.3 in our implementation).

This threshold is set based on preliminary experiments. Third, we

consider each of the remaining candidate pairs in the order of rel-

evance (from high to low): if neither of the API statements in the

pair is aligned, accept the pair as an aligned pair. Finally, all the

accepted pairs are output as the results of alignment (see Figure 4).

3.7 API Comparison Generation

The comparison results between two API elements include three

parts: statements for commonalities, statements for differences, and

unaligned statements.

For an aligned pair of API statements, if all constituents (e.g., the

action and object of a functionality specification, see Figure 1) are

the same entities or entities connected by “same as” relations in the

knowledge graph, we treat the pair as a commonality; otherwise,

we treat it as a difference. Unaligned statements are sometimes

duplicated expressions of the same statements. To reduce the dupli-

cation we identify and merge duplicated statements of the same API

element following the same process as for API statement alignment,

e.g., the characteristic “thread-safe” is a duplicated expression of

“safe for use by multiple threads” in Figure 4 and merged into latter.

Our concept-based API comparison can further provide explana-

tions for involved concepts (e.g., “thread”, “serializable”) based on

the knowledge graph. The sources of the explanations include the

aliases of the concept, the definition of the concept from Wikidata,

and the definition of an API element in the documentation.

4 EVALUATION

We constructed an API knowledge graph for JDK 1.8. We developed

a web crawler based on Scrapy 1.7.17 to obtain HTML pages of the

JDK 1.8 API reference documentation8. Thenwe used BeautifulSoup

4.4.09 to extract the API structure and text descriptions from the

HTML pages. After that we used Spacy 2.110 as NLP tool to extract

API description sentences and API statements.

The resulting API knowledge graph includes 188,163 entities

and 339,770 relations. Among them, there are 44,809 API elements

and 52,471 relations between these API elements. The knowledge

graph includes 123,627 API statements: 14,336 for concept classi-

fication, 21,104 for membership, 62,641 for functionality specifica-

tion, 14,184 for behavior specification, 705 for functionality com-

parison, 10,698 for characteristic specification, 394 for characteris-

tic comparison, 270 for constraint. Among these API statements,

22,985 are extracted from API structure and the other 100,642

are extracted from API description sentences. In concept and rela-

tion extension, we introduced 2,404 equal/opposite characteristic

relations, 117,300 noun concept categorization relations, 6,245

Wikidata concepts and 1,677 noun concept links to Wikidata.

We also applied our approach to Android SDK 27 and obtained

the same accuracy and effectiveness results as reported in Sec-

tion 4.1 and Section 4.2 for JDK. The resulting API knowledge

graph includes 271,162 entities and 572,098 relations. Due to the

space limitation, we cannot report the experiment results on An-

droid SDK in details in this paper, but all experiments results can

be found in the replication package [1].

We conducted a series of experiments to evaluate the quality

of the API knowledge and the effectiveness and usefulness of our

approach by answering the following research questions:

RQ4 (Quality): What is the intrinsic quality of the knowledge

captured in the API knowledge graph?

RQ5 (Effectiveness): How effective is APIComp in generating

API comparison results in terms of completeness, conciseness, and

understandability?

RQ6 (Usefulness): How useful are the results generated by

APIComp in helping developers during API selection tasks?

4.1 Quality of Extracted API Knowledge (RQ4)

Our quality evaluation focuses on API statements as well as ex-

tended concepts and relations since the API structure is extracted

from structured information and thus intrinsically accurate.

4.1.1 Protocol. Similar to previous studies [7, 26], we adopted a

sampling method [18] to ensure that ratios observed in the sample

generalize to the population within in a certain confidence interval

at a certain confidence level. For a confidence interval of 5 at a 95%

confidence level, the required sample size is 384.

We randomly selected 384 API statements for each of the three

aspects (i.e., category, functionality, characteristic) and each of the

two sources (i.e.,API structure, description sentences). For extended

concepts and relations, we randomly selected 384 instances for

equal/opposite characteristics, noun concept categorization, and

7https://scrapy.org
8https://docs.oracle.com/javase/8/docs/api
9https://www.crummy.com/software/BeautifulSoup/bs4/doc/
10https://spacy.io

841

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

Table 3: Accuracy of API Statements

Aspect
API Structure Description Sentences

Accuracy Agreement Accuracy Agreement

Functionality 0.820 0.734 0.956 0.850

Category 1.000 1.000 0.956 0.915

Characteristic 0.945 0.975 0.698 0.706

Table 4: Accuracy of Concept and Relation Extension

Extension Approach Accuracy Agreement

Equal/Opposite Characteristics 0.740 0.914

Noun Concept Categorization 0.758 0.829

General Concept Linking 0.768 0.779

general concept linking. We invited two Master students (not affili-

ated to this work) familiar with Java to label the accuracy of the

selected samples independently. The criterion is that an extracted

API statement or an extended concept/relation is correct and mean-

ingful. They were provided with the sources of the knowledge and

related documentation to make decisions. For each sample, if it

was labeled differently, a third student was assigned to give an

additional label to resolve the conflict by a majority-win strategy.

4.1.2 Results. The results are shown in Table 3 and Table 4. For

each sample we provide the accuracy and Cohen’s Kappa agree-

ment [10]. We can see the agreement rates are all above 0.7, in-

dicating substantial or almost perfect agreement. The accuracy is

generally high (above 0.8) except for the characteristics extracted

from description sentences (0.698). We obtained similar results for

Android: the accuracy of API statement extraction from API struc-

ture and sentences is 0.878-0.940 and 0.682-0.904 respectively; the

accuracy of concept and relation extension is 0.706-0.872.

Typical problems of API statements extraction include: 1) incor-

rect splitting of API names, e.g., “getIssuerX500Principal” is split

into “get issuer X 500Principal”; 2) incomplete sentences caused by

incorrect HTML parsing or sentence splitting, e.g., “java.sql.Resul-

tSetMetaData.isSearchable(int) indicate.”; 3) POS tagging or depen-

dency parsing errors, e.g., “always-on-top” from sentence “java.awt.-

Window.setAlwaysOnTop(boolean) is always-on-top...” is tagged

as a noun; 4) meaningless statements, e.g., “common” is extracted

as a characteristic of some APIs. The last one is the primary cause

for lower accuracy for extracting characteristics from sentences.

Typical problems of the extension of concepts and relations

include: 1) false categorization relation for non-noun concepts,

e.g., <second parameter, belong to, second>; 2) false concept linking

due to the lack of context, e.g., “accumulator” is linked to “recharge-

able battery (accumulator)”.

4.1.3 Summary. The quality of different kinds of knowledge (i.e.,API

structure, statements, and extended concepts/relations) in the API

knowledge graph is of high quality. Typical problems with the qual-

ity of extracted knowledge include text processing errors, meaning-

less statements, and false concept linking. These problems can be

solved in the future by developing text processing techniques for

software text, designing more rules to select meaningful statements,

and training models for concept linking and filtering.

4.2 Effectiveness of API Comparison (RQ5)

We compare the API comparison results produced by APIComp to

those produced by a baseline approach.

4.2.1 Baseline Approach. Since there is no existing approach that

can directly compare twoAPI elements to the best of our knowledge,

we implemented a baseline approach based on heuristic rules and

text similarity. Given two API elements, we obtain all their descrip-

tion sentences, complete the sentences and resolve API mentions

in the same way as the steps described in Sec. 3.3 in our approach.

We then select description sentences as the comparison result in

the following two ways. First, we select all sentences that mention

both API elements (Type 1 sentence). Second, we select sentence

pairs that are similar for each API element (Type 2 sentence).

We use the same Word2Vec model (see Sec. 3.5.3) to calculate

the similarity between two sentences: 1) remove API elements and

convert each sentence to a bag of words after preprocessing (i.e., to-

kenization, stop word removal, and lemmatization); 2) generate

a vector for each sentence by averaging the vectors of their bag

of words; and 3) calculate the cosine similarity between the two

vectors. We calculate the similarity between each pair of sentences

from the two API elements and filter out candidate pairs with low

similarity (i.e., lower than 0.6). This threshold is set based on prelim-

inary experiments. Then we order the remaining candidate pairs by

similarity and use a greedy selection method to accept pairs from

high to low similarity with the condition that none of the sentences

in a pair included in an accepted pair. The selected sentences are

organized in a table, each row corresponding to a Type 1 sentence

or a pair of Type 2 sentences. A screenshot of the baseline is shown

in the replication package [1].

This process aims to emulate the process of a developer browsing

two pages of the API reference documentation and summarizing the

commonalities and differences of two API elements from the docu-

mentation, similar to the process suggested by SO questions about

comparing API elements (see Sec. 2.1). In contrast, APIComp ex-

plicitly constructs a knowledge graph for extracted API statements

and identifies corresponding and comparable API statements by

combining conceptual distance and text similarity.

4.2.2 Tasks. We randomly selected 20 API comparison questions

from the 85 questions in our empirical study that have at least one

answer point in the API reference documentation. Each question

is used as an API comparison task and only the answer points

available in the API reference documentation are considered. In

this way, we obtain 20 API comparison tasks with 52 answer points.

4.2.3 Protocol. We invited four Master students (familiar with

Java) to evaluate the results. For each task we produced a compari-

son result by APIComp and the baseline and showed the two results

in a random order to the participants. They were asked to evaluate

each result in terms of completeness, conciseness, and understand-

ability on a 4-points Likert scale (1-disagree; 2-somewhat disagree;

3-somewhat agree; 4-agree) by the following questions:

1) Completeness. Does the result contain all the necessary in-

formation to show the commonalities and differences?

2) Conciseness. Does the result contain no (or very little) un-

necessary or redundant information?

3) Understandability. Is the result understandable?

We further conducted a coverage evaluation by comparing the

two approaches against the answer points in the corresponding

SO questions. We invited two students (one PhD and one Master

student) to check the API comparison results independently. For

each result they checked each answer point and labeled whether it

was covered in the result. If their decisions were different a third

842

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Effectiveness of APIComp and Baseline Approach

student (Master) was assigned to give an additional label to resolve

the conflict by a majority-win strategy.

4.2.4 Results. The results of the comparison are shown in Figure 5.

For completeness, conciseness, and understandability of APIComp,

63.75%, 83.75%, 92.50% respectively of the answers are 4 or 3 (agree

or somewhat agree). For completeness, conciseness, and under-

standability of the baseline, 58.75%, 58.75%, 67.50% respectively

of the answers are 4 or 3 (agree or somewhat agree). Welch’s T-

test [27] was used for verifying the statistical significance of the

difference between the APIComp and baseline ratings for com-

pleteness, conciseness, and understandability. The differences are

statistically significant (p << 0.05) for conciseness and understand-
ability and not statistically significant (p = 0.07) for completeness.
The coverage evaluation shows that APIComp covers 62.3% of the

answer points, while the baseline covers 47.2%. Cohen’s Kappa

agreement for the two approaches are 0.807 and 0.811 (both al-

most perfect agreement). We obtained similar results for Android:

APIComp covers 19 (79.2%) of the 24 answer points with Cohen’s

Kappa agreement of 0.864.

The improvement of APIComp over the baseline can be attrib-

uted to the knowledge based API statement analysis. For example,

for the comparison between java.util.concurrent.CopyOnWriteArray-

List and java.util.LinkedList APIComp can extract a characteristic

specification “thread-safe” and “not synchronized” from the sen-

tence “java.util.concurrent.CopyOnWriteArrayList is a thread-safe

variant of ArrayList...” and “Note that java.util.LinkedList is not syn-

chronized” respectively. The two API statements are then aligned as

a difference based on the “same as” relation between “thread-safe”

and “synchronized” and the opposite relation between “synchro-

nized” and “not synchronized”. In contrast, the baseline approach

aligns the first sentence with another sentence “java.util.LinkedList

implements all optional list operations, and permits all elements.”.

4.2.5 Summary. Our approach is significantly better than the base-

line in terms of conciseness and understandability. Moreover, our

approach covers more answer points of API comparison questions

by 15.1 percentage points. The improvement can be attributed to

the knowledge graph based API statement analysis.

4.3 Usefulness of API Comparison (RQ6)

We evaluate the usefulness of APIComp in API selection tasks,

that is, choosing the most suitable API element between two API

elements in a given scenario. Note that this is different from API

retrieval, where the task would be to find potentially suitable API

elements among hundreds or thousands of possible elements.

4.3.1 Tasks. We selected API selection tasks from the 215 API

comparison questions in our empirical study based on the following

criteria: 1) provide a scenario description that can be used to select

a single API element from the candidates; 2) have an API element

selected in the accepted answer, which indicates that the selected

API is the right choice for the given scenario; 3) the API selection

can be determined based on the API reference documentation. We

ranked the questions meeting the above criteria by their votes

and selected Top-6 class comparison questions and Top-6 method

comparison questions as the tasks. In this way we got 6 API class

selection tasks and 6 API method selection tasks, each with two

API elements, a scenario description, and a right answer (i.e., one of

the two API elements), all included in the replication package [1].

4.3.2 Protocol. We invited 12 Master students with 1-4 years Java

programming experience. They represent novice developers, which

are the primary target audience for API comparison. None of them

participated in the quality and effectiveness experiments for RQ4

and RQ5. We conducted a pre-experiment survey on their Java

programming experience and divided them into two “equivalent”

groups (GA andGB) based on the survey. We randomly divided the

12 tasks into two groups (TA and TB), each with 3 class selection
tasks and 3 method selection tasks.

A common way for API selection without APIComp is to use

search engines (i.e., Google) to search various Web resources such

as API reference documentations, tutorials, and online posts. There-

fore, in this experiment we asked participants to complete API

selection tasks with APIComp and without APIComp (i.e., only us-

ing Google) to evaluate the usefulness of APIComp in API selection

tasks. We adopted a balanced treatment distribution for the groups.

Participants in groupGA were asked to complete the tasks in group

TA with APIComp and the tasks in group TB without APIComp.

Conversely, participants in group GB were asked to complete the

tasks in groupTB with APIComp and the tasks in groupTA without

APIComp. For each participant, the tasks were interleaved, one com-

pleted with APIComp and one without APIComp. For each task, a

participant was asked to select an API element from two candidates

for a given scenario description. If participants completed tasks

without APIComp, they can search with any keywords on Google

and check any Web pages except the corresponding SO question.

The participants using APIComp make the decision based on only

the results generated by APIComp. A participant can submit one

of the two candidate API elements as the answer or none of them

if he/she cannot determine. The correctness and completion time

of each participant for each task were recorded.

4.3.3 Results. Figure 6 shows the accuracy (i.e., the ratio that the

right APIs were selected by a participant group for a task) and the

completion time of the two participant groups over the two groups

of tasks when completed with APIComp and without APIComp re-

spectively. Using APIComp participants (in both groups) completed

the tasks 41% faster (82 seconds on average) and 14.5% more accu-

rately (about 0.10) than without APIComp. We use Welch’s T-test

for verifying the statistical significance of the differences. The dif-

ference in time is statistically significant (p << 0.05), while the

difference in accuracy is not significant (p = 0.18).

843

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

(a) Accuracy (b) Time

Figure 6: Usefulness Evaluation for API Selection Tasks

Note that without APIComp the participants can search on

Google not only the API reference documentation but also other on-

line resources (e.g., blogs) that discuss an API selection task. e.g., the

API elements compared in the task “Which class is more efficient for

non-threaded applications? java.util.Hashtable or java.util.HashMap”

are often discussed together. It is therefore easy for the partici-

pants to find the right answer from Google search results. The

API elements in another task “When developing a JDBC driver,

which one should be used if considering the exception chaining

mechanism? java.lang.Throwable.getCause() or java.sql.SQLExcep-

tion.getNextException().” are not often discussed together. For this

task the participants chose the right API element much faster (74s

vs 200s) and more accurately (0.83 vs 0.67) with APIComp.

4.3.4 Summary. Our approach significantly decreases the amount

of time developers need for API selection tasks. The advantage is

more significant when the compared API elements are not often

discussed together online.

5 THREATS TO VALIDITY

The empirical study and the evaluation share common threats to

validity. A threat to the internal validity is the subjective judgment

in different parts, for example the evaluation of the quality of ex-

tracted API knowledge. To alleviate this threat we have reported

the agreement for each subjective judgment or the corresponding

statistical significance. A threat to the external validity is the limited

number of subjects (e.g., API comparison questions, tasks) consid-

ered in different parts and the fact that we only consider JDK and

Android APIs. Our findings may not generalize to other libraries.

Another threat to the internal validity of the evaluation is the base-

line approach used in the effectiveness study (see Sec. 4.2) which

was implemented by ourselves and may not be optimized. To alle-

viate this threat we have tried to follow state-of-the-art techniques

(e.g.,Word2Vec) to create a comparable tool.

6 RELATEDWORK

API documentation is an important source of knowledge for soft-

ware developers, leading to a substantial body of work on API

documentation. Shi et al. [17] conducted a quantitative study of

API documentation evolution and found that it undergoes frequent

evolution. Monperrus et al. [13] presented a study on directives in

API documentation and a taxonomy of 23 kinds of API directives.

Maalej and Robillard [9] reported on a study of knowledge patterns

in API documentation, such as functionality, concepts, and direc-

tives. They found that most API comparison questions could be

answered with knowledge from the API reference documentation.

In this work, we further classify the statements used to answer API

comparison question into 3 aspects and 8 statement types.

Other work related to API documentation has attempted to en-

rich API documentation with other sources, e.g., by recovering

traceability links between APIs and their learning resources [2],

discovering relevant tutorial fragments [6], linking source code

examples to API documentation [21], or extracting API-related

insights from Stack Overflow [24]. These approaches link APIs

with relevant text or code fragments in various learning resources,

but they do not deeply mine the knowledge that already exists

in the API documentation. In contrast, we extract API statements

from API reference documentation and store them as a knowledge

graph. Further, we help to answer API comparison questions from

Stack Overflow with API documentation, which is a supplement to

previous work [24].

Other researchers have attempted to extract useful pieces of

knowledge from API documentation by inferring API specifications

and directives such as resource specifications [31], method speci-

fications [15], and parameter constraints and exception-throwing

declarations [32], or API caveats [7]. These types of knowledge

are useful for understanding the usage of APIs, in particular in

terms of API directives. In contrast, we focus on extracting API

statements related to three aspects (functionality, characteristic,

and categorization) which are relevant to API comparison.

There are also many studies for document comparison genera-

tion [5, 16, 23] for other domains (e.g., news reports). These cannot

be applied to API comparison since they (1) do not take into account

the specific types of knowledge required for API comparison; (2)

are designed for documents with other characteristics, e.g., with-

out code elements; and (3) cannot mine knowledge from the API

structure which is essential for API comparison.

Other work focuses on generating summaries for API elements.

Sridhara et al. [19] generated summaries for Java methods using

structure and linguistic information. Moreno et al. [14] provided

JSummarizer to automatically generate summaries of Java classes,

and Liu et al. [8] designed KG-APISumm to generate query-specific

API class summaries through an API knowledge graph constructed

from API reference documentation. All of these can only generate

summaries for a single API element and the information contained

in their summaries is not applicable to API comparison involving

two API elements.

7 CONCLUSION

In this paper, we conducted an empirical study on API comparison

questions and identified 8 types of API statements that are useful for

API comparison. We proposed a knowledge graph based approach

APIComp for generating API comparison results. Our evaluation

confirms the quality of various kinds of knowledge in the knowl-

edge graph, and the effectiveness and usefulness of the generated

API comparison results. In the future, we will improve and extend

our approach by supporting context aware API comparison and

automatically identifying and recommending similar API elements.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of

China under Grant No. 61972098.

844

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] 2020. Replication Package. Retrieved August 31, 2020 from https://fudanselab.

github.io/Research-ASE2020-APIComp/
[2] Barthélémy Dagenais and Martin P. Robillard. 2012. Recovering traceability links

between an API and its learning resources. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 47–57.

[3] Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. 2019. On using
machine learning to identify knowledge in API reference documentation. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven
Apel, and Alessandra Russo (Eds.). ACM, 109–119.

[4] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 2019.
9.6 million links in source code comments: purpose, evolution, and decay. In
Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019. 1211–1221.

[5] Xiaojiang Huang, Xiaojun Wan, and Jianguo Xiao. 2011. Comparative News
Summarization Using Linear Programming. In The 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, Pro-
ceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA - Short Papers.
The Association for Computer Linguistics, 648–653.

[6] He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. 2017. An unsupervised
approach for discovering relevant tutorial fragments for APIs. In Proceedings of
the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017. 38–48.

[7] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving API Caveats Accessibility by Mining API Caveats
Knowledge Graph. In 2018 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018. 183–193.

[8] Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-
shuang Xing, and Yang Liu. 2019. Generating query-specific class API summaries.
In Proceedings of the ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2019, Tallinn, Estonia, August 26-30, 2019. 120–130.

[9] Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API
Reference Documentation. IEEE Trans. Software Eng. 39, 9 (2013), 1264–1282.

[10] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica: Biochemia medica 22, 3 (2012), 276–282.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composi-
tionality. In Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States. 3111–3119.

[12] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39–41.

[13] Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. 2012. What
should developers be aware of? An empirical study on the directives of API
documentation. Empirical Software Engineering 17, 6 (2012), 703–737.

[14] Laura Moreno, Andrian Marcus, Lori L. Pollock, and K. Vijay-Shanker. 2013.
JSummarizer: An automatic generator of natural language summaries for Java
classes. In IEEE 21st International Conference on Program Comprehension, ICPC
2013, San Francisco, CA, USA, 20-21 May, 2013. 230–232.

[15] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit M.
Paradkar. 2012. Inferring method specifications from natural language API
descriptions. In 34th International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland. 815–825.

[16] Xiang Ren, Yuanhua Lv, Kuansan Wang, and Jiawei Han. 2017. Comparative
Document Analysis for Large Text Corpora. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, WSDM 2017, Cambridge,
United Kingdom, February 6-10, 2017, Maarten de Rijke, Milad Shokouhi, Andrew
Tomkins, and Min Zhang (Eds.). ACM, 325–334.

[17] Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. 2011. An Empirical Study on Evo-
lution of API Documentation. In Fundamental Approaches to Software Engineering
- 14th International Conference, FASE 2011, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany,
March 26-April 3, 2011. Proceedings. 416–431.

[18] Ravindra Singh and Naurang Singh Mangat. 2013. Elements of survey sampling.
Vol. 15. Springer Science & Business Media.

[19] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-
Shanker. 2010. Towards automatically generating summary comments for Java
methods. In ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 20-24, 2010, Charles Pecheur,
Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 43–52.

[20] StackOverflow. 2019. Stack Overflow data dump version from March 3, 2019.
https://archive.org/download/stackexchange/.

[21] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In 36th International Conference on Software Engineering, ICSE
’14, Hyderabad, India - May 31 - June 07, 2014. 643–652.

[22] Jiamou Sun, Zhenchang Xing, Rui Chu, Heilai Bai, Jinshui Wang, and Xin Peng.
2019. Know-How in Programming Tasks: FromTextual Tutorials to Task-Oriented
Knowledge Graph. In 2019 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2019, Cleveland, OH, USA, September 29 - October 4, 2019.
IEEE, 257–268.

[23] Maksim Tkachenko and Hady W. Lauw. 2019. CompareLDA: A Topic Model for
Document Comparison. In The Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019. 7112–7119.

[24] Christoph Treude and Martin P. Robillard. 2016. Augmenting API documenta-
tion with insights from stack overflow. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016.
392–403.

[25] Denny Vrandecic. 2013. The Rise of Wikidata. IEEE Intelligent Systems 28, 4
(2013), 90–95.

[26] Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie,
and Tuo Wang. 2019. A Learning-Based Approach for Automatic Construction
of Domain Glossary from Source Code and Documentation. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 97–108.

[27] Bernard L Welch. 1947. The generalization of Student’s problem when several
different population variances are involved. Biometrika 34, 1/2 (1947), 28–35.

[28] wikidata. 2019. String. https://www.wikidata.org/wiki/Q37484380.
[29] wikidata. 2019. string. https://www.wikidata.org/wiki/Q326426.
[30] wikidata. 2019. string. https://www.wikidata.org/wiki/Q1376436.
[31] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2011. Inferring specifications for

resources from natural language API documentation. Autom. Softw. Eng. 18, 3-4
(2011), 227–261.

[32] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald C. Gall. 2017. Analyzing APIs documentation and code to detect directive
defects. In Proceedings of the 39th International Conference on Software Engineering,
ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. 27–37.

845

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:43:53 UTC from IEEE Xplore. Restrictions apply.

	Generating concept based API element comparison using a knowledge graph
	Citation
	Author

	Generating Concept based API Element Comparison Using a Knowledge Graph

