
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2023

Evaluating transfer learning for simplifying GitHub READMEs Evaluating transfer learning for simplifying GitHub READMEs

Haoyu GAO

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Mansooreh ZAHEDI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
GAO, Haoyu; TREUDE, Christoph; and ZAHEDI, Mansooreh. Evaluating transfer learning for simplifying
GitHub READMEs. (2023). ESEC/FSE '23: Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, San Francisco,
December 3-9. 1548-1560.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8898

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8898&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Evaluating Transfer Learning for Simplifying GitHub READMEs
Haoyu Gao

The University of Melbourne

Melbourne, Victoria, Australia

haoyug1@student.unimelb.edu.au

Christoph Treude

The University of Melbourne

Melbourne, Victoria, Australia

christoph.treude@unimelb.edu.au

Mansooreh Zahedi

The University of Melbourne

Melbourne, Victoria, Australia

mansooreh.zahedi@unimelb.edu.au

ABSTRACT
Software documentation captures detailed knowledge about a soft-

ware product, e.g., code, technologies, and design. It plays an impor-

tant role in the coordination of development teams and in conveying

ideas to various stakeholders. However, software documentation

can be hard to comprehend if it is written with jargon and compli-

cated sentence structure. In this study, we explored the potential of

text simplification techniques in the domain of software engineer-

ing to automatically simplify GitHub README files. We collected

software-related pairs of GitHub README files consisting of 14,588

entries, aligned difficult sentences with their simplified counter-

parts, and trained a Transformer-based model to automatically

simplify difficult versions. To mitigate the sparse and noisy nature

of the software-related simplification dataset, we applied general

text simplification knowledge to this field. Since many general-

domain difficult-to-simple Wikipedia document pairs are already

publicly available, we explored the potential of transfer learning by

first training the model on the Wikipedia data and then fine-tuning

it on the README data. Using automated BLEU scores and hu-

man evaluation, we compared the performance of different transfer

learning schemes and the baseline models without transfer learning.

The transfer learning model using the best checkpoint trained on a

general topic corpus achieved the best performance of 34.68 BLEU

score and statistically significantly higher human annotation scores

compared to the rest of the schemes and baselines. We conclude that

using transfer learning is a promising direction to circumvent the

lack of data and drift style problem in software README files sim-

plification and achieved a better trade-off between simplification

and preservation of meaning.

CCS CONCEPTS
• Software and its engineering → Documentation; • Comput-
ing methodologies→ Neural networks; • Applied computing
→ Text editing.

KEYWORDS
Software Documentation, GitHub, Text Simplification, Transfer

Learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Haoyu Gao, Christoph Treude, and Mansooreh Zahedi. 2023. Evaluating

Transfer Learning for Simplifying GitHub READMEs. In Proceedings of The
31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2023).ACM, New York,

NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Software documents describe key information about software prod-

ucts, such as technologies, code structure, system design, and archi-

tecture. These documents are an integral part of the software devel-

opment process [31] as they can be used to describe the application

requirements, design decisions, architecture, as well as deployment

and installation. In particular, README files shape developers’ first

impression about a software repository and document the soft-

ware project that the repository hosts [32]. However, README

documents often contain jargon, abbreviations, and code blocks,

making the text challenging to comprehend for non-specialists and

people from other language backgrounds. In fact, readability issues

and complicated documents are important issues that practitioners

frequently encounter [1]. A simple search on GitHub for “compli-

cated README” yields over 27,000 issues and 37,000 pull requests
1
.

Therefore, simplification of README files is needed to improve

the efficiency of communication between members of development

teams and to propagate new technologies to broader fields.

Significant advancement in Natural Language Processing (NLP)

has been witnessed over the last decade, thanks to the development

of artificial neural networks. Text Simplification (TS) is an NLP task

that focuses on rewriting texts into simpler versions while preserv-

ing the original meaning to the extent possible. The simplification

of text in the general domain has been studied extensively, and its

data sources include mainly Wikipedia and its “Simple-Wikipedia”

counterpart [27] as well as Newsela articles written for specific

age groups [52]. These data sources, especially their simplified ver-

sions, are written by professionals with the intention of catering

to people with different levels of reading ability. The simplifica-

tion of sentences in general domain text can be implemented by

three main operations, including splitting, deletion, and paraphras-

ing [9]. These simplification operations are implicitly encoded in

text simplification datasets of the general domain, and neural sim-

plification models trained on these datasets memorise the rules in

their parameters and achieve competitive performance [55, 10].

The significant disparity between the simplification of general

domain documents and domain-specific software documentation

prohibits the simple reuse of text simplification systems designed for

the general domain. First, the text style of software documentation

includes many code blocks and external links such as URLs, which

do not resemble the style for general-domain texts. In addition, the

1
https://github.com/search?q=complicated+readme&type=issues

ar
X

iv
:2

30
8.

09
94

0v
1

 [
cs

.S
E

]
 1

9
A

ug
 2

02
3

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/search?q=complicated+readme&type=issues

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Haoyu Gao, Christoph Treude, and Mansooreh Zahedi

simplification rules for software documents differ from the general-

domain text by performing fewer deletions and more elaborations.

Indeed, in this paper we show that a state-of-the-art approach

trained on general-domain documents from Wikipedia is not able

to produce semantically identical and/or grammatically correct

content in around 80% of the cases when applied to README files

(cf. Section 6).

A simplification system trained directly on general-domain text

cannot simplify software documentation satisfactorily. To the best

of our knowledge, there is no previous research focusing on simpli-

fying software documentation. To address this gap, we collected

a software-specific text simplification dataset and trained a sim-

plification system on the data. We experimented with transferring

general-domain text simplification rules to software documentation

and evaluated the system through automatic metrics and manual

analysis. We found that by applying transfer learning, the model

was able to generate the most satisfactory simplifications. Specifi-

cally, the best-performing model achieved a 34.68 BLEU score in

the test set and exceeded the baseline models in terms of semantic

similarity, grammar, and simplicity, based on human annotation.

The contributions of our research include the following:

• A README files simplification dataset.

• A pipeline to collect such a dataset.

• An exploration of the application of transfer learning to the

problem of simplification of README files with promising

results.

2 RELATEDWORK
2.1 Documentation Issues and Solutions
Previous studies provide rich empirical evidence for software docu-

mentation issues. Steinmacher et al. [44] discovered several barriers

to participating in Open Source Software (OSS) projects, one re-

lated to “Documentation problems”. After that, Aghajani et al. [2,

1] conducted empirical studies to investigate software documenta-

tion issues and practitioners’ perspectives. Software documentation

issues could generally be categorised into what information is con-

tained and how the information is presented.

To address the problems, the automatic generation of software

documentation could potentially mitigate correctness, complete-

ness, up-to-dateness and various other issues. Automatic software

documentation generation can be applied to various software arti-

facts, including source code [42, 25, 14], bug reports [36, 35] and

pull requests [21]. In terms of source code, Sridhara et al. [42] used

algorithms to generate comments for Java methods, while McBur-

ney and McMillan [23] improved it by adding surrounding contexts.

Moreno et al. [25] summarised Java classes using stereotype rules

and manually defined templates. Hu et al. [14] proposed using a

sequence-to-sequence model and formulated code summarisation

as a translation task.

In terms of bug reports, Rastkar et al. [36, 35] trained a classifier

to identify important sentences from bug reports and used them

as summaries. Regarding API documentation, Treude and Robil-

lard [45] augmented API documents using insight sentences from

Stack Overflow. Pull request descriptions can also be generated con-

sidering commits and code comments [21]. Source code changes

are also used to generate commit messages [51, 8].

Automatic documentation generation could help developers iden-

tify components that are prone to be overlooked and improve de-

velopment efficiency. Among the issues, readability is an important

issue that practitioners frequently encounter [1]. One of the practi-

tioners in Aghajani et al.’s survey stated, “A developer in our team

created confusing and overly complicated documentation for cus-

tomers of our solution”. To the best of our knowledge, no previous

studies focused on simplifying software documentation to improve

people’s comprehension. Text simplification is an NLP technique

that could bridge this gap and enhance developers’ understanding

of software documentation.

2.2 Text Simplification
Multiple data sources have been proposed for the task of simpli-

fication of text. Zhu et al. [57] first used Wikipedia and Simple

Wikipedia as a source, which was later expanded by Zhang and

Lapta [53] to the WikiLarge dataset. However, Xu et al. [52] argued

that this Wikipedia-based simplification dataset is suboptimal and

difficult to generalise to other genres of text. They proposed a new

dataset called Newsela, which contains different levels of simplifi-

cation. Moreover, there are also simplification corpora of languages

other than English [4, 12, 41, 43]. Due to easier access to a large

corpus of Wikipedia data, we performed part of our experiment on

Wikipedia datasets.

Meanwhile, the success of a text simplification system is highly

dependent on the quality and quantity of complex-simple sentence

pairs in the training corpus [16]. Zhu et al. [57] first used sentence-

level TF-IDF (term frequency inverse document frequency) similar-

ity to construct the alignment between a simple Wikipedia corpus

and its regular counterpart. Later, more sophisticated sentence align-

ment techniques were proposed that consider sentence orders and

word-level similarity [6, 49, 15, 17], increasing the alignment quality

and the dataset size. Recently, Jiang et al. [16] proposed a neural-

based Conditional Random Field (CRF) aligner, which decomposes

the potential function into semantic similarity (approximated by

the BERT classifier) and alignment label transition (approximated

by the feedforward network). Their model automatically aligns

604k non-identical aligned and partially aligned sentence pairs.

This powerful tool is able to achieve more than 0.9 F1 score on

the previous Wikipedia corpus alignment task, thus making their

auto-aligned dataset of higher quality. Sentence alignment is the

first procedure in the pipeline of text simplification. In our research,

we borrow their idea to align software document pairs as our first

step in building a software documentation simplification system.

Recent work began to see text simplification as a monolingual

translation task. Specia [41] first applied statistical machine trans-

lation to text simplification. Kauchak [18] incorporated regular

and simple sentences to train an n-gram language model to per-

form text simplification tasks. Nisioi et al. [29] began to see text

simplification as a task similar to machine translation (MT) and

trained a standard sequence-to-sequence model based on LSTM

that surpasses the performance of previous statistical MT models.

Different network designs were also developed for the model to

learn a more effective simplification. Zhang and Lapta [53] used

reinforcement learning for simplification with a reward that approx-

imates simplicity, relevance, and fluency. Zhang et al. [54] combine

Evaluating Transfer Learning for Simplifying GitHub READMEs ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

lexical simplification with sentence-level simplification by first per-

forming lexical substitution and then feeding the sentence into a

constrained sequence-to-sequence model. Nishihara et al. [28] pro-

posed a controllable simplification system by adding a level token

and modifying the loss function, while Mallinson and Lapata [22]

did it employing syntactic and lexical constraints. Current text

simplification systems use transformer architecture [16] and can

achieve state-of-the-art performance. In our work, we primarily

used the transformer model and explored the simplification rule

gap between software and general-domain documentation.

When there is a disparity between the data distribution (such as

the text styles for software documentation and documents of the

general domain), the performance of themodel can be degraded [39],

in which case transfer learning is needed. Transfer learning im-

proves the performance of a learner in one domain by transfer-

ring information from a related domain [48]. It is widely used in

many areas, including image processing [13] and natural language

processing [7], and has achieved significant success. In our work,

we experimented with various transfer learning techniques for

the task of software documentation simplification. We applied the

knowledge learnt from general-domain document simplification to

mitigate the noisy and sparse attributes of software-related texts.

3 DATA COLLECTION
In order to obtain enough software-related documents to train our

model, we collected README files from GitHub using its RESTful

API. We implemented a program using GitHub access tokens to

iterate from the very first repository ordered by GitHub id, and

check for candidates for the simplification dataset. We only consid-

ered repositories not forking other repositories and with at least

ten stars to filter out toy projects. One reason we collected older

repositories is that we believe README files in older repositories

need more simplification, as different techniques were used back

then, and more old repositories have gone through simplification

updates compared to recent repositories. As we needed to get up-

dates in the READMEs, longer commit histories will be more likely

to contain candidate data. Therefore, only projects with at least 100

commits are investigated. The left part of Figure 2 describes the

procedures for collecting the data.

Specifically, for each repository, we iterated through its entire

commit history.We collected a list of keywords that can be a hint for

simplification. We identified those commits that contain at least one

of those keywords and only modify the README file as document

simplification instances. The previous README file is marked as

the difficult version, and the newly committed file is marked as the

simplified version. To encourage more prominent simplifications

and avoid training data duplication, we only preserved the first

commit and the last commit with simplifications on the README

file for each repository. We collected 14,588 document-level regular-

to-simple instances in total.

Regarding keyword selection, we initially chose three keywords,

i.e., “simplify”, “clarify”, and “explain”. Their definitionswere searched

in WordNet [24], and their synonyms were further added to the set

of keywords. After that, we expanded the keyword set by adding

different forms, including nouns, verbs, and adjectives. The key-

words, along with their distribution in the final collected corpus,

Table 1: List of Keywords and their Distribution in Data

keywords count sum sample commit message

simplification 51

2,756 Simplify intro paragraph

simplify 1,524

simple 1,161

simplicity 20

reduction 20

314

Change link text to

reduce confusionreduce 294

clarification 954

7,039 Clarifying README a bit

clarify 3,924

clear 1,677

clarity 484

elucidation 1

2

Elucidate what we do

with errorCode.

elucidate 1

elucidative 0

elucidatory 0

explanation 1,412

3,419

Update the documentation

to explain how this works
explain 1,983

explanatory 24

comprehension 10

14 more comprehensiblecomprehend 1

comprehensible 3

ease 46

1,044

Rewrote README.md to make

it easier to followeasy 998

are listed in Table 1. Looking at the table, the keywords “clarify”,

“simplify”, “explain” and “ease” along with their derivations are the

most frequently used keywords in the collected documents. The

more complicated words like “elucidate” and “comprehend” were

rarely used. To provide readers with more information on the effect

of these keywords, we also added sample commit messages with

the most common word sets and listed them in Table 1.

Although keywords in commit message histories convey infor-

mation about the modified contents, using a unigram of occurrence

can be ambiguous. For example, a simple negation term could ren-

der the semantics of simplification to the opposite meaning. Also,

sometimes the hint word for simplification might not refer to the

harvested README file, but to structures in the code blocks. Fur-

thermore, even if it refers to the simplification of the README file,

only a few sentences might be simplified, with most parts remain-

ing unchanged. Therefore, further filtering and preprocessing steps

are required, which are illustrated in Section 4.

In terms of implementation detail, we used the authors’ access

tokens, and use PyDriller [40] to mitigate the impact of the GitHub

RESTful API rate limit as much as possible. The collected documents

are in JSON format, with fields including difficult document, simple

document, commit message, language used, and project fork counts.

We collected 14,588 of these document pairs in total, which are used

to construct our software document simplification dataset.

Instead of focusing on certain programming languages, we want

to investigate the overall simplification of README files through

the commit history and thus did not filter on the programming

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Haoyu Gao, Christoph Treude, and Mansooreh Zahedi

language field. Figure 1 lists the top ten languages used by the

repositories that we collected.

Figure 1: Repository Languages

4 DATA PREPROCESSING
After harvesting GitHub README files, the difficult-to-simple cor-

respondence is at the document level. This is too long to build

an effective translation model directly, as most sentences in two

versions of documents are duplicates, which creates difficulty for

the model to learn simplification. Also, considering that it is not

reliable to only depend on heuristic keywords as an indicative sign

of simplification, we need to further filter the harvested dataset

and perform the sentence alignment task in order to give a higher

confidence dataset in a sentence-level correspondence. Figure 2

depicts the overall procedure, with the left hand side describing the

dataset construction process. Each component will be discussed in

detail in this section.

Figure 2: Overall Procedure

4.1 Data Cleansing and Masking
The collected README files are written in several formats, includ-

ing recommended markdown style
2
, plain text and HTML syntax,

which makes them noisy. For example, some people follow the

conventions “-” and “|” for constructing tables, while others choose

to use HTML syntax. For data cleaning and preprocessing, we first

2
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-

writing-and-formatting-on-github/quickstart-for-writing-on-github

Table 2: Semantic Components and assigned Tokens

Component Type Token

inline code block ⟨𝑐𝑜𝑑𝑒_𝑠𝑚𝑎𝑙𝑙⟩
chunks of code ⟨𝑐𝑜𝑑𝑒_𝑙𝑎𝑟𝑔𝑒⟩
path of file or directory ⟨𝑓 𝑖𝑙𝑒⟩
table ⟨𝑡𝑎𝑏𝑙𝑒⟩
hyperlink ⟨𝑢𝑟𝑙⟩

removed emojis and different spacing characters including “\t” and

“\n”.

Another critical characteristic of our data source is that it con-

tains a large number of semantic components that depend on the

document and its context. These components include URLs, code

blocks, tables, etc. These components are essential for software

documentation, as they usually include instructions, specifications,

and external links that elaborate on projects. But it can be challeng-

ing for the translation model to implicitly learn their attributes as

different documents typically contain components that are barely

the same. Therefore, we used Python package “markdown2”
3
to

identify and convert these special components into different individ-

ual tokens that are distinguishable for their usage. The translation

model is explicitly told where the special components are and can

generate more cohesive sentences. We manually inspect the data

and categorise the tokens into five types. The special tokens are

listed in Table 2.

Version requirements and plain text code without using the

markdown syntax are also important semantic information in the

sentences. However, detecting these elements would require using

regular expressions, which is noisy and not the major goal of this

paper. Therefore, we leave these elements as in their original form.

4.2 Sentence Alignment
Sentence alignment methods were extensively studied in previous

research. Jiang et al. [16] recently developed a neural-based CRF

sentence alignment method that achieves an F1 score over 0.9 on

Wikipedia data. They decompose the potential function as follows:

𝜓 (𝑎𝑖 , 𝑎𝑖−1, 𝑆,𝐶) = 𝑠𝑖𝑚(𝑠𝑖 , 𝑐𝑎𝑖) +𝑇 (𝑎𝑖 , 𝑎𝑖−1), where S denotes simple

sentences, C denotes complex sentences and 𝑎𝑖 denotes the index

of the aligned sentence. A fine-tuned BERT model is used to ap-

proximate 𝑠𝑖𝑚(𝑠𝑖 , 𝑐𝑎𝑖), and a simple multi-layer perceptron is used

to approximate 𝑇 (𝑎𝑖 , 𝑎𝑖−1). They finally used a Viterbi algorithm

for decoding the optimal alignment arrangements.

For Wikipedia data, since original and simple documents are

not composed concurrently, the positions of difficult sentences and

their simplified correspondence could differ a lot. However, the

aligned sentences tend to be in a relatively similar order in terms

of our harvested GitHub README files due to the incremental

development nature of many software projects. Therefore, the cal-

culation of 𝑇 (𝑎𝑖 , 𝑎𝑖−1) in our software documents will not benefit

much and will only increase training and decoding time. Therefore,

we discarded other components and only borrowed the fine-tuned

BERT classifier to perform our alignment task.

3
https://github.com/trentm/python-markdown2

https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/quickstart-for-writing-on-github
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/quickstart-for-writing-on-github
https://github.com/trentm/python-markdown2

Evaluating Transfer Learning for Simplifying GitHub READMEs ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

The specific alignment task is performed as follows. For each

pair of regular-simple documents, the sentences of the simplified

document will be fed into the BERT classifier with the regular sen-

tences one by one. For those that are classified as “aligned”, we

would temporarily mark them as aligning candidates. To avoid

𝑂 (𝑛2) time complexity when performing the alignment task, we

exploited the fact that many GitHub README files tend to grow

incrementally. Unless a complete refactor of the documents, align-

ing sentences should appear at the a closer section compared to

non-aligning ones. Each sentence in the simplified document will

only be compared with the regular ones that have the sentence

position within a window size of 50 to the simplified sentence. This

window size is able to cover most of the README file sentences,

except for excessively long ones, thus reducing the processing time

while providing good coverage for the majority of sentence pairs.

However, the drifted sentence style for software documentation

and the large amount of potential matches for each simple sentence

make the false positive rate relatively high. To accommodate this

situation, multiple filtering methods rules are used.

First, we filtered the candidates using the TF-IDF-based cosine

distance. TF-IDF is a commonly used statistic in natural language

processing, which computes weights for each occurring word by

taking into account the frequency of the word as well as the fre-

quency of documents containing it. In this case, it does not give

great weight to frequently occurring but meaningless words such

as “the” and “a”. We trained our TF-IDF model on the corpus of

all README files. Using the TF-IDF vectorizer, each sentence is

represented as a vector, and we are able to compute the cosine

distances between simple and complicated sentences.

To filter out false positive candidate pairs using the cosine dis-

tance based on TF-IDF, we manually selected 60 simple to com-

plicated sentence pairs and labelled them with the ground truth

alignments, with 30 pairs labelled “aligned” and the other 30 as “not

aligned”. We experimented with different filtering thresholds for

cosine distances, and the result is shown in Figure 3.

Figure 3: Performance of Different Thresholds

As seen in the figure, the F1 score and recall increase until the

cosine distance threshold of 0.5. After that, the recall flattens while

both the precision and F1 score start to decrease. As in the real

collected alignment candidate pairs, more of them tend to be false

positive instead of only taking half the proportion, we choose the

threshold of 0.5 to prevent a further drop in the accuracy score. All

candidate pairs with TF-IDF cosine distances greater than 0.5 are

categorised as false positives and discarded in this step.

Furthermore, the BLEU score [30] is a widely used metric for ma-

chine translation tasks that computes the n-gram overlaps between

the target and reference sentences and provides an intuitive score

for the level of similarity between sentences. A BLEU score greater

than 0.9 typically indicates merely a copy of the source sentence,

while a BLEU score below 0.1 means overlap only in some name

entities [16]. Therefore, we discarded sentence pairs with BLEU

scores greater than 0.9 or less than 0.1. The size of the dataset after

applying the TF-IDF distance and BLEU score filter is 43,772.

4.3 Dataset Anomaly Filter
After performing the previous alignment steps, we have constructed

a dataset of regular-to-simple software documents. To obtain a high-

quality dataset, we collected statistics on the number of alignments

of regular sentences for each simple sentence and eliminated those

that appeared to be outliers. The average alignment number for

the simplified sentence is 1.2, with a maximum number of 40 and a

variance of 0.8. We then removed data that are outside the range

of 3𝜎 . As a result, only sentences that are aligned with no more

than three sentences were preserved. We also discarded excessively

long sentences. Sentences with more than 40 alphabetic words were

eliminated. This procedure further reduces the size of the dataset

to 34,667.

After a closer look at these eliminated sentence pairs that were

initially categorised as “aligned” by our sentence aligner, most

of these outliers either appear to be too short or repeat instruc-

tions that only change a few words or URLs. For example, an orig-

inal document of “[𝑣𝑖𝑑𝑒𝑜] (⟨𝑢𝑟𝑙⟩)] (⟨𝑢𝑟𝑙⟩)”, which is a markdown

syntax to show some URLs, is matched with three other texts of

“[⟨𝑢𝑟𝑙⟩] (⟨𝑢𝑟𝑙⟩)] (⟨𝑢𝑟𝑙⟩)” in the simplified document. These masked

sentences are short but similar only in markdown syntax structure

instead of semantic meanings, and should be considered as noise.

Using this method, we further cleaned up our proposed dataset.

4.4 Dataset Comparison
For the simplicity of elaboration, we refer to the dataset constructed

using the Wikipedia and Simple Wikipedia source as “wiki-data”

and refer to the dataset we constructed in the previous steps as

“sw-data”. In this section, we briefly discuss the attributes of both

datasets. Table 3 lists statistics for “wiki-data” and “sw-data”.

Table 3: Statistics for sw-data

Simple Regular Simple-Regular Ratio

sw-data statistics

Average Length 24.80 26.62 93.2%

Vocabulary Size 21,653 22,313 97.0%

Exclusive Vocab Size 2,889 3,549 81.4%

wiki-data statistics

Average Length 14.76 20.91 70.6%

Vocabulary Size 32,228 37,278 86.5%

Exclusive Vocab Size 1,171 6,221 18.8%

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Haoyu Gao, Christoph Treude, and Mansooreh Zahedi

As seen from the table, these two datasets differ significantly.

Specifically, sentences in wiki-data tend to have a shorter length.

An average length of over 24.80 and 26.62 for simple and regular

sentences in the sw-data indicates that sentences harvested from

GitHub can be more complex and wordy. Moreover, the vocabulary

size in wiki-data significantly surpasses that of the sw-data. This can

happen because software documentation only focuses on specific

topics, while wiki-data covers a much wider range of topics.

Also, the simple-to-regular ratio statistics in wiki-data and sw-

data indicate that the simplification in wiki-data is more aggres-

sive. In contrast, the simplification of sw-data makes less apparent

changes. This could happen because Simple Wikipedia articles are

written with the intention of letting non-native speakers feel confi-

dent in reading. At the same time, the simplification in GitHub files

includes different operations such as rewrite, exemplify and clarify,

and some of the detail changes are minor. As the sw-data dataset

contains relatively less apparent simplification, the model tends to

memorise the original sentence and barely performs simplification.

The simplification rule gap between wiki-data and sw-data, plus

the noise in the sw-data, motivates us to explore transfer learning,

as discussed in the next section.

To further illustrate our points, we picked two representative

simplification examples, one from wiki-data and the other from

sw-data, as can be seen in Table 4. In this example, the wiki-data

simplification performs aggressively and ignores some details of

the evolution of the presidency armies. However, the author who

simplified the sw-data document only changes a few words at

the end of the sentence, making the argument clearer by giving a

specific instruction.

As we are going to use both datasets to train our software docu-

mentation simplification system, we split both datasets into train,

validation, and test sets. For the sw-data, we have a train set of size

28,000, a validation set of size 3,500 and the rest of the data forms

the test set. For the wiki-data, we have a train set of size 450,000

as well as a validation set and a test set both of size 20,000. The

training of the model and the transfer learning will be conducted

on the train set, and the performance of cross-entropy loss will be

evaluated on the validation set. We will finally generate new texts

on the test set for more detailed evaluation.

5 MODEL TRAINING AND TRANSFER
LEARNING

In this section, we elaborate on how we trained our model using

transfer learning, and discuss the output of the model based on

BLEU score evaluation.

5.1 Model Tokeniser
Before feeding sentences into our model, we need to tokenise sen-

tences into a list of tokens so that the model can learn their repre-

sentations in the embedding layer. The tokens can be whole words

or subwords. A tokeniser off-the-shelf is able to perform well on

general-domain tasks like simplifying wiki-data. However, software

documentation has a lower lexical complexity and contains com-

ponents that the model does not want to reduce. To better fit our

study, a custom tokeniser is needed. Therefore, we trained our own

tokeniser using all sentences in the sw-data and wiki-data training

set using the WordPiece tokenisation algorithm [50]. WordPiece is

a subword tokenisation algorithm developed by Google which is

widely used in various models [7, 38]. Similar to Byte Pair Encoding

(BPE) [11], it learns how to merge characters into words when

provided with a large corpus. During tokenising, a sub-word with a

“##” symbol indicates it is the continuation of the previous subword

and is later concatenated.

In Section 4.1, we used regular expressions to mask these special

components to prevent key components from automatic simplifica-

tion to different tokens. These special tokens are listed in Table 2.

However, to ensure that our tokeniser does not further split these

tokens, we specify those as special tokens during our training of

the tokeniser, along with ⟨𝑠𝑜𝑠⟩, ⟨𝑒𝑜𝑠⟩ and ⟨𝑈𝑁𝐾⟩, indicating the

start of a sentence, the end of a sentence and unknown words, re-

spectively. In this case, the tokeniser can directly tokenise these

components as a whole. As a result, the downstream model will

directly know the meaning of these tokens, making it easier for

the model to learn how to manipulate them. We also specified the

vocabulary size of the tokeniser at 40,000.

5.2 Model Architecture and Hyperparamters
The text simplification task can be considered a translation task,

in which sequence-to-sequence models are widely used. Trans-

former [46] is a multi-headed self-attention sequence-to-sequence

model that achieves competitive performance in neural translation

tasks. This architecture has become an essential building block in

many models in the deep learning area. As this work focuses more

on the simplification rules of software documentation and mitigat-

ing the drawbacks in the currently collected sw-data, we adopted

the vanilla version of Transformer in the original paper [46] with

only some minor changes in the tokeniser, and a reduction of train-

able parameters to save training time. With limited access to GPU

computing resources, plus the long training time of our model, we

did not try to tune the hyperparameters extensively to reach the

best performance. Instead, we experimented with only a few sets

of hyperparameters close to the setting from [16] and used one set

of them that performs the best on the task of sw-data. This set of

hyperparameters was later used on every model we trained, includ-

ing the wiki-data and the transfer learning. Specifically, the model

configuration and hyperparameter choices are listed in Table 5.

5.3 Training on wiki-data and sw-data
As a starting point, models with the given architecture were trained

solely on the wiki-data sets and the sw-data set. The cross-entropy

loss curve of the entropy of the model trained with wiki-data is

shown in Figure 4. and Figure 5 respectively.

We trained our models on wiki-data for 40 epochs and sw-data

for 50 epochs. Their learning curves exhibit similar patterns repre-

senting the model gradually overfitted on the training set. In the

final epochs, as the loss on the validation set is not decreasing, we

stop the training process and preserve checkpoints with the lowest

validation error as final models.

5.4 Transfer Learning
Because of the limitations mentioned in the Dataset Comparison

section, it is difficult for the wiki-data-trained model to adapt to the

Evaluating Transfer Learning for Simplifying GitHub READMEs ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

Table 4: Simplification Examples

regular simple

sw-data ## limitations * due to the nature of irssi’s readline, it is not

possible to add formatting directly in the input line, hence the

need for the extra window kludge.

limitations * due to the nature of irssi’s readline, it is not

possible to add formatting directly in the input line, so an

extra line is output to the screen instead.

wiki-data The presidency armies were the armies of the three presidencies

of the East India Company’s rule in India, later the forces of the

British Crown in India, composed primarily of Indian sepoys.

The presidency armies were the armies of the three presiden-

cies of British India .

Table 5: Model Configuration and Hyperparameters

Multi-head numbers 8 Learning rate 1e-5

Encoder layers 6 Batch size 8

Decoder layers 6 Optimiser Adam

Embedding dimension 512 Alpha 2e-5

Feed-forward dimension 2,048 Dropout rate 0.1

Figure 4: Wiki-data loss curve

change in text style and in simplification rule. Meanwhile, it is diffi-

cult for the sw-data-trained model to generate ideal simplifications,

as the dataset contains different styles of simplification and many

simplifications with only a few swaps of words. These two mod-

els are used as baselines to compare our later transferred learning

models. For simplicity of argument, we denoted these two models

as baseline wiki and baseline sw. A combination of both styles in

wiki-data and sw-data, namely practical simplification and techni-

cal precision, is desired for software documentation simplification.

By applying transfer learning, we intend to share general-domain

text simplification knowledge with the software documentation

simplification task.

Figure 4 shows three vertical red lines corresponding to the

model checkpoint after training for 3 epochs, 12 epochs, and 37

epochs. For simplicity of elaboration, we call them checkpoint early,
checkpoint mid, and checkpoint best. In terms of the checkpoint
early, the model is still under-fitted after only seeing the dataset

a few times. Some high-level knowledge for general-domain text

simplification has been learnt, but not enough to perform well.

With respect to the checkpoint mid, the model has established a

firm understanding of the text simplification task in the general

domain. Also, it is at the “elbow point” for the validation loss curve,

meaning that the learning speed decreased significantly after this

point. In terms of the checkpoint best, the model has overfitted the

training set, but its performance on the validation set is the best. We

also incorporated the optimiser into the checkpoint for a smoother

optimising process.

We adopted different transfer learning paradigms to explore the

effect of transfer learning in the software documentation simplifica-

tion task. Specifically, we started from the checkpoint early, mid and

best, and used these pre-trained checkpoints to train our models

on the sw-data. Figure 5 contains the validation loss curves for all

three different transfer learning paradigms and their comparison

to the performance of the baseline sw.

Figure 5: Transfer Learning Loss Curves

As seen in the figure, the cross-entropy loss curves for the three

transfer learning strategies all have lower starting points. Moreover,

the loss drops faster than the model trained solely on the sw-data.

24 epochs were trained on the three models and their loss in the

validation set has reached the minimum. In terms of cross-entropy

loss for the three transfer learning models, the checkpoint best is
the lowest, while the checkpoint early is the highest.

However, loss in the validation set is merely an indicator of

model performance. This metric suggests the uncertainty level of

the model when decoding encoded sentences into their simplifica-

tions. The lower this metric, the more confident the model will be.

However, as our sw-data dataset contains different writing styles

and mask tokens, including URLs and code blocks, the model can

find it difficult to generate more fluent sentences. Therefore, better

performance in terms of the cross-entropy loss could happen just

because the model learnt how to generate more fluent sentences

from the checkpoint of the wiki-data. In this case, we need to look

at the model performance in more detail.

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Haoyu Gao, Christoph Treude, and Mansooreh Zahedi

5.5 BLEU score Evaluation
Sequence-to-sequence models have an exposure bias problem [34].

Therefore, we use the beam search method, which keeps track of

the top k most probable candidate words during the data generation

part. We choose the beam size k to be 5. 24 epochs were trained

for the three transfer learning models. We also took snapshots

of the models after every four epochs of training. For example,

for the checkpoint early model, we took the checkpoints after it

was trained on sw-data for epochs of 4, 8, 12, 16, 20 and 24. We

generate simplification text on two baselines, plus all the transfer

learning model checkpoints on the test set. The generated texts will

be investigated more thoroughly in later sections.

We used the BLEU score to evaluate the quality of the texts

generated in the last section. BLEU score measures the similarity of

the generated text with its references and is widely used in machine

translation tasks. It calculates the n-gram overlaps between the

generated text and references. In our experiment, an equal weight

of one quarter is given to unigram, bigram, trigram, and 4-gram

to compute the BLEU score. The BLEU scores for the baseline sw

and the baseline wiki are 13.35 and 14.93. Figure 6 shows the BLEU

scores for all other transfer learningmodels.We also included an off-

the-shelf simplification model from Nisioi et al [29], which reached

a BLEU score of 25.70.

Figure 6: BLEU scores for Transfer Learning Models

As seen from the figure, the BLEU score for transfer_early model

starts at the lowest, and it increases gradually to 16.06 after training

for 24 epochs, surpassing the BLEU score for both baseline wiki and

baseline sw. For transfer_mid model, the BLEU score increases sig-

nificantly as the training on sw-data proceeds. It eventually reaches

a BLEU score of 32.73. On the other hand, the transfer_best per-

formance starts with the highest BLEU score and barely increases

as the training proceeds. However, it still has the highest BLEU

score of 34.68 in the test set. The BLEU score performance for the

transfer_mid model is slightly lower than that of the transfer_best,

except for the lower initial points. Furthermore, the BLEU scores

for all three models are better than those for the two baselines.

Summary of transfer learning: The baseline model directly

trained on sw-data suffered from overfitting. By continuing train-

ing the checkpoints for wiki-data, models achieve a lower cross-

entropy loss. Meanwhile, the transfer learning models surpass

our two baseline models in BLEU score performance. The base-

line wiki and baseline sw achieved BLEU scores of 14.93 and

13.35, while our best model achieves a BLEU score of 34.68.

6 HUMAN ANNOTATION
To further verify the effectiveness of the transfer learning approaches,

We elaborate on the process of evaluation below.

6.1 Procedure
We selected four models to be evaluated in this phase, including

three baseline models and one transfer learning model. The baseline

models are the wiki-data trained model, sw-data trained model and

the model from Nisioi et al. [29], and we refer to as “Baseline 1”,

“Baseline 2” and “Baseline 3”. The transfer learning model is further

trained on the transfer_best checkpoint using sw-data for another

24 epochs, which we refer to as “Transfer”.

We adopted a similar method to that of Liu et al. [21] by first

randomly selecting 100 original sentences from the sw-data test

set, and generating texts using the four models. For each original

sentence, there will be four versions of the simplification. For each

of the 100 groups, we randomly shuffled the order of these versions

to prevent annotators from discovering the patterns and making

biased judgements. Also, if models generate the same new texts,

they will be reduced to one piece of text for annotators to mark.

This approach is used to avoid accidentally giving different marks

to the same output.

We conducted a Prolific survey by dividing the 100 questions

into 10 different surveys. Each survey was taken by three differ-

ent participants. We performed a sequential survey release strat-

egy. Specifically, for subsequent survey publications, individuals

who had previously participated were excluded from the sample.

In this case, participants cannot participate in the study multiple

times. Meanwhile, we followed a study design similar to Nadi and

Treude [26] by inserting a “quality gate” in a random position in the

survey. We used the sentence “The purple monkey dishwasher sang

shenanigans on the moon with unicorns and marshmallow socks.”

consistently in all surveys as the “quality gate”. This sentence has

semantics clearly irrelevant to the reference sentence. We filtered

out participants who did not give a semantic score below three for

this sentence.

We used a similar evaluation metric as in related work [19]. An-

notators are provided with the source sentences and their different

simplified versions. During their annotation, they were asked to

assess each generated sentence based on three evaluation criteria:

• Simplicity: if the generated sentence is simpler than the

original sentence.

• Semantic Similarity: if the generated sentence retains all

semantics of the original sentence.

• Grammar: if the generated sentence is grammatically correct.

Likert scale is used to mark each of the aspects, with a score of 1

for strongly disagreeing and a score of 5 for strongly agreeing.

Evaluating Transfer Learning for Simplifying GitHub READMEs ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

6.2 Demographics of Annotators
We first applied predefined filters from Prolific, which requires

the participants to be in the employment sector of Information

Technology (IT), while also being proficient in English. We asked

the same question about employment again at the beginning of

our survey and filtered out 45 participants who did not answer

this question consistent with what they registered on Prolific. Our

“quality gate” question further filtered out two participants.

In the survey, we asked them about their job roles and howmany

years they have worked in the IT field. For the 30 participants who

passed all the filters and submitted their responses, they have on

average 4.4 years of experience working in IT, with a maximum

of twelve years and a minimum of half a year. Among the 30 par-

ticipants, there are ten developers (33.3%), seven IT support staff

(23.3%), four project managers (13.3%), four data analysts (13.3%),

four administrators (13.3%) and one search quality rater (3.3%).

We computed their level of agreement on the annotation results,

which reached 0.42 for Krippendorff’s alpha [20] coefficient overall,

with semantics, grammar and simplicity at 0.53, 0.37 and 0.32, re-

spectively. This indicates that annotators reached some agreement,

while some of the results are subjective at the same time.

6.3 Results
A good simplification of a sentence should not only be “simpler”

than the original sentence, but should also preserve semantics and

be grammatically correct. We provide one counter-example, where

the original sentence is “Note: to create a debug build of the build-

ing files, pass the −−𝑑𝑒𝑏𝑢𝑔(or −𝑑) switch when running the either

configure or build command” and the simplified sentence by Base-

line 1 is “To create a compact build of the unlimited file, pass the

award tells the story of the game”. In this example, two annotators

gave a semantic score of one, but a simplicity score of four and five,

respectively. However, because of the subjectivity of the annotation

process and the diversity of the participants, the last annotator gave

a score of two in simplicity for this sentence. This sentence does not

preserve any meaning from the original sentence. We argue that

these generated sentences that either fail to preserve the meaning

or are grammatically wrong are not usable. Therefore, we define a

“good” sentence as one with a semantic score and a grammar score

of at least four.

Table 6 shows the average Likert scores for all models in the

three metrics mentioned above, as well as the number of instances

with semantic score, grammar score or both no less than four. The

left column in Figure 7 shows the box plot for the distribution of

these three aspects. We brief the Baseline 1 to three with the name

“Base” 1 to 3 to clearly present them in the figure.

Overall speaking, Baseline 2 performs the worst in the seman-

tic and grammar aspects, and second to last for simplicity aspect.

Although Baseline 1 is able to generate grammarly moderately ac-

ceptable sentence, because it is not trained on sw-data, it fails to

generate the domain-specific text, causing the loss of semantic. The

simplicity score for Baseline 1 is regarded at an acceptable scale. In

terms of Baseline 3, it performs not ideal on all three aspects.

For Transfer model, its scores largely surpass the rest of the

models. It is capable of generating more grammatically correct

sentences that preserve semantic meanings. Also, it has an average

(a) Semantic box-plot (b) Semantic p-values

(c) Grammar box-plot (d) Grammar p-values

(e) Simplicity box-plot (f) Simplicity p-values

Figure 7: Score Box-plot and Pairwise Wilcoxon p-values

simplicity score of 3.35, indicating that the generated sentences are

on average simpler than the original ones.

We can have a more detailed comparison via the box plots in

Figure 7. Baseline 3 performs better in terms of semantic preserv-

ing, while Transfer model consistently performs better in all three

aspects. In terms of the simplicity aspect, Baseline 1 and Baseline 2

occasionally generate satisfying simplification that is above a score

of three, while Baseline 3 consistently performs the worst.

From a different perspective, the Transfer model can generate

219 sentences that well preserve the original sentence semantics

and 211 sentences that are grammarly correct out of the total 300

sentences according to the survey result. Overall, more than 60%

of the sentence generated by the Transfer model is “good”, while

most of the sentences generated by other models are barely usable.

Additionally, we performed statistical tests to verify whether the

differences shown above are statistically significant. We performed

Wilcoxon signed rank tests [37] on all pairs of available data on

semantic, grammar, and simplicity scores. The right column in

Figure 7 includes the heatmaps for all pairs of models, with the

calculated p-values listed in cells. One important note is that pairs

that are identical to the original sentence (22 out of 100) were not

considered when performing the statistical test for simplicity score.

If taking a significance level of 0.05, we can see that the score

for Transfer model is statistically better than all other models in

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Haoyu Gao, Christoph Treude, and Mansooreh Zahedi

Table 6: Likert score for Models

Semantics Grammar Simplicity #Semantics≥4 #Grammar≥4 #Good

1 Baseline 1 2.427 3.097 3.017 71 136 54 (18.0%)

2 Baseline 2 2.113 2.637 2.790 45 90 33 (11.0%)

3 Baseline 3 2.730 2.700 2.557 108 98 64 (21.3%)

4 Transfer 3.907 3.873 3.350 219 211 182 (60.7%)

Table 7: Generation Examples

Original Simplified

Example 1 If you’re interested in using speaker notes, reveal.js comes

with a node server that allows you to deliver your presenta-

tion in one browser while viewing speaker notes in another.

reveal.js comes with a speaker notes plugin which can be

used to present per-slide notes in a separate browser. (by
Transfer model)

Example 2 gldispatch/ contains code for libgldispatch, which is respon-

sible for dispatching opengl functions to the correct vendor

library.

gldispatch/ contains code for libgldispatch. (by Transfer
model)

Example 3 When a collection is typed as Seq[String], so might have lin-

ear access like List, but actually is a WrappedArray[String]

that can be efficiently parallelized, but can be efficient with

scala parallel collections.

When a collection is typed as Seq[String], so might have lin-

ear access like List, but actually is a WrappedArray[String]

that can be efficient.(by Transfer model)

every aspect. Meanwhile, the differences in grammar score and

simplicity score between Baseline 1 and Baseline 2 are statistically

significant. This indicates that by applying transfer learning on

the wiki-data checkpoint, the model could learn how to generate

more fluent sentences that are grammarly correct and perform

meaningful simplification.

To further explain these results, we analysed interesting cases

in more detail. We found that baselines 1 and 2 have an interesting

distribution in terms of simplicity. Although they have relatively

lower scores of 2.790 and 3.017, around 25% sentences are higher

than four for both Baseline1 and Baseline 2. We further divided

the annotation source sentences into one group containing at least

two masked special components and another with less than two.

For Baseline 1, this results in an average simplicity score of 3.18

for sentences with less than two masked tokens, and the average

score drops to 2.74 when there are at least two masked tokens.

Meanwhile, the performance for Baseline 2 increases from 2.63 to

3.04 for these two groups.

The decrease in performance for the model trained on wiki-data

is reasonable as there are no masked components in general-topic

text, and the domain transition would introduce a performance

drop. In contrast, the model trained on sw-data sees an increase

in performance when more masked special tokens appear in the

sentences. Meanwhile, Baseline 1 performs better in generating

grammatically correct sentences. Therefore, we argue that wiki-

data checkpoint brings more coherent sentences, while further

training on sw-data enhances the preservation of semantics and

gives the model better versatility with the masked special tokens.

Lastly, we provide three examples of the simplification generated

by the Transfer model in Table 7. The first example omits unim-

portant details while making the sentence easier to understand.

The second example discards the second half of the sentence. The

third example omits a technical part of “WrappedArray” by not

mentioning its parallelization. By rewriting and omitting parts of

the sentences in a way that does not severely interfere with the

semantics, the Transfer model can provide sentences perceived as

simpler by our annotators. The simplicity scores for these three

examples were 4.67, 4 and 3.67, on average, while their semantic

scores ranged between 4 to 5, 3 to 4 and 2 to 4, respectively.

Summary of human annotation results: Our best model

(Transfer) consistently outperforms three baselines in all three

aspects. Wiki-data checkpoint enhances the coherence and gram-

mar of the generated sentences, while further training on sw-

data improves the preservation of semantics and gives the model

better versatility with the masked special tokens.

6.4 Analysis on Identical Sentences
As the sw-data simplification is less prominent than wiki-data, mod-

els sometimes learn to predict sentences identical to the original

ones. In the 100 sentences used for our annotation, we found that

transfer learning models with higher scores tend to generate more

replications. Specifically, for the 100 cases, Baseline 2 did not gen-

erate any replication, while Baseline 1 and Baseline 3 generated 2

replication each. On the other hand, Transfer generated 22 replica-

tions. For example, for the original text “The chain method takes

one argument: m.chain(f), f must be a function which returns a

value if f is not a function, the behaviour of chain is unspecified.”,

Transfer model generated identical output, while Baseline 1 gen-

erated a shorter sentence with “The variable method takes one

argument is a function which returns a value if a mathematical

is not a function”. The Baseline 1 generated sentence omits many

Evaluating Transfer Learning for Simplifying GitHub READMEs ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

details and barely retains semantic information. This level of sim-

plification is not practical for developers as details are missing and

semantics are degraded. However, it is hard for the model to learn

to simplify effectively in each scenario, especially when the sw-

data contains more replications. This motivates us to incorporate

domain-specific rules in our future work.

7 TREATS TO VALIDITY
We consider threats to the validity of our study in this section.

The first threat is that we mined software repositories from the

first GitHub index and did not collect repositories created after 2017.

We believe that more README files in older repositories need to be

simplified, as different techniques were used back then, and more

old repositories have gone through simplification updates compared

to recent ones. Collecting datasets from different creation periods

of time could potentially give different simplification results.

Second, additional context-related components, such as package

requirements, could potentially be masked when assigning new

tokens. However, these components are usually embedded in plain

text and it would require sophisticated regular expression tools for

extracting them. Regular expressions are known to be noisy when

processing plain text, and this is not our main purpose in this paper.

Therefore, a better regular expression tool to preprocess the text

could yield different results on the simplification dataset.

Third, due to the lack of computing resources, we did not exten-

sively tune the hyperparameters on the models, which could lead

to overfitting and suboptimal solutions. However, given that the

performance gap in the same set of hyperparameters among models

is quite obvious, the overall design would not be compromised.

Lastly, we acknowledge that the BLEU score is not an ideal

indicator for simplification tasks, and this motivates us to perform

a survey with human participants. Although our annotation results

revealed that users find that the transfer learning model generates

the most satisfying result, our study does not provide evidence on

the impact of simplification on comprehension tasks.

8 IMPLICATIONS AND FUTUREWORK
The simplification of README files has significant implications

from several perspectives. First, from a newcomer’s perspective

to a repository, a simpler version of the README files has the

potential to help newcomers understand the project structure faster

and mitigate the technical barriers. Second, from the perspective

of repository owners, an easy-to-read README file could enhance

the repository’s potential to attract more users and participants.

Third, from the perspective of document writers, the recommended

simplified version of their text could help them to take care of

certain groups of readers when composing the draft.

In addition, as README files usually take the role of project

walkthrough and tutorial, similar ideas of simplification could be

applied to software teaching materials and other relevant versions

of tutorials. This work explores the simplification operations from

README documentation and fills the gap between general-style

text simplification and domain-specific simplification. Our transfer

learning approach provides a direction for using general-style sim-

plification knowledge to compensate for the lack of knowledge in

domain-specific simplification settings.

Although we performed a Prolific survey of people with IT back-

grounds, one limitation of is that we did not collect longitudinal

evidence on the effects of simplified documentation on different

stakeholders in open source. Different people interpret “simple” dif-

ferently, which is indicated by the moderate Krippendorff’s alpha

score from the Prolific survey. In addition, documents from different

programming languages may need different simplifications because

of the techniques they use and the communities they are in.

Moreover, Wikipedia data is found to be biased in culture, gender

and other perspectives [5, 47]. Although we did not investigate this

issue, using the transfer learning model trained on this data, biased

use of words might be carried forward. This could be detrimental,

especially when some communities are found to be more toxic in

language [33]. Therefore, more investigation into this issue is an

important direction for future work.

In terms of future work, people with different levels of expertise

may find different levels of detail easier. For example, entry-level

developers might find a comprehensive document easier to under-

stand. At the same time, people with more expertise might need

just enough documents that are “to the point”. This situation also

applies to different job roles and ages. Therefore, we intend to per-

form more user-centred studies to elucidate how different groups

perceive the concept of “simplification”.

In addition, more empirical studies on how README files are

updated for readability and simplicity purposes are also in the fu-

ture direction, specifically: (1) What repositories tend to include

more simplification operations? (2) What aspects are the simplifi-

cation operations focusing on? (3) What triggers the simplification

operation? Through qualitative and quantitative studies, we could

summarise the gap between people’s perceptions and common prac-

tices for READMEs simplification, providing more concrete advice

on the aspects to pay attention to during documentation writing.

Lastly, to automate the process of human-centred software doc-

ument simplification, higher-quality data, different metrics, and

simplification rules could all be incorporated into the system. Also,

in the era of Large Language Models (LLM) [3], we could consider

prompt engineering LLM [56] for performing this task.

9 CONCLUSION
In this paper, we collected README files from GitHub and used

the BERT sentence alignment algorithm and multiple heuristic

filters to construct a README files simplification dataset. Then

we trained a transformer model on both wiki-data and sw-data

and performed transfer learning by continuing training the model

on sw-data from the wiki-data trained checkpoints. After that, we

performed a Prolific survey, asking people with IT background to

annotate 100 groups of sentences generated by different models

from the perspective of semantic preserving, grammarly correctness

and simplicity. The best transfer learning mode outperforms the

baselines in both the automatic evaluation of BLEU score and the

human evaluation.We found that the transfer learning model learns

to perform meaningful simplification behaviours to the sentences

while preserve the original meaning of the sentences.

10 DATA AVAILABILITY
The replication package is at https://zenodo.org/record/8265001.

https://zenodo.org/record/8265001

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Haoyu Gao, Christoph Treude, and Mansooreh Zahedi

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C Shepherd. 2020. Software documentation:

the practitioners’ perspective. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 590–601.

[2] EmadAghajani, CsabaNagy, Olga Lucero Vega-Márquez,Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documenta-

tion issues unveiled. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1199–1210.

[3] Tom Brown et al. 2020. Language models are few-shot learners. Advances in
neural information processing systems, 33, 1877–1901.

[4] Dominique Brunato, Felice Dell’Orletta, Giulia Venturi, and Simonetta Monte-

magni. 2015. Design and annotation of the first Italian corpus for text simplifi-

cation. In Proceedings of the 9th Linguistic Annotation Workshop. Association
for Computational Linguistics, Denver, Colorado, USA, (June 2015), 31–41. doi:

10.3115/v1/W15-1604.

[5] Ewa S Callahan and Susan C Herring. 2011. Cultural bias in wikipedia content

on famous persons. Journal of the American society for information science and
technology, 62, 10, 1899–1915.

[6] Will Coster and David Kauchak. 2011. Learning to simplify sentences using

Wikipedia. In Proceedings of the Workshop on Monolingual Text-To-Text Genera-
tion. Association for Computational Linguistics, Portland, Oregon, (June 2011),

1–9. https://aclanthology.org/W11-1601.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805.
[8] Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, Wenjie Zhang, and

Dan Hao. 2022. Fira: fine-grained graph-based code change representation for

automated commit message generation. In Proceedings of the 44th International
Conference on Software Engineering, 970–981.

[9] Lijun Feng. 2008. Text simplification: a survey. The City University of New York,
Technical Report.

[10] Yang Feng, Shiyue Zhang, Andi Zhang, Dong Wang, and Andrew Abel. 2017.

Memory-augmented neuralmachine translation. arXiv preprint arXiv:1708.02005.
[11] Philip Gage. 1994. A new algorithm for data compression. C Users Journal, 12,

2, 23–38.

[12] Núria Gala, Anaïs Tack, Ludivine Javourey-Drevet, Thomas François, and Jo-

hannes C. Ziegler. 2020. Alector: a parallel corpus of simplified French texts

with alignments of misreadings by poor and dyslexic readers. English. In Pro-
ceedings of the Twelfth Language Resources and Evaluation Conference. European
Language Resources Association, Marseille, France, (May 2020), 1353–1361.

isbn: 979-10-95546-34-4. https://aclanthology.org/2020.lrec-1.169.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual

learning for image recognition. (2015). doi: 10.48550/ARXIV.1512.03385.

[14] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment

generation. In Proceedings of the 26th conference on program comprehension,
200–210.

[15] William Hwang, Hannaneh Hajishirzi, Mari Ostendorf, and Wei Wu. 2015.

Aligning sentences from standard wikipedia to simple wikipedia. In Proceedings
of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 211–217.

[16] Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, and Wei Xu. 2020.

Neural crf model for sentence alignment in text simplification. arXiv preprint
arXiv:2005.02324.

[17] Tomoyuki Kajiwara and Mamoru Komachi. 2016. Building a monolingual paral-

lel corpus for text simplification using sentence similarity based on alignment

between word embeddings. In Proceedings of COLING 2016, the 26th Interna-
tional Conference on Computational Linguistics: Technical Papers. The COLING
2016 Organizing Committee, Osaka, Japan, (Dec. 2016), 1147–1158. https://acla

nthology.org/C16-1109.

[18] David Kauchak. 2013. Improving text simplification language modeling using

unsimplified text data. In Proceedings of the 51st annual meeting of the association
for computational linguistics (volume 1: Long papers), 1537–1546.

[19] Anaïs Koptient, Muriel Londres, and Natalia Grabar. 2021. Fine-grained simpli-

fication of medical documents. (2021).

[20] Klaus Krippendorff. 2004. Reliability in content analysis: some common mis-

conceptions and recommendations. Human communication research, 30, 3, 411–
433.

[21] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019.

Automatic generation of pull request descriptions. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 176–
188.

[22] Jonathan Mallinson and Mirella Lapata. 2019. Controllable sentence simplifica-

tion: employing syntactic and lexical constraints. arXiv preprint arXiv:1910.04387.
[23] Paul W McBurney and Collin McMillan. 2014. Automatic documentation gen-

eration via source code summarization of method context. In Proceedings of
the 22nd International Conference on Program Comprehension, 279–290.

[24] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and

Katherine J Miller. 1990. Introduction to wordnet: an on-line lexical database.

International journal of lexicography, 3, 4, 235–244.
[25] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pol-

lock, and K Vijay-Shanker. 2013. Automatic generation of natural language

summaries for java classes. In 2013 21st International Conference on Program
Comprehension (ICPC). IEEE, 23–32.

[26] Sarah Nadi and Christoph Treude. 2020. Essential sentences for navigating

stack overflow answers. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 229–239.

[27] Courtney Napoles and Mark Dredze. 2010. Learning simple wikipedia: a cogi-

tation in ascertaining abecedarian language. In Proceedings of the NAACL HLT
2010 Workshop on Computational Linguistics and Writing: Writing Processes and
Authoring Aids, 42–50.

[28] Daiki Nishihara, Tomoyuki Kajiwara, and Yuki Arase. 2019. Controllable text

simplification with lexical constraint loss. In Proceedings of the 57th annual
meeting of the association for computational linguistics: Student research work-
shop, 260–266.

[29] Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto, and Liviu P Dinu. 2017.

Exploring neural text simplification models. In Proceedings of the 55th annual
meeting of the association for computational linguistics (volume 2: Short papers),
85–91.

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics, 311–318.

[31] David Lorge Parnas. 2009. Document based rational software development.

Knowledge-Based Systems, 22, 3, 132–141.
[32] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari At-

apattu, and David Lo. 2019. Categorizing the content of github readme files.

Empirical Software Engineering, 24, 1296–1327.
[33] Naveen Raman, Minxuan Cao, Yulia Tsvetkov, Christian Kästner, and Bogdan

Vasilescu. 2020. Stress and burnout in open source: toward finding, understand-

ing, and mitigating unhealthy interactions. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas and Emerging
Results, 57–60.

[34] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.

2015. Sequence level training with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

[35] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2014. Automatic summa-

rization of bug reports. IEEE Transactions on Software Engineering, 40, 4, 366–
380.

[36] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2010. Summarizing soft-

ware artifacts: a case study of bug reports. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, 505–514.

[37] Denise Rey and Markus Neuhäuser. 2011. Wilcoxon-signed-rank test. In Inter-
national encyclopedia of statistical science. Springer, 1658–1659.

[38] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-

tilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

[39] Hidetoshi Shimodaira. 2000. Improving predictive inference under covariate

shift by weighting the log-likelihood function. Journal of statistical planning
and inference, 90, 2, 227–244.

[40] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. Pydriller: python

framework formining software repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 908–911.

[41] Lucia Specia. 2010. Translating from complex to simplified sentences. In Inter-
national Conference on Computational Processing of the Portuguese Language.
Springer, 30–39.

[42] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-

Shanker. 2010. Towards automatically generating summary comments for java

methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering, 43–52.

[43] Sanja Štajner, Iacer Calixto, and Horacio Saggion. 2015. Automatic text simplifi-

cation for spanish: comparative evaluation of various simplification strategies.

In Proceedings of the international conference recent advances in natural language
processing, 618–626.

[44] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.

2015. Social barriers faced by newcomers placing their first contribution in

open source software projects. In Proceedings of the 18th ACM conference on
Computer supported cooperative work & social computing, 1379–1392.

[45] Christoph Treude and Martin P Robillard. 2016. Augmenting api documenta-

tion with insights from stack overflow. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 392–403.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. (2017). doi: 10.48550/ARXIV.1706.03762.

https://doi.org/10.3115/v1/W15-1604
https://aclanthology.org/W11-1601
https://aclanthology.org/2020.lrec-1.169
https://doi.org/10.48550/ARXIV.1512.03385
https://aclanthology.org/C16-1109
https://aclanthology.org/C16-1109
https://doi.org/10.48550/ARXIV.1706.03762

Evaluating Transfer Learning for Simplifying GitHub READMEs ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

[47] Claudia Wagner, David Garcia, Mohsen Jadidi, and Markus Strohmaier. 2015.

It’s a man’s wikipedia? assessing gender inequality in an online encyclopedia.

In Proceedings of the international AAAI conference on web and social media
number 1. Vol. 9, 454–463.

[48] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of

transfer learning. Journal of Big data, 3, 1, 1–40.
[49] Kristian Woodsend and Mirella Lapata. 2011. Learning to simplify sentences

with quasi-synchronous grammar and integer programming. In Proceedings
of the 2011 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Edinburgh, Scotland, UK., (July

2011), 409–420. https://aclanthology.org/D11-1038.

[50] Yonghui Wu et al. 2016. Google’s neural machine translation system: bridging

the gap between human andmachine translation. arXiv preprint arXiv:1609.08144.
[51] Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu.

2019. Commit message generation for source code changes. In IJCAI.
[52] Wei Xu, Chris Callison-Burch, and Courtney Napoles. 2015. Problems in current

text simplification research: new data can help. Transactions of the Association
for Computational Linguistics, 3, 283–297.

[53] Xingxing Zhang and Mirella Lapata. 2017. Sentence simplification with deep

reinforcement learning. arXiv preprint arXiv:1703.10931.
[54] Yaoyuan Zhang, Zhenxu Ye, Yansong Feng, Dongyan Zhao, and Rui Yan. 2017.

A constrained sequence-to-sequence neural model for sentence simplification.

arXiv preprint arXiv:1704.02312.
[55] Sanqiang Zhao, Rui Meng, Daqing He, Saptono Andi, and Parmanto Bambang.

2018. Integrating transformer and paraphrase rules for sentence simplification.

arXiv preprint arXiv:1810.11193.
[56] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,

Harris Chan, and Jimmy Ba. 2022. Large language models are human-level

prompt engineers. arXiv preprint arXiv:2211.01910.
[57] Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. 2010. A monolingual

tree-based translation model for sentence simplification. In Proceedings of the
23rd International Conference on Computational Linguistics (Coling 2010), 1353–
1361.

https://aclanthology.org/D11-1038

	Evaluating transfer learning for simplifying GitHub READMEs
	Citation

	Abstract
	1 Introduction
	2 Related Work
	2.1 Documentation Issues and Solutions
	2.2 Text Simplification

	3 Data Collection
	4 Data Preprocessing
	4.1 Data Cleansing and Masking
	4.2 Sentence Alignment
	4.3 Dataset Anomaly Filter
	4.4 Dataset Comparison

	5 Model Training and Transfer Learning
	5.1 Model Tokeniser
	5.2 Model Architecture and Hyperparamters
	5.3 Training on wiki-data and sw-data
	5.4 Transfer Learning
	5.5 BLEU score Evaluation

	6 Human Annotation
	6.1 Procedure
	6.2 Demographics of Annotators
	6.3 Results
	6.4 Analysis on Identical Sentences

	7 Treats to Validity
	8 Implications and Future Work
	9 Conclusion
	10 Data Availability

