
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2020

Code duplication on stack overflow Code duplication on stack overflow

Sebastian BALTES

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
BALTES, Sebastian and TREUDE, Christoph. Code duplication on stack overflow. (2020). Proceedings of
the 42nd International Conference on Software Engineering, Seoul, South Korea, 2020, May 23-29. 13-16.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8896

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8896&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Code Duplication on Stack Overflow
Sebastian Baltes

sebastian.baltes@adelaide.edu.au
The University of Adelaide, Australia

Christoph Treude
christoph.treude@adelaide.edu.au

The University of Adelaide, Australia

ABSTRACT
Despite the unarguable importance of Stack Overflow (SO) for
the daily work of many software developers and despite existing
knowledge about the impact of code duplication on software main-
tainability, the prevalence and implications of code clones on SO
have not yet received the attention they deserve. In this paper, we
motivate why studies on code duplication within SO are needed and
how existing studies on code reuse differ from this new research
direction. We present similarities and differences between code
clones in general and code clones on SO and point to open ques-
tions that need to be addressed to be able to make data-informed
decisions about how to properly handle clones on this important
platform. We present results from a first preliminary investigation,
indicating that clones on SO are common and diverse. We further
point to specific challenges, including incentives for users to clone
successful answers and difficulties with bulk edits on the platform,
and conclude with possible directions for future work.

CCS CONCEPTS
• Software and its engineering→ Maintaining software;

KEYWORDS
code duplication, code clones, software maintenance, software evo-
lution, software licenses, stack overflow
ACM Reference Format:
Sebastian Baltes and Christoph Treude. 2020. Code Duplication on Stack
Overflow. In New Ideas and Emerging Results (ICSE-NIER’20), May 23–29,
2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3377816.3381744

1 INTRODUCTION
Code clones have been extensively studied in the software engi-
neering research community. Juergens et al. found that inconsistent
code clones can be a major problem during the development and
maintenance of software projects unless “special care is taken to
find and track existing clones and their evolution” [1]. Stack Over-
flow (SO) threads, often containing code snippets together with
explanations [2], serve as an important crowd-sourced software
documentation resource [3, 4]. Despite the fact that code clones on
SO can suffer from similar issues as code clones in software projects,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7126-1/20/05. . . $15.00
https://doi.org/10.1145/3377816.3381744

it is only recently that researchers started investigating them. Stud-
ies have shown that developers utilise code snippets from SO in
their software projects, regardless of maintainability, security, and
licensing implications [5–14]. The main focus of that previous work
was, however, to study how and why developers (re-)use SO code
snippets outside of the question-and-answer platform. While re-
searchers worked on identifying duplicate questions [15–17], their
main goal was to replace or support the manual moderator process
for marking duplicate questions rather than supporting the main-
tenance and evolution of code on SO. Considering the importance
that SO has today for the daily work of many software developers
worldwide and the fact that in many posts, non-trivial code snip-
pets are collected and maintained, it is surprising that SO does not
have proper features for code versioning and bug tracking. Text and
code are versioned together as Markdown content [18], making
it hard to identify changes to the code snippets in the provided
revision view. Furthermore, there is no language-specific syntax
highlighting or error checking in SO’s online Markdown editor,
leading to many snippets that are not parseable, compilable, or even
runnable [2]. Finally, there is no way to report bugs in SO code
snippets other than posting a comment or an alternative answer.
Despite the above-mentioned challenges, code is maintained and
does evolve on SO [18].

The purpose of this article is to point the research community to
open questions regarding code clones on SO and to motivate how
research in that area could inform significant improvements for the
platform. We present a preliminary analysis of code clones within
SO and point to directions for future work. As outlined above, the
external usage of code snippets from SO has been studied in-depth.
Therefore, our main focus is on code clones within the platform (see
Section 3 for our specific research questions). While we are in an
early stage of this research project, we already shared preliminary
results with the SO community and started a discussion about
how to handle code clones on the platform. The corresponding
thread1 attracted over 1,000 views and got upvoted to a score of
45. We will use the community’s feedback to guide our next steps.
Our vision is that a thorough study of code clones on SO together
with the ongoing discussion in the SO community will lead to
revised recommendations for authors and improved tool support
for handling those clones.

2 MOTIVATING EXAMPLES
In this paper, we want to discuss two use cases of duplicated code on
SO that have not been adequately targeted by previous research. The
first case covers content that was originally posted on SO, without
any indication of an external source. For such snippets, the (visible)
evolution mainly takes place on the SO platform, but nevertheless
maintenance issues may arise. The second case is content that was

1https://meta.stackoverflow.com/q/375761

https://doi.org/10.1145/3377816.3381744
https://doi.org/10.1145/3377816.3381744
https://doi.org/10.1145/3377816.3381744
https://meta.stackoverflow.com/q/375761
Sebastian Baltes
ICSE-NIER 2020 Preprint, publication rights licensed to ACM

ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea Sebastian Baltes and Christoph Treude

Figure 1: First usage of a VBA code snippet on 16 September
2016 in answer 39532855, the most recent usage by the same
user was on 27 August 2018 in answer 52040136.Within that
timeframe, 31 copies of the same snippet were posted on SO,
most of them by the same user. Consistently changing the
snippet would require a manual update of all those copies.

copied from external sources into SO posts. Such clones suffer from
the same maintenance issues as the clones mentioned above, but
the additional external availability makes the evolution even more
complex and may further introduce licensing issues.

2.1 Case 1: Original code snippets being reused
in multiple threads

Figure 1 shows the first usage of a VBA (Visual Basic for Appli-
cations) code snippet, of which, within a time span of two years,
31 exact copies were posted on SO. Except for three questions, the
snippet was exclusively used in different answers posted by the
same user. None of those copies reference each other, meaning that
an update in one copy would stay unnoticed in the other threads.
The original author of the snippet managed to attract an accumu-
lated number of over 25,000 views and an accumulated score of
65. Interestingly, it is not the initial answer that attracted the most
views and the highest score. When we proposed to link more recent
posts to the first occurrence, the author rejected our edit with a
generic reply.2 This leads to our first observation related to code
duplication on SO:

SO users may utilise code clones to accumulate views and upvotes.
At the same time, they can reject edit proposals referencing the
clones.
Note that we referred to exact copies in this example. It is likely

that there exist further type-2 clones (e.g., with renamed identifiers)
or type-3 clones (e.g., with added or removed statements) of the
snippet. Some of those clones may contain fixes not yet propagated
to the other clones.
2https://stackoverflow.com/review/suggested-edits/21495979

2.2 Case 2: Externally available snippets being
reused in multiple threads

Not all snippets on SO are originally posted there, many are copied
to and from the platform [6, 11, 14]. While this observation is not
new, many existing studies focused on the implications of reusing
content from SO, but not so much on the licensing and maintain-
ability implications for the platform itself.

Considering SO’s role in the software documentation landscape,
it is not surprising that content from reference documentation
resources is being reused on SO. Even in cases where a license-
compatible usage of content would be straightforward, SO authors
fail to adhere to license requirements. For example, a Java snippet
about server certificate verification from an official Android tuto-
rial3 has been copied (at least) 14 times into SO. This happened in a
timespan of over four years. Google licensed this tutorial—and thus
the snippet—under CC BY 2.5. This license is compatible with SO’s
CC BY-SA license but requires attribution, which SO authors do
not always provide. Besides this licensing aspect, in the above ex-
ample, there is unarguably one authoritative source for the snippet
where bug fixes or updates would be posted. Therefore, our next
observation is:
SO users copy code snippets from reference documentation into
SO posts. Besides licensing and copyright implications, it is ques-
tionable whether this behaviour contributes to the sustainability
of the platform, because users may reuse outdated information
in case the authoritative source gets modified. Even if one of the
clones gets updated, the changes are not automatically propa-
gated within the network of clones on SO.

There is another angle to this case: We added the missing attribu-
tion in two posts containing the above-mentioned snippet from the
official Android documentation. While those edits were accepted,
there is a rate limited for such bulk edits.4 Hence, we observe that:

Due to SO’s rate limiting, missing attribution cannot be easily
added to posts. Tools that researchers build can currently only
very slowly propagate proposed changes to affected posts.

3 RESEARCH QUESTIONS
Motivated by the two cases outlined above, we argue that the fol-
lowing research questions need to be addressed to be able to make
an informed decision on how to handle code clones on SO. The
goal of this research is to provide data-informed actionable rec-
ommendations which the community and SO’s internal team can
use to update their user guides, but also to build tool support for
managing and maintaining code clones on the platform.

RQ1: How frequently are code snippets copied between SO
posts?

RQ2: What types of clones exist and how are they related?
RQ3: What are typical external sources of code snippets on SO

and which licensing and maintainability implications are
associated with those sources?

The first research question helps us to assess how common the
outlined problem is, the second to deepen our understanding of the
3https://developer.android.com/training/articles/security-ssl.html
4https://meta.stackexchange.com/a/281202

https://stackoverflow.com/a/39532855
https://stackoverflow.com/a/52040136
https://stackoverflow.com/review/suggested-edits/21495979
https://developer.android.com/training/articles/security-ssl.html
https://meta.stackexchange.com/a/281202

Code Duplication on Stack Overflow ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea

different use cases of clones on SO, and the last to understand the
implications beyond the platform.

4 PRELIMINARY ANALYSIS
We conducted a preliminary analysis focusing on exact code clones
on SO. While this approach has the advantage of not being limited
to a certain programming language, extending the analysis to also
cover other types of clones will be a logical next step.

4.1 Data Retrieval
To detect code clones on SO, we utilised the BigQuery version of
SOTorrent [18]. First, we selected all code blocks from the most
recent post versions and normalised the contained whitespace char-
acters. To this end, we: (1) replaced sequences of new lines with a
single new line character, (2) removed new lines at the end of the
last line, and (3) removed lines only containing brackets (()[]{}).
Using this normalised content, we calculated the normalised line
count of those code blocks (NLOC). To derive fingerprints of the
snippets, we only considered alphanumeric characters and applied
BigQuery’s FARM_FINGERPRINT function to the normalised code
block contents. This yielded 43,942,960 distinct fingerprints (i.e.,
normalised code blocks). We then used this fingerprint to deter-
mine the posts which contain a certain snippet, aggregating that
information per thread. To select cloned code blocks, we first se-
lected the ones present in at least two different threads, yielding
909,323 distinct fingerprints. This provides a first estimate for RQ1:
2.1% of all distinct code blocks have a copy in another thread. To
select only non-trivial code snippets, we first used a threshold of
six normalised lines of code, as proposed by Bellon et al. [19]. We
ranked the remaining 215,746 code snippets according to the num-
ber of threads they were found in and according to their normalised
length. Then, we qualitatively analysed the first 50 snippets in that
list. Since we considered 25 of those snippets to be either too trivial
or non-code, we decided to adjust the threshold for the normalised
line count to 20. The stricter filtering led to a second sample with
46,818 code snippets. Those snippets had an average length of 42.6
normalized lines (SD = 37.7,Mdn = 30, IQR = 22) and were present
in 2.3 different threads (SD = 1.1, Mdn = 2, IQR = 0); 13.4% of the
snippets were present in more than two threads (see Figure 2). We
provide the retrieval scripts and the coding for both samples (≥ 6
NLOC and ≥ 20 NLOC) on Zenodo.5

4.2 Qualitative Analysis
To address RQ2 and RQ3, we first ranked the code snippets accord-
ing to their thread count and length and then qualitatively analysed
the first 50 snippets according to that ranking using a web tool6 we
specifically designed for that purpose. The tool allows to focus on
a single snippet in a dedicated view, showing the snippet, its finger-
print, the posts containing the snippet sorted by their creation date,
other posts linked from those posts, and linked external sources
(see Figure 2). The latter information helped us to identify if and
from where a snippet may have been copied into SO. While we still
categorised ten snippets as configuration files, 29 snippets were
non-trivial source code snippets (mainly Java and VB/VBA). Other
5https://doi.org/10.5281/zenodo.1474222 and https://doi.org/10.5281/zenodo.3596367
6https://doi.org/10.5281/zenodo.1474207

categories included XML GUI definitions for Android, JSON/XML
examples, and HTML files. Except for two cases, we were able to
identify the (or at least a) source of the snippet by following links
in the posts and searching for parts of the snippets online. Only in
four cases, we considered the snippets to be originally from SO. The
main external sources were a website providing Android tutorials
(androidhive.info, ten snippets) and the official Android documenta-
tion (developer.android.com, four snippets). We identified possible
licensing conflicts in 31 cases, either because the website did not
provide a license or because the content was distributed under a
restrictive license or restrictive terms of use. In the following, we
describe the two main external sources in more detail.

The independent Android website androidhive has rather restric-
tive terms of use. Nevertheless, only few posts attribute this source
(3 out of 45 posts in the example shown in Figure 2). It is unclear
whether the snippet has actually been copied from this external
source since the creation of the posts on androidhive and SO were
both around April/May 2012. If the 45 snippets were copied into
SO, their usage would be problematic. In fact, we identified four
more variants of that same code snippet among the 50 snippets we
analysed. If SO is the original source, the usage on androidhive does
not adhere to SO’s CC BY-SA license [6]. The snippets copied from
the official Android documentation are licensed under CC BY 2.5.
This license allows usage under SO’s CC BY-SA license, but only
when attributing the original source. However, users often did not
add a link to the Android documentation to their posts. Thus, also
those usages could lead to licensing issues.

Leaving the licensing implications aside, code clones within SO
are also problematic for the platform’smaintainability and usability.
Code duplicates could, for example, indicate that different threads
solved a similar problem. If there is no link between the threads,
information is spread over the platform and hard to capture for
readers. Another example is SO’s recommendation to “always quote
the most relevant part of an important link, in case the target site is
unreachable or goes permanently offline”.7 While it makes sense to
quote important aspects of external sources, it can be questioned
whether it is reasonable to maintain several independent copies
of external code snippets on SO. Assuming that a snippet in the
reference documentation is updated, all copies on SO would require
a manual update as well.

4.3 Community Involvement
To involve the community and discuss how to best approach those
licensing, maintainability, and usability issues, we created a post
on SO Meta. We outlined the two cases presented in Sections 2.1
and 2.2 using examples from our preliminary analysis and asked
the community: How to handle code clones on Stack Overflow?

One preliminary observation from the discussion is that the
community seems to be in favour of adding missing attribution to
SO posts where it is missing. This would enable tool support for
automatically checking external sources for updated versions of
snippets, but only solve the licensing issue for snippets licensed
under a rather permissive license. Regarding approaches to handle
clones within SO, there is no clear opinion yet. Besides continuing
to work on the research questions presented in Section 3, we will

7https://stackoverflow.com/help/how-to-answer

https://doi.org/10.5281/zenodo.1474222
https://doi.org/10.5281/zenodo.3596367
https://doi.org/10.5281/zenodo.1474207
https://www.androidhive.info/
http://developer.android.com/
https://stackoverflow.com/help/how-to-answer

ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea Sebastian Baltes and Christoph Treude

Presence of code blocks with ≥ 20 NLOC in multiple threads (n=46,818)

0
25
00

50
00

40
00
0

13.4%

2 3 5 ≥ 6

Number of threads

N
um

be
r o

f c
od

e
bl

oc
ks

4

Figure 2: Left: Copies of non-trivial code blocks (≥ 20 NLOC) in multiple SO threads. Right: Snippet view of so-clones tool
showing a code snippet that has likely been copied from the website androidhive into SO.

update the discussion and finally implement the approach that the
community prefers. Possible directions include to automatically
propose post edits adding missing attribution, to automatically link
to the first occurrence in a set of duplicates, or to mark threads
as related based on the similarity of the code blocks they contain.
The existing Guttenberg bot monitors newly posted questions and
answers and automatically reports plagiarism, mainly based on
String similarity between posts. The bot does, however, compare
whole posts without isolating code snippets first. When we ran our
study, the bot was already active. Nevertheless, we still found a
considerable amount of duplicated code on the platform. We have
shared our results with the Guttenberg team.

5 CONCLUSION
With this paper, we want to point to the fact that code clones on SO,
similar to clones in regular software projects, affect the maintain-
ability of posts and can lead to licensing issues. However, we also
point to differences such as the fact that SO users may be encour-
aged to clone successful answers to achieve a higher reputation and
that snippets are difficult to modify through bulk edits. These differ-
ences have practical implications and might suggest new features
for SO, such as allowing bulk edits for adding attribution informa-
tion or improving detection of overly zealous self-plagiarism. We
also mentioned that SO’s current recommendation for handling
content from external resources may not be suitable for code taken
from reference documentation, because the authoritative source
should be the reference documentation and not SO. Moreover, when
clones on SO are not updated, users consulting SO threads instead
of the reference documentation may be prone to using outdated or
erroneous information.

Our preliminary results suggest that code duplication on SO is
relatively common (RQ1). Despite our limitation on exact clones,
we found that 2.1% of all unique code blocks were used in more than
one thread. Moreover, when we focused on unique code blocks with
≥ 20 NLOC, we still found 47k of them being used in more than one
thread. Our analysis also revealed that a wide variety of snippets is
being cloned (RQ2). We noticed cases where the same user copied
the same snippet into several answers in different threads. As moti-
vated in Section 2, future work should investigate this behaviour.

Further, the external sources of code snippets on SO (RQ3) range
from random blog posts to official reference documentation pages
(see our Android example). Identifying typical external sources and
developing ways to keep the content on SO up-to-date is a promis-
ing direction for future work. This research could even be extended
to include other online forums or code hosting platforms.

REFERENCES
[1] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do Code Clones

Matter?” in ICSE 2009.
[2] D. Yang, A. Hussain, and C. V. Lopes, “From Query to Usable Code: An Analysis

of Stack Overflow Code Snippets,” in MSR 2016.
[3] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documentation:

Exploring the coverage and the dynamics of API discussions on Stack Overflow,”
Georgia Institute of Technology, Technical Report, 2012.

[4] C. Treude, O. Barzilay, and M.-A. D. Storey, “How do programmers ask and
answer questions on the web?” in ICSE 2011.

[5] S. Baltes, R. Kiefer, and S. Diehl, “Attribution required: Stack overflow code
snippets in GitHub projects,” in ICSE 2017 Companion Volume.

[6] S. Baltes and S. Diehl, “Usage and Attribution of Stack Overflow Code Snippets
in GitHub Projects,” Empirical Software Engineering, vol. 24, no. 3, 2019.

[7] L. An, O.Mlouki, F. Khomh, and G. Antoniol, “Stack Overflow: A Code Laundering
Platform?” in SANER 2017.

[8] D. Yang, P. Martins, V. Saini, and C. V. Lopes, “Stack Overflow in Github: Any
Snippets There?” in MSR 2017.

[9] M. Gharehyazie, B. Ray, and V. Filkov, “Some From Here, Some From There:
Cross-Project Code Reuse in GitHub,” in MSR 2017.

[10] R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from StackOverflow:
An exploratory study on Android apps,” IST Journal, vol. 88, 2017.

[11] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What do developers
search for on the web?” Empirical Software Engineering, vol. 22, no. 6, 2017.

[12] F. Fischer, K. Boettinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl,
“Stack Overflow Considered Harmful? The Impact of Copy&Paste on Android
Application Security,” in S&P 2017.

[13] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky, “You Get
Where You’re Looking For: The Impact Of Information Sources on Code Security,”
in S&P 2016.

[14] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do developers utilize source
code from stack overflow?” Empirical Software Engineering, vol. 34, no. 2, 2018.

[15] Y. Zhang, D. Lo, X. Xia, and J. Sun, “Multi-Factor Duplicate Question Detection
in Stack Overflow,” Journal of Computer Science and Tech., vol. 30, no. 5, 2015.

[16] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider, “Mining
duplicate questions in stack overflow,” in MSR 2016.

[17] W. E. Zhang, Q. Z. Sheng, J. H. Lau, and E. Abebe, “Detecting Duplicate Posts in
Programming QA Communities via Latent Semantics and Association Rules,” in
WWW 2017.

[18] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “SOTorrent: Reconstructing and
Analyzing the Evolution Stack Overflow Posts,” in MSR 2018.

[19] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and
evaluation of clone detection tools,” IEEE Transactions on Software Engineering,
vol. 33, no. 9, 2007.

http://research.sbaltes.com/so-clones/snippet-view.html?hashValue=490449213296150202
https://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql/
https://github.com/SOBotics/Guttenberg

	Code duplication on stack overflow
	Citation

	Code Duplication on Stack Overflow

