
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2020

Beyond accuracy: Assessing software documentation quality Beyond accuracy: Assessing software documentation quality

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Justin MIDDLETON

Thushari ATAPATTU

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
TREUDE, Christoph; MIDDLETON, Justin; and ATAPATTU, Thushari. Beyond accuracy: Assessing software
documentation quality. (2020). ESEC/FSE '20: Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering: Virtual, November
8-13. 1509-1512.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8895

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Beyond Accuracy: Assessing Software DocumentationQuality
Christoph Treude

christoph.treude@adelaide.edu.au

University of Adelaide

Adelaide, SA, Australia

Justin Middleton

jamiddl2@ncsu.edu

North Carolina State University

Raleigh, NC, United States

Thushari Atapattu

thushari.atapattu@adelaide.edu.au

University of Adelaide

Adelaide, SA, Australia

ABSTRACT
Good software documentation encourages good software engineer-

ing, but the meaning of “good” documentation is vaguely defined

in the software engineering literature. To clarify this ambiguity, we

draw on work from the data and information quality community

to propose a framework that decomposes documentation quality

into ten dimensions of structure, content, and style. To demonstrate

its application, we recruited technical editors to apply the frame-

work when evaluating examples from several genres of software

documentation. We summarise their assessments—for example, ref-

erence documentation and README files excel in quality whereas

blog articles have more problems—and we describe our vision for

reasoning about software documentation quality and for the expan-

sion and potential of a unified quality framework.

CCS CONCEPTS
• Software and its engineering → Documentation; • Social
and professional topics→ Quality assurance.

KEYWORDS
software documentation, quality

ACM Reference Format:
Christoph Treude, Justin Middleton, and Thushari Atapattu. 2020. Beyond

Accuracy: Assessing Software Documentation Quality. In Proceedings of the
28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’20), November 8–
13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3368089.3417045

1 INTRODUCTION AND MOTIVATION
High-quality software documentation is crucial for software de-

velopment, comprehension, and maintenance, but the ways that

documentation can suffer poor quality are numerous. For example,

Aghajani et al. [1] have designed a taxonomy of 162 documentation

issue types, covering information content, presentation, process-

related matters, and tool-related matters. Additionally, because

software documentation is written in informal natural language

which is inherently ambiguous, imprecise, unstructured, and com-

plex in syntax and semantics, its quality can often only be evaluated

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00

https://doi.org/10.1145/3368089.3417045

manually [6]. The assessment depends on context for some qual-

ity attributes (e.g., task orientation, usefulness), it mixes content

and medium for others (e.g., visual effectiveness, retrievability),

and sometimes it requires looking beyond the documentation itself

(e.g., accuracy, completeness). While most related work has focused

on documentation accuracy and completeness (e.g., for API docu-

mentation [3, 19]), the fact that many developers are reluctant to

carefully read documentation [20] suggests that documentation suf-

fers from issues beyond accuracy. As such, we lack a comprehensive

framework and instruments for assessing software documentation

quality beyond these characteristics.

In this work we adapt quality frameworks from the data and in-

formation quality community to the software engineering domain.

We design a survey instrument to assess software documentation

quality from different sources. A pilot study with four technical edi-

tors and 41 documents related to the R programming language pro-

vides initial evidence for the strengths and weaknesses of different

genres of documentation (blog articles, reference documentation,

README files, Stack Overflow threads, tutorials) based on the ten

dimensions of our software documentation quality framework.

The contributions of this work are:

• A ten-dimensional framework for asking questions about

software documentation quality,

• A partially validated survey instrument to evaluate docu-

ment quality over multiple documentation genres, and

• A vision for the expansion of a unified quality framework

through further experimentation.

2 BACKGROUND AND RELATEDWORK
The most related piece of work to this paper is the seminal 1995

article “Beyond Accuracy: What Data Quality Means to Data Con-

sumers” by Wang and Strong [17]. We follow the same beyond-
accuracy approach for the domain of software documentation.

Defective Software Documentation. Defect detection tools have

beenwidely investigated at the code level, but very few studies focus

on defects at the document level [22]. The existing approaches in

the documentation space investigate inconsistencies between code

and documentation. In one of the first such attempts, Tan et al. [16]

presented @tcomment for testing Javadoc comments related to null

values and exceptions. DocRef by Zhong and Su [19] detects API

documentation errors by seeking out mismatches between code

names in natural-language documentation and code. AdDoc by

Dagenais and Robillard [3] automatically discovers documentation

patterns which are defined as coherent sets of code elements that

are documented together. Also aimed at inconsistencies between

code and documentation, Ratol and Robillard [15] presented Fraco,

a tool to detect source code comments that are fragile with respect

to identifier renaming.

1509

https://doi.org/10.1145/3368089.3417045
https://doi.org/10.1145/3368089.3417045
https://doi.org/10.1145/3368089.3417045

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Christoph Treude, Justin Middleton, and Thushari Atapattu

Wen et al. [18] presented a large-scale empirical study of code-

comment inconsistencies, revealing causes such as deprecation

and refactoring. Zhou et al. [21, 22] contributed a line of work on

detecting defects of API documents with techniques from program

comprehension and natural language processing. They presented

DRONE to automatically detect directive defects and recommend

solutions to fix them. And in recent work, Panthaplackel et al. [8]

proposed an approach that learns to correlate changes across two

distinct language representations, to generate a sequence of edits

that are applied to existing comments to reflect code modifications.

To the best of our knowledge, little of the existing work targets

the assessment or improvement of the quality of software documen-

tation beyond accuracy and completeness; one example is Plösch

and colleagues’ survey on what developers value in documenta-

tion [13]. We turn to related work from the data and information

quality community to further fill this gap.

Information Quality. In their seminal 1995 work “Beyond Accu-

racy: What Data Quality Means to Data Consumers”, Wang and

Strong [17] conducted a survey to generate a list of data quality

attributes that capture data consumers’ perspectives. These per-

spectives were grouped into accuracy, relevancy, representation,

and accessibility, and they contained a total of 15 items such as be-

lievability, reputation, and ease of understanding. A few years later,

Eppler [4] published a similar list of dimensions which contained

16 dimensions such as clarity, conciseness, and consistency.

These two sets of dimensions built the starting point into our

investigation of dimensions from the data and information quality

community which might be applicable to software documentation.

Owing to the fact that software documentation tends to be dissemi-

nated over the Internet, we further included the work of Knight and

Burn [7], who discussed the development of a framework for assess-

ing information quality on the World Wide Web and compiled a list

of 20 common dimensions for information and data quality from

previous work, including accuracy, consistency, and timeliness.

3 SOFTWARE DOCUMENTATION QUALITY
Inspired by the dimensions of information and data quality iden-

tified in related work, we designed the software documentation

quality framework summarised in Table 1. The first and last author

of this paper collaboratively went through the dimensions from

related work cited in Section 2 to select those that (i) could apply

to software documentation, (ii) do not depend on the logistics of

accessing the documentation (e.g., security), and (iii) can be checked

independently of other artefacts (i.e., not accuracy or completeness).

As a result, we omitted dimensions such as relevancy and timeli-

ness from Wang and Strong’s work [17] since they require context

beyond the documentation itself (e.g., relevancy cannot be assessed

without a specific task in mind); and we omitted dimensions such

as interactivity and speed from Eppler’s work [4] which are char-

acteristics of the medium rather than the content. Table 1 indicates

the sources from related work for each dimension.

In addition, we formulated questions that an assessor can an-

swer about a piece of software documentation to indicate its qual-

ity in each dimension. Our pilot study in Section 4 provides ini-

tial evidence that technical editors are able to answer these ques-

tions and shows interesting trends across genres of documentation.

The questions were inspired by work on readability by Pitler and

Nenkova [12] who collected readability ratings using four questions:

Howwell-written is this article? Howwell does the text fit together?

How easy was it to understand? How interesting is this article? Our

framework contains the same questions, and complements them

with one question each for the additional six dimensions.

4 PILOT STUDY
To gather preliminary evidence on whether experts would be able to

use the proposed framework for assessing software documentation,

we conducted a pilot study with technical editors and different

genres in software documentation.

Recruitment. To recruit technical editors, we posted an adver-

tisement on Upwork,
1
a website for freelance recruitment and em-

ployment. Our posting explained our goal of evaluating software

documentation on ten dimensions and identifying weaknesses in

their design. Therefore, we required applicants to be qualified as

technical editors with programming experience, and accordingly,

we would compensate them hourly according to their established

rates. From this, we recruited the first four qualified applicants with

experience in technical writing and development. We refer to our

participants henceforth as E1 through E4.

Data Collection. Because developers write software instructions
in a variety of contexts, we use a broad definition of documentation,

accepting both official, formal documentation and implicit docu-

mentation that emerges from online discussion. We focus on the

genres of software documentation that have been the subject of in-

vestigation in previous work on software documentation: reference

documentation [5], README files [14], tutorials [11], blogs [10],

and Stack Overflow threads [2]. To better control for variation be-

tween language, we focused exclusively on resources documenting

the R programming language or projects built with it. All documen-

tation was then randomly sampled from the following sources:

• Reference Documentation (RD): from the 79 subsections

of the R language manual.
2

• README files (R): from the first 159 items in a list
3
of

open-source R projects curated by GitHub users.

• Tutorials (T): from the 46 R tutorials on tutorialspoint.com.
4

• Articles (A): from 1,208 articles posted on R-bloggers.com,
5

a blog aggregation website, within the last six months.

• Stack Overflow threads (SO): from questions tagged “R”.

We asked the editors to read the documents, suggest edits, and

answer the ten questions listed in Table 1 using a scale from 1

(low) to 10 (high). From a methodological standpoint, we asked

for edits in addition to the ten assessments in order to encourage

and evidence reflection on the specific ways the documentation

failed, beyond the general impressions of effectiveness. These edits

were collected through Microsoft Word’s Review interface. We as-

signed the quantity and selection of documentation according to

the amount of time editors had available while trying to balance

1
https://www.upwork.com/

2
https://cran.r-project.org/doc/manuals/r-release/R-intro.html

3
https://github.com/qinwf/awesome-R, the remaining items were not software projects

4
https://www.tutorialspoint.com/r/index.htm

5
https://www.r-bloggers.com/

1510

https://www.upwork.com/
https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://github.com/qinwf/awesome-R
https://www.tutorialspoint.com/r/index.htm
https://www.r-bloggers.com/

Beyond Accuracy: Assessing Software DocumentationQuality ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Dimensions of software documentation quality

Dimension Question Source

Quality How well-written is this document (e.g., spelling, grammar)? question from [12]

Appeal How interesting is it? question from [12]

Readability How easy was it to read? ‘accessibility’ [4, 7]

Understandability How easy was it to understand? ‘ease of understanding’ [17]; question from [12]

Structure How well-structured is the document? ‘navigation’ from [7]

Cohesion How well does the text fit together? question from [12]

Conciseness How succinct is the information provided? ‘concise’, ‘amount of data’ [7, 17]; ‘conciseness’ [4]

Effectiveness Does the document make effective use of technical vocabulary? ‘vocabulary’ [12]

Consistency How consistent is the use of terminology? ‘consistency’ [4, 7]

Clarity Does the document contain ambiguity? ‘clarity’ [4]; ‘understandability’ [7]

Table 2: Distribution of documentation genres to editors

Editor RD R T A SO Sum

E1 7 7 7 8 7 36

E2 6 6 5 6 6 29

E3 1 1 1 1 1 5

E4 1 1 1 1 1 5

Sum 15 15 14 16 15 75

Union 8 8 8 9 8 41

distribution across genres. Furthermore, we tried to give each indi-

vidual document to at least two editors. We show the distribution

in Table 2. Overall, the editors worked on 41 documents. Seven

documents were assessed by only one editor, but the rest were by

two; therefore, we had 75 records of document evaluations.

Results. We display the average dimension rating per genre of

documentation in Table 3; for each row, the highest value is in bold,

and the lowest is italicised. For example, this table shows that the

quality of the reference documentation, or how well-written it is ac-

cording to the definition in Table 1, is rated 8.1 out of 10, on average

higher than all the other genres. Meanwhile, the average blog article

was rated 6.1 out of 10, the lowest. Within dimensions, the highest

ratings are distributed primarily among reference documentation

and README files; tutorials received the highest in cohesion and

conciseness, but only by a difference of at most 0.3 of a rating point

with the two aforementioned genres. Nevertheless, blog articles

received the global lowest rating across every dimension, especially

so in readability and structure.

Different dimensions do not seem to have equal distributions.

For example, reference documentation has a 9.3 in consistency, but

the lowest score is an 8.5 for blog articles. These are nevertheless

high scores on average. Appeal also has a small spread, from 6.5

in README files to 5.3 in blog articles, but a lower average over-

all across dimensions. Structure, on the other hand, varies from 7

(README files) to 3.8 (blog articles), demonstrating a larger inter-

action with genres.

Reflection. Our findings suggest a trend in rating samples from

certain genres highly while disapproving others. The relatively

Table 3: Results of document rating by technical editors

Dimension RD R T A SO

Quality 8.1 7.6 7.5 6.1 6.7

Appeal 5.7 6.5 6.4 5.3 5.8

Readability 6.6 6.4 6.5 4.6 6.1

Understandability 6.9 7.0 6.9 5.3 6.1

Structure 6.3 7.6 7.1 3.8 5.8

Cohesion 6.7 6.7 7.0 4.9 6.1

Conciseness 6.7 6.7 6.8 5.3 6.3

Effectiveness 8.3 7.9 8.1 7.1 7.5

Consistency 9.3 8.8 9.0 8.5 8.6

Clarity 8.6 8.7 7.6 6.3 7.7

high rating of reference documentation and README files may

be explained by their typical origins within the software product

and team, whereas blog articles and Stack Overflow posts can be

published more freely [9]. Nevertheless, the result that blog articles

received the lowest in every category did surprise us, especially as

we designed the framework to reduce the impact of context. There

may be many factors involved in these results. For one, the corpora

from which we randomly sampled may have different underlying

distributions on our dimensions. Our reference documentation was

sampled from larger related products, whereas manual inspection

of the randomly sampled blog articles did evidence a broad variety

of R-related topics, such as discussions of R package updates or

write-ups and reflections on personal projects. Furthermore, as with

any participant study, the soundness of our results depends on the

accuracy with which we communicated our ideas and the partici-

pants understood and enacted them. Editors may approach different

genres with different preconceptions; an 8 rating for a README

file may not be the same as an 8 rating for a Stack Overflow thread.

Technical Challenges. As noted previously, we asked editors to

make edits on document copies inMicrosoftWord as well, hoping to

gain insight into technical editing strategies for software documen-

tation. We obtained over 4,000 edit events across all 75 documents,

ranging from reformattings and single character insertions to deep

paragraph revisions. However, we encountered several obstacles

when attempting to analyse this data. First, when copying online

1511

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Christoph Treude, Justin Middleton, and Thushari Atapattu

documents to Microsoft Word, interactions and images in hypertext

documents were distractingly reformatted for a linear document.

As a result, several of the edits addressed changes to structure that

did not exist when viewing the document in the browser instead.

Furthermore, many edits were not recorded as intended—for exam-

ple, replacing words with synonyms that do not make sense in a

programming context. Although we can recreate changes to the

document text through before-and-after comparison, small edits

blend together and large edits confound the differencing algorithm.

Because the editor’s original intent is lost, any coding scheme ap-

plied over it becomes less secure. Due to these circumstances, we

decided against drawing conclusions from this data.

5 IMPACT AND FUTUREWORK
Accuracy of software documentation is a necessary but not suffi-

cient condition for its success. To empower software developers to

make effective use of software documentation, it must be carefully

designed in appearance, content, and more. Our vision, then, is to

provide a more precise definition to better explore and transform

what it means for software documentation to be of high quality,

along with a research agenda enabled by such a quality framework.

To that end, we have drawn from seminal work in the information

and data quality communities to design a framework consisting of

ten dimensions for software documentation quality.

Furthermore, our research agenda proposes future work to eval-

uate the impact of each dimension with end-users and improve the

framework. For one, we can verify the assessments of technical

editors by introducing end-users to different versions of the doc-

uments (e.g., edited by technical editors based on quality criteria

and original version) and observing their use. Another direction is

to explore trade-offs between quality attributes, such as whether

readability outweighs structure in terms of document usability,

and to further disambiguate similar dimensions (e.g., structure and

cohesion). We will further revisit the edits from the technical edi-

tors to extract surface-level (e.g., word count) and deep-level (e.g.,

cohesion of adjacent sentences) lexical, syntactic, and discourse

features to build classification models for predicting documentation

quality. Such classification models can be used to assess and rank

the quality of software documentation.

We believe these efforts are important because of the volume

of software documentation on the web. A simple Google search

related to software development will return documentation that

matches the query without explicitly considering the quality of the

material. For example, a query on ‘reading CSV file in r’ returns blog

articles and tutorials as the top results, yet our preliminary results

demonstrate that on average, blog articles are ranked worst across

all ten quality dimensions. This is not to say that blog articles are

essentially faulty and should be abandoned moving forward; rather,

we hope to spur reflection on how end-users interact with blog

articles and how each of our dimensions manifest uniquely under

the genre’s constraints, while nevertheless using what we currently

know to emphasise more useful results. Therefore, applying the

framework can influence guidelines and recommendation systems

for documentation improvement as well as automatic assessing and

ranking systems for navigating the large volumes of documentation

and emphasising high-quality documentation.

ACKNOWLEDGEMENTS
The authors thank Emerson Murphy-Hill and Kathryn T. Stolee for

their contributions to this work. This research was undertaken, in

part, thanks to funding from a University of Adelaide – NC State

Starter Grant and theAustralian Research Council’s Discovery Early

Career Researcher Award (DECRA) funding scheme (DE180100153).

This work was inspired by the InternationalWorkshop series on Dy-

namic Software Documentation, held at McGill’s Bellairs Research

Institute.

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documenta-

tion issues unveiled. In Int’l. Conf. on Software Engineering. 1199–1210.
[2] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2014. What are devel-

opers talking about? an analysis of topics and trends in stack overflow. Empirical
Software Engineering 19, 3 (2014), 619–654.

[3] Barthélémy Dagenais and Martin P Robillard. 2014. Using traceability links

to recommend adaptive changes for documentation evolution. IEEE Trans. on
Software Engineering 40, 11 (2014), 1126–1146.

[4] Martin J Eppler. 2001. A generic framework for information quality in knowledge-

intensive processes. In Int’l. Conf. on Information Quality.
[5] Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. 2019. On using

machine learning to identify knowledge in API reference documentation. In

Joint Meeting on European Software Engineering Conference and Symp. on the
Foundations of Software Engineering. 109–119.

[6] Ninus Khamis. 2013. Applying Computational Linguistics on API Documentation:
The JavadocMiner. LAP LAMBERT Academic Publishing.

[7] Shirlee-ann Knight and Janice Burn. 2005. Developing a framework for assessing

information quality on the World Wide Web. Informing Science 8 (2005).
[8] Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond J

Mooney. 2020. Learning to Update Natural Language Comments Based on Code

Changes. arXiv preprint arXiv:2004.12169 (2020).
[9] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. 2012.

Crowd documentation: Exploring the coverage and the dynamics of API discussions
on Stack Overflow. Technical Report. Georgia Institute of Technology.

[10] Chris Parnin, Christoph Treude, and Margaret-Anne Storey. 2013. Blogging devel-

oper knowledge: Motivations, challenges, and future directions. In Int’l. Conf. on
Program Comprehension. 211–214.

[11] Gayane Petrosyan, Martin P Robillard, and Renato De Mori. 2015. Discovering

information explaining API types using text classification. In Int’l. Conf. on
Software Engineering. 869–879.

[12] Emily Pitler and Ani Nenkova. 2008. Revisiting readability: A unified frame-

work for predicting text quality. In Conference on Empirical Methods in Natural
Language Processing. 186–195.

[13] Reinhold Plösch, Andreas Dautovic, andMatthias Saft. 2014. The value of software

documentation quality. In Int’l. Conf. on Quality Software. 333–342.
[14] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu,

and David Lo. 2019. Categorizing the content of GitHub README files. Empirical
Software Engineering 24, 3 (2019), 1296–1327.

[15] Inderjot Kaur Ratol and Martin P Robillard. 2017. Detecting fragile comments. In

Int’l. Conf. on Automated Software Engineering. 112–122.
[16] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. 2012. @tcom-

ment: Testing javadoc comments to detect comment-code inconsistencies. In

Int’l. Conf. on Software Testing, Verification and Validation. 260–269.
[17] Richard Y Wang and Diane M Strong. 1996. Beyond accuracy: What data quality

means to data consumers. Journal of Management Information Systems 12, 4
(1996), 5–33.

[18] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-

scale empirical study on code-comment inconsistencies. In Int’l. Conf. on Program
Comprehension. 53–64.

[19] Hao Zhong and Zhendong Su. 2013. Detecting API documentation errors. In

Int’l. Conf. on Object-oriented Programming Systems Languages, and Applications.
803–816.

[20] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring resource specifi-

cations from natural language API documentation. In Int’l. Conf. on Automated
Software Engineering. 307–318.

[21] Yu Zhou, Changzhi Wang, Xin Yan, Taolue Chen, Sebastiano Panichella, and

Harald C Gall. 2018. Automatic detection and repair recommendation of directive

defects in Java API documentation. IEEE Trans. on Software Engineering (2018).

[22] Yu Zhou, Xin Yan, Taolue Chen, Sebastiano Panichella, and Harald Gall. 2019.

DRONE: a tool to detect and repair directive defects in Java APIs documentation.

In Int’l. Conf. on Software Engineering: Companion Proceedings. 115–118.

1512

	Beyond accuracy: Assessing software documentation quality
	Citation

	Abstract
	1 Introduction and Motivation
	2 Background and Related Work
	3 Software Documentation Quality
	4 Pilot Study
	5 Impact and Future Work
	References

