
1

AnoPas: Practical anonymous transit pass from group signatures with

time-bound keys

Rui Shi a, Yang Yang b,∗, Yingjiu Li c, Huamin Feng a, Hwee Hwa Pang b, Robert H. Deng b

a Institute of Information Security, Beijing Electronic Science and Technology Institute, Beijing, 100070, China
b School of Computing and Information Systems, Singapore Management University, 188065, Singapore
c Department of Computer and Information Science, University of Oregon, Eugene, 97403, USA

Published in Journal of Systems Architecture (2024) 153. DOI: 10.1016/j.sysarc.2024.103184

Abstract: An anonymous transit pass system allows passengers to access transport services within fixed time periods,

with their privileges automatically deactivating upon time expiration. Although existing transit pass systems are

deployable on powerful devices like PCs, their adaptation to more user-friendly devices, such as mobile phones with

smart cards, is inefficient due to their reliance on heavy-weight operations like bilinear maps. In this paper, we introduce

an innovative anonymous transit pass system, dubbed Anopas, optimized for deployment on mobile phones with smart

cards, where the smart card is responsible for crucial lightweight operations and the mobile phone handles key-

independent and time-consuming tasks. Group signatures with time-bound keys (GS-TBK) serve as our core component,

representing a new variant of standard group signatures for the secure use of time-based digital services, preserving users’

privacy while providing flexible authentication services. We first constructed a practical GS-TBK scheme using the tag-

based signatures and then applied it to the design of AnoPas. We achieve the most efficient passing protocol compared to

the state-of-the-art AnoPas/GS-TBK schemes. We also present an implementation showing that our passing protocol takes

around 38.6 ms on a smart card and around 33.6 ms on a mobile phone.

Keywords: Transit pass, Group signatures, Smart cards, Tag-based signatures, Efficient revocation

1. Introduction

The transit pass system refers to a comprehensive public

transportation arrangement to improve urban mobility.

It encompasses the provision of passes to passengers

granting access to various modes of public transport

service, including buses, trains, trams, and subways,

within fixed time periods. These passes are available on

different temporal scales (e.g., daily, weekly, monthly,

or annually) and can offer unlimited or limited travel

within the transit network. For example, the Navigo

Pass [1] in France allows passengers to take unlimited

trips only during weekends; the EZ transit Pass [2] in

America is a monthly pass for local travel on 23 different

public transit carriers. This system plays a pivotal role

in promoting sustainable urban transportation by

reducing private car usage, alleviating traffic

congestion, and lessening environmental impacts. It also

facilitates equitable access to transportation services,

catering to the diverse needs of urban populations.

Anonymous Transit Pass. The anonymous transit

pass [3], [4] system, as an enhanced version of the

general transit pass, emphasizes minimizing collecting

and retaining personally identifiable information about

passengers. This approach prioritizes passenger privacy

and addresses concerns about surveillance and data

collection in public transportation systems. These passes

can be used to access multiple modes of public

transportation without linking usage data to specific

individuals.

Despite the many achievements [3], [4] in anonymous

transit pass system research, deployment in mobile

application scenarios still faces unresolved issues. One

such issue is the inability to deploy anonymous transit

pass systems in resource-constrained devices, such as

smart cards. Smart card devices are the most suitable

platform for deploying transit passes due to their

advantages of low power consumption, secure storage,

and high portability. Existing anonymous transit pass

systems [3], [4], [5], [6], [7], [8], [9] can be used in

powerful devices such as personal computers. However,

their schemes use time-consuming operations that are

not supported by current standard smart card devices, so

they cannot be used in lightweight devices. Secondly,

preventing passing keys from being shared among

unauthorized users is impossible. An important issue in

the implementation of anonymous transit pass systems

is the inability to prevent unpaid (unauthorized) devices

(users) from accessing transport services. The most

effective solution to this problem is to store the passing

keys in a secure hardware device (such as a

2

smart card with secure storage and anti-copying capabilities), so that
the transit pass protocol cannot be completed without the participation
of the secure hardware. This approach not only addresses the issue of
unrestricted shared passing keys by malicious users but also provides
an additional layer of security for honest users.

While the smart card device has numerous advantages, it lacks
a complete power supply and communication device. As a result,
it requires external helper equipment to complete reading, writing,
and computing operations through contact or non-contact. Therefore,
implementing the anonymous transit pass protocol on the client side
of the smart card without relying on helper devices is impossible.
Mobile phones are the optimal choice for helper devices due to their
widespread deployment, high frequency of use, abundant external in-
terfaces, and efficient computing and communication capabilities.

Group signatures with time-bound keys. Group signature, intro-
duced by Chaum and van Heyst [5], is a primary cryptography tool
for user authentication, which is anonymous yet accountable to users
and certifiable to services. Group signatures with time-bound keys (GS-
TBK) were proposed by Chu et al. [6], as a new variant of standard
group signatures allowing users to show a group signature to a server
in some time periods, and their signing rights are automatically revoked
once time expires. Another feature is that users’ signing rights are
invalid if the group manager prematurely revokes their signing keys
before their expiry times have passed. GS-TBK retains all excellent
features of standard group signatures, such as anonymity, traceability,
and revocability.

Based on the transit pass system’s functions, the GS-TBK scheme can
be trivially converted into an anonymous transit pass system. However,
while existing GS-TBK schemes [6–9] can be implemented on powerful
devices such as embedded devices, mobile phones, or PCs, they are not
efficient enough for deployment on smart cards because they rely on
bilinear map operations, which are still unsupported on smart cards.
To address this issue, in this paper, we propose a novel GS-TBK scheme
with strong security features, which is significantly more efficient than
the state-of-the-art, and further use it to construct an anonymous transit
pass system named AnoPas, that can be deployed on mobile phones
with smart cards.

1.1. Contribution

We introduce the AnoPas system, a practical implementation from
group signatures with time-bound keys. Our contributions are outlined
as follows:

(1) We introduce an innovative GS-TBK scheme equipped with
essential security features encompassing anonymity, traceability, and
non-frameability. In our group signature framework, the group man-
ager establishes distinct time periods to delineate access control prereq-
uisites, associating a signing key with each element in this set to furnish
meticulous access control. Distinguishing itself from extant schemes [6–
9], our approach employs a tag-based signature [10] to enhance the
efficiency of the group signature signing protocol. Concretely, users
receive a singular tag-based signature as their signing key for each
time period, with all such keys being linked to the user’s private key.
Consequently, when signing a group signature within the current time
frame, users only need to randomize the tag and the tag-based signa-
ture corresponding to that time period while simultaneously proving
possession of their private key. Our scheme accommodates signature
revocation and identity tracing, thereby fortifying security control.

(2) We construct an efficient AnoPas system with our GS-TBK
scheme. To deploy AnoPas on mobile phones with smart cards, we
allow splitting the user’s overall computations securely and efficiently
between a smart card and a mobile phone. The smart card holds all
secret information used in the AnoPas system and computes a signature
of knowledge of the user’s private key. The mobile phone randomizes
the user’s public key and a tag-based signature for the current time

period, and the passing protocol can only be executed with the help of
the smart card.

(3) We have implemented the AnoPas system using the MIRACL
library [11] at an AES-100 bit security level on a PC, specifically,
the HUAWEI Matebook 14, equipped with an AMD Ryzen-5 4600H
CPU. Our passing protocol achieves a remarkable execution time of
3.8 ms, which is more than 400% faster than the current state-of-the-
art solution [9]. Additionally, we have extended our implementation
to mobile devices with smart cards, leveraging Aisinochip’s smart card
chip (ACH512) and a HUAWEI mobile phone (Honor 9i) as the user
components. The authority and transport service is provided by a
HUAWEI PC (Matebook 14). In a configuration where the smart card’s
clock frequency is set to 40 MHz, our passing protocol exhibits an
efficient performance, requiring approximately 38.6 ms on the smart
card and about 33.6 ms on the mobile phone.

1.2. Related work and comparison

1.2.1. Group signatures with time-bound keys
Any GS-TBK scheme implies an anonymous transit pass system, so

we will first give the most recent research related to GS-TBK [6–9].
Chu et al. [6,7] introduced a novel variant of group signatures

termed ‘‘group signatures with time-bound keys’’. This innovation as-
sociates each signing key with an expiration time, thereby possessing
properties of both automatic revocation and premature revocation.
Their approach melds the short signature scheme pioneered by Boneh
et al. [12] with Lin et al.’s 0/1 encoding framework [13]. Notably, the
efficiency of their scheme is contingent on the bit-length representation
of time. Consequently, the signing cost and group signature size exhibit
linearity in 𝗅𝗈𝗀𝑛, with 𝑛 representing the size of the time period set.
However, a limitation of their scheme is that the definition of traceabil-
ity falls short in capturing the unforgeability of signing key expiration
times. This means that any adversary in possession of a signing key
associated with an expiration time can generate a valid signature even
after the specified expiration time has elapsed.

Subsequent to Chu et al.’s work [6], Emura et al. [8] introduced an
enhanced GS-TBK scheme, drawing inspiration from the BBS+ signature
scheme [14], Ohara et al.’s revocable group signature scheme [15], and
Nakanishiet et al.’s verifier-local revocation group signature scheme [16].
Their contributions include refining the security model of GS-TBK to
encompass the unforgeability of signing key expiration times, achieving
constant signature cost and size for the first time. Regrettably, the sign-
ing protocol of their scheme necessitates 11 bilinear map operations,
rendering it impractical for implementation on smart cards.

In [9], Sanders introduced a new approach to constructing a GS-
TBK scheme using the unlinkable redactable signature. Unlike previous
works, this approach allows the group manager to associate the group
signing key with a set of time periods, not just expired times. Com-
pared with [8], Sanders’ scheme further reduces the computation cost
of signing protocol, which requires only 6 exponentiations in G1, 2
exponentiations in G2 and 1 bilinear map operation. Unfortunately,
this scheme is still not efficient enough to be implemented on smart
cards because it involves 2 exponentiations in G2, which are more
time-consuming than exponentiations in G1, as well as 1 bilinear
operation.

In Table 1, our GS-TBK scheme (Section 3.3.2) is compared with
the existing GS-TBK schemes in terms of computational complexities,
where we denote the exponentiation in G𝑖 by 𝖾𝑖 (𝑖 ∈ {1, 2}) and
denote the bilinear map in pairing 𝑒 ∶ G1 × G2 → G𝑇 by 𝖾𝑝. We also
denote by 𝑛 the size of the set of time periods and by 𝑅 the size of
the revocation list. We see that our scheme improves on existing GS-
TBK schemes, and in particular, we significantly reduce the cost of
the signing and verification protocols. Our signing protocol requires
only 6 exponentiations in G1, and our verification protocol requires 4
exponentiations in G1 and 4 bilinear map operations.

3

Table 1
Computational complexities comparison of group signature schemes with time-bound keys.
Scheme Group key

generation
Join Issue Sign Signature verify Revocation

verify

[6] 2𝖾2 2𝖾1 + 2𝗅𝗈𝗀𝑛𝖾2 𝗅𝗈𝗀𝑛𝖾1 (3𝗅𝗈𝗀𝑛 + 3)𝖾1 + 𝗅𝗈𝗀𝑛𝖾2 3𝗅𝗈𝗀𝑛𝖾1 + 𝗅𝗈𝗀𝑛𝖾2 𝑅(1𝖾1)
+2𝗅𝗈𝗀𝑛𝖾𝑝 +(7𝗅𝗈𝗀𝑛 − 2)𝖾𝑝 +7𝗅𝗈𝗀𝑛𝖾𝑝

[8] 1𝖾1 + 2𝖾2 4𝖾1 + 𝗅𝗈𝗀𝑛𝖾2 (3𝗅𝗈𝗀𝑛 + 4)𝖾1 23𝖾1 + 1𝖾2 24𝖾1 + 18𝖾𝑝 𝑅(2𝖾𝑝)
+2𝗅𝗈𝗀𝑛𝖾𝑝 +11𝖾𝑝

[9] (2𝑛 + 1)𝖾1 2𝖾1 + (𝑛 + 2)𝖾2 6𝖾1 + 2𝖾2 6𝖾1 + 2𝖾2 + 1𝖾𝑝 3𝖾1 + 5𝖾𝑝 𝑅(3𝖾𝑝)
+(𝑛 + 1)𝖾2 +2𝖾𝑝

Our GS-TBK (3 + 2𝑛)𝖾2 4𝖾1 + 2𝖾2 (4 + 3𝑛)𝖾1 + 2𝖾2 6𝖾1 4𝖾1 + 4𝖾𝑝 𝑅(3𝖾𝑝)
+4𝑛𝖾𝑝

Table 2
Storage complexities comparison of group signature schemes with time-bound keys.
Scheme Group public key size Signing key size Signature size Revocation

list size

[6] 3|G1| + 3|G2| (𝗅𝗈𝗀𝑛 + 2)|Z𝑝| + 𝗅𝗈𝗀𝑛|G1| 1|Z𝑝| + (5𝗅𝗈𝗀𝑛 + 2)|G1| + 𝗅𝗈𝗀𝑛|G𝑇 | 𝑅(2|Z𝑝|)
[8] 8|G1| + 3|G2| (2𝗅𝗈𝗀𝑛 + 1)|Z𝑝| + 𝗅𝗈𝗀𝑛|G1| 11|Z𝑝| + 6|G1| + 1|G2| 𝑅(2|G1| + 1|G2|)
[9] (2𝑛 + 1)|G1| + (𝑛 + 1)|G2| 1|Z𝑝| + 3|G1| 2|Z𝑝| + 3|G1| + 1|G2| 𝑅(|G2|)
Our GS-TBK 1|G1| + (2𝑛 + 3)|G2| 1|Z𝑝| + (3 + 𝑛)|G1| 2|Z𝑝| + 4|G1| 𝑅(|G2|)

Table 3
Comparison of AnoPas with analogical transit pass constructions.
Scheme Computation overheads Storage overheads

Pass/Show
(Smart Card)

Pass/Show
(Mobile Phone)

Verify Interactions
times

Passing-key/
Credential size

Pass/Token size

[3] 1𝖾1 3𝖾1 3𝖾1 + 4𝖾𝑝 + 𝖾𝑇 4 2|Z𝑝| + 1|G1| 5|Z𝑝| + 1|G1| + 1|G𝑇 |

[18] 5𝖾1 4𝖾1 4𝖾1 + 4𝖾𝑝 1 1|Z𝑝| + 4|G1| 2|Z𝑝| + 4|G1|

[19] 3𝖾1 (𝑛 + 2)𝖾1 + 2𝖾𝑝 (𝑛 + 6)𝖾1 + 2𝖾2 + (𝑛 + 5)𝖾𝑝 1 3|Z𝑝| + 1|G1| 6|Z𝑝| + 2|G1|

[20] 3𝖾1 (𝑛 + 8)𝖾1 (𝑛 + 1)𝖾1 + 2𝖾𝑝 1 3|Z𝑝| + 2|G1| 6|Z𝑝| + 2|G1|

[21] 2𝖾1 7𝖾1 + 3𝖾2 11𝖾𝑝 1 1|Z𝑝| + 3𝑛|G1| + 𝑛|G2| 7|G1| + 2|G2|

Our AnoPas 2𝖾1 4𝖾1 4𝖾1 + 4𝖾𝑝 1 1|Z𝑝| + (3 + 𝑛)|G1| 2|Z𝑝| + 4|G1|

In Table 2, our GS-TBK scheme (Section 3.3.2) is compared with
the existing GS-TBK schemes in terms of storage complexities, where
|Z𝑝|, |G1|, |G2|, |G𝑇 | are the element’s sizes in the group Z𝑝,G1,G2
and G𝑇 , respectively. Our scheme achieves minimal signature size as
our signature requires only 2 elements in Z𝑝 and 4 elements in G1.
Our signing key and group public key are larger than those in other
works; nonetheless, the signing key and group public key in our scheme
can still be stored in a smart card when 𝑛 is not particularly large.
For example, if we use the BN-256 curve [17] and MIRACL [11] to
implement our scheme at AES-100 bit security level, each element in
Z𝑝,G1, and G2 takes 40 bytes, 128 bytes, and 272 bytes, respectively.
When 𝑛 = 100, which is enough for GS-TBK applications, the group
public key and each signing key in our scheme require 54 KB and 13
KB of storage space, respectively. We note that Aisinochip’s smart card
(ACH512) has 512 KB of Flash, which is sufficient for implementing
our scheme.

1.2.2. Transit pass on mobile phone with smart card
Recently proposed cryptographic primitives such as DAA [3,18–20]

and anonymous credentials [21], which are specifically implemented
for mobile phones with smart cards, can also be used to construct
anonymous transit pass systems if their attribute sets are considered
as time sets.

Direct Anonymous Attestation (DAA), as applied in practical sce-
narios, primarily targets implementation on mobile phones with smart
cards. In this context, the smart card serves as the Trusted Platform
Module (TPM), an internationally recognized standard for security
chips. Camenisch et al. established the security model for DAA and
introduced multiple schemes [18–20] designed to enhance security and
efficiency continually. Core-Helper Anonymous Credentials (CHAC), a
concept formalized by Hanzlik and Slamanig [21], consider a con-
strained core device (e.g., a smart card) and a powerful helper device

(e.g., a mobile phone) within their core-helper framework. The fun-
damental idea revolves around the core device executing operations
independently of credential size or attribute count, while the helper
device cannot utilize the credential without assistance.

In Table 3, we compare our AnoPas system to the recent DAA and
CHAC schemes. The scheme in [3] requires the user and the verifier to
interact four times to complete the passing protocol, which is unaccept-
able in the anonymous transit pass system because the communication
delay may lead to service instability. For the other options, we see that
our system improves over DAA and CHAC; concretely, in our scheme,
the overhead of the mobile phone and the verification algorithm is the
same as the current optimal DAA scheme [18], and the overhead on
the smart card is the same as the current optimal CHAC scheme [21],
i.e., 2 exponentiations in G1. While our passing keys are larger than
other DAA schemes, they are stored on the mobile phone where storage
space is more than enough to hold passing keys.

1.3. Organization

The remainder of this paper is structured as follows: Section 2
covers Preliminaries, Section 3 details the construction of our GS-TBK
scheme, Section 4 introduces our AnoPas system, Section 5 provides a
performance analysis of our AnoPas system, and Section 6 concludes
the paper.

2. Preliminary

2.1. Bilinear pairing

Let G1, G2, and G𝑇 represent cyclic groups of prime order 𝑝, with 𝑔
and 𝑔 serving as generators for G1 and G2, respectively. The mapping
𝑒 ∶ G1 ×G2 → G𝑇 qualifies as a bilinear map when it adheres to three
critical properties:

4

(1) Bilinearity : For all 𝑔 ∈ G1, 𝑔 ∈ G2, and 𝑎, 𝑏 ∈ Z𝑝, it holds that
𝑒(𝑔𝑎, 𝑔𝑏) = 𝑒(𝑔, 𝑔)𝑎𝑏.

(2) Non-Degeneracy : 𝑒(𝑔, 𝑔) ≠ 1G𝑇
.

(3) Computability : The mapping 𝑒 must be efficiently computable.
Our scheme is founded upon the Type-III pairing [22], signifying

the absence of an efficiently computable homomorphism between G1
and G2.

2.2. Discrete Logarithm (DL) assumption

Let G denote a cyclic group of prime order with 𝑔 as its generator.
For a pair (𝑔, 𝑔𝑥) ∈ G2, the Discrete Logarithm (DL) assumption is
satisfied within G if no efficient adversary can efficiently compute 𝑥
with non-negligible probability.

2.3. Square discrete logarithm (SDL) assumption

Let G denote a cyclic group of prime order with 𝑔 as its generator.
When provided with (𝑔, 𝑔𝑥, 𝑔𝑥2) ∈ G3, the Square Discrete Logarithm
(SDL) assumption is satisfied within G if no efficient adversary can
efficiently compute 𝑥 with non-negligible probability.

2.4. Decisional square Diffie–Hellman (DSqDH) assumption

Assume G represents a cyclic group of prime order 𝑝 with 𝑔 as its
generator. When presented with (𝑔, 𝑔𝑥, 𝑔𝑦) ∈ G3, the Decisional Square
Diffie–Hellman (DSqDH) assumption is satisfied within the group G
if no efficient adversary can distinguish 𝑦 = 𝑥2 from an element 𝑦
randomly selected from Z∗

𝑝 .

2.5. Signature of knowledge

We employ the concept of Signature of Knowledge (SoK) [23] for
an NP-relation  associated with the language 𝐿 = 𝑦 ∶ ∃𝑥, (𝑥, 𝑦) ∈ .
This SoK framework comprises a tuple of algorithms, namely
(𝖲𝖾𝗍𝗎𝗉, 𝖲𝗂𝗀𝗇,𝖵𝖾𝗋𝗂𝖿𝗒), designed to establish the knowledge of private keys.

𝖲𝖾𝗍𝗎𝗉(1𝜆): Given a security parameter 𝜆 as input, this algorithm
generates and outputs a public parameter denoted as 𝑝𝑝.

𝖲𝗂𝗀𝗇(𝑚, 𝑥, 𝑦): With inputs including a message 𝑚 and a relation
(𝑥, 𝑦) ∈ , this algorithm produces a SoK represented as 𝛱 = 𝖲𝗈𝖪{𝑥 ∶
(𝑥, 𝑦) ∈ }.

𝖵𝖾𝗋𝗂𝖿𝗒(𝑚,𝛱, 𝑦): When provided with a message 𝑚, a SoK denoted as
𝛱 , and a statement 𝑦, this algorithm assesses the validity of 𝛱 . If 𝛱 is
valid, it returns 1; otherwise, it returns 0.

A SoK is deemed 𝑆𝑖𝑚𝐸𝑥𝑡 secure [23] if it satisfies the criteria
of correctness, simulatability, and extractability. The instantiation of
the SoK can be achieved through the application of the Fiat–Shamir
paradigm [24], coupled with zero-knowledge protocols outlined in [25].

2.6. Anonymous ephemeral tag

The Anonymous Ephemeral Tag Scheme [10] comprises a tuple
of probabilistic polynomial time (PPT) algorithms, denoted as (𝖲𝖾𝗍𝗎𝗉,
𝖦𝖾𝗇𝖳𝖺𝗀,𝖱𝖺𝗇𝖽𝖳𝖺𝗀, 𝖯𝗋𝗈𝗏𝖾𝖳𝖺𝗀,𝖵𝖾𝗋𝗂𝖿𝗒𝖳𝖺𝗀).

𝖲𝖾𝗍𝗎𝗉(1𝜆): This algorithm, upon receiving a security parameter 1𝜆,
generates a set of public parameters 𝑝𝑝 = (G1,G2,G𝑇 , 𝑔, 𝑔, 𝑝, 𝑒).

∙ 𝖦𝖾𝗇𝖳𝖺𝗀𝑝𝑝. Given a public parameter 𝑝𝑝, this algorithm randomly
selects a private key 𝑢𝑠𝑘

𝑅
←←←←←←←←← Z∗

𝑝 and a generator 𝑇1
𝑅
←←←←←←←←← G1, and outputs

𝑇 = (𝑇1, 𝑇2, 𝑇3) ← (𝑇1, 𝑇 𝑢𝑠𝑘
1 , 𝑇 𝑢𝑠𝑘

2).

∙ 𝖱𝖺𝗇𝖽𝖳𝖺𝗀(𝑇). Given a tag 𝑇 , this algorithm selects 𝑟
𝑅
←←←←←←←←← Z∗

𝑝 , and
outputs 𝑇 ′ = 𝑇 𝑟 = (𝑇 ′

1 , 𝑇
′
2 , 𝑇

′
3) ← (𝑇 𝑟

1 , 𝑇 𝑟
2 , 𝑇

𝑟
3).

∙ 𝖯𝗋𝗈𝗏𝖾𝖳𝖺𝗀(𝑢𝑠𝑘, 𝑇). Given the private key 𝑢𝑠𝑘 and a tag 𝑇 , this
algorithm outputs a SoK: 𝛱 = 𝖲𝗈𝖪{𝑢𝑠𝑘 ∶ 𝑇2 = 𝑇 𝑢𝑠𝑘

1 , 𝑇3 = 𝑇 𝑢𝑠𝑘
2 }.

∙ 𝖵𝖾𝗋𝗂𝖿𝗒𝖳𝖺𝗀(𝑇 ,𝛱). Given a tag 𝑇 and its a proof 𝛱 , The verifier
outputs 1 if it accepts the proof and 0 otherwise.

2.7. Tag-based signature

The Tag-Based Signature (TBS) scheme, as introduced in [10], is
comprised of a tuple of PPT algorithms, denoted as (𝖲𝖾𝗍𝗎𝗉,𝖪𝖾𝗒𝖦𝖾𝗇,
𝖲𝗂𝗀𝗇,𝖣𝖾𝗋𝗂𝗏𝖾,𝖵𝖾𝗋𝗂𝖿𝗒). ∙ 𝖲𝖾𝗍𝗎𝗉(1𝜆). This algorithm, upon receiving a secu-
rity parameter 1𝜆, generates a set of public parameters 𝑝𝑝 = (G1,G2,G𝑇 ,
𝑔, 𝑔, 𝑝, 𝑒). ∙ 𝖪𝖾𝗒𝖦𝖾𝗇(𝑛). On input an integer 𝑛, this algorithm selects
(𝑎, 𝑏, 𝑐, {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1)

𝑅
←←←←←←←←← Z∗

𝑝 and computes 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏, 𝐶 = 𝑔𝑐 , {𝑋𝑖 =
𝑔𝑥𝑖 , 𝑌𝑖 = 𝑔𝑦𝑖}𝑛𝑖=1. The signing key is 𝑠𝑘 = (𝑎, 𝑏, 𝑐, {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1), and the
verification key is 𝑣𝑘 = (𝐴,𝐵, 𝐶, {𝑋𝑖, 𝑌𝑖}𝑛𝑖=1). ∙ 𝖲𝗂𝗀𝗇(𝑠𝑘, 𝑇 , 𝑚𝑖). On input
a signing key 𝑠𝑘, a tag 𝑇 , and a messages 𝑚𝑖 (𝑚𝑖 ∈ Z𝑝 and 𝑖 ∈ [1, 𝑛]),
this algorithm outputs a signature 𝜎 = 𝑇 𝑎+𝑥𝑖+𝑚𝑖𝑦𝑖

1 𝑇 𝑏
2 𝑇

𝑐
3 .

∙ 𝖣𝖾𝗋𝗂𝗏𝖾(𝑣𝑘, 𝑇 , 𝑚𝑖, 𝜎,). On input the verification key 𝑣𝑘, a tag 𝑇 , a
messages 𝑚𝑖, and a signature 𝜎, this algorithm selects 𝑟

𝑅
←←←←←←←←← Z∗

𝑝 , and
outputs 𝑇 ′ = 𝑇 𝑟, 𝜎′ = 𝜎𝑟.

∙ 𝖵𝖾𝗋𝗂𝖿𝗒(𝑣𝑘, 𝑇 , 𝑚𝑖, 𝜎). A signature 𝜎 on 𝑚𝑖 and 𝑇 is valid if the
following equation hold: 𝑒(𝜎, 𝑔) = 𝑒(𝑇1, 𝐴𝑋𝑖𝑌

𝑚𝑖
𝑖)𝑒(𝑇2, 𝐵)⋅ 𝑒(𝑇3, 𝐶). If the

equation is satisfied, then the algorithm returns 1; otherwise returns 0.
The Tag-Based Signature Scheme [10] exhibits unforgeability in

the generic group model [26] when the signing oracle is queried at
most once per tag–index pair. Additionally, it achieves unlinkability
when the Decisional Square Diffie–Hellman (DSqDH) assumption is
computationally hard.

3. Our GS-TBK scheme

In this section, we construct our GS-TBK scheme for a later proposal
of the AnoPas system.

3.1. Syntax

We introduce the formal definition of a GS-TBK scheme and estab-
lish a crucial distinction: we link a signing key to each element within
the active time periods set  , as opposed to solely the overall set of
time periods or a single expiration time. This significant distinction
empowers users to autonomously request a signing key from the group
manager for any specific time period 𝜏 within  , provided that 𝜏
adheres to the access control criteria defined by the group manager.

Our GS-TBK scheme comprises a set of algorithms, denoted as (GS-
TBK.Setup, GS-TBK.GKeyGen, GS-TBK.UKey Gen, GS-TBK.Join,
GS-TBK.Sign, GS-TBK.Revoke, GS-TBK. Verify, GS-TBK.Trace), de-
signed to engage three distinct participant roles: the group manager
(𝖦𝖬), users (𝖴), and verifiers (𝖵). We present a summary of the
notations employed in our GS-TBK scheme, which can be found in
Table 4, and proceed to define these algorithms in the subsequent
sections formally.

∙ GS-TBK.Setup(1𝜆) → 𝑝𝑝. This algorithm inputs a security param-
eter 1𝜆, and outputs the system parameters 𝑝𝑝.

∙ GS-TBK.GKeyGen(𝑝𝑝, 𝑛) → (𝑔𝑠𝑘, 𝑔𝑝𝑘,,). This algorithm
is operated by GM. It inputs the system parameter 𝑝𝑝 and a positive
integer 𝑛 and divides the time period for which user access needs to be
controlled into 𝑛 little periods of time, which constitutes a set of time
period [1, 𝑛]. It then generates a group private key 𝑔𝑠𝑘 and a group
public key 𝑔𝑝𝑘 and initializes a registration list  and a revocation
list  . The group public key 𝑔𝑝𝑘 and the revocation list  are
publicly, making them known to other participants.

∙ ⟨𝖦𝖲 − 𝖳𝖡𝖪.𝖩𝗈𝗂𝗇(𝑝𝑝, 𝑖𝑑, ) ↔ 𝐺𝑆 − 𝑇𝐵𝐾.𝐼𝑠𝑠𝑢𝑒(𝑝𝑝, 𝑔𝑠𝑘, 𝑔𝑝𝑘, )⟩ →
(𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝑢𝑡𝑘, {𝜎𝜏}𝜏∈). This algorithm is operated by interacting be-
tween U and GM, and if  ⊈ [1, 𝑛], it returns ⊥. U takes his identity 𝑖𝑑
and a set of active time periods  as inputs, and generates a private
key 𝑢𝑠𝑘, a public key 𝑢𝑝𝑘, and a tracing (and also revocation) key
𝑢𝑡𝑘. GM takes the group private key 𝑔𝑠𝑘, the group public key 𝑔𝑝𝑘
and the registration list  as inputs. After successful completion of
this protocol, GM generates a set of signing keys {𝜎𝜏}𝜏∈ for U, and
stores user’s identity 𝑖𝑑, the set of active time periods  and the tracing
(revocation) key 𝑢𝑡𝑘 to the registration list .

5

Table 4
Notations.

Notation Description

1𝜆/𝜖(𝜆) Security parameter/negligible function
𝑥

𝑅
←←←←←←←← Z𝑝 𝑥 is randomly selected from the set Z𝑝

GM/U/V Group manager/user/verifier
𝑛 The size of the set of time periods
[1, 𝑛]/ The set {1, 2,… , 𝑛}/a user’s set of active

time periods
𝑖𝑑 A user’s identity
𝑝𝑝 System parameter
𝑔𝑠𝑘/𝑔𝑝𝑘 Group private key/group public key
/ Registration list/revocation list
𝑢𝑠𝑘/𝑢𝑝𝑘/𝑢𝑡𝑘 Secret/public/tracing (revocation) key

of U
𝜏∕𝜎𝜏 Current time period/the signing key

with 𝜏
𝜎 A group signature
𝑅𝜏 Revocation information with 𝜏
1 ∶ {0, 1}∗ → G1 A collision-resistant hash function
2 ∶ {0, 1}∗ → Z𝑝 A collision-resistant hash function
⊥ Failure identifier

∙ GS-TBK.Sign(𝑝𝑝, 𝜎𝜏 , 𝑢𝑠𝑘, 𝑢𝑝𝑘) → 𝜎. This algorithm is operated by
U. It inputs current time period 𝜏 and the corresponding signing key 𝜎𝜏 ,
a private key 𝑢𝑠𝑘 and a public key 𝑢𝑝𝑘, and generates a group signature
𝜎.

∙ GS-TBK.Revoke(𝑝𝑝, 𝑖𝑑, 𝜏, 𝑔𝑠𝑘,,) → 𝑅𝜏 . This algorithm is
operated by GM. It inputs a user identity 𝑖𝑑, a time period 𝜏, the group
private key 𝑔𝑠𝑘, the registration list  and the revocation list  ,
and writes a revocation information 𝑅𝜏 to the revocation list  .

∙ GS-TBK.Verify(𝑝𝑝, 𝑔𝑝𝑘, 𝜎,) → 0∕1. This algorithm is operated
by V. It inputs a group signature 𝜎, the group public key 𝑔𝑝𝑘 and the
revocation list  , and if 𝜎 is valid and not revoked, then it outputs
1, otherwise output 0.

∙ GS-TBK.Trace(𝑝𝑝, 𝜎,) → 𝑖𝑑∕⊥. This algorithm is operated by
GM. It inputs a group signature 𝜎 and the registration list , and
outputs either a user identity 𝑖𝑑 or ⊥.

Correctness. The correctness of our GS-TBK scheme hinges on
two essential conditions: (1) a group signature created by an honest
user, which has not been revoked by the group manager, should be
verifiable by the verifier and traceable by the group manager; (2) a
group signature that has been revoked by the group manager must be
unverifiable by the verifier. A precise formal definition of correctness
is Supplemental Material A.

3.2. Security model

A GS-TBK scheme is expected to fulfill specific security require-
ments, including anonymity, traceability, and non-frameability. Our
security model is aligned with the principles outlined in [9], and we
offer formal definitions of these security prerequisites. To establish
a common framework, we introduce essential global variables and
oracles. Within this framework, a designated challenger, denoted as ,
bears the responsibility for configuring system parameters and gener-
ating keys for the 𝖦𝖬. Additionally,  takes charge of the initialization
and oversight of all oracles and global variables. In the context of this
security assessment, a probabilistic polynomial-time (PPT) adversary,
represented as , engages with , who, in turn, emulates the actions
of honest participants by utilizing the oracles.

Global Variables:
Within our system, we establish five fundamental sets:
− , encompassing the identities of honest users;
− , comprising the identities of corrupted users;
−, serving as a repository for records (𝑖𝑑, 𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝑢𝑡𝑘,  , {𝜎𝜏}𝜏∈)

each time the group manager issues a signing key;
−, containing entries (𝑖𝑑, 𝜎) each time an honest user 𝑖𝑑 generates

a group signature 𝜎;

− , storing entries (𝑖𝑑, 𝜎) whenever the group manager traces a
group signature 𝜎.

Oracles:
−𝖩𝗈𝗂𝖨𝗌𝗌(𝑖𝑑, ). It is an oracle that can be used to play the hon-

est group manager issuing signing keys for an honest user 𝑖𝑑 with
the set of time periods  . If 𝑖𝑑 ∈ { ∪  } or  ⊊ [1, 𝑛],
it returns ⊥. Otherwise, the group manager issues the signing keys
for the user by running: ⟨𝖦𝖲 − 𝖳𝖡𝖪.𝖩𝗈𝗂𝗇(𝑝𝑝, 𝑖𝑑, ) ↔ 𝖦𝖲 − 𝖳𝖡𝖪.𝖨𝗌𝗌𝗎𝖾(
𝑝𝑝, 𝑔𝑠𝑘, 𝑔𝑝𝑘,)⟩ → (𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝑢𝑡𝑘, {𝜎𝜏}𝜏∈). It adds 𝑖𝑑 to  and
appends (𝑖𝑑, 𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝑢𝑡𝑘,  , {𝜎𝜏}𝜏∈) to .

−𝖩𝗈𝗂𝗇(𝑖𝑑, ). It is an oracle that can be used to play the corrupt
group manager issuing the signing keys for an honest user 𝑖𝑑 with the
set of time periods  . If 𝑖𝑑 ∈ { ∪ } or  ⊊ [1, 𝑛], it returns ⊥. Oth-
erwise, it obtains the signing keys by running: ⟨𝖦𝖲 − 𝖳𝖡𝖪.𝖩𝗈𝗂𝗇(𝑝𝑝, 𝑖𝑑, )
↔ (⋅)⟩ → (𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝑢𝑡𝑘, {𝜎𝜏}𝜏∈), where the group manager’s side is
executed by the adversary. It adds 𝑖𝑑 to  and appends (𝑖𝑑, 𝑢𝑠𝑘,
𝑢𝑝𝑘, 𝑢𝑡𝑘,  , {𝜎𝜏}𝜏∈) to .

−𝖨𝗌𝗌𝗎𝖾(𝑖𝑑, ). It is an oracle that can be used to play the honest
group manager issuing the signing keys for a corrupt user 𝑖𝑑 with the
set of time periods  . If 𝑖𝑑 ∈ { ∪ } or  ⊊ [1, 𝑛], it returns ⊥. Oth-
erwise, it issues the signing keys by running: ⟨(⋅) ↔ 𝖦𝖲 − 𝖳𝖡𝖪.𝖨𝗌𝗌𝗎𝖾
(𝑝𝑝, 𝑔𝑠𝑘, 𝑔𝑝𝑘,)⟩ → (∗, 𝑢𝑝𝑘, 𝑢𝑡𝑘, {𝜎𝜏}𝜏∈), where the user’s side is ex-
ecuted by the adversary. It adds 𝑖𝑑 to  and appends (𝑖𝑑, ∗, 𝑢𝑝𝑘, 𝑢𝑡𝑘,  ,
{𝜎𝜏}𝜏∈) to , where ∗ is the unknown.

−𝖢𝖴(𝑖𝑑). It is an oracle that can be used to corrupt an honest user
𝑖𝑑. If 𝑖𝑑 ∈  , then it returns ⊥. If 𝑖 ∈  , then it removes 𝑖𝑑 from
 and adds 𝑖𝑑 to  . Finally, it searches for the 𝑖𝑑 from the set 
and returns (𝑖𝑑, 𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝑢𝑡𝑘,  , {𝜎𝜏}𝜏∈).

−𝖲𝗂𝗀𝗇(𝑖𝑑, 𝜏). It is an oracle that can be used to play a malicious veri-
fier verifying a group signature for an honest user 𝑖𝑑. If 𝑖𝑑 ∉  , then
it returns ⊥. Otherwise, it runs ⟨𝖦𝖲 − 𝖳𝖡𝖪.𝖲𝗂𝗀𝗇(𝑝𝑝, 𝜎𝜏 , 𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝜏) ↔
(⋅)⟩ → (𝜎, 0∕1), where the verifier’s side is executed by adversary.
Finally, it adds (𝑖𝑑, 𝜎) to .

−𝖳𝗋𝖺𝖼𝖾(𝜎). It is an oracle that can be used to play the honest group
manager tracing an honest user’s identity. It runs the tracing algorithm:
𝖦𝖲 − 𝖳𝖡𝖪.𝖳𝗋𝖺𝖼𝖾(𝑝𝑝, 𝜎,) → (𝑖𝑑∕⊥). If the trace fails, then it returns
⊥, else it appends (𝑖𝑑, 𝜎) to  .

−𝖱𝖾𝗏𝗈𝗄𝖾(𝑖𝑑, 𝜏). It is an oracle that can be used to play the hon-
est group manager revoking a signing key of honest user 𝑖𝑑 with
time period 𝜏 by running the revocation algorithm: 𝖦𝖲 − 𝖳𝖡𝖪.𝖱𝖾𝗏𝗈𝗄𝖾
(𝑝𝑝, 𝑖𝑑, 𝜏, 𝑔𝑠𝑘,) → 𝑅𝜏 .

−𝖠𝗇𝖢𝗁𝑏
(𝑖𝑑0, 𝑖𝑑1, 𝜏). It is an oracle that takes as inputs the identity

of two honest users who have the same active time period 𝜏. It runs:
𝖦𝖲 − 𝖳𝖡𝖪.𝖲𝗂𝗀𝗇(𝑝𝑝, 𝜎𝑏,𝜏 , 𝑢𝑠𝑘𝑏, 𝑢𝑝𝑘𝑏, 𝜏) → 𝜎𝑏, and returns 𝜎𝑏. It is a chal-
lenge oracle in the anonymity experiment where the adversary must
distinguish group signatures of two honest users.

Anonymity.
Anonymity serves as a safeguard for a user’s privacy as long as

the user’s private key remains confidential. Under this circumstance,
no verifier can establish a connection between two group signatures
generated by the same user when executing the verification algorithm.
Importantly, our scheme permits the tracing of a specific group sig-
nature without compromising the anonymity of the user’s other group
signatures.

Definition 1. Anonymity is formalized through the 𝐸𝑥𝑝𝑎𝑛𝑜𝑛−𝑏 game, as
illustrated in Fig. 1. Our GS-TBK scheme achieves anonymity if, for
any probabilistic polynomial-time (PPT) adversary , there exists a
negligible function 𝜖(𝜆) such that:

𝐴𝑑𝑣𝑎𝑛𝑜𝑛 = |Pr
[

𝐸𝑥𝑝𝑎𝑛𝑜𝑛−1(, 𝜆) = 1
]

− 1
2
| ⩽ 𝜖(𝜆)

Traceability. Traceability guarantees that, for any legitimate group
signature, the tracing algorithm will not yield ⊥. In the context of
traceable security games, an adversary possesses the capability to ac-
cess both the registration and revocation lists; however, their objective
remains unattainable: they cannot produce a valid group signature that
remains untraceable.

6

Fig. 1. Security games for our GS-TBK scheme.

Definition 2. Traceability is formalized through the 𝐸𝑥𝑝𝑡𝑟𝑎𝑐𝑒 game,
as illustrated in Fig. 1. Our GS-TBK scheme achieves traceability if,
for any probabilistic polynomial-time (PPT) adversary , there exists a
negligible function 𝜖(𝜆) such that:

𝐴𝑑𝑣𝑡𝑟𝑎𝑐𝑒 = |Pr
[

𝐸𝑥𝑝𝑡𝑟𝑎𝑐𝑒(, 𝜆)
]

= 1| ⩽ 𝜖(𝜆)

Non-frameability. Non-frameability guarantees that, even in the
presence of a malicious group manager, it is impossible to make a false
claim that an honest user produced a valid group signature when, in
reality, they did not.

Definition 3. The concept of non-frameability is formally defined in
game 𝐸𝑥𝑝𝑛𝑜𝑛−𝑓𝑟𝑎𝑚𝑒, as illustrated in Fig. 1. Our GS-TBK scheme exhibits
framing-resistance when, if for any PPT adversary , there exists a
negligible function 𝜖(𝜆) such that:

𝐴𝑑𝑣𝑛𝑜𝑛−𝑓𝑟𝑎𝑚𝑒 = |Pr
[

𝐸𝑥𝑝𝑛𝑜𝑛−𝑓𝑟𝑎𝑚𝑒(, 𝜆)
]

= 1| ⩽ 𝜖(𝜆)

3.3. Our construction

3.3.1. Intuition
In our scheme, the anonymous ephemeral tag [10] is used as the

users’ public key 𝑢𝑝𝑘, and the tag-based signature [10] is used as the
signing key of the group signature. The key idea behind our construc-
tion is that any user 𝑖𝑑 joining the group for an active time period 𝜏
obtains a tag-base signature 𝜎𝜏 on a tag–index pair (𝑢𝑝𝑘, 𝜏). This means
that for each active time period 𝜏 in  , the user has an independent
signing key 𝜎𝜏 . We note that the user’s private key 𝑢𝑠𝑘 corresponding to

all signing keys {𝜎𝜏}𝜏∈ of the user 𝑖𝑑 is the same. When issuing a group
signature at a time period 𝜏, a user only needs to run Derive algorithm
on the tag–signature pair (𝑢𝑝𝑘, 𝜎𝜏) to get a randomized tag–signature
pair (𝑢𝑝𝑘′, 𝜎′𝜏).

To achieve traceability and revocability, a user 𝑖𝑑 has to compute
a tracing and revocation key 𝑢𝑡𝑘 = 𝑔𝑢𝑠𝑘. To achieve non-frameability
while allowing revocation, we follow the way as [9] that when the
group manager issues the signing keys, it sets the signature message
𝑚𝑖 = 𝑢𝑠𝑘 for any index 𝜏 ∈  . This method allows us to revoke a tag–
index pair (𝑢𝑝𝑘, 𝜏) of the user 𝑖𝑑 (the access right for the active time
period 𝜏) by testing whether the randomized signature is valid on 𝑢𝑠𝑘.

3.3.2. Concrete construction
We now introduce our GS-TBK scheme, fulfilling the requirements

of Section 3.2.
GS-TBK.Setup(1𝜆) → 𝑝𝑝: Takes a security parameter 1𝜆 as input,

and outputs a Type-III bilinear pair parameter 𝑝𝑝 = (G1,G2,G𝑇 ,
𝑔, 𝑔, 𝑝, 𝑒).

GS-TBK.GKeyGen(𝑝𝑝, 𝑛) → (𝑔𝑠𝑘, 𝑔𝑝𝑘,,): The group man-
ager chooses (𝑎, 𝑏, 𝑐, {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1)

𝑅
←←←←←←←←← Z∗

𝑝 , and computes 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏, 𝐶 =
𝑔𝑐 , {𝑋𝑖 = 𝑔𝑥𝑖 , 𝑌𝑖 = 𝑔𝑦𝑖}𝑛𝑖=1. It then sets 𝑔𝑠𝑘 = (𝑎, 𝑏, 𝑐, {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1) and
𝑔𝑝𝑘 = (𝐴,𝐵, 𝐶, {𝑋𝑖, 𝑌𝑖}𝑛𝑖=1), and initializes a registration list  ← ∅
and a revocation list  ← ∅.

⟨𝖦𝖲 − 𝖳𝖡𝖪.𝖩𝗈𝗂𝗇(𝑝𝑝, 𝑖𝑑, ) ↔ 𝖦𝖲 − 𝖳𝖡𝖪.𝖨𝗌𝗌𝗎𝖾(𝑝𝑝, 𝑔𝑠𝑘, 𝑔𝑝𝑘, )⟩ →

(𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝑢𝑡𝑘, {𝜎𝜏}𝜏∈): As shown in Fig. 2, U interacts with GM to
generate the user’s signing keys {𝜎𝜏}𝜏∈ .

7

Fig. 2. Definition of the GS-TBK.Join and GS-TBK.Issue algorithms.

• A new user 𝑖𝑑 chooses a randomly private key 𝑢𝑠𝑘
𝑅
←←←←←←←←← Z∗

𝑝 , and
computes his public key 𝑢𝑝𝑘 = (𝑇1, 𝑇2, 𝑇3) ← (1(𝑖𝑑),1(𝑖𝑑)𝑢𝑠𝑘,
1(𝑖𝑑)𝑢𝑠𝑘

2) and tracing (revocation) key 𝑢𝑡𝑘 = 𝑔𝑢𝑠𝑘. We note that
𝑇1 is a given and randomly chosen generator of G1 for user 𝑖𝑑.
He then proves the knowledge of 𝑢𝑠𝑘 using SoK [23]: 𝛱 = {𝑢𝑠𝑘 ∶
𝑇2 = 𝑇 𝑢𝑠𝑘

1 , 𝑇3 = 𝑇 𝑢𝑠𝑘
2 , 𝑢𝑡𝑘 = 𝑔𝑢𝑠𝑘}, and sends (𝑖𝑑,  , 𝑢𝑝𝑘, 𝑢𝑡𝑘,𝛱) to

the group manager.
• If the SoK 𝛱 is valid, the group manager computes 𝜎𝜏 = 𝑇 𝑎+𝑥𝜏

1
𝑇 𝑦𝜏+𝑏
2 𝑇 𝑐

3 for all 𝜏 ∈  and returns {𝜎𝜏}𝜏∈ , where 𝜎𝜏 is a valid tag-
based signature on the tag–index pair (𝑢𝑝𝑘, 𝜏) and message 𝑚𝜏 =
𝑢𝑠𝑘. In the meantime, the group manager stores (𝑖𝑑,  , 𝑢𝑝𝑘, 𝑢𝑡𝑘) to
[𝑖𝑑].

• The user is then able to verify the validity of 𝜎𝜏 for each 𝜏 ∈ 
by checks equation 𝑒(𝜎𝜏 , 𝑔) = 𝑒(𝑇1, 𝐴𝑋𝜏) ⋅ 𝑒(𝑇2, 𝐵𝑌𝜏)⋅ 𝑒(𝑇3, 𝐶), and
then stores the signing keys (𝑢𝑠𝑘,  , {𝜎𝜏}𝜏∈) and public key 𝑢𝑝𝑘.

GS-TBK.Sign(𝑝𝑝, 𝜎𝜏 , 𝑢𝑠𝑘, 𝑢𝑝𝑘) → 𝜎: In signing protocol, we want to
let the user prove the knowledge of a tag-based signature with the
current time period 𝜏.

• Firstly, the user chooses a random 𝑟
𝑅
←←←←←←←←← Z∗

𝑝 , and randomizes the
public key 𝑢𝑝𝑘′ = (𝑇 ′

1 , 𝑇
′
2 , 𝑇

′
3) ← (𝑇 𝑟

1 , 𝑇
𝑟
2 , 𝑇

𝑟
3) and signature 𝜎′𝜏 = 𝜎𝑟𝜏 .

• Then, he chooses a random 𝑘
𝑅
←←←←←←←←← Z∗

𝑝 , and proves the knowledge
of private key 𝑢𝑠𝑘 by computing: 𝑅1 = 𝑇 ′

1
𝑘, 𝑅2 = 𝑇 ′

2
𝑘; 𝑐 =

2(𝑇 ′
1 , 𝑇

′
2 , 𝑇

′
3 , 𝑅1, 𝑅2, 𝜏, 𝑛𝑜𝑛𝑐𝑒); 𝑠 = 𝑘 − 𝑐 ⋅ 𝑢𝑠𝑘.

• Finally, he sets 𝜎 = (𝜏, 𝑢𝑝𝑘′, 𝜎′𝜏 , 𝑐, 𝑠), and sends 𝜎 to a verifier.

To prevent replay attacks, the 𝑛𝑜𝑛𝑐𝑒 is randomly generated by
the verifier and sent to the user before the user initiates the signing
protocol.

GS-TBK.Revoke(𝑝𝑝, 𝑖𝑑, 𝜏, 𝑔𝑠𝑘,,) → 𝑅𝜏 . The group man-
ager computes 𝑅𝜏 = 𝑔𝑥𝜏 𝑢𝑡𝑘𝑦𝜏 , and stores  ← 𝑅𝜏 .

GS-TBK.Verify(𝑝𝑝, 𝜎, 𝑔𝑝𝑘,) → 0∕1: The verifier runs
GS-TBK.Verify algorithm when receives 𝜎 from a user.

• Firstly, it runs signature verification:
if 𝑐 ≠ 2(𝑇 ′

1 , 𝑇
′
2 , 𝑇

′
3 , 𝑇

′
1
𝑠𝑇 ′

2
𝑐 , 𝑇 ′

2
𝑠𝑇 ′

3
𝑐 , 𝜏, 𝑛𝑜𝑛𝑐𝑒), then outputs 0. if

𝑒(𝜎′𝜏 , 𝑔) ≠ 𝑒(𝑇 ′
1 , 𝐴𝑋𝜏)𝑒(𝑇 ′

2 , 𝐵𝑌𝜏)𝑒(𝑇
′
3 , 𝐶), then outputs 0.

• Then, it runs revocation verification:
if ∃𝑅𝜏 ∈  , 𝑒(𝑇 ′

1 , 𝑋𝜏)𝑒(𝑇 ′
2 , 𝑌𝜏) = 𝑒(𝑇 ′

1 , 𝑅𝜏), then outputs 0, else
outputs 1.

The GS-TBK.Sign and GS-TBK.Verify algorithms are depicted in
Fig. 3.

GS-TBK.Trace(𝑝𝑝, 𝜎,) → 𝑖𝑑∕⊥. For each (𝑖𝑑, 𝜏, 𝑢𝑝𝑘, 𝑢𝑡𝑘) ∈ ,
the group manager tests whether 𝑒(𝑇 ′

1 , 𝑢𝑡𝑘) = 𝑒(𝑇 ′
2 , 𝑔) and 𝑒(𝑇 ′

2 , 𝑢𝑡𝑘) =
𝑒(𝑇 ′

3 , 𝑔), until it gets a match, in which case it returns the corresponding
user identity 𝑖𝑑.

3.4. Security analysis

The correctness of our GS-TKB scheme is analyzed in Supplemental
Material B. In this section, we define the following theorems to for-
malize that our construction from Section 3.3.2 satisfies all the desired
security guarantees defined in Section 3.2.

3.4.1. Anonymity
In this subsection, we provide proof of anonymity.

Theorem 1. Our GS-TBK scheme achieves anonymity if DSqDH assump-
tion holds in G1.

Proof. Let  be an adversary against the anonymity of our GS-
TBK scheme and 𝑠𝑞𝑑ℎ = (ℎ, ℎ𝑥, ℎ𝑦) be a DSqDH challenge in G1.
At the beginning of the anonymity game 𝐸𝑥𝑝𝑎𝑛𝑜𝑛−𝑏,  runs 𝑝𝑝 ←

𝖦𝖲 − 𝖳𝖡𝖪.𝖲𝖾𝗍𝗎𝗉(1𝜆) and (𝑔𝑠𝑘, 𝑔𝑝𝑘,,)← 𝖦𝖲 − 𝖳𝖡𝖪.𝖦𝖪𝖾𝗒𝖦𝖾𝗇 (𝑝𝑝, 𝑛),
and sends (𝑝𝑝, 𝑔𝑝𝑘) to  that eventually returns (𝑖𝑑0, 𝑖𝑑1,  ∗).  guesses
the identity of the user 𝑖𝑑∗. For each tag–index pairs (𝑠𝑞𝑑ℎ, 𝜏∗), the
user 𝑖𝑑∗ will have a tag-based signature 𝜎∗𝜏 , where 𝜏∗ ∈  ∗.  answers
the oracles query as follows.

∙ 𝖩𝗈𝗂𝖨𝗌𝗌: If 𝑖𝑑 ∈  or 𝑖𝑑 ∈  , then returns ⊥. If 𝑖𝑑 ≠ 𝑖𝑑∗, then
 proceeds as usual. Otherwise, it sets 𝑢𝑝𝑘∗ = 𝑠𝑞𝑑ℎ, and issues a valid
tag-based signature 𝜎𝜏∗ for each tag–index pairs (𝑠𝑞𝑑ℎ, 𝜏∗).

∙ 𝖲𝗂𝗀𝗇: If 𝑖𝑑 ≠ 𝑖𝑑∗, then  proceeds as usual. Otherwise, it simulates
the SoK of user’s private key.

∙ 𝖢𝖴,𝖳𝗋𝖺𝖼𝖾,𝖱𝖾𝗏𝗈𝗄𝖾: If 𝑖𝑑 ≠ 𝑖𝑑∗, then  proceeds as usual. Other-
wise, it returns ⊥.

At some state in the game,  outputs two identities (𝑖𝑑0, 𝑖𝑑1), along
with a set  ∗ of time periods. If 𝑖𝑑∗ ≠ 𝑖𝑑𝑏, then  aborts. Else, it answers
the oracles query as follows.

∙ 𝖠𝗇𝖢𝗁𝑏
: It chooses a random 𝑟

𝑅
←←←←←←←←← Z∗

𝑝 , and computes 𝜎𝜏∗ ′ = 𝜎𝑟𝜏∗ and
𝑢𝑝𝑘∗′ = 𝑢𝑝𝑘∗𝑟. Then it simulates the SoK of user’s private key.

If 𝑦 = 𝑥2, the simulation is perfect. Else, 𝑦 is random, which means
that 𝑢𝑝𝑘∗′ = (ℎ𝑟, ℎ𝑥𝑟, ℎ𝑦𝑟) are random elements in G1, and  cannot
succeed in this game with non-negligible advantage. Therefore, any
change in the behavior of  can be used to solve the DSqDH problem
in G1, unless  aborts. The advantage of  is then at least 𝜖

𝑚 , where 𝑚
is a bound on the number of honest users.

3.4.2. Traceability
In this subsection, we provide proof of traceability.

Theorem 2. Our GS-TBK scheme achieves traceability if the tag-based
signature is unforgeable.

8

Fig. 3. Definition of the GS-TBK.Sign and GS-TBK.Verify algorithms.

Proof.  runs the unforgeability game of the tag-based signature and
so receives public parameters (G1,G2,G𝑇 , 𝑔, 𝑔, 𝑝, 𝑒, 𝐴,𝐵, 𝐶, {𝑋𝑖, 𝑌𝑖}𝑛𝑖=1).
 runs GS-TBK.GKeyGen to generate remaining parameters, and
sends (𝑝𝑝, 𝑔𝑝𝑘) to .  can ask the oracle of the tag-based signature,
𝑇𝐵𝑆𝑖𝑔𝑛(⋅), with an unlimited number of times.  answers oracles
queries as follows:

∙ 𝖨𝗌𝗌𝗎𝖾:  runs the extractor of 𝛱 to recover the private key 𝑢𝑠𝑘 and
then submits (𝑢𝑠𝑘, ) to the signing oracle 𝑇𝐵𝑆𝑖𝑔𝑛(⋅). It then receives a
set of tag-based signatures {𝜎𝜏}𝜏∈ .

∙ 𝖩𝗈𝗂𝖨𝗌𝗌:  can simulate this oracle as well as 𝖨𝗌𝗌𝗎𝖾.
∙ 𝖲𝗂𝗀𝗇:  knows users’ private keys and so perfectly simulates this

oracle.
∙ 𝖱𝖾𝗏𝗈𝗄𝖾:  queries the private key 𝑢𝑠𝑘 of the user 𝑖𝑑 stored in the

set  and computes 𝑅𝜏 = 𝑋𝜏𝑌 𝑢𝑠𝑘
𝜏 .

∙ 𝖳𝗋𝖺𝖼𝖾:  knows user’s tracing (revocation) key and so perfectly
simulates this oracle.

At the end of the game, if  can prove possession of a signing key 𝜎∗

on the tag–index pair (𝑢𝑝𝑘∗, 𝜏∗) with probability 𝜖 and trace failed, then
 extracts 𝑢𝑠𝑘∗ from 𝜎∗ = (𝜏∗, 𝑢𝑝𝑘′∗, 𝜎′∗𝜏 , 𝑐∗, 𝑠∗). Because the trace failed,
for any honest user 𝑖𝑑 ∈  , 𝑢𝑠𝑘∗ must be different from private key
𝑢𝑠𝑘 of user 𝑖𝑑, this means that 𝜎′∗𝜏 is a valid forgery against the tag-based
signature of message 𝑢𝑠𝑘∗ on the tag–index pair (𝑢𝑝𝑘∗, 𝜏∗).

3.4.3. Non-frameability
In this subsection, we provide proof of non-frameability.

Theorem 3. Our GS-TBK scheme achieves non-frameability if SDL assump-
tion holds in G1 and DL assumption holds in G2.

Proof. Let  be an adversary against the non-frameability of our GS-
TBK scheme. Let (ℎ, ℎ𝑥, ℎ𝑥2) be a SDL challenge in G1 and (𝑔, 𝑔𝑥) be
a DL challenge in G2. At the beginning of the non-frameability game
𝐸𝑥𝑝𝑛𝑜𝑛−𝑓𝑟𝑎𝑚𝑒,  runs 𝑝𝑝 ← 𝖦𝖲 − 𝖳𝖡𝖪. 𝖲𝖾𝗍𝗎𝗉(1𝜆) and (𝑔𝑠𝑘, 𝑔𝑝𝑘,,)
← 𝖦𝖲 − 𝖳𝖡𝖪.𝖦𝖪𝖾𝗒𝖦𝖾𝗇 (𝑝𝑝, 𝑛) to generate remaining parameters, and
sends (𝑝𝑝, 𝑔𝑝𝑘, 𝑔𝑠𝑘,) to .  can issue signing keys, trace user identity,
and read or write the registration list.  guesses an identity of honest
user 𝑖𝑑∗, that  aims to frame, and implicitly sets the private key of
𝑖𝑑∗ to 𝑢𝑠𝑘∗ = 𝑥.  abort if this guess is wrong.  answers the oracles
query as follows.

∙ 𝖩𝗈𝗂𝗇: If 𝑖𝑑 ≠ 𝑖𝑑∗, then  proceeds as usual. Otherwise, it assigns
𝑢𝑝𝑘∗ = (ℎ, ℎ𝑥, ℎ𝑥2) and 𝑢𝑡𝑘∗ = 𝑔𝑥, and simulates the signature of
knowledge of user’s private key 𝑥.

∙ 𝖢𝖴: If 𝑖𝑑 ≠ 𝑖𝑑∗, then  proceeds as usual. Otherwise, it returns ⊥.
∙ 𝖲𝗂𝗀𝗇: If 𝑖𝑑 ≠ 𝑖𝑑∗, then  proceeds as usual. Otherwise, it simulates

the signature of knowledge of user’s private key 𝑥.

∙ 𝖳𝗋𝖺𝖼𝖾,𝖱𝖾𝗏𝗈𝗄𝖾:  knows the group manager’s private keys and so
perfectly simulates these oracles.

Eventually,  returns a valid group signature 𝜎∗ = (𝜏∗, 𝑢𝑝𝑘′∗,
𝜎′𝜏∗ , 𝑐

∗, 𝑠∗) that can be traced back to 𝑖𝑑∗.  can extract 𝑥 from the signa-
ture of knowledge to solve the SDL and DL problems. Any adversary 
succeeding against the non-frameability of our scheme with probability
𝜖 can then be used to solve the SDL and DL problems with probability
𝜖
𝑚 , where 𝑚 is a bound on the number of honest users.

4. Anonymous transit pass system

4.1. Basic design of AnoPas

This section presents the basic design of our AnoPas system from the
GS-TBK scheme of Section 3.3. As shown in Fig. 4, the AnoPas system
involves three types of participants: authority, users, and transport
services, and consists of seven algorithms, which are Setup, Request,
Visa, Pass, Revoke, Verify and Trace. The AnoPas system can be triv-
ially obtained using our GS-TBK scheme. The following is a functional
description of all algorithms and their construction:

∙ 𝖲𝖾𝗍𝗎𝗉: The authority executes this algorithm to initialize the sys-
tem. The specific operation is to run GS-TBK.Setup to generate the
public parameters, then run GS-TBK.GKeyGen to generate the master
key.

∙ 𝖱𝖾𝗊𝗎𝖾𝗌𝗍: A user executes this algorithm by running GS-TBK.Join
to request the passing keys from the authority.

∙ 𝖵𝗂𝗌𝖺: The authority executes this algorithm by running
GS-TBK.Issue to issue passing keys to users.

∙ 𝖯𝖺𝗌𝗌: A user executes this algorithm by running GS-TBK. 𝖲𝗂𝗀𝗇 to
compute a transit pass for access transport services.

∙ 𝖱𝖾𝗏𝗈𝗄𝖾: The authority executes this algorithm by running
GS-TBK.Revoke to revoke user privileges prematurely.

∙ 𝖵𝖾𝗋𝗂𝖿𝗒: A transport service executes this algorithm by running
GS-TBK.Verify to verify user permissions.

∙ 𝖳𝗋𝖺𝖼𝖾: The authority executes this algorithm by running
GS-TBK.Trace to recover the identity of the malicious user.

With the widespread use of mobile phones with smart cards (e.g., SIM
cards), deploying transit passes on them is an ideal choice in terms
of security and portability. In order to deploy our AnoPas system
in mobile phones with smart cards, the 𝖱𝖾𝗊𝗎𝖾𝗌𝗍 (i.e., GS-TBK.Join)
and 𝖯𝖺𝗌𝗌 (i.e., GS-TBK.Sign) algorithms executed by the user in the
system should be split into two parts without compromising its security.
Among them, the smart card stores the user’s private key and performs
the key-related part, and the operations for the mobile phone should be

9

Fig. 4. System architecture of our AnoPas system.

Fig. 5. Dependability security game.

key-independent with a relatively more time-consuming part. The (ma-
licious) mobile phone cannot complete the 𝖱𝖾𝗊𝗎𝖾𝗌𝗍 (i.e., GS-TBK.Join)
and 𝖯𝖺𝗌𝗌 (i.e., GS-TBK.Sign) algorithms without the help of the smart
card.

4.2. Divide user computations of GS-TBK

Our GS-TBK scheme efficiently distributes user computations be-
tween a trusted, yet constrained device, exemplified by a smart card
in Fig. 4, and a more powerful helper device, such as a mobile phone
shown in Fig. 4. Our central concept involves the smart card handling
user key generation and the proof of user private key knowledge.
Meanwhile, the mobile phone executes operations independent of the
user’s private key, specifically related to public key randomization
and tag-based signature generation. We will now elucidate the tech-
nique facilitating the division of the GS-TBK.Join and GS-TBK.Sign
algorithms between the smart card and the mobile phone.

The GS-TBK.Join algorithm entails three main steps for the user:
generating the user key, computing the signature of knowledge 𝛱 ,
and verifying the tag-based signatures. The smart card handles user
key generation and the signature of knowledge since both tasks ne-
cessitate knowledge of the user’s private key. In contrast, the mobile
phone performs the verification of tag-based signatures as it does not
require access to the user’s private key and can execute bilinear map
operations, which are typically unsupported by lightweight devices.

Split GS-TBK.Join algorithm:

• Smart Card:
(1) User key generation: chooses 𝑢𝑠𝑘

𝑅
←←←←←←←←← Z∗

𝑝 , and computes: 𝑢𝑝𝑘 =
(𝑇1, 𝑇2, 𝑇3) ← (1(𝑖𝑑), 𝑇 𝑢𝑠𝑘

1 , 𝑇 𝑢𝑠𝑘
2); 𝑢𝑡𝑘 = 𝑔𝑢𝑠𝑘.

(2) The SoK of user’s private key: 𝛱 = {𝑢𝑠𝑘 ∶ 𝑇2 = 𝑇 𝑢𝑠𝑘
1 ,

𝑇3 = 𝑇 𝑢𝑠𝑘
2 , 𝑢𝑡𝑘 = 𝑔𝑢𝑠𝑘}.

(3) Stores 𝑢𝑠𝑘 and sends (𝑢𝑝𝑘, 𝑢𝑡𝑘,𝛱) to the helper device.
• Mobile Phone:

(1) Verify the tag-based signatures: for all 𝜏 ∈  , verifies 𝑒(𝜎𝜏 , 𝑔) =
𝑒(𝑇1, 𝐴𝑋𝜏)𝑒(𝑇2, 𝐵𝑌𝜏)𝑒(𝑇3, 𝐶).
(2) Stores (𝑢𝑝𝑘,  , {𝜎𝜏}𝜏∈).

The GS-TBK.Sign algorithm requires the user to randomize the
user’s public key and the tag-based signature, and to compute the sig-
nature of knowledge. These operations are efficient because they only
require 6 exponentiations in G1. We can still split the GS-TBK.Sign
algorithm into two parts according to the principle of splitting the GS-
TBK.Join algorithm, because this will reduce the computation of the
smart card to 2 exponentiations in G1.

Split GS-TBK.Sign algorithm:

• Mobile Phone:
(1) Randomization of user’s public key: chooses 𝑟

𝑅
←←←←←←←←← Z∗

𝑝 , and
computes 𝑢𝑝𝑘′ = (𝑇 ′

1 , 𝑇
′
2 , 𝑇

′
3) ← (𝑇 𝑟

1 , 𝑇
𝑟
2 , 𝑇

𝑟
3).

(2) Randomization of the tag-based signature: computes 𝜎′𝜏 = 𝜎𝑟𝜏 .
(3) Sends (𝑢𝑝𝑘′, 𝑛𝑜𝑛𝑐𝑒) to the core device.

• Smart Card:
(1) The SoK of user’s private key: chooses 𝑘

𝑅
←←←←←←←←← Z∗

𝑝 , and computes
𝑅1 = 𝑇 ′

1
𝑘, 𝑅2 = 𝑇 ′

2
𝑘; 𝑐 = 2(𝑇 ′

1 , 𝑇
′
2 , 𝑇

′
3 , 𝑅1, 𝑅2, 𝜏, 𝑛𝑜𝑛𝑐𝑒); 𝑠 =

𝑘 − 𝑐 ⋅ 𝑢𝑠𝑘.
(2) Returns (𝑐, 𝑠) to the helper device.

10

4.3. Security analysis of AnoPas

The AnoPas system can be constructed directly using the GS-TBK
scheme, ensuring anonymity, traceability, and non-frameability (un-
forgeability) properties based on the security of the GS-TBK scheme.
Additionally, to address the constraints of the AnoPas deployment
environment, we divide the user computing part of the GS-TBK.Join
(i.e., 𝖠𝗇𝗈𝖯𝖺𝗌.𝖱𝖾𝗊𝗎𝖾𝗌𝗍) and GS-TBK.Sign (i.e., 𝖠𝗇𝗈𝖯𝖺𝗌.𝖯𝖺𝗌𝗌) algorithms
into smart cards and mobile phones, the latter of which may be ma-
licious. A malicious mobile phone could attempt to compute a transit
pass without the involvement of the smart card.

Dependability. Dependability ensures that even if an adversary
takes control of the mobile phone, he should not be able to compute
a group signature (i.e., a transit pass) in a given session in place of an
honest user without interacting with the smart card.

To formally define the dependability, we need to add some oracles,
as shown below.

−𝖲𝖢𝖩𝗈𝗂𝗇(𝑖𝑑, ). It is an oracle that can be used to play the honest
group manager, issuing the signing keys for an honest user 𝑖𝑑 with a
malicious mobile phone. If 𝑖𝑑 ∈ { ∪ } or  ⊊ [1, 𝑛], it returns ⊥.
Otherwise, it obtains the signing keys by running:
⟨⟨𝖦𝖲 − 𝖳𝖡𝖪.𝖩𝗈𝗂𝗇.𝖲𝗆𝖺𝗋𝗍𝖢𝖺𝗋𝖽(𝑝𝑝, 𝑖𝑑) ↔ (𝑝𝑝, 𝑖𝑑,  , ⋅)⟩ ↔ 𝖦𝖲 − 𝖳𝖡𝖪.𝖨𝗌𝗌𝗎𝖾
(𝑝𝑝, 𝑔𝑠𝑘, 𝑔𝑝𝑘,)⟩ → (𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝑢𝑡𝑘, {𝜎𝜏}𝜏∈), where the adversary
executes the side of the mobile phone. It adds 𝑖𝑑 to  and appends
(𝑖𝑑, 𝑢𝑠𝑘, 𝑢𝑝𝑘, 𝑢𝑡𝑘,  , {𝜎𝜏}𝜏∈) to .

−𝖲𝖢𝖲𝗂𝗀𝗇(𝑖𝑑, 𝜏). It is an oracle that can be used to play an hon-
est verifier verifying a group signature for an honest user 𝑖𝑑 with a
malicious mobile phone. If 𝑖𝑑 ∉  , then it returns ⊥. Otherwise,
it runs ⟨⟨𝖦𝖲 − 𝖳𝖡𝖪.𝖲𝗂𝗀𝗇.𝖲𝗆𝖺𝗋𝗍𝖢𝖺𝗋𝖽(𝑝𝑝, 𝑢𝑠𝑘, 𝑢𝑝𝑘) ↔ (𝑝𝑝, 𝜎𝜏 , 𝜏, ⋅)⟩ ↔
𝖦𝖲 − 𝖳𝖡𝖪.𝖵𝖾𝗋𝗂𝖿𝗒(𝑝𝑝, 𝑔𝑝𝑘, 𝜎,)⟩ → (𝜎, 0∕1), where the adversary
executes the side of the mobile phone. Finally, it adds (𝑖𝑑, 𝜎) to .

Definition 4. The concept of dependability is formally defined in
game 𝐸𝑥𝑝𝑑𝑒𝑝, as illustrated in Fig. 5. Our GS-TBK scheme achieves
dependability, if for any PPT adversary , there exists a negligible
function 𝜖(𝜆) such that:

𝐴𝑑𝑣𝑑𝑒𝑝 = |Pr
[

𝐸𝑥𝑝𝑑𝑒𝑝(, 𝜆)
]

= 1| ⩽ 𝜖(𝜆)

Next, we provide proof of dependability.

Theorem 4. The dependability of our AnoPas system is achieved if SDL
assumption holds in G1 and DL assumption holds in G2.

Proof. Let  be an adversary against the dependability of our GS-
TBK scheme. Let (ℎ, ℎ𝑥, ℎ𝑥2) be a SDL challenge in G1 and (𝑔, 𝑔𝑥) be
a DL challenge in G2. At the beginning of the dependability game
𝐸𝑥𝑝𝑑𝑒𝑝,  runs 𝑝𝑝 ← 𝖦𝖲 − 𝖳𝖡𝖪. 𝖲𝖾𝗍𝗎𝗉(1𝜆) and (𝑔𝑠𝑘, 𝑔𝑝𝑘,,) ←
𝖦𝖲 − 𝖳𝖡𝖪.𝖦𝖪𝖾𝗒𝖦𝖾𝗇 (𝑝𝑝, 𝑛) to generate remaining parameters, and sends
(𝑝𝑝, 𝑔𝑝𝑘) to .  guesses an identity of honest user 𝑖𝑑∗, that  aims to
forge, and implicitly sets the private key of 𝑖𝑑∗ to 𝑢𝑠𝑘∗ = 𝑥.  abort if
this guess is wrong.  answers the oracles query as follows.

∙ 𝖲𝖢𝖩𝗈𝗂𝗇: If 𝑖𝑑 ≠ 𝑖𝑑∗, then  proceeds as usual. Otherwise, it assigns
𝑢𝑝𝑘∗ = (ℎ, ℎ𝑥, ℎ𝑥2) and 𝑢𝑡𝑘∗ = 𝑔𝑥, and simulates the signature of
knowledge of user’s private key 𝑥.

∙ 𝖨𝗌𝗌𝗎𝖾:  knows the group manager’ private key and so perfectly
simulates this oracle.

∙ 𝖢𝖴: If 𝑖𝑑 ≠ 𝑖𝑑∗, then  proceeds as usual. Otherwise, it returns ⊥.
∙ 𝖲𝖢𝖲𝗂𝗀𝗇: If 𝑖𝑑 ≠ 𝑖𝑑∗, then  proceeds as usual. Otherwise, it

simulates the signature of knowledge of user’s private key 𝑥.

Eventually,  returns a valid group signature 𝜎∗ = (𝜏∗, 𝑢𝑝𝑘′∗,
𝜎′𝜏∗ , 𝑐

∗, 𝑠∗) that can be traced back to 𝑖𝑑∗.  can extract 𝑥 from the sig-
nature of knowledge to solve the SDL and DL problems. Any adversary
 succeeding against the dependability of our scheme with probability
𝜖 can then be used to solve the SDL and DL problems with probability
𝜖
𝑚 , where 𝑚 is a bound on the number of honest users.

Fig. 6. Workflow of our AnoPas system.

4.4. AnoPas on mobile phone with smart card

Following the division of user computations in the GS-TBK scheme,
the operational workflow of our AnoPas system on a mobile phone with
a smart card is delineated below.

As shown in Figs. 4 and 6, the authority sets up the public param-
eters and generates the system’s master key (step 1⃝). When a user
requests the passing keys from the authority (step 2⃝), his smart card
first selects a private key and securely stores it. Then, the smart card
calculates the user’s public key, the tracing (revocation) key and the
proof of knowledge for the user’s private key (step 2.1) and transmits
this data to the mobile phone. The mobile phone initiates a request for
the passing keys (step 2.2), and the authority then issues these keys
to the user while recording the user’s registration information (step
3⃝). After the visa protocol is completed, the passing keys of multiple

time periods are verified and stored in the mobile phone. In case of
premature revocation, the authority logs the revocation details in the
revocation list (step 4⃝). For a transit passing protocol (step 5⃝), the
mobile phone first acquires a nonce generated by the transport service
and initiates a request (step 5.1), which is then transmitted to the smart
card. The smart card computes the SoK for the user’s private key and
returns the results (step 5.2). Finally, the mobile phone forwards the
resulting transit pass to the transport service, which downloads the list
of revocation information and verifies the validity and correctness of
the transit pass (step 6⃝). If it is necessary to identify a transit pass
generated by a malicious user, the authority can recover the user’s
identity (step 7⃝).

5. Performance analysis

In this section, we assess the performance of our AnoPas system.
To provide a precise evaluation of its efficiency, we showcase its
implementations on PC, smart card, and mobile phones with smart
cards, respectively. Furthermore, we perform a comparative analysis

11

Fig. 7. Execution time on a PC.

Fig. 8. Storage and communication cost.

against the transit pass systems [6,8,9] and analogous transit pass
systems [18–21] suitable for deployment on the mobile phone with
smart card. Our implementations employ the Type-III pairing [22] and
the Barreto–Naehrig curve (BN-256) [17] at the AES-100 bit security
level.

5.1. Implementation on a PC

We have implemented our AnoPas system and evaluated its per-
formance on a HUAWEI Matebook 14 laptop equipped with an AMD
Ryzen-5 4600H CPU with a clock speed of 3.00 GHz. This laptop
configuration includes 16 GB of RAM and a 512 GB SSD, running the
Ubuntu Kylin 16.04 operating system. Our experiments were performed
using the MIRACL library [11].

In Fig. 7, we compare the computation cost of all algorithms in
our system with the most efficient transit pass [6,8,9] at 𝑛 = 10.
The initial algorithm Setup is executed by 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦, the passing keys
request algorithm Request by 𝑢𝑠𝑒𝑟, the passing keys issuing algorithm
Visa by 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦, the pass algorithm Pass by 𝑢𝑠𝑒𝑟, the verification
algorithm Verify by 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, and the revocation algorithm
Revoke and tracing algorithm Trace by 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦. In our scheme, the
computation costs of Setup, Request, Visa, Pass, Verify, Revoke
and Trace are 33.7 ms, 372.9 ms, 24 ms, 3.8 ms, 39.1 ms, 4.9 ms,
and 38.1 ms, respectively. In the systems of [6,8,9], the computation
costs of Setup(i.e., GS-TBK.GKeyGen), Request (i.e., GS-TBK.Join),
Visa (i.e., GS-TBK.Issue), Pass (i.e., GS-TBK.Sign), Verify, Revoke

Fig. 9. Execution time of Pass algorithm on a smart card.

and Trace are 43.2/4.9/5.7 ms, 52.1/60.5/56.3 ms, 9.5/1.7/8.2 ms,
19.8/159.1/133.6 ms, 53.9/177.5/100.8 ms, 4.9/0.76/6.48 ms, and
30.2/0.76/0.78 ms, respectively. Since the execution time of the Trace
and Revoke algorithms are related to the size of the registration list
and the revocation list respectively, the size of the registration list and
the revocation list are set to constant (equal to 1) during the test.

As shown in Fig. 7 and Table 1, our most important contribution
is to improve the execution efficiency of the Pass algorithm, which is
more than 400%, 4000%, 3400% better than the systems in [6,8,9],
respectively. Compared to the state-of-the-art transit pass system [9],
our Pass algorithm requires only 6 exponentiations in G1, while the
Pass algorithm in [9] requires 6 exponentiations in G1, 2 exponenti-
ations in G2 and 1 bilinear map operation 𝑒. Both exponentiation in
G2 and bilinear map operation 𝑒 are more time-consuming than the
exponentiation in G1. The time consumption of the Verify algorithm in
our system is also lower than that in [6,8,9], while the execution times
of our Setup, Revoke and Trace algorithms are roughly equivalent to
those in [9]. We note that the execution times of our Request and
Visa algorithms are significantly higher than those in [6,8,9], but these
algorithms only need to be executed once for each new user.

In Fig. 8, we compare the storage and communication cost in our
system with that in [6,8,9] at 𝑛 = 10. The size of the revocation of
AnoPas is the same as the system in [9], but larger than the systems
in [6,8]. The sizes of the group public key and signing key in our
system are larger than those in [6,8,9], but only single copies of them
need to be stored for each new user. The group signature size of this
scheme is 20%, 80%, and 60% smaller than that of systems in [6,8,9],
respectively, which effectively reduces the communication complexity
of Pass algorithm.

5.2. Implementation on a smart card

Smart cards generally provide a high-level programming API with
standard cryptography algorithms, basic arithmetic operations, and
storage operations. However, the existing smart cards cannot sup-
port bilinear map operations. We implemented our AnoPas system on
Aisinochip’s state-of-the-art smart card chip - ACH512 [27] because it
provides API access to SHA256, group operations over a prime field,
and point multiplications on the elliptic curve as required in our passing
protocol. Another reason is that the clock frequency of smart cards is
between 10 MHZ - 100 MHz due to their small size and low power
consumption. The clock frequency of ACH512 can be set between 6
MHz and 110 MHz; the higher the clock frequency, the faster the
computation speed. In order to compare with other widely deployed

12

Table 5
Implementation Environment.
Participant Hardware CPU Frequency RAM Operating system

Smart card Aisinochip ACH512 40 MHz 128 KB COS
Mobile phone HUAWEI Honor 9i Hisilicon kirin 659 (ARMv8-A) 2.36 GHz and 1.7 GHz 4 GB Android 9.0
PC HUAWEI Matebook 14 AMD Ryzen-5 4600H 3.00 GHz 16 GB Ubuntu Kylin 16.04

Fig. 10. Execution time of Pass algorithm on a smart card after precomputations.

Fig. 11. Execution time on the mobile phone with smart card.

Fig. 12. Execution time of Pass algorithm on the mobile phone with smart card.

smart card products, we set the clock frequency of ACH512 to 20 MHz,
40 MHz, 60 MHz, and 80 MHz in our experiments.

In Fig. 9 we compare the computational cost of the Pass algorithm
in our systems with that in [9,18,20]. To compare with the system
in [9], we use a standard technique [28,29] by adding an element in G1
and a signature of knowledge to avoid using bilinear map operations on
smart cards to implement the passing protocol in [9]. Since the schemes
in [6,8,19,21] inevitably need to perform bilinear pairing operations
or exponentiations in G2, making them impossible to implement on
smart cards, we do not include them in this comparison. Our perfor-
mance is significantly better than the pass protocol implementations
in [9,18,20], as shown in Fig. 9. Specifically, our performance is more
than 130%, 50%, and 250% better than [9,18,20], respectively.

Our Pass algorithm can be divided into two parts: the offline part
and the online part. The offline part performs the Derive algorithm of
the tag-based signature, which requires 4 exponentiations in G1 and
it can be computed in advance. The online part performs the signature
of knowledge of user’s private key, which requires 2 exponentiations in
G1 computed in real-time. In Fig. 10, when the precomputation is com-
pleted, we compare the computation cost of the Pass algorithm in our
system with that in [9,18,20]. After precomputation, our performance
is more than 600%, 350%, and 950% better than the implementations
in [9,18,20], respectively.

5.3. Implementation on the mobile phone with smart card

We evaluated the performance of our AnoPas system in the mobile
phone with smart card using an Aisinochip’s smart card chip (ACH512)
and a HUAWEI’s mobile phone (Honor 9i) as the user, and a HUAWEI’s
PC (Matebook 14) as the authority and transport service. In Table 5, we
show the setup of the implementation environment.

Fig. 11 shows the execution time of our system where ACH512’s API
is used to implement the operations on the smart card, MIRACL [11] is
used to implement the operations on the mobile phone and PC, and
𝑛 = 10 is chosen. Our Pass algorithm takes 38.6 ms on the smart
card and 33.6 ms on the mobile phone. Our Request algorithm takes
187.5 ms on the smart card and 398 ms on the mobile phone. Our Visa
and Verify algorithm take 24 ms and 39.1 ms on the PC, respectively.

Additionally, we conduct a comparative analysis of the computa-
tional costs associated with the Pass algorithm in our systems and
those in previous works [9,18–21] across mobile phone and smart card
platforms. As illustrated in Fig. 12, our system demonstrates markedly
superior performance compared to the Pass protocol implementations
detailed in [9,18–21]. Specifically, when considering computation time
on smart cards and mobile phones, AnoPas exhibits a substantial advan-
tage, being only 39%, 55%, 20%, 34%, and 47% of the computational
cost of systems described in [9,18–21], respectively.

The above analysis and comparison show that our AnoPas system
has significantly lower communication and computation overheads
compared to state-of-the-art systems.

6. Conclusion

In this paper, we introduce AnoPas, a novel and practical anony-
mous transit pass system based on group signatures with time-bound
keys (GS-TBK). We rigorously demonstrate its robust security, encom-
passing anonymity, traceability, and non-frameability. AnoPas substan-
tially enhances the efficiency of transit pass protocols through the
innovative GS-TBK scheme. We provide detailed implementations of
AnoPas on various platforms, including PCs, smart cards, and mo-
bile phones with smart cards, illustrating its suitability for real-world
applications.

13

CRediT authorship contribution statement

Rui Shi: Conceptualization, Formal analysis, Software, Writing –
original draft. Yang Yang: Conceptualization, Methodology, Writing –
original draft, Funding acquisition. Yingjiu Li: Investigation, Supervi-
sion, Writing – review & editing, Methodology. Huamin Feng: Formal
analysis, Software, Validation, Writing – review & editing. Hwee Hwa
Pang: Supervision, Validation, Writing – review & editing. Robert H.
Deng: Formal analysis, Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

Rui Shi and Huamin Feng are supported by Fundamental Re-
search Funds for the Central Universities of China under Grant No.
3282023007, Beijing Natural Science Foundation, China under Grant
No. 4234084. Yang Yang is supported by National Natural Science
Foundation of China under Grant No. 62372110, Fujian Provincial
Natural Science of Foundation, China under Grant No. 2023J02008.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.sysarc.2024.103184.

References

[1] Île-de-France Mobilités, Navigo, 2021, https://www.iledefrance-mobilites.fr/
titres-et-tarifs/liste?d=forfaits.

[2] Metro, EZ transit pass, 2021, https://www.metro.net/riding/fares/ez-transit-
pass/.

[3] N. Desmoulins, R. Lescuyer, O. Sanders, J. Traoré, Direct anonymous attestations
with dependent basename opening, in: International Conference on Cryptology
and Network Security, Springer, 2014, pp. 206–221.

[4] B. Libert, F. Mouhartem, K. Nguyen, A lattice-based group signature scheme
with message-dependent opening, in: International Conference on Applied
Cryptography and Network Security, Springer, 2016, pp. 137–155.

[5] D. Chaum, E. van Heyst, Group signatures, EUROCRYPT’91 547 (1991) 257–265.
[6] C.K. Chu, J.K. Liu, X. Huang, J. Zhou, Verifier-local revocation group signa-

tures with time-bound keys, in: Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security, 2012, pp. 26–27.

[7] J.K. Liu, C.-K. Chu, S.S. Chow, X. Huang, M.H. Au, J. Zhou, Time-bound
anonymous authentication for roaming networks, IEEE Trans. Inf. Forensics
Secur. 10 (1) (2014) 178–189.

[8] K. Emura, T. Hayashi, A. Ishida, Group signatures with time-bound keys revisited:
a new model, an efficient construction, and its implementation, IEEE Trans.
Dependable Secure Comput. 17 (2) (2017) 292–305.

[9] O. Sanders, Improving revocation for group signature with redactable signature,
in: IACR International Conference on Public-Key Cryptography, Springer, 2021,
pp. 301–330.

[10] C. Hébant, D. Pointcheval, Traceable constant-size multi-authority credentials,
2020, Cryptology ePrint Archive.

[11] MIRACL Ltd, MIRACL, 2019, https://github.com/miracl/MIRACL.
[12] D. Boneh, X. Boyen, Short signatures without random oracles, in: Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,
Springer, 2004, pp. 56–73.

[13] H.Y. Lin, W.G. Tzeng, An efficient solution to the millionaires’ problem based on
homomorphic encryption, in: International Conference on Applied Cryptography
and Network Security, Springer, 2005, pp. 456–466.

[14] M.H. Au, W. Susilo, Y. Mu, Constant-size dynamic k-TAA, in: International
Conference on Security and Cryptography for Networks, Springer, 2006, pp.
111–125.

[15] K. Ohara, K. Emura, G. Hanaoka, A. Ishida, K. Ohta, Y. Sakai, Shortening the
libert-peters-yung revocable group signature scheme by using the random oracle
methodology, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102 (9)
(2019) 1101–1117.

[16] T. Nakanishi, N. Funabiki, Revocable group signatures with compact revocation
list using accumulators, IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
98 (1) (2015) 117–131.

[17] J. Fan, F. Vercauteren, I. Verbauwhede, Faster Fp arithmetic for cryptographic
pairings on Barreto-Naehrig curves, in: International Workshop on Cryptographic
Hardware and Embedded Systems, Springer, 2009, pp. 240–253.

[18] J. Camenisch, M. Drijvers, A. Lehmann, Anonymous attestation using the strong
diffie hellman assumption revisited, in: International Conference on Trust and
Trustworthy Computing, Springer, 2016, pp. 1–20.

[19] J. Camenisch, M. Drijvers, A. Lehmann, Universally composable direct anony-
mous attestation, in: Public-Key Cryptography–PKC 2016, Springer, 2016, pp.
234–264.

[20] J. Camenisch, L. Chen, M. Drijvers, A. Lehmann, D. Novick, R. Urian, One TPM
to bind them all: Fixing TPM 2.0 for provably secure anonymous attestation, in:
2017 IEEE Symposium on Security and Privacy, SP, IEEE, 2017, pp. 901–920.

[21] L. Hanzlik, D. Slamanig, With a little help from my friends: constructing practical
anonymous credentials, in: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 2004–2023.

[22] S.D. Galbraith, K.G. Paterson, N.P. Smart, Pairings for cryptographers, Discrete
Appl. Math. 156 (16) (2008) 3113–3121.

[23] M. Chase, A. Lysyanskaya, On signatures of knowledge, in: Annual International
Cryptology Conference, Springer, 2006, pp. 78–96.

[24] A. Fiat, A. Shamir, How to prove yourself: Practical solutions to identification
and signature problems, in: Conference on the Theory and Application of
Cryptographic Techniques, Springer, 1986, pp. 186–194.

[25] J. Camenisch, M. Stadler, Efficient group signature schemes for large groups, in:
Annual International Cryptology Conference, Springer, 1997, pp. 410–424.

[26] V. Shoup, Lower bounds for discrete logarithms and related problems, in:
International Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 1997, pp. 256–266.

[27] Aisinochip, ACH512, 2022, http://www.aisinochip.com/index.php/product/
show/id/20/catid/127.html.

[28] D. Bernhard, G. Fuchsbauer, E. Ghadafi, N.P. Smart, B. Warinschi, Anonymous
attestation with user-controlled linkability, Int. J. Inf. Secur. 12 (3) (2013)
219–249.

[29] A. Barki, N. Desmoulins, S. Gharout, J. Traoré, Anonymous attestations made
practical, in: Proceedings of the 10th ACM Conference on Security and Privacy
in Wireless and Mobile Networks, 2017, pp. 87–98.

https://doi.org/10.1016/j.sysarc.2024.103184
https://www.iledefrance-mobilites.fr/titres-et-tarifs/liste?d=forfaits
https://www.iledefrance-mobilites.fr/titres-et-tarifs/liste?d=forfaits
https://www.iledefrance-mobilites.fr/titres-et-tarifs/liste?d=forfaits
https://www.metro.net/riding/fares/ez-transit-pass/
https://www.metro.net/riding/fares/ez-transit-pass/
https://www.metro.net/riding/fares/ez-transit-pass/
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb5
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb9
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb9
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb9
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb9
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb9
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb10
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb10
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb10
https://github.com/miracl/MIRACL
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb22
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb22
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb22
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb23
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb23
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb23
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb25
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb25
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb25
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb26
http://www.aisinochip.com/index.php/product/show/id/20/catid/127.html
http://www.aisinochip.com/index.php/product/show/id/20/catid/127.html
http://www.aisinochip.com/index.php/product/show/id/20/catid/127.html
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb29
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb29
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb29
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb29
http://refhub.elsevier.com/S1383-7621(24)00121-8/sb29

