
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2024

Extracting relevant test inputs from bug reports for automatic test Extracting relevant test inputs from bug reports for automatic test

case generation case generation

Wendkuuni C. Ouédraogo

Laura Plein

Kader Kaboré

Andrew Habib

Jacques Klein

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
Ouédraogo, Wendkuuni C.; Plein, Laura; Kaboré, Kader; Habib, Andrew; Klein, Jacques; LO, David; and
Bissyandé, Tegawende F.. Extracting relevant test inputs from bug reports for automatic test case
generation. (2024). 2024 IEEE/ACM 46thInternational Conference on Software Engineering: Companion
Proceedings, Lisbon, April 14-20. 406-407.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8888

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8888&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Wendkuuni C. Ouédraogo, Laura Plein, Kader Kaboré, Andrew Habib, Jacques Klein, David LO, and
Tegawende F. Bissyandé

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8888

https://ink.library.smu.edu.sg/sis_research/8888

Extracting Relevant Test Inputs from Bug Reports for Automatic
Test Case Generation

Wendkûuni C. Ouédraogo,
Laura Plein, Kader Kaboré,

Andrew Habib, Jacques Klein
firstname.lastname@uni.lu
University of Luxembourg

David Lo
davidlo@smu.edu.sg

Singapore Management University

Tegawendé F. Bissyandé
tegawende.bissyande@uni.lu

ACM Reference Format:

Wendkûuni C. Ouédraogo, Laura Plein, Kader Kaboré, AndrewHabib, Jacques
Klein, David Lo, and Tegawendé F. Bissyandé. 2024. Extracting Relevant
Test Inputs from Bug Reports for Automatic Test Case Generation. In 2024
IEEE/ACM 46th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3639478.3643537

1 INTRODUCTION

The pursuit of automating software test case generation, particu-
larly for unit tests, has become increasingly important due to the
labor-intensive nature of manual test generation [6]. However, a
significant challenge in this domain is the inability of automated
approaches to generate relevant inputs, which compromises the
efficacy of the tests [6].

In this study, we address the critical issue of enhancing the qual-
ity of automated test case generation. We demonstrate the presence
of valuable relevant inputs within bug reports, showcasing their
potential for improving software testing. To harness these inputs
effectively, we introduce BRMiner, a novel tool designed for the
extraction of relevant input values from bug reports. Our approach
includes the modification of EvoSuite, a prominent automated test
case generation tool, enabling it to incorporate these extracted
inputs. Through systematic evaluation using the Defects4J bench-
mark, we assess the impact of BRMiner inputs on test adequacy
and effectiveness, focusing on code coverage and bug detection.
This study not only identifies the relevance of bug report inputs
but also offers a practical solution for leveraging them to enhance
automated test case generation in real-world software projects.

In the realm of automated test case generation, methods like
Dynamic Symbolic Execution (DSE) [2] and Search-Based Software
Testing (SBST) have been prevalent [3]. Despite their strengths,
these techniques often struggle with generating contextually ap-
propriate and realistic inputs [6]. This study, therefore, emphasizes
the untapped potential of bug reports as a source of such inputs.
Bug reports, rich in valid, human-readable inputs, are particularly
beneficial for enhancing test coverage and detecting bugs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04. . . $15.00
https://doi.org/10.1145/3639478.3643537

BRMiner, automates the extraction of relevant test inputs from
bug reports, significantly enhancing the efficiency of test case gener-
ation. This is achieved by incorporating these inputs into EvoSuite,
a leading SBST tool. The study showcases the advantages of inte-
grating a feature in EvoSuite for external inputs, particularly from
bug reports, to improve its efficacy in conjunction with DSE.

Related research in automatic test case generation provides con-
text to our work. TestMiner [6], unlike BRMiner, extracts literals
from existing tests for domain-specific values, and approaches like
K-Config [4] and LeRe [7], focusing on compiler testing using bug
report information, diverge from our approach. PerfLearner [1],
which uses bug reports for extracting execution commands for per-
formance bugs, also differs from BRMiner’s focus on bug detection.

2 BRMINER

2.1 Usage Scenario

In a typical scenario, developers like Bob encounter software issues
that are documented in bug reports. These reports are more than
just records of software flaws; they are repositories of real-world
inputs, crucial for effective testing. For instance, if a bug report
notes that a crash occurs when a variable is set to a particular value,
this insight can be instrumental in guiding testing efforts. BRMiner
capitalizes on this concept, systematically extracting these inputs
from bug reports to improve the debugging and testing procedures.

2.2 Overview

BRMiner extracts relevant inputs from bug reports (GitHub1 and
Jira2) by parsing them using Infozilla3). It separates code snip-
pets from natural language text, where inputs can be embedded.
BRMiner utilizes two methods for input extraction: directly from
source code using Javalang4, a Java source code parser, and from
natural language text using regular expressions in bug reports.

BRMiner extracted inputs are then fed into automated test gen-
erators, such as EvoSuite, to improve test quality and software
reliability. This approach bridges real-world scenarios with auto-
mated testing, enhancing issue detection and resolution. Figure 1
outlines the key steps of BRMINER for input extraction from bug
reports for EvoSuite.

1https://github.com/sigmavirus24/github3.py
2https://github.com/pycontribs/jira
3https://github.com/nicbet/infozilla
4https://github.com/c2nes/javalang

406

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://doi.org/10.1145/3639478.3643537
https://doi.org/10.1145/3639478.3643537
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3643537&domain=pdf&date_stamp=2024-05-23

ICSE-Companion ’24, April 14–20, 2024, Lisbon, PortugalWendkûuni C. Ouédraogo, Laura Plein, Kader Kaboré, Andrew Habib, Jacques Klein, David Lo, and Tegawendé F. Bissyandé

Static input pool

Parse the repository

Issue
Issue number
Title
Description
Comments

Issue
Issue number
Title
Description
Comments

Issue
Issue number
Title
Description
Comments

Separate source code
from Natural Language

Text

Source code
(Code regions, Patches,

Stack traces)

Natural Language Text
(Enumerations and itemizations)

Retrieve Java
literals (String and

numeric) with Regex

Parse the source
code with a Java
parser to retrieve

literals

Store literals

Generates
Test Suite

Dynamic input pool

Figure 1: Overview of BRMiner, an automatic approach to

extract potential test inputs from bug reports for EvoSuite.

3 EXPERIMENTAL SETUP AND RESULTS

Our empirical study evaluated BRMiner’s effectiveness in extract-
ing relevant bug report inputs for improving automated test genera-
tion. Using Defects4J 2.0.0 and EvoSuite 1.2.1, we modified EvoSuite
to enable it to use BRMiner inputs in its static input pool as seed
inputs, in addition to those from the dynamic pool for generating
test cases. By this process we can transform inputs from BRMiner
into test cases. Realistic testing scenarios were simulated with a
three-minute time budget per test case and a focus on coverage
criteria.

To conduct bug detection and code coverage experiments, we
employed a Regression testing approach that closely resembled the
one detailed in a previous study [5]. The experiments, conducted
over five iterations on robust hardware (AMD EPYC 7552 48-Core
Processor, 3.2 GHz, 640 GB RAM), provided a valid assessment of
BRMiner’s capabilities in enhancing automated test generation. In
the context of these experiments, we then addressed three main
research questions.
RQ1: How effectively are relevant inputs integrated intoman-

ually written test cases, and what is the rate of relevance for

BRMiner-extracted inputs in comparison?

In our assessment of the presence of bug report inputs in manu-
ally written test cases and the accuracy of BRMiner in extracting
relevant inputs, our analysis revealed that 14.37% of inputs in these
test cases matched those found in bug reports, validating the signifi-
cance of utilizing bug reports as a resource for test input extraction.
Furthermore, BRMiner’s extraction rate reached 68.7% when using
Regex and 50.2% when using Javalang, highlighting BRMiner’s
ability to both quantitatively and qualitatively extract relevant in-
puts.
RQ2: Do tests generated using all the relevant inputs ex-

tracted by BRMiner exhibit a higher bug detection rate com-

pared to tests generated without utilizing these inputs?

The goal was to evaluate the impact of BRMiner inputs on the
bug detection capability of test cases. The results demonstrated
that incorporating BRMiner inputs resulted in the detection of 45
unique bugs, surpassing the baseline approach, and thus proving
the effectiveness of these inputs in bug detection.
RQ3: Does the utilization of all extracted relevant inputs by

BRMiner result in higher code coverage compared to tests

generated without using these inputs?

On average, branch coverage improved by approximately 1.15%,
with the "Codec" project showing the most significant increase,
reaching up to 2.6%. Instruction coverage saw an average improve-
ment of about 1.17% across projects, while the "Codec" project
demonstrated a notable 1.8% increase, particularly effective in spe-
cific contexts. Line coverage, on average, improved by about 1.25%,
with the "JxPath" project standing out with enhancements of up to
2.24%. Even small improvements in code coverage are vital for bug
detection as they enhance the quality and reliability of the software
by uncovering potential defects and edge cases that lower coverage
levels may miss.

4 CONCLUSION

Our research demonstrates the feasibility of extracting relevant bug
report inputs to enhance automatic test case generation through
BRMiner. We conducted extensive experiments, evaluating EvoSuit-
eDSEwith andwithout BRMiner’s inputs for bug detection and code
coverage. Promising results were achieved, with BRMiner success-
fully extracting 68.68% of relevant inputs using regular expressions,
leading to the detection of 45 previously undetected bugs. BRMiner
therefore represents an initial step in leveraging bug reports for
relevant test inputs, with further potential for exploration.

5 ACKNOWLEDGEMENT

This work is supported by funding from the Fonds National de
la Recherche Luxembourg (FNR) under the Aides à la Formation-
Recherche (AFR) (grant agreement No. 17185670).

REFERENCES

[1] Xue Han, Tingting Yu, and David Lo. 2018. Perflearner: Learning from bug reports
to understand and generate performance test frames. In Proceedings of the 33rd
ACM/IEEE international conference on automated software engineering. 17–28.

[2] James C King. 1976. Symbolic execution and program testing. Commun. ACM 19,
7 (1976), 385–394.

[3] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2017. Au-
tomated test case generation as a many-objective optimisation problem with
dynamic selection of the targets. IEEE Transactions on Software Engineering 44, 2
(2017), 122–158.

[4] Md Rafiqul Islam Rabin and Mohammad Amin Alipour. 2021. Configuring test gen-
erators using bug reports: a case study of gcc compiler and csmith. In Proceedings
of the 36th Annual ACM Symposium on Applied Computing. 1750–1758.

[5] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do automatically generated unit tests find real faults?
an empirical study of effectiveness and challenges (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 201–211.

[6] Luca Della Toffola, Cristian-Alexandru Staicu, and Michael Pradel. 2017. Saying
’hi!’ is not enough: mining inputs for effective test generation. In Proceedings of the
32nd International Conference on Automated Software Engineering. IEEE Computer
Society, 44–49. https://doi.org/10.1109/ASE.2017.8115617

[7] Hao Zhong. 2022. Enriching compiler testing with real program from bug report. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–12.

407

https://doi.org/10.1109/ASE.2017.8115617

	Extracting relevant test inputs from bug reports for automatic test case generation
	Citation
	Author

	Extracting Relevant Test Inputs from Bug Reports for Automatic Test Case Generation

