
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

9-2017 

Understanding stack overflow code fragments Understanding stack overflow code fragments 

Christoph TREUDE 
Singapore Management University, ctreude@smu.edu.sg 

Martin P. ROBILLARD 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons 

Citation Citation 
TREUDE, Christoph and ROBILLARD, Martin P.. Understanding stack overflow code fragments. (2017). 
Proceedings of the 33rd International Conference on Software Maintenance and Evolution, Shanghai, 
China, 2017 September 17-22. 509-513. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8876 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8876&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Understanding Stack Overflow Code Fragments
Christoph Treude

School of Computer Science
University of Adelaide
Adelaide, SA, Australia

christoph.treude@adelaide.edu.au

Martin P. Robillard
School of Computer Science

McGill University
Montréal, QC, Canada
martin@cs.mcgill.ca

Abstract—Code fragments posted in answers on Q&A forums
can form an important source of developer knowledge. However,
effective reuse of code fragments found online often requires
information other than the code fragment alone. We report
on the results of a survey-based study to investigate to what
extent developers perceive Stack Overflow code fragments to
be self-explanatory. As part of the study, we also investigated
the types of information missing from fragments that were
not self-explanatory. We find that less than half of the Stack
Overflow code fragments in our sample are considered to be
self-explanatory by the 321 participants who answered our
survey, and that the main issues that negatively affect code
fragment understandability include incomplete fragments, code
quality, missing rationale, code organization, clutter, naming
issues, and missing domain information. This study is a step
towards understanding developers’ information needs as they
relate to code fragments, and how these needs can be addressed.

I. INTRODUCTION

The Internet has provided software developers with an
effective infrastructure for sharing and accessing programming
knowledge. There currently exist dozens of websites hosting
curated collections of code examples, including high-profile
hubs such as Gist [1] and MSDN [2]. Although large catalogs
of curated code samples provide undeniable value to develop-
ers, their reliance on explicitly contributed samples inevitably
limits the supply. As software development problems and
technology quickly evolve, it is likely that new programming
situations will arise that do not have any supporting samples.

The limitation of curated collections of code samples moti-
vates the exploration of more dynamic developer social media
as a potential source of code examples. The prime example of
a dynamic forum is the Question and Answer website Stack
Overflow, with more than 14 million questions and more than
22 million answers as of July 2017. Many of the questions and
answers contain code fragments. Can we opportunistically use
code fragments in Stack Overflow answers as code samples
that can support development tasks other than their related
question?

The vast majority of code fragments on Stack Overflow are
accompanied by natural language text that complements the
code in the answer. However, it can be difficult for readers
to estimate, at first glance, the proportion of this text that is
dedicated to general explanation of the code, as opposed to
answering the specific needs to the original poster. For this

reason, the text may often be skipped wholesale by readers
looking for a quick answer to a how-to programming question.

We currently have only a limited understanding of the
information developers need to understand code fragments
posted in Stack Overflow answers, if any. Current related work
provides some insights, but only indirectly (see Section V).

The ultimate goal of our work is the investigation of the
information developers need to understand code fragments.
As a first step towards this goal, we conducted a survey-based
study of the extent to which code fragments on Stack Overflow
are self-explanatory based on the question’s title alone, and
what information is missing if only the title is given as context.

We sampled code fragments from Stack Overflow, removed
all explanatory text, and asked developers, through a web-
based survey, to indicate the extent to which the code frag-
ments were self-explanatory and what information was miss-
ing. We received responses from 321 participants, indicating
that less than half of the code fragments that we had sampled
from Stack Overflow were completely self-explanatory. We
also found that whether a code fragment was considered to be
self-explanatory depends on factors such as incompleteness,
code quality, missing rationale, code organization, clutter,
naming issues, and missing domain information.

Our findings shed light on what authors can do to enable
effective reuse of code fragments on Stack Overflow and
elsewhere. They also lay the groundwork for more structured
approaches to code fragment documentation that could ensure
that each potential issue exhibited by a code fragment is
properly addressed.

II. METHODOLOGY

We present our research questions followed by a description
of our data collection and analysis methods.

A. Research Questions

The work presented in this paper was guided by the follow-
ing two research questions:

RQ1. To what extent are Stack Overflow code fragments
self-explanatory when accompanied with thread ti-
tles?

RQ2. What information is missing if only thread titles are
given as context?

Additional research questions for extending this work in the
future will include studying whether the missing information is



found elsewhere in the Stack Overflow thread and determining
what information is superfluous for code fragment reuse.

B. Data Collection

To answer our research questions, we sampled code frag-
ments from Stack Overflow, stripped away all explanatory
text accompanying these code fragments (including code
comments), and asked software developers to rate the code
fragments in terms of how self-explanatory they were and what
information was missing.

Specifically, we sampled 120 code fragments from Stack
Overflow using a stratified sampling strategy. For twelve topics
that we chose to represent a wide variety of aspects of the Java
API, we sampled the ten most recent Stack Overflow threads
that had the words “how to” in the title, had an accepted
answer, and were not closed. The focus on “how to” questions
was motivated by previous work by Nasehi et al. [3], who
identified that questions on Stack Overflow can be classified in
a “dimension that is about the main concern of the questioners
and what they wanted to solve” and the subsequent work of
de Souza et al. [4] who developed classifiers to separate “how
to” questions from other question types, such as conceptual
questions and debugging questions. We assume that the most
useful code fragments are likely to be found in responses to
“how to” questions.

In this exploratory study, we focus on code fragments in
the Java programming language. We filtered out threads for
which the accepted answer did not contain Java code, threads
that contained two or more almost identical alternative code
fragments, threads where the code elements mentioned in the
accepted answer explicitly referenced code elements from the
question, and threads where code was of excessive length.
This filtering was done manually by the first author. Table I
(following page) shows the details of the sampling: Topic
indicates the particular aspect of the Java API, Tags shows
the Stack Overflow tags we used for the search, Results shows
how many results Stack Overflow returned in total for “how to”
questions with these tags and an accepted answer, Analyzed
shows how many threads we needed to investigate until we
found ten threads that fulfilled our criteria, and the remaining
columns show how many threads we discarded for a specific
reason. On average, we analyzed 19 threads per topic to find
10 suitable threads for our study, with the majority of threads
being filtered out due to the accepted answer not containing
code. The last column shows the date on which the query was
conducted.

To enable a comparison between our findings for Stack
Overflow and a curated source of code fragments, we also
sampled 40 code fragments from Kode Java [5], a popular
website that provides Java programming examples, articles,
and tutorials. We employed a similar stratified sampling strat-
egy, focusing on four of the topic areas that we had considered
for Stack Overflow: Regex, Util, Spring, and JDBC. We
downloaded all 1,039 posts on Kode Java as of 27-Oct-15. For
each of the selected topics, we determined its corresponding
category on Kode Java (e.g., Util is referred to as “Java Util

Package”), determined the median number of lines of code
for all posts related to this topic, and randomly sampled five
posts with less code than the median and five posts with
more code than the median, resulting in ten code fragments
for each of the four topics. We followed this procedure to
increase the representativeness of our sample. Table II shows
the corresponding descriptive statistics.

We then randomly assigned each of the 160 code fragments
(120 from Stack Overflow plus 40 from Kode Java) to three
different survey instruments for a total of 160 surveys with
three randomly selected code fragments each. We handled
surveys for Stack Overflow and Kode Java separately. In
addition to demographic questions about participants’ main
occupation, their development experience in Java, and their
use of English, we asked two categorical questions about each
code fragment: “How familiar are you with the task <thread
title> in Java?” and “How self-explanatory do you find the
code example?”. The thread title was either the title of the
question on Stack Overflow or the title of the tutorial on Kode
Java. To increase the reliability of the answers to the question
about task familiarity, the code fragment was not visible
until participants had answered this question. Table III shows
the answer options that the survey provided for these two
categorical questions.1 In addition, for each code fragment,
the survey contained the following open-ended question: “If
you didn’t answer ‘Everything is completely self-explanatory’,
name one thing that’s missing.”

We sent each of these 160 surveys to 10 randomly sampled
GitHub users that had at least one public activity in the last
12 months, and additional surveys were sent out until each
code fragment had received at least three ratings. For the 40
Kode Java surveys, we did not need to send out any additional
surveys, whereas for Stack Overflow, we sent out an additional
26 batches of 10 emails until we had received at least three
responses for each code fragment. In total, we received 321
survey responses (response rate 17.3%) distributed over 160
code fragments, with each response containing answers for
three code fragments. At the end of the data collection process,
our data set contained 963 code fragment–response mappings.

C. Data Analysis

In addition to the use of descriptive statistics to answer our
first research question about the extent to which code frag-
ments are self-explanatory, we qualitatively coded responses
to the open-ended survey questions to answer our second
research question about what prevents code fragments from
being self-explanatory. The two authors of this paper coded
all 248 answers to “If you didn’t answer ‘Everything is
completely self-explanatory’, name one thing that’s missing”
(207 out of 723 possible answers for code fragments from
Stack Overflow and 41 out of 240 possible answers for code
fragments from Kode Java). This coding was done iteratively
by coding responses for one topic area at a time and refining

1An example survey is available at http://tinyurl.com/code-fragment-survey.
We designed the answer options to be more meaningful than a Likert scale.

http://tinyurl.com/code-fragment-survey


TABLE I
CODE FRAGMENT SAMPLING FROM STACK OVERFLOW

Topic Tags Results Analyzed No Code Alternatives Reference Length Date
JDBC java, jdbc 757 18 4 1 3 30-Dec-15
Regex java, regex 1094 13 3 30-Dec-15
Spring java, spring 2832 25 13 2 30-Dec-15
Util java, java-util-scanner OR java-util-logging 194 12 2 30-Dec-15
Hibernate java, hibernate 1763 14 4 25-Apr-16
IO java, java-io 69 27 14 3 25-Apr-16
Java2D java, java-2d 58 14 2 1 1 25-Apr-16
JavaMail java, javamail 125 37 25 2 25-Apr-16
JAXB java, jaxb 409 22 9 3 25-Apr-16
Jodatime java, jodatime 154 15 3 2 25-Apr-16
Logging java, java.util.logging 28 17 3 4 25-Apr-16
Reflection java, reflection 475 14 2 2 25-Apr-16

TABLE II
CODE FRAGMENT SAMPLING FROM KODE JAVA

Topic Category Posts median LOC

JDBC JDBC API 62 34.5
Regex Regular Expressions 25 21
Spring Spring Core 32 48
Util Java Util Package 104 19

TABLE III
SURVEY ANSWER OPTIONS

How familiar are you with the task <thread title> in Java?
I have no idea how to go about accomplishing this
I don’t really know how to accomplish this but would know

exactly what information to search for
I know how to accomplish this but would need to look up

some details
I can accomplish this without looking anything up

How self-explanatory do you find the code example above?
Cryptic
Some parts are self-explanatory
Most of it is self-explanatory
Everything is completely self-explanatory

the coding guide after each step. The following is the final list
of issues that emerged from the analysis:

• Organization: The organization of the code (structure,
indentation, modules, etc.) is inadequate.

• Naming: The choice of identifier naming is not helpful.
• Rationale: The reason for doing something is not self-

evident, including the meaning of literal values (“magic
numbers”).

• Incomplete: The code fragment is clearly missing other
code (such as calling or integration code) that is necessary
for understanding, including unbound variables.

• Quality: There is some obvious problem with the actual
code or the thread title.

• Domain: Specialized or context-specific domain concepts
and/or terminology are not self-evident.

• Clutter: The code fragment is too verbose given the task
it accomplishes.

After the initial coding, we asked two annotators who are
not authors of this paper to go through all 160 code fragments

and annotate each fragment in terms of whether it exhibited
any of these 7 issues. This annotation was initially done
separately, resulting in 68 cases where both annotators agreed
that a code fragment exhibited a particular issue, 834 cases
where both annotators agreed that a code fragment did not
exhibit a particular issue, and 218 cases where the annotators
disagreed, for a total of 1,120 cases (160 code fragments
multiplied by 7 issues). We asked both annotators to comment
on the cases where they disagreed, and the first author resolved
the disagreements based on these comments, for a total of 207
cases where a code fragment exhibited an issue and 913 cases
where it did not.

III. FINDINGS

We present our findings organized by research questions.

A. Self-Explanatory Code Fragments

Table IV presents the results for our first research question
about the extent to which code fragments are self-explanatory
based on thread titles. For Stack Overflow, 49% of the an-
swers indicated that a code fragment was completely self-
explanatory, while another 28% of the answers indicated that
most of the code was self-explanatory. The highest ratios
of “Cryptic” ratings were assigned to code fragments from
Java2D and Hibernate, while code fragments from Jodatime
were rated as most self-explanatory.

Code fragments were more likely to be rated as self-
explanatory if the responder was familiar with the correspond-
ing task (Chi-Squared test on a 4 × 4 matrix, p < 0.00001,
Cramer’s V = 0.24, moderate association). We also found
that the source of a code fragment (Stack Overflow vs. Kode
Java) was a significant variable. Specifically, responders were
more likely to be familiar with tasks described on the curated
tutorial website Kode Java than on Stack Overflow (Chi-
Squared test on a 4 × 2 matrix, p < 0.00001, Cramer’s V
= 0.25, moderate association). Similarly, participants were
more likely to consider a code fragment from Kode Java
to be self-explanatory (Chi-Squared test on a 4 × 2 matrix,
p < 0.002, Cramer’s V = 0.34, moderate association). We
speculate that most of this difference results from the amount
of effort that has been spent on curating code fragments in
each source.



TABLE IV
SURVEY RESULTS

Sou
rce

Top
ic

I ha
ve

no
ide

a..
.

I do
n’t

rea
lly

kn
ow

...

I kn
ow

ho
w

to
ac

co
mpli

sh
thi

s bu
t...

I ca
n ac

co
mpli

sh
thi

s..
.

Ans
wers

Cryp
tic

Som
e pa

rts
are

sel
f-e

xp
lan

ato
ry

M
os

t of
it

is
sel

f-e
xp

lan
ato

ry

Eve
ryt

hin
g is

co
mple

tel
y sel

f-e
xp

lan
ato

ry

Ans
wers

Ope
n-e

nd
ed

an
sw

ers

Stack Overflow Hibernate 30% 26% 35% 9% 57 17% 20% 39% 24% 54 19
Stack Overflow IO 4% 22% 49% 25% 55 9% 15% 30% 46% 54 17
Stack Overflow Java2D 31% 39% 31% 0% 59 18% 4% 30% 49% 57 13
Stack Overflow JavaMail 23% 34% 36% 7% 44 7% 12% 28% 53% 43 13
Stack Overflow JAXB 35% 37% 25% 4% 52 13% 21% 33% 33% 52 24
Stack Overflow JDBC 15% 35% 40% 10% 78 5% 13% 27% 55% 77 22
Stack Overflow Jodatime 16% 25% 41% 18% 61 7% 11% 20% 62% 61 15
Stack Overflow Logging 8% 38% 36% 18% 50 6% 8% 28% 58% 50 15
Stack Overflow Reflection 13% 47% 32% 9% 47 11% 13% 21% 55% 47 13
Stack Overflow Regex 1% 8% 58% 32% 71 4% 11% 25% 59% 71 14
Stack Overflow Spring 24% 32% 28% 16% 79 14% 18% 30% 38% 79 23
Stack Overflow Util 4% 16% 50% 29% 68 6% 13% 28% 53% 68 19
Stack Overflow Total 17% 29% 39% 16% 721 10% 13% 28% 49% 713 207
Kode Java JDBC 2% 43% 34% 21% 56 4% 9% 25% 62% 55 10
Kode Java Regex 5% 23% 42% 30% 60 3% 7% 24% 66% 58 13
Kode Java Spring 8% 32% 42% 17% 59 5% 12% 22% 60% 58 10
Kode Java Util 2% 15% 35% 48% 65 2% 9% 14% 75% 65 8
Kode Java Total 4% 28% 38% 30% 240 3% 9% 21% 66% 236 41

We compared the results for each topic to the results for
all other topics (e.g., Hibernate vs. non-Hibernate), and while
task familiarity was not independent of the topic for all of
these tests (Chi-Squared tests, p < 10−8), the extent to which
code fragments were rated as self-explanatory was always
independent of the topic.2 In the absence of strong evidence
that whether a code fragment is self-explanatory depends on
its topic, we pursued our inquiry with a qualitative analysis
of potential factors. The next section presents our qualitative
findings on what affects the extent to which a code fragment
is self-explanatory.

B. Missing Information

Table V shows the results of the annotation of the 160
code fragments in terms of the issues that emerged from
our qualitative coding (see Section II-C). For code fragments
from Stack Overflow, incompleteness was the most common
issue. In contrast, this issue never occurred in code fragments
from the curated website Kode Java. On Stack Overflow, code
fragments from all topic areas suffered from incompleteness
as well as code quality issues, while missing rationale was
relatively common in code fragments from both sources. With
the exception of Jodatime code fragments having relatively
fewer issues, there is no clear trend indicating that the issues
exhibited by code fragments depend on the particular topic
area.

2This comparison involved 32 Chi-Squared tests on 4 × 2 matrices (12
Stack Overflow topics plus 4 Kode Java topics, comparison of task familiarity
and self-explanatory ratings). We applied a Bonferroni correction for multiple
comparison to the all p-values.

IV. DISCUSSION

Our results provide evidence that some code fragments from
non-curated sources such as Stack Overflow can indeed stand
on their own as self-explanatory fragments, even without code
comments or explanatory text. These code fragments are ready
to be reused by developers in other contexts. However, this
only applies to just under half of the Stack Overflow code
fragments in our study. The remaining code fragments are
not completely self-explanatory and require more context to
understand.

Our survey participants mentioned several issues that pre-
vent code fragments from being self-explanatory. Of those,
we found that incompleteness is the most common for code
fragments from the non-curated source Stack Overflow while
incompleteness was not an issue at all for code fragments from
the curated source Kode Java. Interestingly, missing rationale
and explanations of domain concepts and/or terminology are
the only issues that emerged from our study that could not
be addressed by source code alone. Very few code fragments
exhibited problems related to domain knowledge, suggesting
that the one major piece of information that cannot be captured
in source code is rationale. This observation opens up avenues
for future work around providing developers with a structured
way of expressing rationale.

V. RELATED WORK

In their study on what makes a good code example, Nasehi
et al. found that the explanations accompanying examples are
as important as the examples themselves [3]. In contrast to
our methodology, their data collection was solely based on an
analysis of code fragments, and they did not ask developers



TABLE V
ANNOTATION RESULTS

Source Topic Organization Naming Rationale Incomplete Quality Domain Clutter Total

Stack Overflow Hibernate 5 4 5 3 1 1 19
Stack Overflow IO 2 1 4 3 2 12
Stack Overflow Java2D 5 7 5 3 20
Stack Overflow JavaMail 3 3 3 3 2 3 17
Stack Overflow JAXB 1 1 7 3 12
Stack Overflow JDBC 3 2 7 3 2 17
Stack Overflow Jodatime 1 1 3 3 1 9
Stack Overflow Logging 1 1 4 4 4 14
Stack Overflow Reflection 1 5 4 3 2 15
Stack Overflow Regex 7 4 3 1 15
Stack Overflow Spring 3 3 5 5 2 18
Stack Overflow Util 2 2 4 5 5 3 21
Stack Overflow Total 20 9 40 57 42 4 17 189
Kode Java JDBC 2 6 8
Kode Java Regex 4 1 5
Kode Java Spring 2 2
Kode Java Util 1 1 1 3
Kode Java Total 1 0 7 0 1 1 8 18

about their information needs. As a result, our work provides
more specific information about the issues that negatively
affect code fragment understandability. Barzilay et al. [6]
made use of textual and social information available on Stack
Overflow in a code search and recommendation tool called
Example Overflow.

Thread titles on Stack Overflow have attracted the attention
of the research community. For example, in their work on
analyzing the topics that mobile developers are asking about,
Rosen and Shihab [7] argue that “titles summarize and identify
the main concepts being asked in the post” while “the body
of the question adds non-relevant information”. Tools such as
Seahawk [8] or NLP2Code [9] determine the relevance of a
Stack Overflow thread for a code fragment search at least in
part based on the thread’s title.

Although there has not been much work on the information
needs of software developers around code fragments, there
has been work on information needs of software developers
in general. To name a few, Fritz and Murphy [10] provided
a list of questions that focus on issues that occur within a
project and Sillito et al. [11] provided a similar list focusing on
questions during evolution tasks. LaToza and Myers [12] found
that the most difficult questions from a developer’s perspective
dealt with intent and rationale. In their study on information
needs in software development, Ko et al. [13] found that the
most frequently sought information included awareness about
artifacts and coworkers.

VI. FUTURE WORK

As next steps in this research project, we plan to investigate
which of the identified code fragment issues have the most
impact on how self-explanatory a code fragment is, to what
extent the identified issues are resolved by the original text that
accompanies each code fragment, and how to identify the most
useful explanation in the text. Another promising avenue for
future work is the automated classification of code fragments
based on how self-explanatory they are. The ultimate goal

of this work is understanding developers’ information needs
related to code fragments and how these needs can be ad-
dressed by documentation guidelines or on-demand developer
documentation [14].

REFERENCES

[1] “GitHub Gist Home Page,” https://gist.github.com/, verified 20 June
2017.

[2] “MSDN Developer Code Samples,” https://code.msdn.microsoft.com/,
verified 20 June 2017.

[3] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example? A study of programming Q&A in StackOverflow,” in
Proc. Int’l. Conf. on Software Maintenance, 2012, pp. 25–34.

[4] L. B. L. de Souza, E. C. Campos, and M. d. A. Maia, “Ranking crowd
knowledge to assist software development,” in Proc. Int’l. Conf. on
Program Comprehension, 2014, pp. 72–82.

[5] “Kode Java,” http://kodejava.org/, verified 20 June 2017.
[6] O. Barzilay, C. Treude, and A. Zagalsky, Facilitating Crowd Sourced

Software Engineering via Stack Overflow. Springer New York, 2013,
pp. 289–308.

[7] C. Rosen and E. Shihab, “What are mobile developers asking about? A
large scale study using Stack Overflow,” Empirical Software Engineer-
ing, vol. 21, no. 3, pp. 1192–1223, 2016.

[8] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack Overflow
in the IDE,” in Proc. Int’l. Conf. on Software Engineering, 2013, pp.
1295–1298.

[9] B. A. Campbell and C. Treude, “NLP2Code: Code snippet content
assist via natural language tasks,” in Proc. Int’l. Conf. on Software
Maintenance and Evolution, 2017, to appear.

[10] T. Fritz and G. C. Murphy, “Using information fragments to answer the
questions developers ask,” in Proc. Int’l. Conf. on Software Engineering
- Vol. 1, 2010, pp. 175–184.

[11] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask
during software evolution tasks,” in Proc. Int’l. Symp. on Foundations
of Software Engineering, 2006, pp. 23–34.

[12] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and Usability of Programming Languages and Tools,
2010, pp. 8:1–8:6.

[13] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proc. Int’l. Conf. on Software Engi-
neering, 2007, pp. 344–353.

[14] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. Murphy,
L. Moreno, D. Shepherd, and E. Wong, “On-demand developer docu-
mentation,” in Proc. Int’l. Conf. on Software Maintenance and Evolution,
2017, to appear.

https://gist.github.com/
https://code.msdn.microsoft.com/
http://kodejava.org/

	Understanding stack overflow code fragments
	Citation

	tmp.1718268988.pdf.gvy4h

