
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2021

How do software developers use github actions to automate their How do software developers use github actions to automate their

workflows? workflows?

Timothy KINSMAN

Mairieli WESSEL

Marco GEROSA

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
KINSMAN, Timothy; WESSEL, Mairieli; GEROSA, Marco; and TREUDE, Christoph. How do software
developers use github actions to automate their workflows?. (2021). Proceedings of the 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR), Virtual Conference, May 17-19.
420-431.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8858

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8858&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

How Do Software Developers Use GitHub Actions
to Automate Their Workflows?

Timothy Kinsman∗, Mairieli Wessel†, Marco A. Gerosa‡ and Christoph Treude∗
∗University of Adelaide, Australia
†University of São Paulo, Brazil

‡Northern Arizona University, USA

timothy.kinsman@student.adelaide.edu.au, mairieli@ime.usp.br,

marco.gerosa@nau.edu, christoph.treude@adelaide.edu.au

Abstract—Automated tools are frequently used in social coding
repositories to perform repetitive activities that are part of
the distributed software development process. Recently, GitHub
introduced GitHub Actions, a feature providing automated work-
flows for repository maintainers. Although several Actions have
been built and used by practitioners, relatively little has been
done to evaluate them. Understanding and anticipating the effects
of adopting such kind of technology is important for planning
and management. Our research is the first to investigate how
developers use Actions and how several activity indicators change
after their adoption. Our results indicate that, although only a
small subset of repositories adopted GitHub Actions to date,
there is a positive perception of the technology. Our findings
also indicate that the adoption of GitHub Actions increases the
number of monthly rejected pull requests and decreases the
monthly number of commits on merged pull requests. These
results are especially relevant for practitioners to understand
and prevent undesirable effects on their projects.

Index Terms—GitHub Actions, GitHub Bots, Automated work-
flow, Regression Discontinuity Design

I. INTRODUCTION

Social coding platforms, such as GitHub, have changed

the collaborative nature of open source software development

by integrating mechanisms such as issue reporting and pull

requests into distributed version control tools [1, 2]. This

pull-based development workflow offers new opportunities for

community engagement but at the same time increases the

workload for repository maintainers to communicate, review

code, deal with contributor license agreement issues, explain

project guidelines, run tests, and merge pull requests [3].

To reduce this intensive workload, developers often rely

on automation tools to perform repetitive tasks to check

whether the code builds, the tests pass, and the contribution

conforms to a defined style guide [4]. GitHub projects adopt,

for example, tools to support Continuous Integration and

Continuous Delivery or Deployment (CI/CD) [5, 6] and for

code review [4]. In recent years, software bots have been

widely adopted to automate a variety of predefined tasks

around pull requests [7]. By automating part of the workflow,

developers hope to increase both productivity and quality [8].

To further support automation, GitHub recently introduced

GitHub Actions1 (the feature was made available to the public

1https://github.com/features/actions

in November 2019). GitHub Actions allow the automation of

tasks based on various triggers (e.g., commits, pull requests,

issues, comments, etc.) and can be easily shared from one

repository to another, making it easier to automate how

developers build, test, and deploy software projects.

However, little is known about the impact of such kind of

automation and the challenges it might impose on the project

development process. In this paper, we aim to understand how

software developers use GitHub Actions to automate their

workflows and how the dynamics of pull requests of GitHub

projects change following the adoption of GitHub Actions. To

achieve our goal, we address the following research questions:

RQ1: How do OSS projects use GitHub Actions?
We aim to understand how commonly repositories use

GitHub Actions and what they use them for. As a results of this

analysis, we found a small subset of active repositories (0.7%

of the 416,266 repositories) adopted GitHub Actions. These

Actions are spread across 20 categories, including continuous

integration, utilities, and deployment. We also analyzed the

commit history of files related to GitHub Action workflows

to understand how the use of predefined Actions evolves over

time. Overall, we found that a typical Action is added two

times, and never removed or modified.

RQ2: How is the use of GitHub Actions discussed by
developers?

To gain an insight into how developers perceive GitHub

Actions, we manually analyzed a set of 209 GitHub issues

that discuss GitHub Actions. We found distinct categories

of discussions related to GitHub Actions’ maintenance and

implementation, including switching other automation tools to

Actions, suggestions to implement Actions, and problems and

frustrations.

RQ3: What is the impact of GitHub Actions?
In this RQ, we investigate whether project activity indica-

tors, such as the number of pull requests merged and non-

merged, number of comments, the time to close pull requests,

and number of commits change after GitHub Actions adoption.

We used a Regression Discontinuity Design [9] to model the

effect of Action adoption across 926 projects that had adopted

GitHub Actions for at least 6 months. Our findings indicate

that, on average, there are more rejected pull requests and

420

2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)

978-1-7281-8710-5/21/$31.00 ©2021 IEEE
DOI 10.1109/MSR52588.2021.00054

20
21

 IE
EE

/A
C

M
 1

8t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

in
in

g
So

ftw
ar

e
R

ep
os

ito
rie

s (
M

SR
) |

 9
78

-1
-7

28
1-

87
10

-5
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

SR
52

58
8.

20
21

.0
00

54

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

fewer commits on merged pull requests after adopting GitHub

Actions.

In summary, we make the following contributions: (i) bring-

ing attention to GitHub Actions, a relevant yet neglected

resource that offers support for developers’ tasks; (ii) char-

acterizing the usage of GitHub Actions, and (iii) providing

an understanding of how GitHub Actions’ adoption impacts

project activities and what developers discuss about them.

II. WORKFLOW AUTOMATION WITH GITHUB ACTIONS

GitHub Actions is an event-driven API provided by the

GitHub platform to automate development workflows. GitHub

Actions can run a series of commands after a specified event

has occurred. An event is an specific activity that triggers a

workflow run, as shown in Figure 1 (see the icon). For

example, a workflow is triggered when a pull request is created

for a repository or when a pull request is merged into the

main branch. Workflows are defined in the .github/workflows/
directory and use YAML syntax, having either a .yml or .yaml

file extension.

A workflow can contain one or more Actions. Developers

can create their own Actions by writing custom code that

interacts with their repository, and use them in their workflows

or publish them on the GitHub Marketplace. GitHub allows

developers to build Docker and JavaScript Actions and both

require a metadata file to define the inputs, outputs, and main

entry point of the Action.

After the successful execution of a workflow, the outputs

can be displayed in different ways. One of the possibilities is

through a GitHub Action bot. This bot, as any other bot on

GitHub, is implemented as a GitHub user that can submit code

contributions, interact through comments, and merge or close

pull requests [10]. Recently, developers published GitHub

Action variants for many well-known bots (e.g., Coveralls,

Codecov, Snyk) and these Actions are rapidly increasing in

popularity [11].

As an example of GitHub Actions adoption, consider the

case of the project Grammapy2, an open-source Python pack-

age for gamma-ray astronomy. As of the 13th of November,

2019, the Grammapy community adopted a GitHub Action

called First Interaction3, which is responsible for identifying

and welcoming newcomers when they create their first issue or

open their first pull request on a project. As shown in Listing 1,

Grammapy created a workflow called Greeting that might be

triggered by both new pull requests and issues, as defined by

the on keyword. The output of the First Interaction Action

is displayed through an issue/pull request comment posted

by GitHub Action Bot when a new pull request or issue is

authored by a new contributor. An example of this Action

interaction on a GitHub issue is shown in Figure 2.

2https://github.com/gammapy/gammapy
3https://github.com/marketplace/actions/first-interaction

name: Greetings

on: [pull_request, issues]

jobs:
greeting:

runs-on: ubuntu-latest
steps:
- uses: actions/first-interaction@v1

with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
issue-message: 'Merci! We will respond
to your issue shortly. In the meantime,
try `import gammapy; gammapy.song()`'
pr-message: 'Graçias! We will review
your pull request shortly. In the
meantime, try `import gammapy;
gammapy.song(karaoke=True)`'

Listing 1: Greetings workflow of Gammapy – greetings.yml

III. RESEARCH DESIGN

This study aims to understand GitHub Actions usage in

GitHub projects. In the following, we present our study design,

data collection, and analysis procedures.

A. Selecting Projects

We assembled a dataset of GitHub open-source projects that

adopted GitHub Actions at some point in their history. To

compose our study sample, we started by selecting repositories

from GitHub. For this, we used the GitHub project metadata

of Munaiah et al.’s [12] RepoReapers data set, which con-

tained 446,862 GitHub repositories classified as containing an

engineered software project.

We then filter this dataset to keep open-source software

projects that at some point had adopted a GitHub Action.

To identify these projects, we retrieved data from the GitHub

API using a Ruby toolkit called Octokit.rb.4 We verified

whether the repositories had files of yaml format in the

./github/workflows directory. This filtered dataset comprises

3,190 projects.

B. Analyzing the use of GitHub Actions

First, we collected and quantitatively analyzed the number

of projects using GitHub Actions and the number of Actions

per project (RQ1). We also analyzed the workflow files of the

studied projects searching for the category, description, and

whether the Action was verified by GitHub. To understand

the evolution of GitHub Actions, we retrieve the commit

history of each workflow file used by the studied projects.

For this purpose, we compared the commit history looking for

changes regarding Actions, which include addition, removal,

configuration change, or version update.

C. Categorizing GitHub Actions Discussions

To answer RQ2, we gathered issues from the repositories

that mention either “github action” or “github actions”, have

4http://octokit.github.io/octokit.rb/

421

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

Main branch

Submitting a
Pull Request

Creating a
branch

Discussions, reviews,
and improvements

Merging a Pull
Request

Commiting new
contribution Deploying

M

Fig. 1: GitHub workflow automation with GitHub Actions (adapted from GitHub).

Fig. 2: Example of github-actions bot greeting a newcomer.

at least one comment, and were posted after the release of

the GitHub Actions feature. We collected 209 issues that

met these criteria. After collecting these issues, we manually

analyzed and categorized them. Two researchers independently

conducted the manual classification. The first author of this

paper conducted the manual classification of the 209 issues.

Another researcher categorized a subset of 25 random issues

using the same model. We scored a free-marginal kappa value

of 0.66. We then conducted a second negotiation round and

scored a free-marginal kappa value of 0.76. Fleiss et al. [13]

state that the rule of thumb is that kappa values less than 0.40

are poor, values from 0.40 to 0.75 are intermediate to good,

and values above 0.75 are excellent.

D. Time series analysis

To answer RQ3, we conducted a time series analysis. We

collected longitudinal data for different outcome variables and

treated the adoption of GitHub Actions by each project in

our data set as an “intervention”. This way, we could align

all the time series of project-level outcome variables on the

intervention date and compare their trends before and after

adopting Actions.

In the following subsections, we detail the different steps

involved, from filtering the initial data set to running the

statistical models.

1) Aggregating project variables: We analyzed data from

6 months before and 6 months after the Action adoption.

Similarly to previous work [5, 6, 14], we exclude 30 days

around the Action adoption date to avoid the influence of the

instability caused during this period. Afterward, we aggregated

individual pull request data into monthly periods, considering

6 months before and after the Action introduction. Afterward,

we checked the activity level of the candidate projects, since

many projects on GitHub are inactive [2]. We removed from

our dataset (i) projects that did not received any pull requests

or (ii) that disabled the Actions during the period we con-

sidered. After applying all filters, our data set comprises 926

active projects that have been using at least one GitHub Action

for 6 months. We focused on the same pull request related

variables as in previous work [14]:

Merged/non-merged pull requests: the number of monthly

contributions (pull requests) that have been merged, or closed

but not merged into the project, computed over all closed pull

requests in each time frame.

Comments on merged/non-merged pull requests: the median

number of monthly comments computed over all merged and

non-merged pull requests in each time frame.

Time-to-merge/time-to-close pull requests: the median of

monthly pull request latency (in hours), computed as the

difference between the time when the pull request was closed

and the time when it was opened. The median is computed

using all merged and non-merged pull requests in each time

frame.

Commits of merged/non-merged pull requests: the median of

monthly commits computed over all merged and non-merged

pull requests in each time frame.

Based on previous work [5, 6, 14], we also collected six

known covariates for each project:

Project name: the name of the project to which the pull

request belongs. This name is used to uniquely identify the

project on GitHub.

Programming language: the primary project programming

language, as automatically provided by GitHub.

Time since the first pull request: in months, computed since

the earliest recorded pull request in the entire project history.

We use this variable to capture the project maturity when it

comes to the pull request usage.

Total number of pull request authors: we count how many

contributors submitted pull requests to the project as a proxy

for the size of the project community.

Total number of commits: we compute the total number of

commits as a proxy for the activity level of a project.

Number of pull requests opened: the number of monthly

contributions (pull requests) received in each time frame. We

expect that projects with a high number of contributions also

422

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

observe a high number of comments, latency, commits, and

merged and non-merged contributions.

2) Statistical Approach: We modeled the effect of GitHub

Action adoption over time across GitHub repositories using a

Regression Discontinuity Design (RDD) [9, 15], following the

work of Wessel et al. [14]. RDD is a technique used to model

the extent of a discontinuity at the moment of intervention

and long after the intervention. The technique is based on the

assumption that if the intervention does not affect the outcome,

there would be no discontinuity, and the outcome would be

continuous over time [16]. The statistical model behind RDD

is

yi = α+ β · timei + γ · interventioni +

δ · time after interventioni + η · controlsi + εi

where i indicates the observations for a given project.

To model the passage of time as well as the GitHub Action

introduction, we rely on three variables: time, time after
intervention, and intervention. The time variable is measured

as months at the time j from the start to the end of our

observation period for each project. We considered a time

period of 12 months for this study, 6 months before and after

bot adoption.

The intervention variable is a binary value used to indicate

whether the time j occurs before (intervention = 0) or after the

(intervention = 1) adoption event. The time after intervention
variable counts the number of months at time j since the

Action adoption, and the variable is set to 0 before adoption.

The controlsi variables enable the analysis of Action adoption

effects, rather than confounding the effects that influence the

dependent variables. For observations before the intervention,

holding controls constant, the resulting regression line has a

slope of β, and after the intervention β + δ. The size of the

intervention effect is measured as the difference equal to γ
between the two regression values of yi at the moment of the

intervention.

Considering that we are interested in the effects of GitHub

Actions on the monthly trend of the number of pull requests,

number of comments, time-to-close pull requests, and number

of commits for both merged and non-merged pull requests,

we fitted eight models (4 variables × 2 cases). To balance

false-positives and false-negatives, we report the corrected p-

values after applying multiple corrections using the method

of Benjamini and Hochberg [17]. We implemented the RDD

models as a mixed-effects linear regression using the R pack-

age lmerTest [18].

Following the work of Wessel et al. [14], we mod-

eled project name and programming language as random

effects [19] to capture project-to-project and language-to-

language variability [5]. We evaluate the model fit using

marginal (R2
m) and conditional (R2

c) scores, as described by

Nakagawa and Schielzeth [20]. The R2
m can be interpreted as

the variance explained by the fixed effects alone, and R2
c as the

variance explained by the fixed and random effects together.

In mixed-effects regression, the variables used to model the

intervention along with the other fixed effects are aggregated

across all projects, resulting in coefficients useful for inter-

pretation. The interpretation of these regression coefficients

supports the discussion of the intervention and its effects, if

any. Thus, we report the significant coefficients (p < 0.05)

in the regression as well as their variance, obtained using

ANOVA. In addition, we log transform the fixed effects and

dependent variables that have high variance [21]. We also

account for multicollinearity, excluding any fixed effects for

which the variance inflation factor (VIF) is higher than 5 [21].

IV. RESULTS

In the following, we report the results of our study per

research question.

A. How do OSS projects use GitHub Actions (RQ1)?
Analyzing a set of 416,266 active (i.e., received pull

requests in the relevant time frame, see previous section)

repositories, we identified 3,190 (0.7%) open-source software

projects that had adopted at least one GitHub Action at the

time of our data collection. Figure 3 reports the absolute

number of repositories that use GitHub Actions grouped by

programming language, showing that the most prominent

adopters of GitHub Actions are Python repositories, followed

by Java and Ruby.

Fig. 3: Number of repositories that use GitHub Actions.

We collected the data only 10 months after GitHub Actions

was released to the public and our data show that a number

of projects had already adopted the technology. Of the 3,190

GitHub repositories that use GitHub Actions, we found a total

of 708 different predefined Actions.
We collected data from each Action’s repository and also

from the GitHub Marketplace5 page to categorize the Actions.

5https://github.com/marketplace?type=actions

423

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

If published in the marketplace, an Action is classified in 1–2

categories by the publisher. Table I presents the categorization

of Actions we found. Note that the percentages do not add

up to 100 since about half of the Actions are assigned to two

categories, a primary one and a secondary one.

TABLE I: Categorization of Actions found within GitHub

Actions workflows.

Actions’ Categories # of Actions %
Continuous integration 192 27.12
Utilities 173 24.44
Deployment 87 12.29
Publishing 70 9.89
Code quality 53 7.49
Code review 45 6.36
Dependency management 36 5.08
Testing 33 4.66
Open Source management 30 4.24
Project management 27 3.81
Container CI 25 3.53
Chat 18 2.54
Security 13 1.84
Community 6 0.85
Desktop tools 5 0.70
Mobile 5 0.70
Mobile CI 4 0.56
IDEs 3 0.42
Monitoring 3 0.42
Localization 2 0.28
Uncategorised 280 39.55
total Actions 708 156.77

The five most frequent categories of Actions are the follow-

ing:

Continuous integration: Actions responsible for running the

CI pipeline and notifying contributors of test failures in CI

tools (e.g., Retry Step, Chef Delivery).

Utilities: Actions created to automate diverse steps of the

development workflow on the GitHub platform, often in

support of other Actions. The Read Properties Action, for

example, inspects Java .properties files looking for predefined

properties. Another example of a utility Action is Replace
string, which replaces strings that match predefined regular

expressions.

Deployment: Actions designed to build and deploy the appli-

cation upon request. One example is the Action called Jekyll
Deploy, responsible for building and deploying the Jekyll site

to GitHub Pages.

Publishing: Actions responsible for automatically publishing

packages to the registry. For example, Action For Semantic
Release is an Action that leverages semantic-release to fully

automate the package release workflow, determining the next

version number, generating the release notes and publishing

the package.

Code quality: Actions that analyze source code (e.g., code

style, code coverage, code quality, and smells) submitted

through pull requests and give feedback to developers via

GitHub checks or comments.

In addition, we found that 42 (5.93%) out of 708 Actions

are verified by GitHub. Creators are verified if they have an

TABLE II: GitHub Actions that were added most often.

Action # Description

actions/checkout 7,962 Check out a repository
actions/setup-python 1,756 Set up workflow with Python
actions/cache 1,729 Cache dependencies/build outputs
actions/upload-artifact 1,441 Upload artifacts from workflow
actions/setup-java 877 Set up workflow with Java
actions/download-artifact 580 Download artifacts from build
shivammathur/setup-php 434 Set up workflow with PHP
actions/setup-ruby 373 Set up workflow with Ruby
codecov/codecov-action 253 Upload coverage to Codecov
actions/setup-dotnet 225 Set up workflow with .NET

TABLE III: GitHub Actions that were removed often.

Action rm/add Description

masa-iwasaki/setup-rbenv 1.00 Rbenv setup
meeDamian/github-release 0.94 Github Releases
eregon/use-ruby-action 0.81 Prebuilt Ruby
jakejarvis/s3-sync-action 0.77 Sync with S3
harmon758/postgresql-action 0.73 PostgreSQL setup
kiegroup/github-action-build-chain 0.67 Build multiple projects
alexjurkiewicz/setup-ccache 0.67 Ccache setup
actions/labeler 0.64 Pull request labelling
SamKirkland/FTP-Deploy-Action 0.64 FTP server deploy
coverallsapp/github-action 0.62 Coveralls upload

existing relationship with GitHub, and GitHub has worked

closely with the creator to create these Actions.

The five most popular Actions are the following:

actions/checkout: A verified, utility Action that checks-out a

repository under \$GITHUB_WORKSPACE. Therefore, a work-

flow can access the repository for further workflow tasks.

actions/setup-python: A verified, utility Action that sets up a

Python environment for use in a workflow, allowing the use

of Python features and commands.

actions/cache: A verified utility and dependency management

Action that allows caching dependencies and building outputs

to improve workflow execution time.

actions/upload-artifact: A verified utility Action that uploads

artifacts from a workflow, allowing developers to share data

between jobs and store data once a workflow is complete.

actions/setup-java: A verified utility action that sets up a Java

environment for use in a workflow, allowing the use of Java

features and commands, such as compiling and executing.

Analyzing the version histories of these GitHub reposito-

ries, we found that in addition to adding a GitHub Action,

repositories also removed Actions, modified their arguments,

and updated their versions. We investigated how often these

events occur and which Actions were most affected.

Table II shows the top 10 GitHub Actions that were added

to a repository most often. At the median, Actions were added

two times (average: 30).

Naturally, the Actions that were added most often are also

the ones that were removed most often. Instead of absolute

numbers, we therefore analyzed the relative frequency of

removals, i.e., how often different Actions were removed

compared to how often they were added. Table III shows the

424

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: GitHub Actions with many arguments modified.

Action mod/add Description

andstor/copycat-action 5.45 File copying
reactivecircus/android-emulator-runner 0.62 Android Emulators
julianoes/Publish-Docker-Github-Action 0.51 Publish docker
archive/github-actions-slack 0.50 Messages to Slack
nanasess/setup-chromedriver 0.45 ChromeDriver setup
elgohr/Publish-Docker-Github-Action 0.43 Publish docker
google/oss-fuzz 0.42 Fuzz testing
docker/build-push-action 0.41 Docker with Buildx
actions/setup-dotnet 0.38 .NET setup
SamKirkland/FTP-Deploy-Action 0.36 FTP server deploy

TABLE V: GitHub Actions with many versions changed.

Action vc/add Description

gaurav-nelson/github-action
-markdown-link-check 1.79 Link checker

SamKirkland/FTP-Deploy-Action 0.91 FTP server deploy
technote-space/get-diff-action 0.75 Git diff
actions/github-script 0.71 GitHub via JavaScript
homoluctus/slatify 0.64 Slack Notifications
stefanzweifel/git-auto-commit-action 0.60 Automatically Commit
crazy-max/ghaction-docker-buildx 0.60 Docker with Buildx
peter-evans/create-pull-request 0.53 Pull request creation
cirrus-actions/rebase 0.50 Rebase pull requests
puppetlabs/action-litmus parallel 0.47 Workflow files org.

ten Actions that were removed most often in relative terms.

We limited this and the following analyses in this section to

Actions that were added at least ten times. As the table shows,

masa-iwasaki/setup-rbenv was removed in all cases

where it had previously been added. Looking at the Action’s

README file,6 this is unsurprising since it contains the note

‘Do Not Use This Action’. Other Actions were removed less

frequently, with a median of zero removals (average: 5). Some

of the Actions in the top 10 have several issues reported

against them regarding not being able to run on some operating

systems.7

Table IV shows the GitHub Actions which had their argu-

ments modified most often, in relative terms. For example,

the arguments of andstor/copycat-action, an Action

to copy files from a repository to another external repository,

were changed 5.45 times as often as the Action was added.

This Action has 15 arguments, including ones to indicate the

source and destination of the copy. At the median, GitHub

Actions had their arguments modified zero times, with an

average of 3.

Some GitHub Actions were also frequently updated (aver-

age: 3, median: 0). Table V shows the Actions that had their

versions modified most often, compared to how often they

were added. The Action at the top of this list is under active

development, with nine releases in the past six months at the

time of writing.

6https://github.com/masa-iwasaki/setup-rbenv
7e.g., https://github.com/meeDamian/github-release/issues/20

Answer to RQ1. We identified 3,190 active GitHub repos-

itories which have adopted the GitHub Actions feature. We

found 708 unique predefined Actions being used within the

workflows. These Actions are spread across 20 categories.

The most recurrent ones are continuous integration, utili-

ties, and deployment. A typical (median) GitHub Action is

added twice, and never removed or modified. Some of the

Actions are removed, their arguments modified, and their

versions changed many times, which might be explained

by their characteristics, such as release history or number

of arguments.

B. How is the use of GitHub Actions discussed by developers?
(RQ2)

We categorized 209 GitHub issues based on the content of

the discussion. Table VI shows an overview of this categoriza-

tion, indicating how many issues we found in each category.

We present the categories in the following.

TABLE VI: Categorization of discussion.

Issues’ Categories # of Issues %
GitHub Actions maintenance 43 20.57
Announcement GitHub Actions 35 16.74
Requesting GitHub Actions to be implemented 34 16.27
Switching CI/CD tools to GitHub Actions 32 15.31
GitHub Actions problems and frustrations 31 14.83
Other 31 14.83
sum 209 100

GitHub Actions maintenance: The most recurrent topic dis-

cussed by open-source contributors and maintainers regarding

GitHub Actions is their maintenance. Within this category,

we classified issues which developers used to discuss about

maintaining GitHub Actions, adding or requesting features to

pre-existing GitHub Actions, quick fixes, workarounds, and

requesting admin rights. One maintainer, for example, opened

an issue to request changes in an Action responsible for

reporting diffs: “At the moment, GitHub Action for diff report
generation is triggered by PR changes and comment addition.
[...] Pull request should be removed and only comment trigger
is left.” Another example relates to issues pointing to small

fixes in the README file, for example, as a result of moving

to GitHub Actions.

Announcement of GitHub Actions: Another recurrent topic

discussed by open-source developers on GitHub issues is when

a new Action is announced. This category also comprises

issues announcing that GitHub Actions has been implemented

(not replacing pre-existing CI/CD platforms).

Requesting GitHub Actions to be implemented: We also

found issues suggesting GitHub Actions to be looked into or

requesting the use of GitHub Actions. We found, for example,

a developer requesting to create an Action to add a label “had
PR” to an issue once the pull request that solves a specific

issue is submitted.

Switching CI/CD tools to GitHub Actions: Developers often

create issues to discuss switching from a pre-existing CI/CD

425

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

platform (e.g., CircleCI, Jenkins, TravisCI) to GitHub Actions

(not including implementing GitHub Actions in parallel with

pre-existing CI/CD tools).

GitHub Actions problems and frustrations: This category

encompasses bugs, broken builds, errors, and frustrations

related to GitHub Actions. There are bugs caused by a failure

of a service the Action relies on. For example, a maintainer

opened an issue to report that the “GitHub Actions on Mac
and Windows fail due to missing Numpy.”

Other: Issues within this category relate to bugs pointed out

by GitHub Actions, noise, or other discussions that do not fall

into other categories.

Answer to RQ2. Overall, discussions involving problems

and frustrations are outweighed by announcements that

GitHub Actions had been implemented, requesting imple-

mentation, and switching CI/CD tools.

C. What is the Impact of GitHub Actions? (RQ3)

To answer this question, we investigated the effects of

GitHub Action adoption on project activities along four di-

mensions: (i) merged and non-merged pull requests, (ii) human

conversation, (iii) efficiency to close pull requests, and (iv)

modification effort. We start by investigating how Action

adoption impacts the number of merged and non-merged pull

requests. We fit two mixed-effect RDD models, as described in

Section III-D2. For these models, the number of merged/non-
merged pull requests per month is the dependent variable.

Table VII summarizes the results of these models. In addition

to the model coefficients, the table also shows the sum of

squares, with a variance explained for each variable.

TABLE VII: The Effects of GitHub Actions on PRs. The

response is log(number of merged/non-merged PRs) per

month.

Merged PRs Non-merged PRs

Coeffs Sum Sq. Coeffs Sum Sq.

Intercept -0.203*** -0.159**
TimeSinceFirstPR 0.0002 47.7 -0.001** 6.95
log(TotalPRAuthors) -0.002 638.6 0.028*** 133.69
log(TotalCommits) 0.020*** 236.5 0.017** 34.65
log(OpenedPRs) 0.770*** 3393.8 0.230*** 530.86
log(PRComments) 0.048*** 48.9 0.342*** 410.05
log(PRCommits) 0.246*** 105.8 0.200*** 73.24
time 0.004 1.0 -0.004* 0.01
interventionTrue 0.014 0.1 0.002 0.03
time after intervention -0.004 0.2 0.008** 0.47

Marginal R2 0.88 0.64

Conditional R2 0.91 0.78

*** p < 0.001, ** p < 0.01, * p < 0.05

Analyzing the model for merged pull requests, we found that

the fixed-effects part fits the data well (R2
m = 0.88). However,

considering R2
c = 0.91, variability also appears from project-

to-project and language-to-language. Among the fixed effects,

we note that the number of monthly pull requests explains

most of the variability in the model, indicating that projects

receiving more contributions tend to have more merged pull

requests, with other variables held constant. None of the

Action-related predictors have statistically significant effects,

meaning the trend in the number of merged pull requests is

stationary over time, and remains unaffected by the Action

adoption.

Similarly to the previous model, the fixed-effect part of the

non-merged pull requests model fits the data well (R2
m =

0.64), even though a considerable amount of variability is

explained by random effects (R2
c = 0.78). We note similar

results on fixed effects: projects receiving more contributions

tend to have more non-merged pull requests. In addition, pull

requests receiving more comments tend to be rejected. The

effect of Action adoption on the non-merged pull requests

differs from the previous model. Regarding the time series

predictors, the model did not detect any discontinuity at

adoption time. However, the negative trend in the number

of non-merged pull requests before the Action adoption is

reversed, toward an increase after adoption.

TABLE VIII: The Effects of GitHub Actions on Pull Request

Comments. The response is log(median of comments) per

month.

Merged PRs Non-merged PRs

Coeffs Sum Sq. Coeffs Sum Sq.

Intercept 0.020 -0.058**
TimeSinceFirstPR -0.001*** 3.29 -0.001*** 10.98
log(TotalPRAuthors) 0.055*** 47.49 0.031*** 169.33
log(TotalCommits) -0.008 2.71 0.002 25.67
log(OpenedPRs) -0.005 40.87 0.051*** 217.05
log(TimeToClosePRs) 0.077*** 376.95 0.113*** 930.91
log(PRCommits) 0.213*** 70.48 0.199*** 75.38
time -0.009*** 1.54 0.002 0.00
interventionTrue 0.001 0.02 -0.002 0.01
time after intervention 0.009*** 0.70 -0.003 0.05

Marginal R2 0.38 0.65

Conditional R2 0.54 0.70

*** p < 0.001, ** p < 0.01, * p < 0.05

To investigate the effects of Action adoption on pull request

communication, we fit one model to merged pull requests

and another to non-merged ones. The median of pull request
comments per month is the dependent variable. Table VIII

shows the results of the fitted models. Considering the model

of comments on merged pull requests, we found that the

combined fixed-and-random effects (R2
c = 0.54) fit the data

better than the fixed effects (R2
m = 0.38), showing that

most of the explained variability in the data is associated

with project-to-project and language-to-language variability,

rather than the fixed effects. Additionally, we also observe

that time-to-close pull requests explains the largest amount

of variability in the model, indicating that the communication

during the pull request review is strongly associated with the

time to merge it. Regarding the Action effects, we note a

decreasing time baseline trend before adoption; no statistically

significant discontinuity at the adoption time; and an apparent

neutralization of the aforementioned time trend after adoption,

as β(time) + δ(time after intervention) � 0.

426

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

Turning to the model of comments on non-merged pull

requests, the model fits the data well (R2
m = 0.65) and

there is also variability explained by the random variables

(R2
c = 0.70). This model also suggests that communication

during the pull request review is strongly associated with the

time to reject the pull request. Table VIII shows that none

of the Action-related predictors have statistically significant

effects, meaning the comments trend in non-merged pull

requests is stationary over time, and remains unaffected by

the Action adoption.

TABLE IX: The Effects of GitHub Actions on Time-to-close

PRs. The response is log(median of time-to-close PRs) per

month.

Merged PRs Non-merged PRs

Coeffs Sum Sq. Coeffs Sum Sq.

Intercept -0.374** 0.053
TimeSinceFirstPR -0.003** 130.3 0.0004 322.6
log(TotalPRAuthors) 0.218*** 1386.1 0.067** 3733.9
log(TotalCommits) 0.021 155.6 -0.028 530.3
log(OpenedPRs) -0.139*** 1046.3 0.089*** 4588.4
log(PRComments) 1.528*** 8543.4 2.816*** 23589.5
log(PRCommits) 1.520*** 4145.8 1.011*** 1967.1
time 0.013 2.5 -0.005 0.3
interventionTrue -0.053 2.1 -0.003 0.0
time after intervention -0.004 0.1 0.006 0.3

Marginal R2 0.47 0.63

Conditional R2 0.57 0.67

*** p < 0.001, ** p < 0.01, * p < 0.05

We fitted two RDD models where median of time to close
pull requests per month is the dependent variable. The results

are shown in Table IX. Analyzing the results to the effect

of GitHub Actions on the latency to merge pull requests,

we found that combined fixed-and-random effects fit the data

better than the fixed effects. Although several variables affect

the trends of pull request latency, communication during the

pull requests is responsible for most of the variability in

the data. This indicates the expected results: the more effort

contributors expend discussing the contribution, the more time

the contribution takes to merge. The number of commits

also explains the amount of data variability, since a project

with many changes needs more time to review and merge

them. However, none of the Action-related predictors have

statistically significant effects on the time spent to merge pull

request.

Turning to the model of non-merged pull requests, we note

that it fits the data well (R2
m = 0.63), and there is also a

variability explained by the random variables (R2
c = 0.67). As

above, communication during the pull requests is responsible

for most of the variability encountered in the results. Similar

to the previous model, none of the Action-related predictors

have statistically significant effects on the time spent to reject

pull request.

Finally, we studied whether Action adoption affects the

number of commits made before and during the pull request

review. Again, we fitted two models for merged and non-

merged pull requests, where the median of pull request com-

TABLE X: The Effects of GitHub Actions on Pull Request

Commits. The response is log(median of commits) per month.

Merged PRs Non-merged PRs

Coeffs Sum Sq. Coeffs Sum Sq.

Intercept -0.020*** -0.075**
TimeSinceFirstPR 0.001** 7.02 -0.00004 14.14
log(TotalPRAuthors) -0.060*** 83.99 -0.012* 233.35
log(TotalCommits) 0.019** 41.86 0.019*** 71.96
log(OpenedPRs) 0.247*** 440.55 0.117*** 352.79
log(PRComments) 0.541*** 441.40 0.611*** 758.36
time 0.010*** 1.97 0.002 0.00
interventionTrue 0.039** 0.56 -0.009 0.07
time after intervention -0.015*** 3.18 -0.002 0.03

Marginal R2 0.47 0.49

Conditional R2 0.60 0.54

*** p < 0.001, ** p < 0.01, * p < 0.05

mits per month is the dependent variable. The results are

shown in Table X. Analyzing the model of commits on merged

pull requests, we found that the combined fixed-and-random

effects (R2
c = 0.60) fit the data better than the fixed effects

(R2
m = 0.47). The statistical significance of all Action-related

coefficients indicates that the adoption of Actions affected

the number of commits. We note an increasing trend before

adoption and a statistically significant discontinuity at the

adoption time. Further, the positive trend in the number of

merged pull requests before the Action adoption is reversed,

toward a decrease after adoption. Additionally, we can also

observe that the number of pull request comments and the

number of contributions per month explains most of the

variability in the result. This result suggests that the more

comments and pull requests there are, the more commits there

will be.

Investigating the results of the non-merged pull request

model, we also found that the combined fixed-and-random

effects fit the data better than the fixed effects. Similar to

the previous model, the number of pull request comments

per month explains most of the variability in the result.

Regarding the time series predictors, the model did not detect

any discontinuity at adoption time. However, the positive trend

in the median of commits before the bot adoption is reversed,

toward a decrease after adoption.

Answer to RQ3. After adopting GitHub Actions, on

average, there are more rejected pull requests and fewer

commits on merged pull requests.

V. DISCUSSION

Recently, an easy, reusable, and portable way to automate

developers’ workflows on GitHub was made possible by the

advent of GitHub Actions. So far, the literature presents

scarce evidence on the use of GitHub Actions by GitHub

repositories [11]. In this work, we contribute by introducing

and systematizing evidence on the use, evolution, and impacts

of such Actions. Our findings contribute new knowledge about

how software developers use GitHub Actions. Firstly, we

427

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

showed that 3,190 (0.7%) of the 416,266 repositories in our

data set had already adopted GitHub Actions at the time of

analysis. In addition, we found that 708 unique predefined

Actions have been used within the repositories using GitHub

Actions. While 39.55% of these Actions were uncategorized,

5.93% were verified, indicating that the majority of the Actions

on GitHub are created by the community. Uncategorized

Actions are Actions that have not been published to the

GitHub Marketplace, thus this percentage indicates an active

community surrounding GitHub Actions.

Analyzing the historical evolution of Actions, we found that

some of the Actions require maintenance after being added to

a repository. While a typical (median) Action is added twice

(to the same or different repositories) and never removed or

modified, a significant minority of Actions are removed, have

their arguments modified, or are updated to new versions. For

repository maintainers, this means that adding a GitHub Action

effectively adds yet another dependency to a project that needs

to be maintained, might become outdated, and needs to be

adjusted over time. On the other hand, this is not unexpected

for a new feature, and in fact all repositories that have adopted

GitHub Actions to date can be seen as early adopters. A typical

Action also does not appear to require ongoing maintenance,

at least not in the time window considered in our study.

Announcements that GitHub Actions had been imple-

mented, requesting implementation and switching CI/CD tools

outweighed the discussions involving problems and frustra-

tions, thus indicating a positive perception of GitHub Actions.

With a new feature such as GitHub Actions, it would not

be surprising if some negative sentiment would be found in

corresponding discussion forums, in particular asking why yet

another feature is needed. However, anecdotally, developers

seem to appreciate the premise of GitHub Actions to help

standardize the use of bots on GitHub, and in fact a good por-

tion of the discussions was about switching CI/CD tools that

a repository already used to their GitHub Actions equivalent.

We found that two activity indicators have a statistically

significant effect on the pull request process after the adoption

of an GitHub Action. According to the regression results, the

median number of rejected pull requests increases after the

adoption of Actions. This may indicate that project maintainers

started to have faster and clearer feedback on the pull request,

helping them to identify major issues on a vast number of

contributions. Moreover, GitHub Actions produce different

effects on non-merged pull requests when compared to the

effects of adopting software bots—Wessel et al. [14] reported

that the introduction of bots on pull requests’ reviews leads to

fewer rejected pull requests.

From the regression results, we also noticed an increase in

the median number of commits on merged pull requests just

after bot adoption. It makes sense from the contributors’ side,

since the Action introduces a secondary evaluation step to the

pull request. Especially at the beginning of the adoption, the

Action might increase the number of commits due to the need

to meet all requirements and obtain a stable code. After that,

however, a decrease occurs in the median number of commits

on merged pull requests per month.

Our work has implications for researchers and practitioners.

For researchers interested in software bots, it is important to

understand the role of GitHub Actions in the bot landscape.

Backed by GitHub, GitHub Actions are likely here to stay,

and we already see evidence of existing software tools, such

as test coverage tools, being integrated into and packaged

as GitHub Actions. It is important to understand how such

Actions affect the interplay of developers in their effort to

develop software, and our study provides the first step in this

direction. Additional effort is also necessary to investigate

the impact for newcomers, who already face a variety of

barriers [22, 23]. Educators may also see an opportunity in

GitHub Actions to build automation tools to better support

their OSS assignments [24].

Practitioners need to make informed decisions whether

to adopt GitHub Actions (or software bots in general) into

their projects and how to use them effectively. Also, GitHub

Actions might allow them to automate repetitive tasks in

their projects with their own custom GitHub Action. Already

at its current early-adopter stage, GitHub Actions provides

hundreds of different Actions, potentially making it difficult

for practitioners to decide which Action to use, if any. Our

work provides first empirical data on which Actions are

currently used, how they evolve, and what their impact can

be on development processes. We hope that this work will

inspire more repositories to adopt GitHub Actions for their

projects.

VI. LIMITATIONS AND THREATS TO VALIDITY

In this section, we discuss the limitations and threats to

validity and how we have mitigated them. For replication pur-

poses, we made our data and source code publicly available.8

External Validity: Since we selected engineered software

projects, our findings might not be generalized to other or all

GitHub projects. One way to overcome this threat is by study-

ing non-engineered projects hosted on GitHub. Additionally,

even though we considered a large number of projects and

our results indicate general trends, we recommend running

segmented analyses when applying our results to a given

project. In addition, we focused on the same pull request

related variables as in previous work [5, 6, 14], leaving other

effects and artifacts for future work.

Construct Validity: As stated by Kalliamvakou et al. [25],

many merged pull requests appear non-merged. Since we

consider the number of merged pull requests, our results may

be affected by this threat. Our study can be replicated when

automated ways of detecting this issue are developed.

Internal Validity: To reduce internal threats, we applied

multiple data filtering steps to the statistical models. We varied

the data filtering criteria to confirm the robustness of our

models. For example, we filtered projects that did not receive

pull requests in all months and observed similar phenomena.

8https://zenodo.org/record/4626256

428

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

We also carried out a series of placebo tests [15] using the

same model with the adoption artificially set to different

dates to confirm the model robustness. The assumption of

exogeneity of the treatment might be a threat. We added

several controls that might influence the independent variables

to reduce confounding factors.

VII. RELATED WORK

There has been no study investigating GitHub Actions.

However previous work has investigated other automation

tools such as software bots, continuous integration, and con-

tinuous delivery.

A. Software Bots

On GitHub, software bots are often integrated into the pull

request workflow [26], to perform a variety of tasks. These

include repairing bugs [27], refactoring the source code [28],

recommending tools to help developers [29] and updating out-

dated dependencies [30]. Software bots have been proposed to

support technical and social aspects of software development

activities [31], such as communication and decision-making

[32]. Van Tonder and Le Goues [33] believe software bots are

a promising addition to a developer’s toolkit as they bridge

the gap between human software development and automated

processes.

However, understanding how software bots’ interaction af-

fects human developers is a major challenge. Storey et al. [32]

highlight that software bots’ potential negative impact is still

neglected, as the way that these software bots interact on pull

requests can be disruptive and perceived as unwelcoming [34].

Wessel et al. [7] investigated the usage and impact of software

bots to support contributors and maintainers with pull requests.

After identifying bots on popular GitHub repositories, the

authors classified these bots into 13 categories according to

the tasks they perform. The third most frequently used bots

are code review bots. Wessel et al. [14] also employed a

regression discontinuity design on OSS projects, revealing that

the bot adoption increases the number of monthly merged

pull requests, decreases monthly non-merged pull requests, and

decreases communication among developers.

B. Continuous Integration and Continuous Delivery (CI/CD)

Improving software quality and reducing risks is the main

goal of CI as stated by Duvall et al. [35]. By introducing

continuous integration to the pull request process, the findings

from Vasilescu et al. [8] clearly point to the benefits of CI.

More pull requests got processed, more were being accepted

and merged and more were also being rejected. In the context

of Computer Science education, rising enrollments make it

difficult for instructors and teaching assistants to give adequate

feedback on each student’s work. Hu et al. [36] had set up a

static code analyzer and a continuous integration service on

GitHub to help students check code style and functionality. By

implementing three bots, results found by the authors showed

that more than 70% of students think the advice given by the

bots is useful and can provide significantly more feedback (six

times more on average) than teaching staff. A survey by Chen

et al. [37] reports that of the hundreds of billions of dollars

spent on developer wages, up to 25% accounts for fixing

bugs [37]. Continuous integration thus holds huge potential to

further reduce human effort and costs by automatically fixing

bugs.

Prior work has also investigated the impact of CI and code

review tools on GitHub projects [4, 5, 6] across time. While

Zhao et al. [5] and Cassee et al. [6] focused on the impact

of the Travis CI tool’s introduction on development practices,

Kavaler et al. [4] turned to the impact of linters, dependency

managers, and coverage reporter tools. Our work extends this

literature by providing a more in-depth investigation of the

effects of GitHub Actions adoption.

VIII. CONCLUSION

In this paper, we investigate how software developers use

GitHub Actions to automate their workflows, how they discuss

these Actions on the issue tracker, and what are the effects of

the adoption of such Actions on pull requests. While several

Actions have been proposed and adopted by the open-source

software community, relatively little has been done to evaluate

the state of practice. To understand the impact on practice,

we collected and analyzed data from 3,190 active GitHub

repositories. Further, to understand the impact on practice, we

statistically analyzed a sample of 926 open-source projects

hosted on GitHub.

Firstly, the findings showed that only a small subset of

3,190 repositories used GitHub Actions. We also found that

708 unique predefined Actions were being used within the

workflows. Further, we collected and analyzed GitHub Actions

related issues and found that the majority of the discussion was

positive. These findings indicate that GitHub Actions were met

with an overall positive reception among software developers.

By modeling the data around the introduction of GitHub

Actions, we notice different results from merged pull requests

and non-merged ones. The monthly number of commits of

merged pull requests decreases after the adoption of GitHub

Actions and there are also more monthly rejected pull requests.

Our findings bring to light how early adopters are using,

discussing, and being impacted by GitHub Actions. Learning

from those early adopters can provide insights to assist the

open-source community to decide whether to use GitHub

Actions and how to use them effectively. Future work includes

the qualitative investigation of the effects of adopting a GitHub

Actions and the expansion of our analysis for considering the

effects of different types of Actions and activity indicators.

ACKNOWLEDGMENTS

This work was partially supported by the Coordenação

de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil

(CAPES) – Finance Code 001, CNPq (grant 141222/2018-

2), NSF grants 1815503 and 1900903, and the Australian

Research Council’s Discovery Early Career Researcher Award

(DECRA) funding scheme (DE180100153)

429

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social

coding in GitHub: Transparency and collaboration in an

open software repository,” in Proceedings of the ACM
2012 Conference on Computer Supported Cooperative
Work, ser. CSCW ’12. New York, NY, USA: ACM,

2012, pp. 1277–1286.

[2] G. Gousios, M. Pinzger, and A. van Deursen, “An

exploratory study of the pull-based software develop-

ment model,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp.

345–355.

[3] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work

practices and challenges in pull-based development: The

contributor’s perspective,” in Proceedings of the 38th
International Conference on Software Engineering, ser.

ICSE ’16. New York, NY, USA: ACM, 2016, pp. 285–

296.

[4] D. Kavaler, A. Trockman, B. Vasilescu, and V. Filkov,

“Tool choice matters: JavaScript quality assurance tools

and usage outcomes in GitHub projects,” in Proceedings
of the 41st International Conference on Software Engi-
neering. IEEE Press, 2019, pp. 476–487.

[5] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and

B. Vasilescu, “The impact of continuous integration

on other software development practices: a large-scale

empirical study,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engi-
neering. IEEE Press, 2017, pp. 60–71.

[6] N. Cassee, B. Vasilescu, and A. Serebrenik, “The silent

helper: the impact of continuous integration on code

reviews,” in 27th IEEE International Conference on
Software Analysis, Evolution and Reengineering. IEEE

Computer Society, 2020.

[7] M. Wessel, B. M. de Souza, I. Steinmacher, I. S. Wiese,

I. Polato, A. P. Chaves, and M. A. Gerosa, “The power

of bots: Characterizing and understanding bots in OSS

projects,” Proc. ACM Hum.-Comput. Interact., vol. 2, no.

CSCW, pp. 182:1–182:19, Nov. 2018.

[8] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov,

“Quality and productivity outcomes relating to continu-

ous integration in GitHub,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineer-
ing, ser. ESEC/FSE 2015. New York, NY, USA: ACM,

2015, pp. 805–816.

[9] D. L. Thistlethwaite and D. T. Campbell, “Regression-

discontinuity analysis: An alternative to the ex post facto

experiment.” Journal of Educational psychology, vol. 51,

no. 6, p. 309, 1960.

[10] M. Wessel and I. Steinmacher, “The inconvenient side

of software bots on pull requests,” in 2nd International
Workshop on Bots in Software Engineering, ser. BotSE

’20, 2020.

[11] M. Golzadeh, A. Decan, D. Legay, and T. Mens, “A

ground-truth dataset and classification model for detect-

ing bots in GitHub issue and PR comments,” 2020.

[12] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan,

“Curating GitHub for engineered software projects,” Em-
pirical Software Engineering, vol. 22, no. 6, pp. 3219–

3253, 2017.

[13] J. Fleiss, B. Levin, and M. Paik, Statistical Methods for
Rates and Proportions, ser. Wiley Series in Probability

and Statistics. Wiley, 2013.

[14] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher,

and M. A. Gerosa, “Effects of adopting code review

bots on pull requests to OSS projects,” in 2020 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), 2020, pp. 1–11.

[15] G. W. Imbens and T. Lemieux, “Regression discontinuity

designs: A guide to practice,” Journal of econometrics,

vol. 142, no. 2, pp. 615–635, 2008.

[16] T. Cook and D. Campbell, Quasi-Experimentation: De-
sign and Analysis Issues for Field Settings. Houghton

Mifflin, 1979.

[17] Y. Benjamini and Y. Hochberg, “Controlling the false

discovery rate: a practical and powerful approach to

multiple testing,” Journal of the Royal statistical society:
series B (Methodological), vol. 57, no. 1, pp. 289–300,

1995.

[18] A. Kuznetsova, P. B. Brockhoff, and R. H. B. Chris-

tensen, “lmertest package: tests in linear mixed effects

models,” Journal of Statistical Software, vol. 82, no. 13,

2017.

[19] A. Gałecki and T. Burzykowski, Linear mixed-effects
models using R: A step-by-step approach. Springer

Science & Business Media, 2013.

[20] S. Nakagawa and H. Schielzeth, “A general and simple

method for obtaining R2 from generalized linear mixed-

effects models,” Methods in ecology and evolution, vol. 4,

no. 2, pp. 133–142, 2013.

[21] S. Sheather, A modern approach to regression with R.

Springer Science & Business Media, 2009.

[22] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma,

and M. A. Gerosa, “Newcomers’ barriers... is that all?

an analysis of mentors’ and newcomers’ barriers in

OSS projects,” Computer Supported Cooperative Work
(CSCW), vol. 27, no. 3, pp. 679–714, 2018.

[23] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Red-

miles, “Social barriers faced by newcomers placing their

first contribution in open source software projects,” in

Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing, 2015,

pp. 1379–1392.

[24] G. H. L. Pinto, F. Figueira Filho, I. Steinmacher, and

M. A. Gerosa, “Training software engineers using open-

source software: the professors’ perspective,” in 2017
IEEE 30th Conference on Software Engineering Educa-
tion and Training (CSEE&T). IEEE, 2017, pp. 117–121.

[25] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,

D. M. German, and D. Damian, “The promises and perils

of mining GitHub,” in Proceedings of the 11th Working

430

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

Conference on Mining Software Repositories, ser. MSR

2014. New York, NY, USA: ACM, 2014, pp. 92–101.

[26] L. Erlenhov, F. G. de Oliveira Neto, R. Scandariato,

and P. Leitner, “Current and future bots in software

development,” in Proceedings of the 1st International
Workshop on Bots in Software Engineering, ser. BotSE

’19. IEEE Press, 2019, p. 7–11.

[27] M. Monperrus, “Explainable software bot contributions:

Case study of automated bug fixes,” in Proceedings
of the 1st International Workshop on Bots in Software
Engineering, ser. BotSE ’19. Piscataway, NJ, USA:

IEEE Press, 2019, pp. 12–15.

[28] M. Wyrich and J. Bogner, “Towards an autonomous bot

for automatic source code refactoring,” in Proceedings
of the 1st International Workshop on Bots in Software
Engineering, ser. BotSE ’19. Piscataway, NJ, USA:

IEEE Press, 2019, pp. 24–28.

[29] C. Brown and C. Parnin, “Sorry to bother you: Designing

bots for effective recommendations,” in Proceedings of
the 1st International Workshop on Bots in Software
Engineering, ser. BotSE ’19. IEEE Press, 2019, p.

54–58.

[30] S. Mirhosseini and C. Parnin, “Can automated pull

requests encourage software developers to upgrade out-

of-date dependencies?” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ser. ASE 2017. IEEE Press, 2017,

p. 84–94.

[31] B. Lin, A. Zagalsky, M. Storey, and A. Serebrenik,

“Why developers are slacking off: Understanding how

software teams use Slack,” in Proceedings of the 19th
ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion, ser. CSCW ’16

Companion. New York, NY, USA: ACM, 2016, pp.

333–336.

[32] M.-A. Storey and A. Zagalsky, “Disrupting developer

productivity one bot at a time,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2016.

New York, NY, USA: ACM, 2016, pp. 928–931.

[33] R. van Tonder and C. L. Goues, “Towards s/engineer/bot:

Principles for program repair bots,” in Proceedings of
the 1st International Workshop on Bots in Software
Engineering, ser. BotSE ’19. IEEE Press, 2019, p.

43–47.

[34] M. Wessel and I. Steinmacher, “The inconvenient side

of software bots on pull requests,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software
Engineering Workshops, ser. ICSEW’20. New York,

NY, USA: Association for Computing Machinery, 2020,

p. 51–55.

[35] P. Duvall, S. Matyas, P. Duvall, and A. Glover, Con-
tinuous Integration: Improving Software Quality and
Reducing Risk, ser. A Martin Fowler signature book.

Addison-Wesley, 2007.

[36] Z. Hu and E. Gehringer, “Use bots to improve GitHub

pull-request feedback,” in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education,

ser. SIGCSE ’19. New York, NY, USA: Association for

Computing Machinery, 2019, p. 1262–1263.

[37] S.-K. Chen, W. K. Fuchs, and J.-Y. Chung, “Reversible

debugging using program instrumentation,” IEEE Trans-
actions on Software Engineering, vol. 27, no. 8, pp. 715–

727, 2001.

431

Authorized licensed use limited to: University of Melbourne. Downloaded on August 04,2022 at 14:54:42 UTC from IEEE Xplore. Restrictions apply.

	How do software developers use github actions to automate their workflows?
	Citation

	How Do Software Developers Use GitHub Actions to Automate Their Workflows?

		2021-06-24T16:40:31-0400
	Preflight Ticket Signature

