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Abstract—To uncover interesting and actionable information
from natural language documents authored by software develop-
ers, many researchers rely on “out-of-the-box” NLP libraries.
However, software artifacts written in natural language are
different from other textual documents due to the technical
language used. In this paper, we first analyze the state of the
art through a systematic literature review in which we find that
only a small minority of papers justify their choice of an NLP
library. We then report on a series of experiments in which we
applied four state-of-the-art NLP libraries to publicly available
software artifacts from three different sources. Our results show
low agreement between different libraries (only between 60% and
71% of tokens were assigned the same part-of-speech tag by all
four libraries) as well as differences in accuracy depending on
source: For example, spaCy achieved the best accuracy on Stack
Overflow data with nearly 90% of tokens tagged correctly, while
it was clearly outperformed by Google’s SyntaxNet when parsing
GitHub ReadMe files. Our work implies that researchers should
make an informed decision about the particular NLP library they
choose and that customizations to libraries might be necessary
to achieve good results when analyzing software artifacts written
in natural language.

Keywords—Natural language processing, NLP libraries, Part-
of-Speech tagging, Software documentation

I. INTRODUCTION AND MOTIVATION

Software developers author a wide variety of documents
written in natural language, ranging from commit messages
and source code comments to documentation and questions or
answers on Stack Overflow. To automatically make sense of
these natural language artifacts, industry and academia have
developed techniques that rely on natural language processing
(NLP): For example, Petrosyan et al. [1] developed a tool
to automatically discover tutorial sections that explain the
usage of an API type. Their approach relies on the Stanford
NLP toolkit [2] for text classification. Another example of
recent software engineering research relying on an NLP library
is INTRUDER [3], a tool to produce multithreading tests
that help detect atomicity violations. The authors used the
open source NLP library OpenNLP to validate their work. In
these examples, as in many other cases, software engineering
researchers rely on existing NLP libraries, such as the Stanford
NLP suite [2], Google’s SyntaxNet [4], and NLTK [5]. These
NLP libraries have been shown to achieve an accuracy of

around 97% when applied to corpuses such as the Wall Street
Journal, Treebank Union, and CoNLL ’09 [6].

However, software artifacts written in natural language are
different: Their language is technical and often contains refer-
ences to code elements that a natural language parser trained on
a publication such as the Wall Street Journal will be unfamiliar
with. In addition, natural language text written by software
developers may not obey all grammatical rules, e.g., API
documentation might feature sentences that are grammatically
incomplete (e.g., “Returns the next page”) and posts on Stack
Overflow might not have been authored by a native speaker.
Despite these challenges, many of the techniques that have
been proposed to process software artifacts written in natural
language rely on “out-of-the-box” NLP libraries, often without
customizations or even a justification as to why a certain NLP
library was chosen.

In this paper, we first present the results of a systematic
literature review in which we analyzed 1,350 software engi-
neering conference papers from the last five years in terms of
whether they used NLP, what NLP library they used, and how
this choice was justified. We found that out of 232 papers that
mentioned “natural language”, only 33 mentioned the specific
library used. Moreover, the selection of the particular NLP
library was justified in only two of these papers.

To help researchers and industry choose the appropriate
library for analyzing software artifacts written in natural lan-
guage, we then present the results of a series of experiments in
which we applied four state-of-the-art NLP libraries to publicly
available software artifacts from three different sources. We
found that based on a total of 2,357 paragraphs analyzed,
only 23,716 (91%) tokens were identified identically between
all four libraries. The remaining 2,291 tokens were identified
as separate tokens by some libraries whereas other libraries
grouped them together. For example, some libraries split
“C++” into three different tokens (“C”, “+”, “+”) while
other libraries consider “C++” as a single token. Furthermore,
based on a total of 26,006 tokens analyzed, only 16,607 (64%)
of the tokens were given the same part-of-speech tags by all
four libraries. In the remaining 9,399 cases, different libraries
assigned different part-of-speech tags to the same token or they
disagreed on the tokenization.



Based on manually annotating a subset of 1,116 randomly
sampled tokens, we found that the spaCy library had the best
performance on software artifacts from Stack Overflow and
the Java API documentation while Google’s SyntaxNet worked
best on text from GitHub. The best performance was reached
by spaCy on text from Stack Overflow (90% correct) while the
worst performance came from SyntaxNet when we applied it to
natural language text from the Java API Documentation (only
75% correct).

These results indicate that choosing an appropriate NLP
library to analyze software artifacts written in natural language
is indeed a critical step: The accuracy of state-of-the-art
libraries differs greatly when applied to these artifacts (from
75% to 90% in our experiments) and even steps that could
be considered as relatively straightforward, such as splitting
a sentence into its tokens, become challenging when software
artifacts are used as input.

In summary, in this paper we contribute:

• A systematic literature review considering 1,350 re-
cent software engineering conference papers to inves-
tigate their use of NLP libraries. The data used for the
systematic literature review is available for download
and inspection in our online appendix.1

• Experiments with a total of 2,357 paragraphs and four
state-of-the-art NLP libraries to analyze the extent
to which the choice of library impacts the result of
natural language processing.

• A manual annotation of 1,116 tokens with the correct
part-of-speech tag and a comparison of the four NLP
libraries based on this data. The corresponding data
is available for download and inspection in our online
appendix.2

• A tool to automate the comparison of the output
of four NLP libraries based on a given corpus of
natural language documents. The tool is available for
download and inspection in our online appendix.3

The remainder of this paper is structured as follows: We
present background on the different NLP libraries used in our
investigation in Section II before detailing the methodology
and results of our systematic literature review in Section III.
Section IV introduces the tool that we developed to facilitate
the comparison of the output of different NLP libraries—
NLPCOMPARE—before we present the methodology and re-
sults of our experiments in Section V. Section VI describes our
manual annotation and the results from comparing the NLP
libraries based on this annotation. We discuss our findings in
Section VII and threats to validity in Section VIII, and the
work is concluded in Section IX.

II. BACKGROUND

Researchers can choose from a wide variety of NLP
libraries to make sense of natural language artifacts. While
it is common for researchers to rely on publicly available

1URL: http://tinyurl.com/Systematic-Literature-Review
2URL: http://tinyurl.com/NLPCOMPARE-Manual-Annotation
3URL: https://github.com/fouadrh5/NLPCOMPARE

NLP libraries, some researchers develop their own tooling for
specific tasks. For example, Allamanis et al. [7] developed
a customized system called Haggis for mining code idioms
and in our own previous work, we added customizations to
the Stanford NLP library to improve the accuracy of parsing
natural language text authored by software developers [8], [9].
In this work, we aim to identify how the choice of using
a particular publicly available NLP library could impact the
results of any research that makes use of an NLP library.
To keep our workload manageable, we selected a subset of
four libraries for our work: Google’s SyntaxNet, the Stanford
CoreNLP Suite, the NLTK Python library, and spaCy. We
introduce each library and the reasons why we chose to include
it in our work in the following paragraphs.

A. Google’s SyntaxNet

SyntaxNet is an open-source neural network framework
implemented in TensorFlow [4]. We selected it to be part of
this work since it is the most recent addition to the set of
publicly available NLP libraries, and based on the claim that
it is the “world’s most accurate Open Source parser” [4].

B. Stanford CoreNLP Suite

The Stanford CoreNLP Suite [2] is an integrated framework
with the goal to facilitate the application of linguistic analysis
tools to a piece of text. We chose to include it as part of our
investigation because it is the most commonly used library in
software engineering research concerned with natural language
text. Stanford CoreNLP can be used as an integrated toolkit
with a wide range of grammatical analysis tools and support
for a number of major (human) languages [10]. In addition,
it has a number of interfaces (wrappers) that are available for
various major modern programming languages. This feature
afforded us the freedom to select a programming language to
interact with the CoreNLP API [10]. Moreover, the availability
of resources and the number of users who have tried to enhance
it were part of the reasons for considering Stanford CoreNLP
as a library in this research.

C. NLTK Python Library

NLTK [5] is a Python library for analyzing human lan-
guage data. Similar to the Stanford CoreNLP library, NLTK
provides many wrappers for different programming languages
and comes with many resources. We included it as part of
this work since it is written in Python (unlike the Java-based
Stanford CoreNLP Suite), and since it was trained on a wide
range of corpora and lexical resources.

D. spaCy

The final library included in our work is spaCy [11], a
library for advanced natural language processing written in
Python and Cython. We decided to include spaCy in our work
since it is primarily aimed at commercial applications and since
our previous work (an extension of TaskNav [12]) showed
that spaCy is substantially faster than many other libraries.
As part of this work, we intend to compare the performance
of all selected libraries in terms of their accuracy when parsing
natural language text written by software developers.



III. LITERATURE REVIEW

As a first step of our investigation into the potential impact
of choosing an NLP library for software engineering research
and to identify what libraries researchers commonly use and
how they justify their choice, we conducted a systematic
literature review. In this section, we present the methodology
of this review followed by its results.

A. Methodology

We focused our systematic literature review on the follow-
ing top conferences in software engineering: The International
Conference on Software Engineering (ICSE), the International
Conference on Software Maintenance and Evolution (ICSME),
the International Conference on Automated Software Engineer-
ing (ASE), the International Symposium on the Foundations of
Software Engineering (FSE), and the International Conference
on Mining Software Repositories (MSR). We limited the
analysis to papers from the last five years at the time of
the review, which led to the 2012–2016 timespan for most
conferences, except for ICSME for which we analyzed papers
published from 2011–2015 since the proceedings for 2016
were not available yet at the time of the review. This sampling
method resulted in a total of 1,350 conference papers.

Since we were only interested in aspects of these papers
with respect to natural language processing, we further limited
the sample to papers that contained the phrase “natural lan-
guage”.4 This phrase was derived from initial experimentation
with different phrases and keywords.

For all 232 (17%) papers that contained the phrase, the
first author read the paper, aiming to answer the following
questions:

1) Did the authors employ natural language processing
as part of their work?

2) What—if any—NLP library did they use?
3) Did they justify their choice of an NLP library?
4) If so, how was the choice justified?

While such details were usually covered in the method-
ology section, we also explicitly looked for pointers in the
Threats to Validity sections of these papers, based on the
possibility that authors might have used that section to explain
why they decided to use one NLP library over another one.

B. Findings

Table I shows the number of papers that specified using
a particular NLP library. Out of a total of 232 papers that
mentioned “natural language”, only 33 mentioned the specific
library used. Of those, the majority use the Stanford CoreNLP
library, while the other libraries are mostly used in a single
paper. Out of the ones that we selected for our comparison,
Google’s SyntaxNet and spaCy have not been used at all in
these recent software engineering conference papers. This is
unsurprising since both libraries are fairly new. There is no
significant difference between papers published in different
conferences.

4We used the following keywords to find relevant paragraphs in the selected
papers: “parser”, “token”, “part-of-speech”, and “tagging”.

In terms of justifying their choice of NLP library, we
found not a single paper that included a thorough justification.
Two papers mentioned specific features of the library that
they used—this can possibly be seen as a justification in the
widest sense of the word possible: Zhai et al. [13] mentioned
the following in relation to their use of the Stanford library:
“we leverage the state-of-the-art Stanford Parser with domain
specific tags”. In a similar way, Nguyen et al. [14] offered
some details about the LangPipe library that they were using:
“we use LangPipe, a natural language processing tool which
supports sentence splitting”. While more detailed than other
papers, both of these justifications are not sufficient to under-
stand the thought process of the authors in choosing one library
over others. Our detailed analysis of each paper is included in
our online appendix.5

Given the lack of justification revealed by our literature
review, the next step of our investigation is the comparison of
the four selected libraries in terms of their impact. After all, if
all libraries produce the same results when analyzing software
development artifacts, no justification would be necessary for
choosing one library over another. In the following, we first
describe the tool we developed to facilitate the comparison.

IV. NLPCOMPARE TOOL IMPLEMENTATION

To study whether different NLP libraries parse the same
textual content differently, we needed an infrastructure to
easily compare the different libraries we chose to focus our
investigation on (see Section II). In particular, we required tool
support to give the same input to different libraries, capture the
results at different levels (in particular tokenization and part-
of-speech tagging), and compare the results between pairs of
libraries and across all libraries. We focused our comparison on
tokenization and part-of-speech tagging since these two aspects
form the base of many other NLP features, such as named
entity recognition (NER) and dependency parsing. Comparing
these advanced features will be part of our future work.

To address the requirements posed by our study, we have
implemented a Python6 tool called NLPCOMPARE to unify
and simplify the process of running each library. NLPCOM-
PARE outputs the result of the comparison into a Microsoft
Excel spreadsheet to facilitate further analysis and easy read-
ability of the results. In addition, the tool provides basic
statistics of the comparison to give users first insights into
the outcome of the comparison of different libraries.

We modified the output of all libraries to be in the format
“token”/“part-of-speech tag” using the part-of-speech tags
specified by the Penn Treebank Project [15] as the set of
acceptable part-of-speech tags. Some of the libraries under
investigation output different formats of part-of-speech tags—
in those cases, we opted for the Penn Treebank option, i.e., no
manual mapping was necessary.

Comparing the output of different NLP libraries is not
trivial since different overlapping parts of the analysis need
to be considered. Let us use the sentence “Returns the C++
variable” as an example to illustrate these challenges. The
results of different NLP libraries differ in a number of ways:

5URL: http://tinyurl.com/Systematic-Literature-Review
6Python Version 2.7.12



TABLE I: Use of NLP libraries in recent software engineering conference papers

Venue Papers Has Keyword Stanford SyntaxNet NLTK spaCy LangPipe OpenNLP FudanNLP & IctcasNLP in-house others

ICSE 466 68 7 0 0 0 0 0 0 0 3
ASE 250 40 4 0 0 0 0 0 0 0 2
FSE 299 48 3 0 1 0 0 1 0 1 2
MSR 148 41 1 0 0 0 1 0 1 0 2
ICSME 187 35 3 0 0 0 0 0 0 0 1

Sum 1,350 232 18 0 1 0 1 1 1 1 10

1) Tokenization: Stanford’s CoreNLP tokenizes “C++”
as “C”, “+”, and “+” while the other libraries treat
“C++” as a single token.

2) General part-of-speech tagging: Stanford’s CoreNLP
mis-classifies “Returns” as a noun, while the other
libraries correctly classify it as a verb. This difference
can be explained by the fact that the example sentence
is actually grammatically incomplete—it is missing a
noun phrase such as “This method” in the beginning.

3) Specific part-of-speech tagging: While several li-
braries correctly classify “Returns” as a verb, there
are slight differences: Google’s SyntaxNet classifies
the word as a verb in 3rd person, singular and present
tense (VBZ) while spaCy simply tags it as a general
verb (VB).

Differences in tokenization imply differences in part-of-
speech tagging (since different tokens are being tagged), and
a different general part-of-speech tag implies that the specific
part-of-speech tag is different as well. We argue that this last
difference between a verb in 3rd person, singular and present
tense (VBZ) and a general verb (VB) is not as big as the one
between noun and verb, and therefore NLPCOMPARE con-
siders these differences separately. In particular, we compare
separately the general part-of-speech tag POSg , represented by
the first two letters of the part-of-speech tag (e.g., a noun, a
proper noun, a plural noun, and a proper noun in plural form
all share the same prefix: NN), and the specific part-of-speech
tag POSs.

V. EXPERIMENTS

To investigate the impact of choosing a particular NLP
library and to help researchers and industry choose the ap-
propriate library for analyzing software artifacts written in
natural language, we have conducted a series of experiments
in which we applied four NLP libraries to publicly available
software artifacts from three different sources. We focused our
analysis on artifacts related to the Java programming language
in order to be able to compare results across different sources.
We considered the following sources:

• Stack Overflow: We included Stack Overflow because
of its size [16]. As of February 2017, Stack Over-
flow contained over 1.2 million questions tagged with
“java”, and the entire community of programmers
active on Stack Overflow contained about 6.6 million
programmers. The number of different people posting
on the website has the potential to make natural lan-
guage processing of the text particularly challenging
since each will have their own writing style.

• GitHub ReadMe files: GitHub is home to open source
projects written in 316 different programming lan-
guages, with Java being the second most commonly
used language based on the number of opened pull
requests (almost 800,000) [17]. Many GitHub projects
contain ReadMe files which GitHub suggests to in-
clude in a project by default. Similar to Stack Over-
flow, these ReadMe files are authored by a wide
variety of developers and are written in a variety of
styles.

• Java API documentation: Compared to Stack Overflow
and GitHub ReadMe files, the Java API documenta-
tion is well-structured and contributed to only by a
small number of individuals. On the other hand, as
the name suggests, API documentation contains the
API specification which results in a large number of
method and field definitions that would not be found
in regular English text.

We detail the sampling methodology for each source in the
next section followed by the findings.

A. Methodology

To reduce bias in our sample of textual content to be
parsed by the four NLP libraries, we chose to randomly select
paragraphs from each of the three sources. We discuss the
sampling method for each source below. For all sources, we
limited our analysis to artifacts related to Java and we removed
code blocks—but not in-line code elements—from the text
before using it as input for the NLP libraries.

1) Stack Overflow Random Sampling: We wrote two scripts
that download random questions and answers through the
Stack Overflow API. These scripts use a random number
generator to select Stack Overflow question IDs lower than
the highest ID (at the time of our sampling, the highest ID
was 39,994,057). If the randomly selected question contains
the “java” tag, one paragraph that is not a code block (i.e.,
not surrounded by the HTML tags pre and code) from the
question text (title and body) is randomly selected and used as
input to NLPCOMPARE. We repeated this sampling procedure
until we had selected 200 paragraphs from Java-related Stack
Overflow questions. We then used a similar approach to select
200 paragraphs from Java-related answers on Stack Overflow,
resulting in a total of 400 paragraphs of Stack Overflow data
to be passed to NLPCOMPARE.

2) GitHub ReadMe Random Sampling: Similar to the sam-
pling for Stack Overflow, we also wrote a script to facilitate the
random sampling of ReadMe files from Java-related GitHub
projects. This script will retrieve random GitHub projects using



their ID. Since our focus is on Java, we have only considered
projects written in this programming language as part of the
sample. No other filters, such as popularity, time, and size,
were applied.

If the randomly selected project contains a ReadMe file in
the default location, we include the text of the ReadMe file in
our sample. Since the GitHub API does not provide function-
ality to retrieve only the text of a file without markdown, we
further removed GitHub markdown and any code blocks (i.e.,
paragraphs surrounded by ‘‘‘) from the content. We sampled
20 GitHub projects, resulting in 547 paragraphs of text from
the corresponding ReadMe files.

3) Java API Documentation Random Sampling: For the
Java API documentation, we did not automate the sampling
method. We randomly sampled 20 classes from the official Java
API website [18] and considered all paragraphs that were not
code blocks from the corresponding 20 documents, resulting in
1,410 paragraphs. Since there is no API to follow an approach
for retrieving random paragraphs similar to the one used for
the other two sources, we have sampled a higher number of
paragraphs for Java API documentation.

B. Findings

Tables II and III as well as Figure 2 summarize our findings
of applying NLPCOMPARE to the sampled text content from
the three sources. Table III shows the number and percentage
of identical tokens, tokens and general part-of-speech tags
POSg , and tokens and specific part-of-speech tags POSs across
all four NLP libraries for each source. We will describe and
discuss the results in the following sections. The data used for
the analysis below is available for download and inspection in
our online appendix.7

1) Stack Overflow: The first part of Table II shows the
results for analyzing the Stack Overflow sample with each
of the four selected NLP libraries. Each row of the table
represents one pairwise comparison of two of the libraries,
and for each comparison, the table shows the number of
tokens produced by the two libraries. For example, for the
first comparison between Stanford’s CoreNLP and Google’s
SyntaxNet, Stanford’s CoreNLP produced a larger number of
tokens (8,743) compared to SyntaxNet (8,485). As the fourth
column shows, 8,137 of these tokens were identical between
the two libraries, accounting for 94% of all tokens (i.e., number
of identical tokens divided by the average number of tokens
produced by the two libraries). Out of the identical tokens,
7,507 were assigned the same general part-of-speech tag POSg ,
accounting for 87% of all tokens, and 7,322 tokens were
assigned the same specific part-of-speech tag POSs, accounting
for 85% of all tokens. Recall from Section IV that we consider
two tokens to have identical POSg tags if the general part-of-
speech is identical (e.g., noun, verb, adjective) whereas for
POSs tags to be considered identical, the part-of-speech tags
have to be an exact match. For example, if one library tags a
particular token as a noun (part-of-speech tag NN) and another
tags the same token as a proper noun (part-of-speech tag NNP),
the tags would be considered identical POSg tags, but different
POSs tags. We make this distinction to account for the fact that

7URLs: http://tinyurl.com/NLPCOMPARE-NLPLibraries-Pairs,
http://tinyurl.com/NLPCOMPARE-NLPLibraries-Pairs2

identifying the specific part-of-speech POSs is less important
for parsing a sentence structure than the general part-of-speech
POSg .

a) Tokenization comparison: After applying NLP-
COMPARE to our Stack Overflow sample, the agreement as
shown in Table III among all libraries in terms of number
of tokens is 7,899 identical tokens (92%). In more detail as
represented in the first part of Table II, we found that different
libraries tokenized the content differently. The total number
of tokens based on the 400 paragraphs ranges from 8,485
to 8,743, and the overlap of tokens between two libraries is
around 95%. An example of a disagreement between libraries
regarding the tokenization of software-specific phrases is the
phrase “try-catch”. Three of the libraries (Google’s SyntaxNet,
Stanford’s CoreNLP, and NLTK) treat this phrase as a single
token whereas spaCy turns it into three tokens: “try”, “-”, and
“catch”.

b) Part-of-Speech Tagging comparison (General
POSg): As shown in Table III, comparing all libraries in
terms of assigning the general part-of-speech tag POSg for
the Stack Overflow source has revealed 76% of identical
assignment of POSg . Specifically, we observed the highest
agreement regarding POSg between two libraries in the case
of Google’s SyntaxNet vs. spaCy (90%). All of the pairwise
comparisons resulted in a value in the 80–90% range. The
pair with the lowest agreement resulted from comparing
the output of Stanford’s CoreNLP and NLTK (81%, i.e.,
almost every fifth token was assigned a different general
part-of-speech tag between these two libraries). Again, many
of the differences can be traced back to vocabulary that is
used in a software engineering context. For example, the
word “programmatically” was correctly tagged as an adverb
(RB) by three of the libraries (Google’s SyntaxNet, spaCy,
and NLTK), whereas Stanford’s CoreNLP mis-classified it
as a noun (NN). Another example is based on the sentence
“My program is going in the infinite loop” where the token
“infinite” was tagged correctly as an adjective (JJ) by three
libraries (Google’s SyntaxNet, Stanford’s CoreNLP, and
NLTK) while spaCy saw it as a noun (NN). We speculate that
such problems are caused by libraries being unfamiliar with
phrases such as “infinite loop” that are actually common in
textual content specific to the software development domain.

c) Part-of-Speech Tagging comparison (Specific POSs):
Running NLPCOMPARE over this source using the specific set
of tags POSs resulted in a lower percentage of similarity of
71% as shown in Table III. In terms of pairwise comparison,
the agreement was as low as 76% for Stanford vs. NLTK,
i.e., almost every fourth token was assigned a different spe-
cific part-of-speech tag by these two libraries. The highest
agreement was reached in the comparison of SyntaxNet vs.
spaCy with a value of 88%. An example for a different specific
part-of-speech tag comes from the sentence “When I run my
project it instantly crashes” for which Stanford’s CoreNLP
and NLTK tagged the word “run” as a verb in its base form
(VB) while Google’s SyntaxNet and spaCy tagged it as a verb
in past participle (VBN). The correct form would have been
a verb in non-3rd person singular present (VBP), which was
not assigned by any of the four libraries.

2) GitHub ReadMe files: The second part of Table II shows
the results for the pairwise comparison of libraries when we



applied the libraries to the content of the sampled GitHub
ReadMe files. While the overall results for tokenization are
slightly better than for Stack Overflow data, the agreement in
terms of part-of-speech tags is generally lower. The following
paragraphs describe and discuss the results in detail.

a) Tokenization comparison: Looking at Table III for
the overall performance from applying all libraries to the
GitHub ReadMe files, we can see that the tokenization re-
sulted in a higher percentage (94%) compared to the other
two sources (Stack Overflow: 92%, Java API documenta-
tion: 89%). The number of tokens identified by the dif-
ferent libraries differs again, this time from 6,167 tokens
(Google’s SyntaxNet) to 6,289 tokens (Stanford’s CoreNLP).
The overlap between pairs of NLP libraries is above 95%
for all pairs, with SyntaxNet and NLTK reaching the highest
agreement (98%). An example of a disagreement is given
by the URL “http://releases.era7.com.s3.amazonaws.com”,
which was treated as a single token by Stanford’s CoreNLP
and spaCy while Google’s SyntaxNet and NLTK pro-
duced four different tokens: “http”, “:”, “//”, and “re-
leases.era7.com.s3.amazonaws.com”.

b) Part-of-Speech Tagging comparison (General
POSg): For the general part-of-speech tag POSg when
comparing all libraries using GitHub data, Table III shows
that the similarity percentage is around 71%. For the
detailed comparison of general part-of-speech tags POSg , the
agreement between libraries was slightly lower for GitHub
ReadMe files than for Stack Overflow data, ranging from
78% (between spaCy and NLTK) to 89% (between SyntaxNet
and spaCy). An example disagreement was the treatment of
the word “generated” in the sentence “Read the content of
generated indexes”. It was tagged as a verb, past participle
(VBN) by three libraries (Google’s SyntaxNet, spaCy, and
NLTK) while Stanford’s CoreNLP tagged it as an adjective
(JJ).

c) Part-of-Speech Tagging comparison (Specific POSs):
Applying our tool to compare the specific part-of-speech tags
POSs between all libraries has generated 62% agreement
between them. More details are shown in the second part of
Table II where the ratio of identical POSs when comparing
the result of parsing GitHub ReadMe files was as low as
69% in one case (spaCy vs. NLTK), i.e., these two libraries
only agreed on just over two out of three part-of-speech tags.
Values for other library pairs are slightly higher, in the 70–
85% range. An example of a phrase where different libraries
assigned different specific part-of-speech tags is “Run-time”
which was tagged as a proper noun (NNP) by Stanford, as an
adjective (JJ) by SyntaxNet and NLTK, and as a basic noun
(NN) by spaCy. While the difference between noun and proper
noun only affects the specific part-of-speech tags POSs, the
difference between adjective and noun also affects the general
part-of-speech tag POSg .

3) Java API Documentation: Table III and Figure 2 show
that the percentage of identical tokens and part-of-speech
tags is lower when applying the four libraries to Java API
documentation compared to the other two sources. The last
part of Table II shows the details of the comparison, and the
following paragraphs discuss the details.
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Fig. 1: Ratio of identical results across all libraries, in %

a) Tokenization comparison: When comparing the to-
kens generated by all libraries from Java API Documentation,
only 89% of the tokens were split identically across all four
libraries. In addition, the pairwise comparison of tokenization
between Google’s SyntaxNet and spaCy yielded the lowest
similarity in all our experiments (91%). Many of the problems
that the libraries had with tokenization could be traced back
to API elements, which naturally occur frequently in API
documentation. For example, the method name “BorderUIRe-
source.LineBorderUIResource” was split into “BorderUIRe-
source”, “.”, and “LineBorderUIResource” by SyntaxNet and
NLTK, while Stanford and spaCy treated it as a single token.

b) Part-of-Speech Tagging comparison (General
POSg): Similar to the tokenization results, the part-of-speech
tagging also yielded the lowest agreement for the Java API
documentation among all sources (only 68% agreement for the
general part-of-speech tags POSg). The last part of Table II
shows that the highest agreement was between Google’s
SyntaxNet and spaCy with 83%, while Stanford and NLTK
reached only 76% agreement. An example disagreement from
the Java API documentation affects the word “extended” in
the sentence “Point on the extended line”, which was tagged
as a verb (VB) by Stanford and NLTK and as adjective (JJ)
by SyntaxNet and spaCy.

c) Part-of-Speech Tagging comparison (Specific POSs):
Executing NLPCOMPARE over the Java API Documentation
resulted in the lowest percentage of 60% identical specific part-
of-speech tags POSs among all sources, i.e., only about 3 out
of 5 tokens are given the same tag. More details are represented
in the last part of Table II: the highest similarity between two
libraries is between SyntaxNet and spaCy with around 79%,
and the lowest result is produced when comparing NLTK with
either Stanford or spaCy (around 69%).

VI. MANUAL ANNOTATION

After establishing that different NLP libraries produce
different results when they are applied to software artifacts
written in natural language, our next step is to investigate
which of the libraries achieves the best result. To that end,
we manually annotated a sample of sentences with the correct
token splitting and part-of-speech tags and compared the re-
sults of each library with this gold standard. The details of the
methodology used for sampling sentences and for annotating
them as well as the results of our analysis are discussed in the
following subsections.



TABLE II: Degree of overlap between the results from all libraries

Comparison tokens for tokens for identical identical identical identical identical identical
first library second library tokens tokens % token/POSg token/POSg % token/POSs token/POSs %

St
ac

k
O

ve
rfl

ow

Stanford vs. SyntaxNet 8,743 8,485 8,137 94.46 7,507 87.15 7,322 85.00
Stanford vs. spaCy 8,743 8,589 8,312 95.92 7,743 89.35 7,548 87.10
Stanford vs. NLTK 8,743 8,614 8,454 97.41 7,062 81.37 6,605 76.11
SyntaxNet vs. spaCy 8,485 8,589 8,016 93.90 7,678 89.94 7,511 87.98
SyntaxNet vs. NLTK 8,485 8,614 8,281 96.86 6,876 80.43 6,441 75.34
spaCy vs. NLTK 8,589 8,614 8,326 96.80 7,035 81.79 6,585 76.56

G
itH

ub
R

ea
dM

e Stanford vs. SyntaxNet 6,289 6,167 5,996 96.27 5,271 84.63 4,998 80.25
Stanford vs. spaCy 6,289 6,278 6,034 96.03 5,332 84.86 5,100 81.16
Stanford vs. NLTK 6,289 6,232 6,133 97.96 5,017 80.14 4,395 70.20
SyntaxNet vs. spaCy 6,167 6,278 5,910 94.98 5,512 88.58 5,307 85.29
SyntaxNet vs. NLTK 6,167 6,232 6,093 98.28 4,901 79.05 4,399 70.96
spaCy vs. NLTK 6,278 6,232 6,040 96.56 4,885 78.10 4,313 68.95

Ja
va

A
PI

D
oc

. Stanford vs. SyntaxNet 11,675 10,896 10,488 92.93 9,103 80.66 8,564 75.88
Stanford vs. spaCy 11,675 11,015 10,611 93.53 9,390 82.77 8,832 77.85
Stanford vs. NLTK 11,675 11,044 10,788 94.97 8,711 76.68 7,889 69.45
SyntaxNet vs. spaCy 10,896 11,015 10,008 91.35 9,171 83.71 8,697 79.38
SyntaxNet vs. NLTK 10,896 11,044 10,735 97.86 8,734 79.62 7,950 72.47
spaCy vs. NLTK 11,015 11,044 10,311 93.49 8,602 77.99 7,713 69.93

TABLE III: Summary of identical tokens, tokens/POSg , and tokens/POSs for all libraries

Source average identical identical identical identical identical identical
tokens tokens tokens % token/POSg token/POSg % token/POSs token/POSs %

Stack Overflow 8,608 7,899 91.77 6,559 76.20 6,105 70.92
GitHub 6,242 5,870 94.05 4,443 71.18 3,843 61.57
Java API 11,158 9,947 89.15 7,586 67.99 6,659 59.68

TABLE IV: Accuracy based on comparing the manual annotation with the output of the four libraries

Comparison tokens for tokens for identical identical identical identical identical identical
manual annotation library tokens tokens % token/POSg token/POSg % token/POSs token/POSs %

St
ac

k
O

ve
rfl

ow

Manual vs. Stanford 375 385 371 97.63 339 89.21 317 83.42
Manual vs. SyntaxNet 375 366 357 96.36 332 89.61 317 85.56
Manual vs. spaCy 375 377 369 98.14 347 92.29 338 89.89
Manual vs. NLTK 375 374 373 99.60 331 88.38 306 81.71

G
itH

ub
R

ea
dM

e

Manual vs. Stanford 361 371 357 97.54 310 84.70 286 78.14
Manual vs. SyntaxNet 361 358 350 97.36 308 85.67 297 82.61
Manual vs. spaCy 361 370 344 94.12 309 84.54 291 79.62
Manual vs. NLTK 361 360 354 98.20 312 86.55 278 77.12

Ja
va

A
PI

D
oc

.

Manual vs. Stanford 380 398 374 96.14 328 84.32 303 77.89
Manual vs. SyntaxNet 380 379 373 98.29 298 78.52 286 75.36
Manual vs. spaCy 380 380 369 97.11 345 90.79 298 78.42
Manual vs. NLTK 380 382 379 99.48 345 90.55 294 77.17

A. Methodology

To keep our workload manageable, we annotated a random
sample of the sentences that were used in the experiments
described in the previous section. We calculated the necessary
sample size so that our conclusions would generalize to the
entire data used in the previous experiments with a confidence
level of 95% and a confidence interval of 5 [19]. We sampled
tokens separately for each of the three sources (Stack Overflow,
GitHub, and Java API documentation) by randomly sampling
complete sentences until the number of tokens was equal to
or larger than the required sample size. Since the number

of tokens generated by each library is different, we chose
the number of tokens generated by Stanford’s CoreNLP as
baseline since it produced the largest number of tokens in all
our experiments. In the end, we annotated 375 tokens from
Stack Overflow, 361 from GitHub ReadMe files, and 380 from
the Java API documentation.

The authors of this paper manually annotated all 1,116
tokens with the correct part-of-speech tag. In some cases,
the tokenization was also corrected, i.e., separate tokens were
merged or single tokens were separated into different tokens.
To verify the manual annotation, we asked a native speaker
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Fig. 2: Comparing the manual annotation with the output of the four libraries, in %

to independently annotate the sampled tokens from Stack
Overflow. There were 11 disagreements among the part-of-
speech tags for all 375 tokens (less than 3%), which increases
our confidence in the accuracy of the manual annotation. Most
of the disagreements were between NN and NNP (i.e., deciding
whether a code element is a noun or a proper noun) and
between VBD and VBN (i.e., deciding between past tense and
past participle in incomplete sentences). Only 4 disagreements
(i.e., affecting about 1% of all tokens) indicated a different
general part-of-speech tag POSs.

In the following, we discuss the details of analyzing the
manual annotation results for each NLP library.

B. Findings

Table IV and Figure 3 summarize our findings of applying
NLPCOMPARE to the manual annotation that we performed
over the sampled text. We will describe and discuss the results
in the following sections.

1) Stack Overflow: The first part of Table IV depicts the
information we have generated by running NLPCOMPARE
over the Stack Overflow data. In general, Stack Overflow has
the highest ratio of correctly identified tokens, POSg tags,
and POSs tags compared to the Java API Documentation and
GitHub ReadMe files.

a) Manual Annotation Tokenization comparison:
NLTK achieved the highest agreement in tokenization with
our manual annotation (373 of 375 tokens identical). As
an example disagreement, we tokenized the Java command
“System.out” as a single token which was mirrored in the
tokenization produced by all libraries except for Stanford’s
CoreNLP which separated the command into three different
tokens: “System”, “.”, and “out”.

b) Manual Annotation Part-of-Speech Tagging compar-
ison (General POSg): For the general part-of-speech tags
POSg , the highest similarity with our annotation was achieved
by spaCy with 92% while NLTK only achieved 88%. An ex-
ample disagreement affected the word “there” in the sentence
“Is there a way to my goal by any algorithm”. We tagged it
as an existential there (EX) and both Google’s SyntaxNet and
spaCy agreed with our annotation, while Stanford’s CoreNLP
and NLTK disagreed and tagged it as an adverb (RB).

c) Manual Annotation Part-of-Speech Tagging compar-
ison (Specific POSs): Applying NLPCOMPARE to compare
specific part-of-speech tags POSs between our manual anno-
tation and all libraries also yielded the highest agreement in the

case of spaCy (90%). An example disagreement comes from
the sentence “statement String Length” where we tagged the
word “Length” as a noun (NN) and both spaCy and NLTK
agreed, but the other libraries have not and they tagged the
word as a proper noun (NNP).

2) GitHub ReadMe Files: The second part of Table IV
shows the result of running NLPCOMPARE to compare the
manual annotation with the libraries’ results in the case of
GitHub ReadMe files. The following sections discuss the
details.

a) Manual Annotation Tokenization comparison: The
second part of Table IV shows that NLTK has the highest
similarity (98%) in terms of identical tokens. Both Stanford’s
CoreNLP and Google’s SyntaxNet have almost 97% agree-
ment, and the lowest agreement is produced by spaCy with
94%. An example disagreement is the phrase “compile-time”
which our manual annotation and most libraries treated as a
single token, with the exception of spaCy, which produced the
following three tokens: “compile”, “-”, and “time”.

b) Manual Annotation Part-of-Speech Tagging compar-
ison (General POSg): For the general part-of-speech tag
POSg , the highest agreement with our manual annotation is
achieved by NLTK with 87% while the lowest agreement
comes from both Stanford’s CoreNLP and spaCy with around
84%. Google’s SyntaxNet has better agreement with our man-
ual annotation at 86%. For example, in the sentence “with the
various scanning solutions” we tagged the word “scanning” as
a noun (NN). However, only spaCy agreed, and the rest of the
libraries have assigned different tags. In the case of Stanford, it
tagged it as cardinal number (CD), and both Google SyntaxNet
and NLTK libraries tagged it as present participle verb (VBG).

c) Manual Annotation Part-of-Speech Tagging compar-
ison (Specific POSs): Comparing our manual annotation with
Google’s SyntaxNet has produced the best result (83%) in
terms of identical specific part-of-speech tags POSs. The
lowest value originated from NLTK with 77%. An example
of a word that was tagged differently is “scanning” in this
sentence “the various scanning solutions” which was tagged
as a noun (NN) by Stanford’s CoreNLP, spaCy, and our manual
annotation. However, NLTK and Google’s SyntaxNet tagged
it as a verb (VB).

3) Java API Documentation: The last part of Table IV
presents the result of comparing the manual annotation with the
results from all NLP libraries over a sample from the Java API



Documentation. The details of each comparison are analyzed
in the following subsections.

a) Manual Annotation Tokenization comparison: In
terms of tokenization, we found that the highest agreement was
achieved by NLTK (99%). Conversely, Stanford’s CoreNLP
has the lowest agreement with our manual annotation at 96%.
An example disagreement is given by the tokenization of
“java.awt.Paint” which was treated as a single token by the
manual annotation, Google’s SyntaxNet, and NLTK. Stanford’s
CoreNLP and spaCy produced five tokens as follows: “java”,
“.”, “awt”, “.”, and “Paint”.

b) Manual Annotation Part-of-Speech Tagging compar-
ison (General POSg): NLTK and spaCy achieved around 90%
agreement with our manual annotation in terms of the general
part-of-speech tag POSg . The lowest agreement resulted from
Google’s SyntaxNet at 79%. An example of a word that
was tagged differently is “color1” in this sentence “the first
specified Point in user space color1” which was tagged as a
cardinal number (CD) by Google’s SyntaxNet. The rest of the
libraries including our manual annotation tagged it as noun
(NN).

c) Manual Annotation Part-of-Speech Tagging compar-
ison (Specific POSs): Comparing our manual annotation with
spaCy has produced the highest percentage (78%) among all
NLP libraries in terms of the specific part-of-speech tags POSs.
An example of a disagreement is the word “Shape” in the
sentence “class provides a way to fill a Shape” which Google’s
SyntaxNet tagged as a proper noun (NNP) in agreement with
our manual annotation, while the other three libraries tagged
it as a regular noun (NN).8

VII. DISCUSSION

Our work raises two main issues. The first one is that many
researchers apply NLP libraries to software artifacts written
in natural language, but without justifying the choice of the
particular NLP library they use. The second issue is that differ-
ent NLP libraries actually generate different results, as shown
in our experiments. This has implications on what library
researchers and practitioners should choose when analyzing
natural language artifacts created by software developers. We
discuss both issues in more detail below.

A. Justifying the choice of NLP library

Despite the number of available NLP libraries, most re-
searchers do not justify their choice of an NLP library.
According to our systematic literature review of the top five
software engineering conferences, 232 out of 1,350 recent
papers contain the words “natural language”, but only 33
mention the tools they use to deal with natural language. Out
of those, only two mention some sort of justification, and many
other papers apply Stanford’s CoreNLP library without explicit
reasoning. In our work with NLPCOMPARE, we were able
to show that the output of different libraries is not identical,
and that the choice of an NLP library matters when they
are applied to software engineering artifacts written in natural

8Following the definition that proper nouns start with an upper-case letter,
in our annotation, we generally tagged nouns as proper nouns if they were
capitalized.

language. In addition, in most cases, Stanford’s CoreNLP was
outperformed by other libraries, and spaCy—which provided
the best overall experience—was not mentioned in any recent
software engineering conference paper that we included in our
review.

B. Choosing an NLP library

In addition to showing that spaCy provides the best overall
performance on the data that we used in our experiments, we
also found that the choice of the best NLP library depends on
the task and the source: For all three sources, NLTK achieved
the highest agreement with our manual annotation in terms of
tokenization. On the other hand, if the goal is accurate part-of-
speech tagging, NLTK actually yielded the worst results among
the four libraries for Stack Overflow and GitHub data. In other
words, the best choice of an NLP library depends on which
part of the NLP pipeline is going to be employed. In addition,
while spaCy outperformed its competition on Stack Overflow
and Java API documentation data, Google’s SyntaxNet showed
better performance for GitHub ReadMe files. Although we are
not able to generalize this finding to other kinds of natural
language artifacts authored by software developers, we provide
evidence that the best library choice also depends on the nature
of the text being analyzed.

The worst results were generally observed when analyzing
Java API documentation, which confirms our initial assump-
tion that the presence of code elements makes it particularly
challenging for NLP libraries to analyze software artifacts
written in natural language. In comparison, the NLP libraries
were less impacted by the often informal language used in
GitHub ReadMe files and on Stack Overflow. Going forward,
the main challenge for researchers interested in improving the
performance of NLP libraries on software artifacts will be the
effective treatment of code elements.

By using NLPCOMPARE, other researchers can build on
these results and investigate the implications of choosing dif-
ferent NLP libraries in other contexts of software engineering
data.

VIII. THREATS TO VALIDITY

One threat to the validity of our results and an opportu-
nity for future work lies in the fact that we used all four
NLP libraries with their default settings9 and without any
specialized models. Also, the results are only reflecting the
performance and accuracy of the current library versions which
might change as the libraries are evolving. For some of the
libraries, various models that have been trained by others on
different data sets are available, and they might have achieved
different results to the ones described here. Thus, our results
only apply to the libraries’ default setting and default models.
However, since only a small minority of software engineering
research papers that employ NLP libraries discuss specific
settings of the library they use, we argue that this comparison
of the default settings is a very important first step. We will
investigate the impact of specific models and different settings
in future work.

9Stanford parser version 3.7.0, Google SyntaxNet current version as of
August 19th 2016, spaCy version 0.101.0, and NLTK version 3.2.1.



We expect that the best possible results will eventually be
achieved by models trained specifically on natural language
artifacts produced by software developers. Training and eval-
uating such a model is also part of our future work, and in
this work we were able to provide evidence for its need. Our
experiments showed that only 75–90% of all tokens were given
the correct specific part-of-speech tag POSs. Compared to the
performance of these libraries on sources such as the Wall
Street Journal (around 97%), these results have to be improved,
and it seems reasonable to assume that a specifically trained
model could outperform the results presented in this paper.

Another threat lies in the subjectivity of our manual anno-
tation. However, we were able to recruit a native speaker who
independently annotated part of our sample, and we found that
the disagreement was less than 3% in terms of specific part-of-
speech tags POSs and less than 1% in terms of general part-
of-speech tags POSg . Due to the low disagreement between
our annotation and hers as well as time constraints, we did
not ask the native speaker to annotate the other sources.

One issue that we encountered when implementing NLP-
COMPARE is that some libraries change the input (e.g., uni-
fying all quotation marks or replacing parentheses with “-
LRB-” and “-RRB-”, respectively). In some of these cases,
we manually corrected the output to match the input again.
While we double-checked all instances, it is possible that a
small margin of error was introduced due to this issue.

IX. RELATED WORK

There are a number of research efforts that have compared
and evaluated NLP libraries for different purposes and sources.
For example, Olney et al. [20] investigated the accuracy of nine
NLP libraries including Stanford and spaCy in terms of part-
of-speech tagging of 200 source code identifiers in open source
Java programs. They concluded that part-of-speech taggers
specifically built for source code, such as POSSE [21] and
SWUM [22], were significantly more accurate than others.
In our work, we compared the performance of the libraries
on natural language artifacts written by software developers
rather than source code identifiers, and we added the additional
analysis of tokenization and pairwise comparison of libraries
on top of part-of-speech tagging and a gold standard.

Tian and Lo [23] applied seven taggers that are part
of four NLP libraries to 100 bug reports. The numbers for
accuracy they found (between 83 and 91%) are similar to
our findings. Our work complements theirs by adding three
additional sources (Stack Overflow, GitHub ReadMe files, and
Java API documentation), as well as using a different set of
libraries and introducing an analysis of tokenization.

Choi et al. [24] provided a web-based tool to compare
the dependency parser output for ten statistical dependency
parsers (one of which is spaCy). Their comparison includes the
accuracy and performance of each parser in terms of sentence
length, dependency distance, projectivity, part-of-speech tags,
dependency labels, and genre. We did not include dependencies
in our analysis, but plan to expand our work to those in the
future.

Arendse [25] recently provided an overview of the perfor-
mance of NLP tools in the requirements engineering domain,

with the goal to find defects and deviations in requirement doc-
uments. He measured the performance of NLP tools in terms of
precision and recall of identifying specific undesired features,
such as ambiguity. Our work is more widely applicable since
it compares core NLP functionality.

Finally, in our own previous work [26], we investigated
the challenges of analyzing software artifacts written in Por-
tuguese. We analyzed 100 question titles from the Portuguese
version of Stack Overflow with two Portuguese language
tools and identified multiple problems which resulted in very
few sentences being tagged completely correctly. Based on
these results, we proposed heuristics to improve the analysis
of natural language text produced by software developers in
Portuguese. This work is similar in nature to the paper at hand,
but here we use a much larger sample of data, a different
language (English), and a more detailed analysis.

X. CONCLUSION AND FUTURE WORK

Choosing the right NLP library is a critical step in any
research project that chooses to employ natural language
processing to analyze software artifacts written in natural
language. To investigate the impact of choosing a particular
NLP library, we first analyzed 1,350 recent software engineer-
ing conference papers and found that out of 232 papers that
mentioned “natural language”, only 33 mentioned the specific
library used and only two of the papers provided rudimentary
justification for the choice of library. Based on this finding, we
conducted a series of experiments in which we applied four
state-of-the-art NLP libraries (Google’s SyntaxNet, Stanford’s
CoreNLP suite, the NLTK Python library, and spaCy) to
publicly available software artifacts written in natural language
from Stack Overflow, GitHub ReadMe files, and the Java
API documentation. Based on a total of 2,357 paragraphs
analyzed, we found that only 91% of the tokens were identified
identically between all four libraries and only 64% of the
tokens were given the exact same part-of-speech tag by all four
libraries. In the remaining 36% of the cases, the libraries either
disagreed on the part-of-speech tag or on the tokenization.

To help researchers and practitioners select the most appro-
priate NLP library for their task and source, we also compared
the output of all four libraries on a sample of 1,116 tokens that
we manually annotated with the correct part-of-speech tag. We
found that which library performs best depends on the task
(tokenization and part-of-speech tagging in our experiments)
as well as on the source (in particular API documentation
challenges some libraries more than others). Overall, we found
that spaCy—which was not used at all in the papers that
were part of our systematic literature review—achieved the
most promising accuracy, but that there is much room for
improvement.

This research is part of a bigger project in which we will
employ NLP to automatically summarize software artifacts to
help various stakeholders, such as newcomers [27], in soft-
ware projects get high-level overviews of relevant information.
Summarization is just one of many applications of NLP to
software artifacts, and based on the experiments reported here,
we are now able to make a more informed decision as to
what NLP library to use to uncover interesting and actionable
information from natural language documents authored by
software developers.
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