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Abstract—Primitive types are fundamental components avail-
able in any programming language, which serve as the building
blocks of data manipulation. Understanding the role of these
types in source code is essential to write software. Little work
has been conducted on how often these variables are documented
in code comments and what types of knowledge the comments
provide about variables of primitive types. In this paper, we
present an approach for detecting primitive variables and their
description in comments using lexical matching and advanced
matching. We evaluate our approaches by comparing the lexical
and advanced matching performance in terms of recall, precision,
and F-score, against 600 manually annotated variables from a
sample of GitHub projects. The performance of our advanced
approach based on F-score was superior compared to lexical
matching, 0.986 and 0.942, respectively. We then create a taxon-
omy of the types of knowledge contained in these comments about
variables of primitive types. Our study showed that developers
usually documented the variables’ identifiers of a numeric data
type with their purpose (69.16%) and concept (72.75%) more
than the variables’ identifiers of type String which were less
documented with purpose (61.14%) and concept (55.46%). Our
findings characterise the current state of the practice of docu-
menting primitive variables and point at areas that are often not
well documented, such as the meaning of boolean variables or
the purpose of fields and local variables.

Index Terms—Knowledge, documentation, variables, source
code comments.

I. INTRODUCTION AND MOTIVATION

While modern source code hosting sites, such as GitHub,

make a massive amount of source code available, reusing this

code often requires reading and understanding code written by

other developers. This task can be quite difficult, particularly

when source code is not adequately commented. Comment-

ing source code is a good programming practice as it can

help developers to quickly understand source code for later

modification, maintenance or reuse. For example, studies have

shown that commenting source code can help improve the

readability of source code [1], [2], while in other studies,

researchers are of the view that code comments are an essential

part of software maintenance [3], [4]. Code comments can

provide additional information to help developers perform a

wide range of software engineering tasks. For instance, code

comments can be used for bug detection [5]–[7], specification

inference [8], [9] and testing [10], [11].

In this paper, we investigate the role of primitive variable

identifiers in comments, especially how commonly these iden-

tifiers are documented in accompanying comments and what

type of additional information the comments contain about

these variables. To lay the foundation for understanding the

role of primitive variables and their documentation in Java

source code, our preliminary findings show that the percentage

of primitive data types in 2,491 Java repositories from GitHub

was dominating with 60.10% (8,646,435), compared to non-

primitive data types with 39.90% (5,741,380).

In addition, while non-primitive types tend to have their

intention encoded in the name of the type, the names of

primitive types do not allow for the encoding of such knowl-

edge, such as variable’s purpose, concepts and directives. The

introduction of Generics in Java has made even more type

names self-explanatory (e.g., List<File> instead of List) while

similar advantages are not available for primitive variables,

and a developer often must guess what a String or float might

contain. This motivated us to study the knowledge available

about primitive variables in Java code comments. For instance,

Listing 1 shows a comment that is not informative with respect

to the local variable “ry”. Therefore, it will take developers

quite some effort to understand the purpose, concepts and

directives related to this identifier in the source code. This is

due to 1) the developer did not explicitly mention the identifier

in the comment nor followed the naming conventions to

encode such types of knowledge in the variable’s identifier and

2) the lack of additional information about it in the comment.

As a consequence, this can make program comprehension

more difficult and ultimately lead to a reduction in productivity

of the developer. Similar cases to the example shown in

Listing 1 are what we are targeting in our paper to identify

knowledge types related to the variables’ identifiers in their

accompanying comments.

// CURVE-INSIDE
final float ry = t * (t * Ay + By);

Listing 1. Comment with respect to local variable “ry” [12].

In this work, we introduce the first empirical study to detect

primitive variables’ identifiers in comments using two levels

of matching techniques, to characterise the knowledge they

contain. We contribute with the following:

• We developed lexical and advanced matching techniques

to capture the identifiers of primitive variables in Java
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source code comments, and then evaluated these ap-

proaches using a manually curated benchmark of six well-

commented project repositories [13] hosted on GitHub.

• We manually classified the documented information, used

to describe the variable identifiers in comments, into three

types of knowledge: purpose, concept and directives.

• A large-scale analysis of 2,491 engineered Java software

repositories [13] hosted on GitHub was carried out to

provide an insight into how developers document these

variables in the form of source code comments.

The remainder of this paper is structured as follows. We

introduce our research questions in Section II. Our detection

techniques are described in detail in Section III. In Section IV,

we describe our study design as well as the methods used

for data collection and analysis. Our findings are reported

separately for each of our research questions in Section V. We

then discuss threats to validity in Section VI and related work

in Section VII. Finally, we conclude the paper and outline

future work in Section VIII.

II. RESEARCH QUESTIONS

Our ultimate goal of this paper is to reveal the nature

of the documented information for variables in source code

comments. We define documented variables as those variables

that have comments above their declaration, and the developers

mention the identifiers in their accompanying comments. To

analyse the documented variables’ information, we had to

capture code comments that include the variables’ information,

using lexical matching. However, lexical matching (i.e., exact

matching) may not be considered the best choice to detect an

identifier in a comment (see Listing 2) because the variable’s

identifier may not explicitly appear in the comments, e.g.,

developers use abbreviations for the identifier or explain it

with different terms. To tackle such a problem, we developed a

detection method considering lexical and advanced matching,

which has the ability to capture the exact identifier and its

meaning in a comment.

/**
Writes a message into the database table.
Throws an exception, if an database-error occurs !

*/
public void append(String _msg) throws Exception {

Listing 2. Example to show the inability of lexical matching to detect
variables’ identifiers in a comment [14].

According to the best of our knowledge, there is no guide-

line to identify a variable’s identifier in a comment, although

researchers have used different techniques in their work [15].

Therefore, we proposed and evaluated two detection tech-

niques for detecting the variables’ identifiers in comments,

with a manually annotated benchmark of six well-commented

project repositories hosted on GitHub, and we then investigate

the nature of the documentation for variables. The creation

of the manual evaluation data set was necessary to evaluate

our approaches, as a reference data set does not exist in the

literature. To assess the quality of our detection approaches,

we ask our first research question.

• RQ1: To what extent can different techniques detect

variables in comments?

– RQ1.1: To what extent is the lexical matching

technique able to detect the variable names in the

comments?

– RQ1.2: To what extent are different advanced match-

ing techniques able to detect the meaning of variable

names in the comments?

The answer of RQ1 would confirm the quality of our

detection approaches to be used for large-scale analyses, to

answer RQ3–5.

As the identifiers of primitive variables require developers

to provide additional information to explain the functionality

of the variables in the comments, we further ask the following

question:

• RQ2: What types of knowledge do comments provide

about the variables?

The method used to answer RQ2 was inspired by previous

work [16]. As far as we know, the types of knowledge relevant

to variables have not yet been studied in the literature. To this

aim, we identify three knowledge types that are closely related

to the variable’s domain significance and based on previous

work to fit our propose to answer this question.

Since there is little known about the prevalence of primitive

variables and their documentation used by developers, we aim

to investigate how these variables are used and documented in

source code comments by asking the following questions.

• RQ3: How frequently are primitive variables documented

in comments?

• RQ4: What are the distributions of documented variables

by their scope of declarations?

• RQ5: What are the types of comments associated with

the scopes of the documented variables?

III. DETECTING DOCUMENTED VARIABLES

In this section, we present our techniques to detect vari-

ables’ identifiers in comments. To this end, several detection

approaches were developed, using lexical matching, advanced

matching and the union of lexical and advanced matching.

A. Preprocessing

Preprocessing variables’ identifiers and comments is an es-

sential step for our detection approaches. For this, we followed

part of the steps proposed by Ratol et al. [17] for preprocessing

both variables’ identifiers and the text of comments, while

we create our own prepossessing steps to suit our matching

techniques. We present these steps as following:

Identifiers. We split an identifier based on its typographical

conventions to either a single term or multiple terms (i.e.,

compound terms) using the camelCase rules and other rules

based on regular expressions we designed, such as splitting

the identifier using underscore. We then convert each term

to its root using the Lemmatiser of the Stanford Core NLP

library [18] while we maintain the original term for later

use. As a consequence, each term produced a dictionary entry

containing 〈term, lemma〉.
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Comments. We processed the comments by first splitting

them into sentences, using the sentence detector model in the

OpenNLP library. Each sentence was then further split into

tokens using the same library. Tokens that are detected to be

compound terms are further split into one or more terms in

the same way the identifiers were split. After tokenisation,

we remove stop words such as “the” and “or” from the

list of tokens obtained, unless these stop words are part of

the variables’ identifier. Finally, we generate a dictionary

containing 〈token, lemma〉 for each token in the list.

Implementation note. The lemmatisation is only applied

for the variables’ identifiers and comments’ tokens, for lemma

and metaphonic advanced matching techniques.

B. Lexical Matching

Our approach using lexical matching is aimed at searching

for exact (i.e., literal) matching of variables’ identifiers in the

head comments. For example, in Listing 3, lexical match-

ing can detect the variable identifier ignore in the provided

comment. Lexical matching may suffer from different issues,

such as spelling and typographical errors, which may hinder

its detecting performance, and yet it can show how often

developers document the variable’s identifier in comments

with its exact form.

//if ignore is true, this column will be ignored by
building sql-statements.

boolean ignore = false;

Listing 3. Example of matching using lexical technique [19].

C. Advanced Matching

To tackle the problem indicated in lexical matching, we

introduced a new way of detection, i.e., the meaning of the

variable’s identifier can be captured through a set of words in

the comment. Our advanced matching approach is composed

of lemmas’ matching, metaphonic matching and SEthesaurus

matching.

1) Lemmas Matching: Lemmatisation is the process of

grouping together the different inflected forms of a word into

a single term. Our lemmas’ matching approach works by

lemmatising the variable’s identifier and the words in the text

of the comment. It then looks for each identical lemma term

that can exist between the identifier and the token in the text

of a comment. If all lemmas of the identifier are found, it can

be said that the variable was documented in the comments.

For instance, in Listing 4, the comment contains two lemma

terms, matching the two lemma terms of the identifier.

// Make sure at least one connection for this protocol
succeeds (if expected to)

boolean connectionSucceeded = false;

Listing 4. Example of advanced matching using Lemmas technique [20].

2) Metaphonic Matching: Our second advanced detection

approach is based on the Double Metaphone encoding al-

gorithm [21]. The algorithm is a searching technique that

can handle different matching problems due to misspelling

of given keywords. It works by taking two input strings and

returns true if they phonetically match—the algorithm takes

into its consideration the similar sounds produced by different

characters. For example, the encoding of a misspelled word

will often match the encoding of the word that was intended.

For example, in Listing 5, the Double Metaphone algorithm

encodes the identifier configured and the term configuration
which appears in the comment with code of ”KNFK” because

they phonetically match. However, using the same example

for the detection of the variable name in the comment using

the lemma and SEthesaurus matching techniques will yield no

matches.

//A flag to indicate configuration status
private boolean configured = false;

Listing 5. Example of advanced matching using Metaphonic technique [22].

3) SEthesaurus Matching: The last matching technique

used for the detection of the meaning of variable’s identifier in

the head comment is based on SEthesaurus [23]. SEthesaurus

covers a large set of software-specific terms (52,645 terms),

counting 4,773 abbreviations and 14,006 synonym groups,

with high accuracy; this can be beneficial, in our case, to detect

such abbreviations and the synonyms between the variables’

identifiers and terms in the text of the comments. For instance,

in Listing 6, the variable’s identifier TRACE INT consists of

two terms: 1) TRACE and 2): INT, where the second term of

the identifier INT is an abbreviation of its full form integer,

which appears in the comment. It is worth noting that lemmas’

and metaphonic matching can fail to detect the variables’

identifiers in the text of the comments in similar situations.

/**
* TRACE level integer value.

*
* @since 1.2.12

*/
public static final int TRACE_INT = 5000;

Listing 6. Example of advanced matching using SEthesaurus technique [24].

D. Union of Matching Approaches

As each detection approach has its own ability to detect

the variable’s identifier in the comments, we considered using

the union of lexical and advanced matching approaches to

overcome performance limitations and provide high detection

coverage of the identifiers in the comments. We considered

using two ways to unify these approaches: 1) a union of

the three advanced approaches (i.e., lemmas’, metaphone and

SEthesaurus) and 2) a union of all the approaches (i.e., lexical

and advanced approaches).

IV. STUDY DESIGN

A. Data Collection

This section outlines the data set used to evaluate our

approaches, the data set used for large-scale analysis, and the

types of variables, comments, and scopes of the variables’

declarations.
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Java XML

Fig. 1. Overview of our study.

TABLE I
USED VARIABLES FOR OUR DETECTION APPROACHES

Data Evaluation data set Large-scale data set
types # vars # commented # vars # commented
boolean 1,161 261 (4.91%) 733,294 125,598 (17.13%)
byte 2,755 181 (11.65%) 187,432 32,762 (17.48%)
char 158 29 (0.67%) 54,116 9,833 (18.17%)
int 7,592 1,952 (32.12%) 2,505,266 424,265 (16.93%)
short 58 12 (0.25%) 30,703 6,792 (22.12%)
long 4,715 976 (19.95%) 640,504 83,088 (12.97%)
float 76 26 (0.32%) 134,263 26,868 (20.01%)
double 669 160 (2.83%) 291,384 56,707 (19.46%)
String 6,456 1,501 (27.31%) 4,069,473 937,321 (23.03%)
Total 23,640 5,098 (21.57%) 8,646,435 1,703,234 (19.70%)

1) Repositories: Our repository preparation considers the

data set used to evaluate our detection approaches and to study

common characteristics of the documentation of primitive

variables using large-scale quantitative analysis.

Dataset used for large-scale analysis. Motivated by previ-

ous work on the promises and perils of mining GitHub [25],

which concluded that many repositories on GitHub do not

contain engineered software projects, we used the RepoReaper

framework [26] to obtain repositories for this work. Re-

poReaper was developed to differentiate between repositories

with engineered software projects and those with noise (e.g.,

assignments projects). This is an important step, as noise

projects could be the cause of incorrect conclusions in our

study.

To select repositories for our study, we first obtained 17,243

Java projects, which had at least one star and were classified as

containing engineered software projects by the Random Forest

classification of RepoReaper. We then eliminated 680 projects

that did not exist anymore on GitHub (e.g., deleted or made

private). For the remaining projects (16,563), we filtered out

1,441 projects that did not have README files and those

projects (12,578) that did not have the word documentation in

their README files—–this step was necessary as we wanted

to obtain only well-documented projects. From the remaining

projects (2,544), we removed 53 projects that did not contain

any Java files. Finally, in total, 1,040,026 Java files were

collected from 2,491 projects, which were used in this study.

Dataset used for evaluation. Six project repositories were

used to evaluate our proposed approaches, motivated by pre-

vious work of Ratol et al. [17] to detect fragile comments.

TABLE II
AMOUNT OF PRIMITIVE AND OTHER VARIABLES

Primitive variables Other variables
Fields 1,697,033 537,067
Local variables 3,020,165 3,693,085
Parameters 3,929,237 1,511,228
Total 8,646,435 (60.1%) 5,741,380 (39.9%)

These projects (see Table III) were selected because they

were used in Ratol et al.’s work [17] and showed several

advantages such as their availability as open-source, a diversity

of application domains, and being well-commented. To allow

further investigation, the six projects were cloned locally to

ease the process to analysing them.

The same work by Ratol et al. [17] was followed to

determine our sample size (i.e., we utilized the stratified

random sampling strategy to achieve diversity of the variables

in our sample). Stratified random sampling can prevent bias

while ensuring that all classes of interest are covered in a

sampled population. Following the procedure in this strategy,

we randomly selected 100 variables from each of the six

projects, in proportion to the number of variables declared in

each scope (i.e., fields, local variables and methods’ parame-

ters) from the target population—we defined target population

as the primitive variables that have at least one comment

above their declaration, and the variables’ identifier appeared

in the comment. For each project in Table III, we provide

the total number of variables in a given scope, followed

by the number of variables (in column Pop) of this scope

for which our approach can detect the variable name in the

comment above those variables’ declarations. In column Smp,

we indicate the number of variables in this scope, which were

selected for the sample. For example, for the project Chronicle
Map, the total number of variables detected in the field scope

is 452, and there are 10 variables for which our approach

can find a match of these variable names in the comments

above their declaration. Finally, the total number of variables’

identifiers that our advanced and lexical approaches detected

with associated comments in the Chronicle Map project is 137.

2) Types of the Variables, Comments, and Scopes: The

source code in any programming language is divided into small

pieces of code elements, e.g., classes, methods, fields, etc.

According to the syntax of the Java programming language,

there are four types of comments: 1) inline comment (i.e., //
shown in the same line where the variable is declared), 2)

line comment (i.e., // shown above variables’ declarations),

3) block comment (i.e., /* · · · */), and 4) Javadoc com-

ment (i.e., /** · · · */).

In this work, we focus on detecting the identifiers of

primitive variables: boolean, byte, char, int, long, float, dou-

ble and String that are documented in these three types of

comments (i.e., line and inline, block and Javadoc), declared

in three categories of program elements (i.e., fields, local

variables found in methods’ bodies and parameters of the

methods). We considered String as a primitive data type in

Java source code, motivated by the fact that it is a primitive
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TABLE III
EVALUATION SAMPLE

Projects Fields Local variables Parameters Total
Name Version Total Pop. Smp. Total Pop. Smp. Total Pop. Smp. Pop. Smp.
Chronicle Map 3.19.42 452 10 7 1,359 16 12 1,494 111 81 137 100
Joda time 2.10.6 847 82 5 2,230 26 2 3,559 1,392 93 1,500 100
JUnit 4.13 292 1 0 320 0 0 721 201 100 202 100
Log4j 1.9.0 813 126 28 1,053 12 2 1,330 313 70 451 100
Spring Data Redis 1.2.18 539 5 1 1,076 2 0 4,910 924 99 931 100
JFlex 2.3.1 755 109 27 989 31 7 901 269 66 409 100
Total — 3,698 333 68 7,027 87 23 12,195 3,210 509 3,630 600

type in other languages, such as Python. As the first step, we

collected all variables (i.e., 1,703,234) that have at least one

comment above their declarations (Table I), and we then used

our detection approaches to identify these identifiers in their

associated comments.

3) Detecting Documented Variables in Source Code: We

developed two approaches and then combined these two ap-

proaches to detect the variables’ identifiers in the source code

comments. These approaches are based on lexical or advanced

matching (see Section III) to capture variables’ identifiers in

their accompanying comments. In lexical matching, our match-

ing technique captures exact matches (i.e., case sensitive) of

these identifiers in the comments, while advanced matching

captures the meaning of the identifier in the comments by

applying lemmas, metaphonic and SEthesaurus matching tech-

niques.

Our approach to detect the documented variables in their as-

sociated comments is shown in Figure 1. It is worth noting that

projects used in our input source are classified as engineered

software projects based on the RepoReaper tool [26], which

was developed to distinguish between engineered projects and

other projects. We make use of RepoReaper’s Random Forest

classification, trained with organisation and utility data sets.

After cloning the targeted projects from GitHub and re-

moving all non-Java files, we made use of srcML [27] to

convert the source code of each .java file into its XML

representation. The advantage of using srcML is its ability to

perfectly preserve the format of the original source at different

levels, such as lexical, documentary (e.g., comments, white

space), structural (e.g., classes, methods) and syntactic (e.g.,

statement).

Each of the XML versions was then used to facilitate

the detection and the extraction of the variables with their

head comments (i.e., comments that appeared immediately

above the variables’ declaration) and their scopes in which

they appeared. Note: the white-spacing between the variables’

declarations and their head comments were ignored. Finally,

out of 14,387,815 variables obtained from 2,491 projects,

we extracted 60.10% (8,646,435) as primitive variables (see

Table II). 19.70% (1,703,234) of these primitive variables had

comments above their declarations, as shown in Table I, to be

used as input sources for our detection approaches.

B. Data Analysis

In this section, we outline the data analysis methods used

to answer the research questions.

1) Accuracy of Detection Approaches: To evaluate the

accuracy of our lexical and advanced matching approaches,

four authors of this study manually annotated 600 variables

to investigate the presence of the variables’ identifiers in the

text of the comments. We considered the union of these

techniques (lexical and advanced matching) to capture the

variables in comments, and we evaluated the accuracy of

each of these approaches individually. To calculate inter-rater

agreements between the annotators, the annotators were split

into six pairs (i.e., each of the four authors was paired with

each of the other authors) where each pair annotated 100

randomly selected variables. Each pair of annotators proceeded

to annotate each of the identifiers with their related comments

to evaluate the accuracy of the matching techniques, and the

presence of the additional information (see Table IV). We then

measured the agreement reliability between pairs of annotators

using Cohen’s Kappa metric. We note that the kappa reported

is the average kappa value across all annotator pairs for

each annotation question, which shows substantial to almost

perfect agreement [28]. We further studied these disagreements

between the pairs of annotators and resolved all conflicts to

enhance the kappa agreement values for each question, i.e.,

almost perfect agreement.

Table IV shows our annotation questions, the answer options

for each one, a description that shows how to answer each

of these questions, and the average kappa value across all

the annotators’ pairs. Each pair of annotators used AQ1 and

AQ3 to evaluate the lexical and advanced matching techniques’

performance, respectively. AQ1 investigates whether a variable

identifier is literally documented in the comment. In contrast,

AQ3 investigates whether the meaning of the identifier is

documented in the comment. Finally, AQ2 investigates the

existence of any type of knowledge regarding purpose, concept

and directives found in the comment, associated with the

identifiers and based on each answer to the sub-questions.

To annotate a variable’s identifier based on AQ1, which

is used to evaluate the performance of the lexical matching,

we differentiated between variable identifiers by their typo-

graphical conventions; for example, an identifier consists of a

single term or multiple terms as described in Section III-A.

In case of an identifier composed of multiple terms, each
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TABLE IV
ANNOTATION QUESTIONS

Question Answer Description avg. 𝜅
AQ1 Was the variable name mentioned in the

comment?
Yes / No N/A 0.93

AQ2 Did the comment add additional informa-
tion other than just mentioned the variable
name?

Yes / No N/A 0.82

AQ2.1 Did the comment provide any additional
knowledge type about the purpose or pat-
terns of the variable?

Yes / No Explanation about the lifecycle of the variable in the comment; how
to be referred/defined. This might be a part of the post-conditions of
a method. In addition, the description of the initialisation process of
the field variable can be treated as this category.

0.72

AQ2.2 Did the comment provide any additional
knowledge types about the concept of the
variable?

Yes / No Explanation about the content of the variable in the comment. Some-
times, the variable’s identifier is enough to be explained.

0.72

AQ2.3 Did the comment provide any additional
knowledge types about the directive of the
variable?

Yes / No Explanation about the variable’s domain, type or nullability as a part
of the pre-requisite for a method.

0.85

AQ3 Was the variable meaning mentioned in the
comment?

Yes / No Explanation about the variable’s identifier in term of the meaning,
which used to describe the variable in the comment.

0.75

annotator searches for all terms in the identifier and the

corresponding words with the exact wording of each term in

the text of the comment. The manual annotation steps consider

using the same sequence for the comment in which the terms

appeared in the identifier while white-spacing between these

terms was ignored. On the other hand, in case of an identifier

containing only a single term, the annotator looks at the literal

matches between the identifier and its corresponding word in

the comment.

The performance of each of our matching techniques is

then separately measured using the commonly used evaluation

measures: recall, precision, and the F-score. Recall measures

the degree of absence of false negatives while precision

measures the degree of absence of false positives. For example,

perfect recall reported by one of the approaches can indicate

that such a technique was able to detect all the variables’

identifiers in their comments, which were also detected by

the manual inspection. It is worth mentioning that the “recall”

reported in this paper is an approximation, as a theoretical

value of the recall cannot be computed precisely because much

effort to manually annotate the data would be required.
2) Knowledge Types Present in Comments: Since there is

no existing taxonomy of information in the comments which

would provide additional information around the variable iden-

tifiers, we established three types of knowledge, inspired by

previous work of Maalej and Robillard [16]. The description of

these types was only applicable to API documentation. How-

ever, we identified three types of knowledge from their work

which was applicable in our context with some adjustments,

namely purpose, concept and directives, and we then provided

a description for each one of those types to fit our purpose,

as illustrated in AQ2.1–2.3 in Table IV.

Each pair of annotators then inspected each identifier and

its accompanying comment to determine the existence of

identifiers’ purpose, concept and directives. We then quantita-

tively analysed how many of the variables’ identifiers were

documented in their accompanying comments with one or

more of these types of knowledge.

3) Number of Times Variables’ Identifiers Commented in
Source Code: To investigate how frequently primitive vari-

ables are commented in the source code, we first obtained

all the variables that have at least one comment (1,703,234

variables). Then, we quantitatively analysed the variables

documented using the best matching approach, resulting from

RQ1, to determine how many of the variables’ identifiers are

mentioned in their comments in different scopes.

4) Distribution of Documented Variables by Their Scope
of Declarations: Our investigation in this study takes into

account the type of documented identifier and the scope

in which they are declared. We hypothesise that some data

types of variables tend to be documented in the comments in

particular scopes more than other data types. Thus, to explore

the distribution of these identifiers, we quantitatively analysed

these variables by their scopes of declarations.

5) Types of Comments Associated with the Documented
Variables by Scope: We further investigated the types of com-

ments associated with the documented data types of variables.

For example, we investigated the scopes of the variables in

which they are declared, the data types of these variables and

the types of the comments associated with these variables. We

then analysed the descriptive statistics of our data set.

V. FINDINGS

In this section, we present our findings individually for each

of the research questions.

A. RQ1: To what extent can different techniques detect vari-
ables in comments?

To understand the performance of lexical and advanced

techniques used to detect the variables’ identifiers in the com-

ments, we present our results of the evaluation of the lexical

and the advanced matching in Table V. The evaluation of these

techniques was based on 600 variables manually annotated, as

shown in Table III, and using the annotation questions (i.e.,

AQ3), shown in Table IV, to assess the performance of all

techniques. As a result of the evaluation process, we found
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TABLE V
ACCURACY OF DIFFERENT MATCHING TECHNIQUES

Matching techniques Recall Precision F-score
Lexical Matching 0.896 0.994 0.942
Advanced Matching (Lemmas) 0.985 0.985 0.985
Advanced Matching (Metaphone) 0.995 0.973 0.984
Advanced Matching (SEthesaurus) 0.462 0.985 0.629
Union of all advanced matchings 1.000 0.973 0.986
Union of lexical and advanced matching 1.000 0.973 0.986

that 584 variables’ identifiers were correctly detected by our

approaches along with their accompanying comments, whereas

only 16 variables were not detected correctly.

The overall performance based on the F-score for each of

the techniques used to detect variables’ identifiers, across all

the scopes, showed that the ability of lemmas’ and metaphonic

matching techniques to capture the variables’ identifiers in the

comments were superior compared to the performances of the

lexical and SEthesaurus approaches, i.e., the F-score measures

for lexical, lemmas’, metaphonic and SEthesaurus are 0.942,

0.985, 0.984, and 0.629, respectively.

In terms of recall, SEthesaurus scored very low as compared

to other approaches, and this can be attributed to the limited

vocabulary in its dictionary, which was used to capture the

abbreviations and synonyms of the identifiers in the text

of comments. On the other hand, the recall of metaphonic

matching, which can catch the spelling and pronunciation

of the identifiers in the comments, scored the highest value

among the approaches.

Furthermore, combining lexical and advanced matching

resulted in a slight improvement (4.3%) of the F-score value,

due to the few false positives instances being detected when

the metaphonic matching technique was used.

The main observation we can draw from these results is

that the F-score value of advanced matching techniques to

detect the identifiers in the comments is higher than lexical

matching. This means that advanced matching can detect the

identifiers with 5% more true positive instances than lexical

matching (555 true positive instances), which has ultimately

impacted the value of the F-score of the union approach.

The ability of the advanced matching to detect the variables’

identifier in comments based on F-score scored a higher

value (0.986), compared to lexical matching, which scored

0.942.

B. RQ2: What types of knowledge do comments provide about
the variables?

The answer to RQ2 reveals the types of additional informa-

tion in comments about documented variables, found in the

600 variables manually annotated. Table VII shows three types

of knowledge—purpose, concept and directive—that the devel-

oper might use to describe the identifiers in the comment. As

shown in the Figure, the documented variables were grouped

in scopes, and it shows the number of documented variables

with any of these types of knowledge and percentages of the

TABLE VI
RELATIONSHIP BETWEEN GROUPS OF DATA TYPES OF VARIABLES WITH

RESPECT TO KNOWLEDGE TYPES

Data type of variables Types of knowledge
P C D

1
Numeric

0.0484 0.0001 0.0001
String and char

2
Numeric

0.3846 0.0067 0.0081
boolean

3
String and char

0.9053 0.6413 0.0001
boolean

Fig. 2. Percentage of variables documented, undocumented in the comment,
and the percentage of the variables that do not have comments.

additional information of these knowledge types captured in

the comment to describe the identifier.

For instance, our result revealed that 60.00% (6/10) of the

boolean variables, declared in the field scope, have information

that can explain the variables’ concept in their accompanying

comments. On the other hand, 88.46% (23/26) of the String

variables, declared in field scope, are documented with their

concept. We can also observe that all variables declared in the

parameters of the methods were documented with additional

information of the three knowledge types. This indicates that

parameter variables are crucial in source code, so developers

tend to provide additional information about their concept,

purpose or directives in their accompanying comments.

In addition, combining the numbers of each data type of

variables, from all the scopes, can show how often variables

with a particular data type were documented in comments

with their concept, purpose or directives. In general, we can

Fig. 3. Percentage of variable data types declared in each scope.
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TABLE VII
TYPES OF KNOWLEDGE OF PURPOSE (P), CONCEPT (C), AND DIRECTIVES (D) DOCUMENTED WITH EACH DATA TYPE OF VARIABLES IN COMMENTS

Data type Fields Local variables Parameters Combined
Count P (%) C (%) D (%) Count P (%) C (%) D (%) Count P (%) C (%) D (%) Count P (%) C (%) D (%)

boolean 10 50.00 60.00 0.00 1 100.00 100.00 0.00 26 65.38 46.15 0.00 37 62.16 51.35 0.00
byte 0 N/A N/A N/A 0 N/A N/A N/A 17 64.71 58.82 47.06 17 64.71 58.82 47.06
char 1 0.00 0.00 100.00 0 N/A N/A N/A 1 100.00 100.00 0.00 2 50.00 50.00 50.00
int 25 28.00 72.00 4.00 14 42.86 42.86 0.00 134 74.63 74.63 19.40 173 65.32 71.68 15.61
short 0 N/A N/A N/A 0 N/A N/A N/A 1 100.00 100.00 0.00 1 100.00 100.00 0.00
long 6 33.33 83.33 0.00 3 33.33 33.33 0.00 88 80.68 72.73 17.05 97 76.29 72.16 15.46
float 0 N/A N/A N/A 0 N/A N/A N/A 10 100.00 80.00 10 10 100.00 80.00 10.00
double 1 0.00 100.00 0.00 3 0.00 100.00 0.00 32 68.75 81.25 9.38 36 61.11 83.33 8.33
String 26 34.62 88.46 11.54 2 50.00 50.00 0.00 199 64.82 51.26 33.17 227 61.23 55.51 30.40
Numeric 32 28.13 75.00 3.13 20 35.00 50.00 0.00 282 76.24 74.11 18.79 334 69.16 72.75 16.17
String and char 27 33.33 85.19 14.81 2 50.00 50.00 0.00 200 65.00 51.50 33.00 229 61.14 55.46 30.57
Total 69 33.33 76.81 7.25 23 39.13 52.17 0.00 508 71.26 63.78 23.43 600 65.67 64.83 20.67

see only 20.67% (124) of these variables are documented

in comments with their directive information, compared to

the variables documented with their purposes 65.67% (394)

and concept 64.83% (389)—developers rarely documented

primitive variables with their directive information in the

comments.

We further grouped the data types of the primitive variables

into numeric (i.e., byte, int, long, short, float and double),

String and char, and booleans to investigate whether data

types of variables’ identifiers would affect the amount of

the additional information regarding purpose, concept and

directives associated with variables documented in comments.

We found that only 55.46% (127/229) of the identifiers of

strings and chars were documented in the comments with

their concept, compared to 72.75% (243/334) of identifiers

of numeric types.

Developer usually documented the variables’ identifiers of

a numeric data type with their purpose (69.16%) and con-

cept (72.75%), more than the variables’ identifiers of type

String which were documented with their purpose (61.14%)

and concept (55.46%).

Table VI shows the associations between the groups of

identifiers of type String and char vs. numeric to test the

association between these groups. We found that the difference

in documenting the concept of an identifier is statistically

significant between numeric types and String/char using the

Chi-squire test with 𝑝 = 0.0001. Numeric types are well

documented in terms of their concept as compared to String

and char, i.e., numeric is more often conceptualised with

meaning.

Additionally, we found that the information of type direc-

tives is strongly related to the data types of numeric, String

and char, and boolean variables, with 𝑝 < 0.05. For instance,

we found that boolean identifiers are not documented in terms

of directives (0/37), as expected, because booleans’ range is

only two elements. In contrast, developers tend to provide ad-

ditional information that describes the directives of identifiers

of strings and chars more than numeric variables, 30.57% and

16.17%, respectively. This is likely because String variables

are well directive-documented due to extra information, such

as “nullability” that is usually documented with the identifiers

in the comment.

C. RQ3: How frequently are primitive variables documented
in comments?

Next, we used our large-scale data set which contains

1,703,234 (19.70%) commented variables (i.e., developers

wrote a comment above the declaration of the variable) out

of a total of 8,646,435 primitive variables (see Table I),

to investigate how often developers documented the vari-

ables’ identifiers in comments, i.e., developers mentioned

the variables’ identifiers in the associated comments. Out

of 1,703,234 commented variables, our matching approaches

were able to detect 67.40% (1,147,947) of the identifiers

that were documented in their related comments, using the

union approach, as its F-score scored the best value (0.986)

among all detecting approaches (see RQ1). We used 1,147,947

documented variables to answer RQ3 and subsequent research

questions: RQ4 and RQ5. We now report the findings to

answer RQ3.

Figure 2 shows for each of the data types 1) the percentage

of the variables that have comments and are documented

in their accompanying comments, 2) the percentage of the

variables that have comments but are undocumented (i.e.,

not mentioned in their accompanying comments), and 3) the

percentage of variables that do not have comments.

We can see from the Figure that the percentage of the

documented variables in the comments compared to undocu-

mented variables is high except for the int data type where the

opposite was observed. Moreover, 17.9% of String variables

were documented in their comments compared to undocu-

mented (5.2%), which showed the highest ratio among all

the documented variables followed by byte, boolean and float.

This can be explained, as developers tend to document the

identifiers of String more than other data types due to its

capability to store any data ranging from textual information

to symbols and numbers, which might be required from the

developers to provide additional information of type directive

to describe the content of the String variables. In addition,

80.30% (6,943,201) of primitive variables were found to be
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TABLE VIII
PERCENTAGE OF THE VARIABLES OF DIFFERENT DATA TYPES DOCUMENTED WITH DIFFERENT TYPES OF COMMENTS IN EACH SCOPE

Data Type Fields Local variables Parameter variables
Inline Line Block Javadoc Inline Line Block Javadoc Inline Line Block Javadoc

boolean 0.57 1.43 0.24 8.71 0.66 7.51 0.42 0.10 0.00 0.03 0.03 6.26
byte 1.04 0.48 0.04 1.40 0.17 3.28 0.16 0.02 0.00 0.01 0.02 1.55
char 0.02 0.05 0.02 0.58 0.04 0.45 0.04 0.00 0.00 0.00 0.01 0.46
int 1.53 2.66 0.47 25.75 2.95 28.82 1.58 0.33 0.00 0.14 0.18 15.54
short 0.02 0.03 0.02 0.92 0.04 0.27 0.00 0.00 0.00 0.00 0.00 0.22
long 0.26 0.75 0.15 4.98 0.41 4.48 0.23 0.07 0.00 0.02 0.02 4.40
float 0.07 0.12 0.02 1.58 0.21 1.60 0.05 0.03 0.00 0.01 0.01 1.29
double 0.38 0.26 0.06 1.92 0.82 5.84 0.63 0.05 0.00 0.04 0.02 2.72
String 0.96 2.96 0.63 38.93 1.76 35.30 1.45 0.19 0.00 0.20 0.22 66.60

uncommented, where the long data type showed the highest

ratio of uncommented variables among other primitive types.

The String data type, on the other hand, showed the lowest

ratio of uncommented variables compared to other primitive

variables.

80.30% of the variables do not have comments, and among

those commented variables, 13.28% of the variables were

documented in their comment, while 6.42% of the variables

were undocumented.

D. RQ4: What are the distributions of documented variables
by their scope of declarations?

As reported in Section V-C, 13.29% (1,147,947) of the

variables were documented in their related comments. For

these 1,147,947 variables, Figure 3 investigates the distribu-

tions of variables’ data type in their accompanying comments

in each scope. Identifiers of String data type declared in

methods’ parameters were usually documented (67.02%) in

their associated comments. In contrast, identifiers of the data

types of int and boolean were most often documented in local

and field scopes, 33.70% and 10.95%, respectively.

Comparing data types of each variable with their decla-

ration scopes, we found that String 63.39% (727,631), int

19.12% (208,058), and boolean 6.91% (79,283) data types

were frequently used and documented across all the scopes.

On the other hand, the lowest number of variables docu-

mented in the comments were short (0.31%), char (0.49%),

float (1.39%) and double (2.93%) data types across all the

scopes of declaration.

Variables declared in methods’ parameters were more doc-

umented (85.32%) in their comments than those declared in

the scopes of field (10.98%) and methods’ bodies (3.70%).

The high number of documented variables in parameters

might be because comments were automatically generated by

Javadoc and usually mentioned the variables’ identifiers in

the comment. In contrast, the lower numbers of the variables

documented in the methods’ bodies were due to their smaller

scope, where developers tend not to document these identifiers

in the comments.

Across all scopes, developers often use and document

variable identifiers of type String (63.39%), int (19.12%)

and boolean (6.91%) in their accompanying comments more

than other primitive data types. Variables declared in meth-

ods’ parameters were more documented in their comments

than those declared in scopes of field and methods’ bodies.

E. RQ5: What are the types of comments associated with the
scopes of the documented variables?

Finally, we report our result to reveal the types of comments

associated with the documented variables in each scope, as

shown in Table VIII. The results can be interpreted in the same

way as those in Figure 3, except that in this case, we show the

types of the comments (e.g., inline, line, block and Javadoc)

associated with these data types and variables per scope. Our

result reveal that a vast majority of the variables declared in the

methods’ parameters were documented in a comment of type

Javadoc 99.04% (969,976), followed by block 0.5% (4,878).

Similarly, out of 126,093 variables declared in field scope,

we found 84.77% of these variables were documented using

Javadoc, followed by line comment (8.76%). Finally, 87.55%

of local variables were documented using line comment,

followed by inline comment (7.08%).

97.41% of the variables declared in field and parame-

ter scopes were documented in Javadoc comments, while

87.55% of local variables were documented using line

comments.

VI. THREATS TO VALIDITY

Just like any empirical study, for our study, there are a

number of threats that may affect our results’ validity.

First, the taxonomy used to categorise the documentation

of variables was based on three types of knowledge inspired

by Maalej and Robillard [16], and adapted to fit our purpose.

Future work should explore other dimensions of these types

of knowledge.

The number of primitive variables used to evaluate our

detection approaches is small, which can introduce bias but

is a necessary limitation due to the effort required for manual

annotation. Besides, the recall reported in this paper is an

approximation, as a theoretical value of the recall cannot be

computed precisely because much effort to manually annotate

the data would be required.
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Finally, our work may not generalise to other programming

languages, especially those that are loosely typed. Therefore,

we cannot claim that our findings generalise beyond the

evolution data set used in this paper.

VII. RELATED WORK

In this section, we discuss literature related to approaches

for the detection of code comment inconsistencies and tax-

onomies of knowledge types.

Automatic Assessment of Comment Quality: Researchers

have developed tools and metrics to measure the quality of

code comments. For example, Khamis et al. [29] developed

a tool called JavadocMiner based on Natural Language Pro-

cessing (NLP) to assess the quality of Javadoc comments by

evaluating the “quality” of the language used in the comment

as well as its consistency with the source code. The quality

of the language is assessed using readability metrics such

as the Gunning Fog Index and combined with the several

heuristics, e.g., checking whether the comment uses well-

formed sentences, including nouns and verbs. Furthermore,

the consistency between code and comments is checked with

a heuristic-based approach. For example, a method having a

return type and parameters is expected to have these elements

documented in the Javadoc with @return and @param.

In another work, Steidl et al. [30] proposed a machine learn-

ing model for comment quality analysis and assessment based

on various comment categories including header comments,

member comments, in-line comments, section comments, code

comments and task comments. The model described the qual-

ity attributes in terms of coherence, consistency, completeness,

and usefulness, and assessed two quality metrics. The validity

of the model was then evaluated with a survey among 16

experienced developers.

Similarly, Sun et al. [31] extended the work of Steidl

et al. by evaluating code comments in jdk8.0 and jEdit

to provide comprehensive comment assessment and recom-

mendation. The study consists of header comment analysis

and method comment analysis that highlights the correlation

between method’s name and comment.

Hata et al. [32] investigate the role of links contained

in source code comments. They find that licenses, software

homepages, and specifications are among the most prevalent

types of link targets, and that links are often used to provide

metadata or attribution.

Hao [33] carried out an approach to understand comments

in source code, investigating whether projects practice com-

menting differently and what may cause the differences. They

chose five programming languages including JavaScript, Java,

C++, Python and Go. They found that the most commented

project was a Java design patterns project and that comments

in Java and Python were more prevalent than in C++.

Other studies have mainly focused on the automatic de-

tection of code-comment inconsistencies such as the work

presented by Tan and colleagues [34], [35]. In their work,

they presented iComment [34] which combined program

analysis, a technique using NLP and machine learning to

detect code-comment inconsistencies. iComment can detect

inconsistencies related to the usage of locking mechanisms in

code and their description in comments. They also presented

@TCOMMENT in their follow-up work [35]. @TCOMMENT

is an approach which is able to test the consistency between

Javadoc comments related to null values and exceptions with

the behaviour of the related method’s body.

A rule-based approach named Fraco was proposed by Ratol

et al. [17] to detect code-comment inconsistencies resulting

from rename refactoring operations performed on identifiers.

Their evaluation shows the superior performance achieved

by Fraco as compared to the rename refactoring support

implemented in Eclipse. Our work, while not related to the

automatic assessment of comments’ quality, provides an em-

pirical study on how developers tend to document identifiers

of primitive variables in source code comments.

Taxonomy of knowledge types: Padioleau et al. [36]

proposed a taxonomy based on meanings of comments and

manually classifiers 1,050 comments. They found that 52.6%

of these comments can be leveraged to improve software

reliability and increase developer productivity. Monperrus et

al. [37] empirically studied API directives which are con-

straints about usages of APIs and they built a corresponding

taxonomy. Maalej and Robillard [16] leveraged grounded

methods and analytical approaches to build a taxonomy of

knowledge types in API reference documentation and manu-

ally classified 5,574 randomly sampled documentation units

to assess the knowledge they contain. Unlike those studies,

we developed a taxonomy of knowledge types for identifiers

detected in the code comments as the existing taxonomies do

not fit the purpose of this paper.

VIII. IMPLICATIONS AND FUTURE WORK

Primitive variable data types are fundamental elements in

any programming language. Because of the nature of these

variables, which requires developers to inject meaning in

the accompanying comments, their role might be difficult to

understand if not sufficiently explained in code comments,

which can ultimately reduce the productivity of developers.

Our results indicate which variables in what context tend

to be documented and which ones are not. Knowing which

primitive variables (i.e., most of the variables in our data set)

tend to be documented and what knowledge this documenta-

tion contains are first steps towards raising awareness among

developers about what should be documented and what is

often missing. This can provide a pathway towards integrated

automated tooling to assess the presence of knowledge types

and to potentially issue recommend changes in cases of lack

of knowledge types in the comment related to the variables’

identifiers.

In future work, we plan similar work on non-primitive

variables and consider expanding the taxonomy of knowledge

types regarding variables’ identifiers documented in comments

to cover more knowledge types, which can help reveal addi-

tional information linked to these identifiers.
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