
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2010

A comparative exploration of FreeBSD bug lifetimes A comparative exploration of FreeBSD bug lifetimes

Gargi BOUGIE

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Daniel M. GERMÁN

Margaret-Anne STOREY

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
BOUGIE, Gargi; TREUDE, Christoph; GERMÁN, Daniel M.; and STOREY, Margaret-Anne. A comparative
exploration of FreeBSD bug lifetimes. (2010). Proceedings of the 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), Cape Town, South Africa, May 2-3. 106-109.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8846

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8846&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Gargi Bougie
University of Victoria

gbougie@uvic.ca

Christoph Treude
University of Victoria

ctreude@uvic.ca

Daniel M. German
University of Victoria

dmg@uvic.ca

Margaret-Anne Storey
University of Victoria

mstorey@uvic.ca

Abstract—In this paper, we explore the viability of mining the
basic data provided in bug repositories to predict bug lifetimes.
We follow the method of Lucas D. Panjer as described in his
paper, Predicting Eclipse Bug Lifetimes. However, in place of
Eclipse data, the FreeBSD bug repository is used. We compare
the predictive accuracy of five different classification algorithms
applied to the two data sets. In addition, we propose future work
on whether there is a more informative way of classifying bugs
than is considered by current bug tracking systems.

Index Terms—Mining Software Repositories; Bug lifetimes;
FreeBSD;

I. INTRODUCTION

Accurately predicting the lifetime of bugs in a software

project is useful from both a management and development

perspective. Allocation of resources and project schedules are

often adjusted based on the number and severity of bugs

and the developers’ estimated time to fix. If a method for

predicting the lifetime of bugs in a software project can be

derived, managers and developers can better understand the

scope of the work required, achieving improved accuracy of

release schedules and budget plans. In addition, if the measure

of bug lifetimes suggests a classification scheme other than

that provided in common bug tracking systems, this may have

implications for improving bug tracking methods in today’s

large-scale software projects.

As Juristo et al. [1] explain, replication studies are relatively

rare in the field of software engineering due to the difficulty

of reproducing exactly the original experimental conditions.

Juristo et al. conclude, however, that valuable knowledge can

be obtained from non-exact replications if the deviations are

controlled and the results are analyzed and compared to those

of the original experiment.

In this research, we perform a replication of the work

conducted by Panjer in his evaluation of bug lifetimes in

the Eclipse project [2]. In place of Eclipse Bugzilla data, we

use the FreeBSD bug repository. We examine the ability to

predict bug lifetimes based on historical data contained in the

FreeBSD bug repository and compare the predictive accuracy

of several classification algorithms for both data sets. Also

considered is the resulting classification of FreeBSD bugs

based on their lifetimes. Since the FreeBSD data set is large,

data mining tools and techniques are used.

The literature search conducted by Panjer showed that there

has been little research done in the area of predicting bug

lifetimes. However, characterizing classes of bugs in the Linux

and OpenBSD kernels in terms of their average life span has

been investigated by Chou et al [3]. Kim et al. [4] studied

the open source projects, ArgoUML and PostgreSQL, showing

that they have a median bug-fix time of about 200 days and a

maximum of several years.

II. RESEARCH QUESTIONS

Panjer’s goal was to determine the viability of predicting

a bug’s lifetime from time of arrival to time of resolution,

using only the basic data available in a project’s bug repository.

In this paper, Panjer’s method is applied to a different data

set, the FreeBSD bug repository, and the same classification

algorithms are applied. Unlike Eclipse which uses Bugzilla,

FreeBSD uses the GNATS bug tracking system. Our research

questions are:

RQ1: Can we determine whether there is a superior clas-

sification algorithm for predicting bug lifetimes?

RQ2: Can the process of classifying bugs be improved

compared to current bug tracking systems by leveraging

non-obvious properties such as user base or expertise

required?

III. DATA SET

The FreeBSD bug repository was chosen as the data set

for this research because FreeBSD is a large, well-known

and mature open source project as is Eclipse. The partially-

parsed bug repository was made available on the 2010 Mining

Software Repositories Challenge website.

A. GNATS Process

The GNATS problem report life cycle [5] begins by a prob-

lem reporter submitting a problem report (PR) and receiving

a confirmation message. A committer within the FreeBSD

project takes interest in the problem report and either assigns it

to himself, or to another developer. Once the person assigned

to the PR (the assignee) has a solution to the problem, he

or she submits it in a follow-up, asking the reporter to test

the fix. Once the reporter and assignee agree to a fix, a

Merge From Current (MFC) countdown may be started. An

MFC countdown indicates the number of days a component

committed to the current, or development branch of a software

repository must wait before being committed to the stable
branch [6]. This value is set by the committer and must be a

A Comparative Exploration of FreeBSD Bug Lifetimes

MSR 2010978-1-4244-6803-4/10/$26.00 © 2010 Crown 106

minimum of three days. The countdown period allows for the

component to be tested by different developers on a range of

configurations. If an MFC countdown is started, the assignee

leaves the problem report in the “patched” state until the

countdown finishes and the component is merged to the stable
branch, at which point, the assignee closes the PR. If an MFC

is not required, the assignee simply closes the PR.

B. Data Set Preparation

The provided partially-parsed FreeBSD bug repository

included GNATS messages containing message ID, mes-

sage body and several other fields deemed irrelevant to this

research. The message body field included the following infor-

mation: bug number, category, confidential, severity, priority,
responsible, state, quarter, keywords, date required, class,
submitter id, arrival date, closed date, last modified, origi-
nator, organization, environment. We parsed this information

from the message body using perl scripts and placed it in a

new database table for exploration.

The data set contained 17 entries where bug number was

null, so we removed these. In addition, 5963 entries contained

an invalid value for arrival date or closed date, which we also

removed. Invalid values included cases where the closed date
was earlier than the arrival date or where either of the fields

were null. This left 131,613 valid entries.

The data set contains bugs opened between September 14th,

1994 and September 11th, 2009 inclusive. The maximum

number of days a bug is open is 4051.96 days, the median is

4.23 days, the mean is 86.24 days, and the standard deviation

is 253.97 days. From these numbers, we can see that the

distribution of bug lifetimes is heavily skewed. The box plot

in Figure 1 illustrates the time to close bugs in days for the

FreeBSD project.

In order to apply data mining algorithms that require nom-

inal attributes to the data set, the WEKA toolkit [7] was used

to discretize the bug lifetime values in days using an equal

frequency binning algorithm. We did this for seven bins, as

per Panjer’s method, and also for ten bins, for an additional

comparison. The results for ten bins are shown in Figure 2.

Panjer’s Eclipse data produced one bin that was significantly

larger than the others. We did not see this issue with the 7-bin

or 10-bin FreeBSD data.

IV. AUTOMATIC CLASSIFICATION

Once the bug lifetime values were discretized, basic data

mining and analysis was performed on both the 7-bin and 10-

bin data set using classification algorithms provided in WEKA.

These algorithms were meant to provide a mechanism for

determining the accuracy with which bug lifetimes can be

predicted using the prepared data set. The basic algorithms, 0-

R and 1-R were executed on the data set to establish a predic-

tion accuracy baseline. In addition, the Naive Bayes algorithm,

C4.5 Decision Trees, and Logistic Regression algorithms were

applied. WEKA uses 10-fold cross-validation [7] for these

algorithms. The kappa statistic is presented as a means of

measuring the accuracy of the predicted classification against

0.
00
1

1
10

10
0

50
00

D
ay
s

Fig. 1. Distribution of FreeBSD bug lifetimes in days (logarithmic scale)

������ ������ ������ ������ ������ ������ ������ ������ ������ ������

��
�	
�

�

��
��

�	
�

�

��
�
�
�	
��
��
��
�

�	
��
��
��
�
�
�	

�
��
��
�

�	

�
��
��
�
�
�	

�
��
�

�

�	

�
��
�

�
�
�	
��
��
��
�

�	
��
��
��
�
�
��
	�
�

�
��

��
	�
�

�
��

��
�	

�
��
��
�

��
	

��
��
��

��
�	
��
��
��
�

��
	�
��
��
��

��
��
	�
�

��
�

��
��
�	
��

�
��

Fig. 2. Result of equal frequency binning algorithm with 10 bins. Shows
number of bugs in each lifetime range (lifetime ranges in days).

the actual classification. The kappa statistic offers a more

robust measure than the individual percentage since it takes

into account the number of correct classifications occurring by

chance. Both the kappa statistic and the individual percentage

of correctly predicted classifications are recorded. Interesting

findings from the application of each algorithm to the data set

are described. A summary of results generated from analyzing

the 7-bin and 10-bin FreeBSD GNATS data is shown in Table

1 and Table 2, respectively. The results of Panjer, generated

from analyzing the Eclipse Bugzilla data, are shown in Table

3. Detailed outcomes of applying the algorithms are described

below for the 10-bin data set.

A. 0-R and 1-R

The 0-R algorithm correctly classifies 10.00% (14.28% with

7 bins) of bugs and the kappa statistic is 0. The 1-R algorithm

builds a single-level decision tree by generating a rule for

each of the supplied attributes. The attribute used in the best-

107

performing rule is selected for the root node of the tree. The

1-R algorithm correctly classifies 17.00% (22.95% with 7 bins)

of bugs and the kappa statistic is 0.0779 (0.1011 for 7 bins).

The attribute selected to classify all instances is the category.

The rule states that bugs categorized as being related to ports
are resolved in 1.82 < days < 4.23, while those categorized

as ia64 are resolved in 60.46 < days < 220.77. For the www
category, the results show that bugs are closed within 4.23 <
days < 10.21, and for kern, bin, docs, misc, i386, conf, usb,
gnu, amd64, java, standards, alpha, sparc64, and threads, bugs

are closed in 220.77 < days. Bugs labelled junk, advocacy,

and sun4v are closed within days < 0.08.

B. Decision Trees

The J48 classifier in WEKA was used for generating C4.5

decision trees. The algorithm first generates a number of cases

for the attributes provided in the numeric or nominal data set.

Within these cases, the J48 algorithm looks for patterns that

differentiate the attributes [8]. In our case, the C4.5 algorithm

correctly classifies 19.49% (25.73% for 7 bins) of bugs and the

kappa statistic is 0.1054 (0.1335 for 7 bins). As with the 1-R

algorithm, the top node of the generated trees is always the

category. The child of category was class in all cases except:

kern, in which case category was followed by confidential;
junk, www, and arm, in which cases category was followed by

severity; and standards, in which case category was followed

by priority.

C. Naive Bayes

The Naive Bayes algorithm is based on Bayes’ theorem of

conditional probability and assumes all attributes are indepen-

dent. Naive Bayes correctly classifies 18.45% (24.99% for 7

bins) of bugs and the kappa statistic is 0.0939 (0.1249 for 7

bins).

D. Logistic Regression

As indicated by Panjer, computational constraints make

processing the entire data set using logistic regression difficult.

Therefore, following the method taken by Panjer, a randomly

selected subset of 496 bugs, or 3.77% of the original data set

was used. The regression model that is built using the logistic

regression algorithm correctly classifies 16.53% (23.99% for

7 bins) of bugs and the kappa statistic is 0.0724 (0.1133 for

7 bins).

Algorithm Predicted % Kappa

0-R 14.28% 0.0000
1-R 22.95% 0.1011
C4.5 Decision Tree 25.73% 0.1335
Naive Bayes 24.99% 0.1249
Logistic Regression 23.99% 0.1133

TABLE I
SUMMARY OF PREDICTION RESULTS FOR FREEBSD (7 BINS)

Algorithm Predicted % Kappa

0-R 10.00% 0.0000
1-R 17.00% 0.0779
C4.5 Decision Tree 19.49% 0.1054
Naive Bayes 18.45% 0.0939
Logistic Regression 16.53% 0.0724

TABLE II
SUMMARY OF PREDICTION RESULTS FOR FREEBSD (10 BINS)

Algorithm Predicted % Kappa

0-R 29.10% 0.0000
1-R 31.00% 0.0747
C4.5 Decision Tree 31.90% 0.0938
Naive Bayes 32.50% 0.1195
Logistic Regression 34.90% 0.1577

TABLE III
SUMMARY OF PREDICTION RESULTS FOR ECLIPSE

V. DISCUSSION

0-R sets a baseline for the prediction accuracy of bug

lifetimes. It simply takes the most commonly occurring class

of lifetime values and makes a prediction that all bugs will be

resolved within that time period.

The 1-R algorithm selects what is considered to be the

most important attribute by generating the first rule that would

appear in a decision tree for the data set. The selection of

category as the root attribute in this case is logical since each

category defines a unique subset of the project for which bugs

may have similar resolution times. For 10 bins, 1-R generates

the rule defining category = ports, junk, www, powerpc,
advocacy, pending, or sun4v to predict bug resolution times

of days < 10.21. All other categories always imply resolution

times of greater than 220.77 days, except ia64 which implies

a resolution time of 60.46 < days < 220.77, and arm which

implies a resolution time of 10.21 < days < 22.84.

Though difficult to hypothesize a reason for this behavior

without further investigation, it is not surprising that bugs

labelled as pending and junk are closed more quickly than

bugs in many other categories. It is also interesting to note

that categories for the specific processors, ia64 and arm,

imply unique resolution times. Valuable future work would

involve exploring the properties of bugs in more depth, espe-

cially those properties not explicitly captured by bug tracking

systems. Examples may include looking at the user base

size for the component a bug is found in, or determining

the number of distinct developers assigned to fix bugs in

the different categories. Such work may shed light on more

informal practices such as fixing components with a wider user

base first, or leveraging a core group of expert developers to

fix bugs in a certain category quickly.

Comparing our results obtained from mining the FreeBSD

bug repository to Panjer’s findings for the Eclipse Bugzilla

data, we can see that the prediction accuracy is higher for

the Eclipse data using all algorithms. However, the kappa

statistic is higher for the 10-bin FreeBSD data using the 1-

108

R and C4.5 Decision Tree algorithms. For the 7-bin FreeBSD

data, the kappa statistic is higher than seen with Eclipse for

all algorithms except Logistic Regression. It is not clear in

Panjer’s paper why one bin is much larger than the others. We

can see, however, that his results for the correctly predicted

percentage do not vary significantly from 0-R to the other

algorithms. Our 10-bin results demonstrate an improvement in

predictive accuracy of approximately 97% from 0-R (10.00%)

to C4.5 (19.49%). This difference implies that the predictive

accuracy and optimal methods for predicting bug lifetimes may

vary significantly between software projects. It is apparent that

no one algorithm can achieve a higher predictive accuracy

across all projects. Future work would be to investigate the

bug lifetimes and prediction accuracy for a range of software

projects and to study their structure and organization.

VI. CONCLUSION

In this research, bug lifetimes for the FreeBSD software

project are modeled using only the information available in

the project’s bug repository. The WEKA toolkit is used to

execute data mining algorithms on the data set. As a result, it

was determined that bug lifetimes for the FreeBSD project can

be predicted with an accuracy of 19.49%, using 10 bins for

lifetime ranges. The attributes of the data set most suitable for

prediction were discovered to be category, severity, priority,

and confidentiality. Comparing our results to Panjer’s findings

for the Eclipse data set reveals that the predictive accuracy of

classification algorithms varies across software projects.

REFERENCES

[1] N. Juristo and S. Vegas, “Using differences among replications of soft-
ware engineering experiments to gain knowledge,” in Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering
and Measurement. IEEE Computer Society, 2009, pp. 356–366.

[2] L. D. Panjer, “Predicting eclipse bug lifetimes,” in MSR ’07: Proceedings
of the Fourth International Workshop on Mining Software Repositories.
IEEE Computer Society, 2007, p. 29.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study
of operating systems errors,” in SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles. ACM, 2001, pp.
73–88.

[4] S. Kim and E. J. Whitehead, Jr., “How long did it take to fix bugs?”
in MSR ’06: Proceedings of the 2006 international workshop on Mining
software repositories. ACM, 2006, pp. 173–174.

[5] T. T. Dinh-Trong and J. M. Bieman, “The freebsd project: A replication
case study of open source development,” IEEE Trans. Softw. Eng., vol. 31,
no. 6, pp. 481–494, 2005.

[6] “A Project Model for the FreeBSD Project,” Available
online at http://people.freebsd.org/∼jcamou/en US.ISO8859-1/books/
dev-model/book.html. [Online]. Available: http://people.freebsd.org/
∼jcamou/en US.ISO8859-1/books/dev-model/book.html

[7] “Weka 3 - Data Mining Software in Java,” Available online
at http://www.cs.waikato.ac.nz/ml/weka/ . [Online]. Available: http:
//www.cs.waikato.ac.nz/ml/weka

[8] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., 1993.

109

	A comparative exploration of FreeBSD bug lifetimes
	Citation

	tmp.1718270345.pdf.aBOjU

