
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2024

Experience Report: Identifying common misconceptions and Experience Report: Identifying common misconceptions and

errors of novice programmers with ChatGPT errors of novice programmers with ChatGPT

Hua Leong FWA
Singapore Management University, hlfwa@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Citation Citation
FWA, Hua Leong. Experience Report: Identifying common misconceptions and errors of novice
programmers with ChatGPT. (2024). ICSE-SEET '24: Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering: Software Engineering Education and Training: Portugal, April 14-20.
233-241.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8839

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8839&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8839&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8839&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Experience Report: Identifying common misconceptions and
errors of novice programmers with ChatGPT

Author1
anon1@university.edu
Author1Institution
Dublin, Ohio, USA

ABSTRACT
Identifying the misconceptions of novice programmers is pertinent
for informing instructors of the challenges faced by their students
in learning computer programming. In the current literature, cus-
tom tools, test scripts were developed and, in most cases, manual
effort to go through the individual codes were required to identify
and categorize the errors latent within the students’ code submis-
sions. This entails investment of substantial effort and time from
the instructors. In this study, we thus propose the use of ChatGPT
in identifying and categorizing the errors. Using prompts that were
seeded only with the student’s code and the model code solution for
questions from two lab tests, we were able to leverage on ChatGPT’s
natural language processing and knowledge representation capabil-
ities to automatically collate frequencies of occurrence of the errors
by error types. We then clustered the generated error descriptions
for further insights into the misconceptions of the students. The
results showed that although ChatGPT was not able to identify
the errors perfectly, the achieved accuracy of 93.3% is sufficiently
high for instructors to have an aggregated picture of the common
errors of their students. To conclude, we have proposed a method
for instructors to automatically collate the errors latent within the
students’ code submissions using ChatGPT. Notably, with the novel
use of generated error descriptions, the instructors were able to
have a more granular view of the misconceptions of their students,
without the onerous effort of manually going through the students’
codes.

CCS CONCEPTS
• Applied computing → Interactive learning environments; •
Computing methodologies→ Information extraction.

KEYWORDS
datasets, neural networks, gaze detection, text tagging

ACM Reference Format:
Author1. 2018. Experience Report: Identifying common misconceptions
and errors of novice programmers with ChatGPT. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

(Conference acronym ’XX). ACM, New York, NY, USA, 9 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Novice programmers often exhibit misconceptions which inhibit
their ability to learn and make progress [13, 19]. Understanding the
misconceptions of novice programmers is pertinent for informing
instructors of the challenges faced by the novices or their students in
learning computer programming. With knowledge of the common
misconceptions or errors made by their students, instructors can
then enact appropriate effective instructional strategies to resolve
these misconceptions. There were a number of studies [1, 7, 12,
22] which investigated into difficulties [8], errors [21], mistakes
[3] and misconceptions [19, 20] of novice programmers given its
pedagogical importance in computer science education.

In these studies, researchers have focused on detecting different
types of errors -syntax [7], semantic [11] and logical errors [9].
Syntax errors can be detected and flagged by modern compilers
as compilation errors while both semantic and logical errors are
more difficult to detect as they are non-syntactical and relates more
to bugs which causes the program to exhibit unintended, illogical
or undesirable behaviour. More recently, the advent of a popular
Large Language Model (LLM) – ChatGPT has seen unprecedented
research interest for its use in many application areas. Within the
area of computer programming, there were studies researching into
LLMs such as ChatGPT for their use in automatic program repair
[10, 16], automatic code summarization [2, 23], automatic code
documentation generation [14] and automatic program generation
[6, 18].

The positive results from these studies suggest that LLMs such
as ChatGPT, with its natural language processing and knowledge
representation capabilities, are capable of both comprehending and
generating programming codes. Thus, for our study, motivated by
the ability of ChatGPT to analyse and understand programming
codes, we investigate into the use of ChatGPT to identify and collate
the programming errors and misconceptions of students from their
code submissions.

We formulate the two research questions below:

• RQ1: Can we use ChatGPT to automatically collate sum-
mary of errors made by students from their code submis-
sions?

• RQ2: To what extent is the error summary from ChatGPT
useful in helping instructors identify the common miscon-
ceptions or errors of students?

1

https://orcid.org/1234-5678-9012
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 RELATED STUDY
Denny et al. [7] analyzed the syntax errors encountered by their
students in the writing of Java codes. In their study, the authors
collected the data using CodeWrite – a web-based drill and practice
tool developed by the authors. CodeWrite contains a repository
of pre-loaded exercises with the accompanying test cases. The
syntax errors encountered by students were collected automatically
when the students’ codes were compiled on the server. The authors
concluded from the results that students encounter a small number
of syntax errors more frequently than others.

In most studies within the current literature, researchers investi-
gating into the errors or misconceptions made by novice program-
mers had to develop additional tools to collect the list of errors.
For example, in the study by Ettles et al. [9], the authors had to
develop a set of functional test scripts. The test cases within the
scripts were ordered and students’ programs were tested against the
test scripts. The test results were then compiled into a test vector
for each student. The assumption is that students who made the
same logical errors would have the same test vector. The authors
acknowledged that this assumption though might not apply for all
cases. Moreover, to identify the logical error from the test vector,
the authors still had to manually go through all the students’ codes
to assign a broad classification to the logical errors.

In the study by Altadmri et al. [3], a year’s worth of compila-
tion events from over 250,000 students worldwide constituting the
Blackbox data set [5] was used for the analysis. The Blackbox data
set was a combination of editing, compilation and execution events
collected within the custom developed BlueJ Integrated Develop-
ment Environment (IDE). The BlueJ IDE was designed for those
learning object-oriented programming in Java. The authors then
used a fixed list of 18 error types for analysing students’ mistakes
extracted from the Blackbox data set. For four of the error types,
they were able to use the compiler error message from Blackbox’s
compilations to classify the errors. For the rest of the error types,
they had to apply a customized parser to parse the source codes
and identify the errors.

Davin and Michael [17] investigated logical errors as opposed
to errors identified through diagnostic messages produced by the
compiler. They argued that although the use of diagnostic messages
allowed errors to be automatically collected and identified, the logi-
cal errors would be more useful for identifying the misconceptions
of the students. They, however, alluded to the fact that a major
hurdle with the identification of logical errors when compared to
diagnostic errors is that the former cannot be automated and in-
volved substantial manual effort to identify and classify. Similar to
the study by Altadmri et al. [3], they collected the data for their
study using the BlueJ IDE. In their study, the authors collected com-
pilation events which had associated compiler diagnostic message.
This suggested that logical error e.g., those relating to mismatch
with the functional requirements but did not cause compilation
errors were not captured. The authors’ focus in their study was
more on judging whether manual classification provided enhanced
information over automatic classification using compiler diagnostic
messages.

In the above studies, custom developed tools e.g., IDEs and spe-
cially crafted test scripts were required to identify and categorize

the errors. In many of these cases, the custom tools and test scripts
were only developed for a particular programming language. Trans-
lating it for use in another programming language would incur
substantial development time and resources. In contrast, in our
study, we did not have to use custom developed tools or test scripts.
Only the students’ codes together with the model solution were
passed into ChatGPT for identification and categorization of the
errors.

Some of the previous studies also highlighted the usefulness of
logical errors for identifying the novice programmers’ misconcep-
tions. To illustrate, some students may face difficulties in iterating
through the elements of an array using a for loop. A possible logical
error could be that the student did not increment the index variable
of the array for each iteration of the loop which might indicate that
the student’s misconception was not with the use of a for loop but
with the concept of array indexing. The code is syntactically correct
and so there would be no compilation error which would thus pre-
clude automatic identification of such an error using compilation
messages. This adds to the significance of our study in investigating
whether such logical errors can be detected using LLMs such as
ChatGPT.

Although we only tested that the error identification and cate-
gorization worked for PHP codes, ChatGPT has been tested to be
reasonably capable of handling programming challenges in Python
[24], C and Java [15] as well. Thus, we posit that our approachwould
likely work for multiple popular programming languages and the
results should improve further with the continued advancement of
LLM models.

3 METHODOLOGY
3.1 Context
The data used in this study were from two classes of a first-year
programming course taught in university xxx in the year 2022. This
course is conducted over a duration of 17 weeks and is compulsory
for all first-year Information Systems or Computer Science students.

In this course, the students were taught how to develop both
static and dynamic web applications using PHP (back-end) and
HTML (front-end). Object Oriented programming and storage and
retrieval of data to and from database were also covered within the

Figure 1: q2.html as displayed on a web page

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Experience Report: Identifying common misconceptions and errors of novice programmers with ChatGPT Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: process.php after submission as displayed on a
web page

course. The course assessment comprised of 2 lab tests and a final
exam. The lab tests were conducted in week 8 and 14 of the course.

The data for this study were extractions of students’ program
codes that were submitted for the two lab tests. Throughout the
course, the students also worked on in-class exercises provided
by the instructors each week. The students were encouraged to
collaborate to solve the problems in the in-class exercises and they
do not need to submit these exercises. We chose to use the code ex-
tractions from the lab tests instead as the students were required to
submit the lab test codes for assessment purpose. More importantly,
the codes and associated errors can be attributed to the individual
student’s own effort (with no external help) as it was completed
under the instructor’s invigilation within a set duration.

This study was approved by the university’s Institution Review
Board (IRB) and we extracted only the program codes of students
who consented to their use in this study. A total of 67 out of 78
students consented to the use of their program codes.

The objectives of the course are listed below.
• Understand how the web works
• Understand HTML and be able to create, modify and debug

static webpages involving various HTML tags

Figure 3: Memory state diagram of visits array

Figure 4: view2.php as displayed on a web page

• Demonstrate the ability to create, modify and debug dy-
namic webpages using PHP

• Understand the concepts of Classes and Objects and able
to use them to create dynamic webpages

• Understand how to interact with a database and be able to
store, modify, and retrieve data from PHP code

• Demonstrate the ability to create web applications imple-
menting the four main functionalities of persistent storage:
create, retrieve, update, delete

• Understand session and be able to perform session manage-
ment using PHP

• Demonstrate the ability to solve logic problems that can be
encountered while creating web applications, and create
suitable solutions using PHP

3.2 Questions
Listed below are the specifications of the questions for lab test 1
conducted in week 8 and lab test 2 conducted in week 14 of the
course. Lab test 1 assesses the students on the building of both
static and dynamic web applications while the coverage for lab test
2 focuses on Object Oriented Programming (OOP) and database
interaction using PHP.

3.2.1 Lab Test 1. The question for the first lab test required the
student to complete the codes for calculating car rental fees.

Students were provided with q2.html in Figure 1 and process.php.
The file process.php contains the codes for initialization of two
arrays. The first array provides a mapping between the selected lo-
cations to mileage in kilometres (km) and the second array provides
the mapping of the options e.g., GPS to the cost.

The students were provided the formula for the calculation of
mileage cost below.

• A flat cost of $5 for the first 10 km.
• For total mileage (x) between 10 and 30 km (exclusive),

every additional (x-10) km is charged at $2 per km.
• For total mileage (x) more than 30 km (inclusive), every

additional (x-10) km is charged at $1 per km.

The students were tasked to complete the codes for printing the
overall cost breakdown and the total cost for the booking in a table
within process.php as shown in Figure 2.

In addition, the following checks would have to be performed.

• If no options are selected and user clicks "Confirm booking",
only the mileage cost is calculated and displayed.

• If process.php is visited without going through q2.html,
redirect to q2.html.

3.2.2 Lab Test 2. In this question, the students were tasked to com-
plete view2.php. The file Visit.php contained Visit class definition
while the file view2.php which had template codes that loaded an
array of Visit object with the data from a database. Both Visit.php
and view2.php were provided to the students. A memory state dia-
gram of the visits array (Figure 3) was also provided to the students.
The students were tasked with completing view2.php to implement
the following functionalities:

• Iterate through the Visit objects in the visits array
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 5: Sample prompt response from ChatGPT

• Identify the visits that were made by a senior citizen using
the wasMadeByASenior() method (within the Visit class)

• Identify the shops that were visited by a senior and display
them in a bulleted list

• If a shop was visited more than once, show the shop only
once in the list

The final expected output of view2.php is shown in Figure 4.

3.3 Workflow
For both lab tests, the students were provided with a minimal code
template for completion, and they were instructed to key in their
names and email addresses within the first three lines of comments.
To anonymize the extracted students’ programming code submis-
sions, we renamed the source file to a generic name e.g., LT1_XX
where XX is a running sequence of numbers and removed the first
three lines of comments (containing the students’ names and email
addresses).

We subscribed to OpenAI API and developed a Python script to
construct the prompts and interface to ChatGPT’s GPT-4 model
directly through the API. We designed the prompt passed into
GPT-4 as shown below.
Given the following model code solution
enclosed within ``` below.
```<Model code>```

Identify the errors in the code below that performs
the same function and enclosed within ``` below.

Show the error, original code lines,
corrected code lines and type of error in a tabular form.
```<Student’s code>```

The prompt was formulated for all the students’ submitted codes
before being passed into GPT-4. An example prompt response from
GPT-4 is shown in Figure 5.

From the prompt responses, we wrote a Python script to parse
and collate the prompt responses from GPT-4 for summarization
of the different error types. We then evaluate each of the prompt

Table 1: Verification results for errors picked up by GPT-4

Errors classified cor-
rectly? (Yes/No)

No. of errors (percentage)

Yes 348 (93.3%)
No 25 (6.7%)
Total 373 (100%)

responses for only the first lab test manually with the results of the
manual verification shown in Table 1.

As seen fromTable 1, 93.3% of the errors picked up byGPT-4were
correct (as verified manually). We did not constrain the error types
to a pre-specified list in the prompt passed into GPT-4 as we wanted
to explore whether GPT-4 model can generate more descriptive
and precise error types. Comparing passing in the natural language
instructions that detailed specifically what is to be achieved by the
student for the question as opposed to the model code or solution
into the prompt, we opted for the latter. The reason being that for
questions similar to lab test 1, an image of the web page instead of
lengthy descriptions using text would bemore efficient and effective
for illustrating the required look and feel. However, ChatGPT does
not support the input of images as of the date of this study.

We did also experiment with just passing in the program spec-
ifications instead of the model solution codes. This, however, re-
sulted in GPT-4 generating program codes which differed from
what was required for the question. Further clarification prompts
were required to tune the GPT-4 generated codes to the required
specifications. It is plausible that different clarification prompts
would be required for different program specifications or questions
which may entail even possibly the need to provide GPT-4 with
examples. In contrast, use of the model code solution allows for a
standardized prompt to be passed in to the GPT-4 model which will
not need to vary for different programming questions.

We recognize that one constraint with the use of a model code
solution is that it may not accommodate students’ codes that sat-
isfy the required specifications using programming constructs or
algorithms different from that used in the provided model solution.
In our study, however, the students were provided with a code
template that were partially filled as well as the related accompany-
ing codes. That constrained the variations of solution codes which
satisfy the program specifications. The generalization of LLM in
recognizing or understanding more open or different versions of
programming codes which fulfil the same set of specifications is not
within the scope of this study and can be investigated in a future
study.

4 RESULTS
Table 2 shows the code errors that were correctly picked up by
GPT-4. We chose these samples of code errors as they were difficult
to detect even with the use of custom code parsers and this also
explains whymost of the sample code errors listed are logical errors.

In the first row of the table, GPT-4 was able to detect that the
name within ‘POST’ array did not match with the input text field

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Experience Report: Identifying common misconceptions and errors of novice programmers with ChatGPT Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

name in the HTML file and both the generated error type and error
description was apt.

In the second row, hard coding of the locations instead of retriev-
ing them from the HTML form was correctly picked up as well.
Rows 3 to 5 relate to the detection of computation errors which
may require the writing of custom test scripts for their detection
before the advent of LLMs.

The error in the last row of the table points to a deficiency in
the student’s code where duplicate shop names would be displayed.
The error description correctly and specifically advises that the list
of unique shops should be generated first instead before the loop
to display the unique shop names. It is worth highlighting here
that GPT-4 was able to understand from the student’s code that
duplicate shop names would be displayed which would not fulfill
the requirements of the question. Another finding from the results
is that the GPT-4 generated error description aptly describes the
specific error latent within each erroneous block of codes.

Table 3 shows the codes errors that were either wrongly picked
up or labelled with incorrect error types by GPT-4. The error in
row 1 which relates to the use of addition instead of concatenation
operator is incorrectly classified as a syntax error and should be a
run-time error instead.

The error listed in the second row should not be an error. GPT-4
was not able to infer that age is discrete and thus the condition that

age is greater than 59 is the same as age greater than or equals to
60. For ease of discussion, we will refer to this as the "discrete age"
issue.

The error listed in the third row should be a run-time error
instead of a syntax error as there is nothing wrong with the syntax
of the student’s code. The student’s code in the last row is correct
but differs from the model solution codes with the swapping of
the condition check for age. GPT-4 was not able to establish that
the student’s codes is actually similar to the solution in this case.
For ease of discussion, we will refer to this as the "condition check
swap" issue.

The top three collated types of errors across the two lab tests
are shown in Table 4. The types of error generated by GPT-4 were
not granular enough for identifying the specific difficulty or mis-
conception that students were facing. The error description (error
column in the prompt response) as seen in Figure 5, would fit the
purpose but it would be onerous for the instructor to go through all
the error descriptions to identify the misconceptions. Thus, for an
automated way of summarizing the error descriptions, we passed
in the list of error descriptions and prompted GPT-4 to group them
into clusters as shown in the prompt below.

Given the list enclosed within ``` below.
Cluster all the items in the list into minimal
number of clusters. Display the output in JSON format

Table 2: Sample errors or error types correctly identified up by GPT-4

Error description Erroneous code Correct Code Error type
The form field name in
the ’POST’ array does
not match the form
field name in HTML
file.

‘$from = $_POST["from"];
$to = $_POST["to"];‘

‘$from = $_POST["start_loc"];
$to = $_POST["end_loc"];‘

Logical Error

Locations are hard-
coded in PHP whereas
they should be ob-
tained from HTML
form

‘if ($from == ’AMK’ && $to == ’Jurong’)‘... ‘$startLoc = $_POST[’start_loc’];
$endLoc = $_POST[’end_loc’];
$combinedLoc = $startLoc . $endLoc;
$distance = $loca-
tion_mileage[$combinedLoc][1];‘...

Logical Error

$totalcost is calculated
twice

‘$totalcost=$mileagecost+$addon;
$totalcost=$mileagecost+$addon;‘

‘$totalCost = $mileageCost;
$totalCost += $addOnItemCost;‘

Logical error

Incorrect mileage cost
calculation

‘if ($distance > 20) {
$distance = $distance - 20;
$cost = $cost + 40;
$cost = $distance + $cost; }‘

‘if ($totalMileage>30) {
$mileageCost = 5 + ($totalMileage-10) * 1;
} else {
$mileageCost = 5 + ($totalMileage -10) * 2;
}‘

Mathematical Error

Calculation of No for
table entries is incor-
rect

$count=$count+count($option); $num +=1; Logical error

The list of unique
shops should be gener-
ated first before echo-
ing the shop names.
The provided solution
echos the shop names
directly in the loop.

‘foreach($visits as $visit) {... echo
"$shopname"; ...}‘

‘foreach($visits as $visit){... $visited[] =
$shopname; ...}‘
and ‘foreach ($visited as $shop){ echo
"$shop"; }‘

Logical Error

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: Sample errors or error types wrongly identified up by GPT-4

Error description Erroneous code Correct Code Error type
Wrong calculation
for $trip. It should
be concatenation not
addition

‘$trip = $start + $end;‘ ‘$combinedLoc = $startLoc . $endLoc;‘ Syntax Error

Incorrect comparison
operator

‘if($age > 59)‘ ‘if($age>=60)‘ Logical Error

Wrong method to get
age

$CusAge = $this->getAge($this-
>customer);

$CusAge = $this->customer->getAge(); Syntax Error

Different structure of
condition in the func-
tion "wasMadeByASe-
nior"

‘$customer = $this->customer;
$age = $customer->getAge();
if($age<60) return False;
else return True; ‘

‘if ($this->customer->getAge()>=60)
return true;
else return false; ‘

Logical error

as in {'cluster':, 'issues':[]}.
```

<List of error descriptions>
```

The clustering result output by GPT-4 for lab test 1 and lab test
2 are shown in Tables 5 and 6 respectively. The cluster labels in
Tables 5 and 6 are the actual cluster labels as generated by GPT-4
i.e. we did not rename the cluster labels.

5 DISCUSSIONS
To answer RQ1, we manually verified the summary of error gener-
ated by the GPT-4 model of ChatGPT on lab test 1. The verification
results as shown in Table 1 demonstrated that ChatGPT is able
to achieve 93.3% accuracy for the generation of error summary.
Although ChatGPT did not achieve perfect accuracy of 100%, the
accuracy of 93.3% is sufficiently high for aggregating error sum-
maries across the many students’ code submissions to offer us
a glimpse into the common errors made by students. With the
proposed methodology, we were also able to classify the error sum-
maries fromChatGPT into the top error types ranked by frequencies
as seen in Table 4.

In the prompt that we passed into GPT-4model, we included both
the students’ submitted codes and the model solution for generation
of the error description, original code, corrected code and type of
error. We did not constrain the types of errors to a specific list of
error types.

For most of the discovered erroneous code lines though, the
GPT-4 model managed to categorize most of them as syntax, logical
and semantic errors. There were also some of the other error types
generated which were more specific e.g., error handling logic where

Table 4: Top three collated types of error across the two lab
tests

Types of error Lab test 1 Lab test 2
Logical error 169 43
Syntax error 58 36
Semantic error 11 7

some exceptions were not handled, run-time error and omission
error which depicted that some functionalities specified in the ques-
tion were not implemented. We suspect that the model was able to
discover the omission of functionalities and wrong or missing han-
dling of exceptions because we passed in the model solution codes
which allowed the model to compare between the functionalities
implemented in the model solution with that implemented in the
students’ codes. However, we are not sure whether the same capabil-
ity can be achieved with just the inclusion of program specifications
in the prompt.

GPT-4 model was able to identify a number of logical errors
which can only be detected with custom code parsers and test
scripts. Some of these (listed in Table 2) include hard coding (fixing
of values within the programming codes) errors, computation errors
and even errors relating to program output which did not conform
to the specifications. GPT-4 was able to comprehend the codes and
interpret the intent of the programmer e.g., in identifying the incor-
rect computation of mileage cost. This is also evident in row 5 of
Table 2 where GPT-4 identifies that the correct intent of the student
was to display the sequence number of each entry (which should be
increased by 1 for every consecutive entry) in the HTML table. This
matching to the correct block of codes within the model solution is
even possible when the variables are named differently between
the student’s codes and the model code solution e.g., $distance
instead of $totalMileage (in row 5 of Table 2). Considering that we
only passed in the model solution code (without code comments to
explain the intent of the blocks of codes) and not the problem spec-
ification, it is thus credible that GPT-4 comprehends the codes and
is able to match it correctly with the original intent and the correct
block of codes within the model code solution. More importantly,
this would provide further support for the generalizability of our
study to different programming problems.

We noted, however that in some of the code submissions (listed in
Table 3), GPT-4 model mistakenly identified codes that were correct
as errors e.g. "discrete age" and "condition check swap" issues. In
addition, some of the codes were also assigned with incorrect error
type labels. This points to the need for further tuning of the GPT-4
model to achieve higher accuracy in identifying and classifying
the errors. One suggestion to rectify issues of false positives where

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Experience Report: Identifying common misconceptions and errors of novice programmers with ChatGPT Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: Clustering of error description for logical and syntax errors found in students’ codes for lab test 1

Types of er-
ror

Cluster label Subset of error description

Logical error Incorrect calculation - Wrong calculation for mileage
- The mileage calculation for distances greater than 30 is
incorrect

Form validation and
handling

- The option field name in the ’POST’ array does not match
the form field name in HTML file
- Elements ’from’ and ’to’ not defined

Incorrect loop usage - The incrementing of the count variable ’$i’ is missing after
adding the mileage cost to the ’add_on’_array
- For loop for fetching requested options is incorrect

Incorrect array usage - Incorrect array element $add_ons element index should be
a number
- Incorrect variable in array push

Syntax error Syntax error - The ’echo’ statement at the end does not have a semi-colon
which would lead to syntax error
- Missing closing parenthesis

HTML tag error - The tr tag in the foreach loop for creating the table rows is
not closed correctly
- The opening HTML tag left unclosed

Variable definition
error

- Undefined ’$price’ variable

- No variable ’$msg’ and ’$mileage’ defined

Table 6: Clustering of error description for logical and syntax errors found in students’ codes for lab test 2

Types of er-
ror

Cluster label Subset of error description

Logical error Redundancy issues - Shops’ names are repeatedly printed, regardless if it’s al-
ready printed before
- The shops are redundant and it is necessary to remove the
duplicates

HTML placement and
format Issues

- echo "ul" is placed inside the loop, it should be outside the
loop so that it is not repeatedly printed for each iteration
- The unordered list and closing tags ’’ and ’’ are
inside the foreach loop used to list out the different shops,
which causes an error where every shop is displayed as a
separate unordered list

Code structure and
logic errors

- The code doesn’t allow for a dynamic number of shops. It
assumes only shops A, B, and C exist
- The shops are predefined in the code but they should be
determined dynamically from the visits
- Not properly checking if an item is in the ‘$shops‘ array
before adding it.

Syntax error Syntax error - Missing braces in the foreach loop
- Missing semicolon at the end of the line

HTML tag error - Incorrect HTML tag for unordered list: Tag should be ul not
ui
- Incorrect closing tag placement of the unordered list

Variable misuse - Not initializing the $shops array
- Variable naming mismatch. Variable $shops used instead of
$shop

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

GPT-4 wrongly identifies working codes as erroneous could be
to develop test scripts and couple that with the use of GPT-4 for
error identification and classification. The test scripts can either
be manually written or possibly auto-generated from GPT-4 by
passing in the program specifications. The prompts can then be
re-designed to incorporate the passing in of both the test scripts
and the model solution for more precise error identification and
classification. This should rectify issues such as "discrete age" and
"condition check swap" highlighted in the results section.

From the results, we also discovered that the error type sum-
mary alone, does not suffice in enabling instructors to understand
the misconceptions of students for enacting appropriate teaching
strategies. To illustrate, we were able to surmise from Table 4 that
there were more significantly more logical errors made by students
for the first lab test as compared to the second one. However, we
were still clueless as to which part of the program logic did majority
of the students encounter difficulties with implementing. As such,
we will require more granularity into the errors made by students
to investigate into the use of the error summaries for identifying
the misconceptions of students (RQ2).

After clustering of the error descriptions, we were able to get
more granular summary of the errors made by the students within
their code submissions and these were summarized in Table 5 and
6. From the clustering results as listed in Table 5 and 6, we surmise
that the errors are reasonably assigned to their relevant clusters
with adequate clustering labels (generated by GPT-4).

From Table 5, the logical errors made by students for lab test 1
can be traced to incorrect computation of costs, form validation
and handling and incorrect array and loop usage. The students find
it challenging to translate from the given cost computation formula
(for both mileage and the selected options e.g. GPS, child seat cost)
in the specification into the correct program codes.

Another misconception is with HTML form handling where
students used the label for the drop-down boxes instead of the
name attribute to retrieve the selected value for the start and end
location.

The final misconception had to do with the processing of arrays
and iteration of the elements of the array using a loop. It appears
that many of the students were not proficient with the iteration of
elements of an array using loops (e.g. using non-numerical vari-
ables as indexes for array) and how to insert new elements at the
end of an array using array_push function. For syntax errors, the
common mistakes made by students were missing semi-colons,
missing parenthesis, use of undefined variables and non-matching
of HTML opening and closing tags.

From the clustering results as shown in Table 6, the logical errors
made by students for lab test 2 can similarly be traced to duplicate
printing of shops, HTML placement and format issues and hard-
coding of the list of shops. Students were not sure how to iterate
through the visits array to get a unique list of shops visited by the
customers i.e. some shops may be visited by multiple customers
but the shop name should only be displayed once.

One surprising discovery here though is that the GPT-4 model
even manages to pick up hard-coding of the list of shops, a feat
which is unattainable with the use of existing techniques e.g. code
parser. These students pre-defined or hard-coded an array contain-
ing the values ‘Shop A’, ‘Shop B’ and ‘Shop C’ and use that to filter

out the visits for each in turn instead of retrieving the shop names
dynamically from the visits array. The syntax errors for lab test 2
were mostly similar to that made by students in lab test 1.

6 THREATS TO VALIDITY
The results presented are based on two PHP lab tests and involved
only the code submission from 67 students. This thus limits the
generalization of our results for other programming languages and
for a larger variety of programming problems.

In addition, in our study, the students were not required to write
the programming codes from scratch but were instead provided
with code templates where they had to fill in missing parts of the
programming codes. This likely constrained the search space for
error identification and classification within the submitted program-
ming codes. The results presented thus may not apply for cases
where the students are free to develop their own programming
codes to fulfill the specifications.

We did not empirically evaluate the clustering results generated
by GPT-4 model. These will entail the verification that all the errors
are assigned to a cluster (coverage), the errors within each cluster
are cohesive, the clusters are well separated and lastly, the clusters
are relatively balanced in size. It is thus possible that the clustering
results reported in this study may not be optimal and there are
other clustering or non-clustering algorithms which can possibly
perform better than GPT-4 in categorizing the error descriptions.

7 FUTUREWORK
We would suggest possible extensions to this study as listed below.

• Investigating the generalization of the error identification
capability across different programming languages and
code complexity.
In this study, we used GPT-4 for error identification of PHP
programs. Conceivably, the ability of LLMs to understand
and generate programming codes across different languages
should allow it to identify and categorize errors across dif-
ferent programming languages and for codes with different
complexities. This would, however, require validation from
future studies.

• Refining the clustering and categorization of error descrip-
tions.
The error descriptions were clustered into the different cat-
egories using only GPT-4 model. It is plausible that the
clustering by GPT-4 may not be optimal and other cluster-
ing techniques may offer better categorization of the error
descriptions.

• Seeding the model with inputs other than the model code
solution to further enhance identification and categoriza-
tion of the errors.
We passed in both the students’ codes and model code
solution into GPT-4 for the error identification and catego-
rization and this was validated to work well in this study.
With further enhancement in the capability of LLMs e.g.
interpreting images,we can possibly pass in other inputs
such as program specifications in the form of images and
investigate into its viability for enhanced error identifica-
tion.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Experience Report: Identifying common misconceptions and errors of novice programmers with ChatGPT Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

• Investigating the impact of automated error identification
and categorization on teaching of computer programming.
Brown and Altadmri [4] concluded in their study (compar-
ing instructors’ opinions versus actual students’ misconcep-
tions in Java programming) that instructors failed to form
an accurate consensus on the programming misconceptions
of their students. Qian and Lehman [19] further posited that
with an accurate picture of the students’ misconceptions,
instructors can then formulate effective teaching strategies
and tools to address these misconceptions. We thus suggest
future extensions of this study to investigate and evaluate
the various teaching strategies which may be devised with
this enhanced understanding of the students’ misconcep-
tions.

8 CONCLUSION
The identification of students’ misconceptions is imperative for
informing instructors on the difficulties faced by their students in
the learning of computer programming. It is however onerous for
the instructors to manually go through each student’s erroneous
programming codes for compilation of the common errors and
misconceptions. The current state of the art techniques for identifi-
cation of the errors require custom tools and scripts to be developed
and adapted for the different programming languages and this may
not be feasible to implement for every educational institution. In
this study, we proposed the use of ChatGPT in identifying and
summarizing the errors and misconceptions of students through
seeding the model with the students’ code submissions and the
model code solution. The results demonstrated that ChatGPT is
able to not only identify syntax but also the more difficult category
of logical errors. In addition, ChatGPT is also capable of more gran-
ular categorization of the errors, providing the instructors with
insights into the common misconceptions of their students.

REFERENCES
[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An analysis of

patterns of debugging among novice computer science students. In Proceedings
of the 10th annual SIGCSE conference on Innovation and technology in computer
science education. 84–88.

[2] Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs
for project-specific code-summarization. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1–5.

[3] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM technical symposium on computer science education. 522–527.

[4] Neil CC Brown and Amjad Altadmri. 2014. Investigating novice programming
mistakes: Educator beliefs vs. student data. In Proceedings of the tenth annual
conference on International computing education research. 43–50.

[5] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting.
2014. Blackbox: A large scale repository of novice programmers’ activity. In
Proceedings of the 45th ACM technical symposium on Computer science education.
223–228.

[6] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C Desmarais, and Zhen Ming Jack Jiang. 2023. Github copilot ai pair
programmer: Asset or liability? Journal of Systems and Software 203 (2023),
111734.

[7] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All syntax errors
are not equal. In Proceedings of the 17th ACM annual conference on Innovation
and technology in computer science education. 75–80.

[8] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[9] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. Common logic
errors made by novice programmers. In Proceedings of the 20th Australasian
Computing Education Conference. 83–89.

[10] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated repair of programs from large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1469–1481.

[11] Austin Henley, Julian Ball, Benjamin Klein, Aiden Rutter, and Dylan Lee. 2021.
An inquisitive code editor for addressing novice programmers’ misconceptions
of program behavior. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE,
165–170.

[12] James Jackson, Michael Cobb, and Curtis Carver. 2005. Identifying top Java
errors for novice programmers. In Proceedings frontiers in education 35th annual
conference. IEEE, T4C–T4C.

[13] Lisa C Kaczmarczyk, Elizabeth R Petrick, J Philip East, and Geoffrey L Herman.
2010. Identifying student misconceptions of programming. In Proceedings of the
41st ACM technical symposium on Computer science education. 107–111.

[14] Junaed Younus Khan and Gias Uddin. 2022. Automatic code documentation gen-
eration using gpt-3. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. 1–6.

[15] Wei Ma, Shangqing Liu, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming
Nie, and Yang Liu. 2023. The Scope of ChatGPT in Software Engineering: A
Thorough Investigation. arXiv preprint arXiv:2305.12138 (2023).

[16] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying codebert for automated pro-
gram repair of java simple bugs. In 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR). IEEE, 505–509.

[17] Davin McCall and Michael Kölling. 2014. Meaningful categorisation of novice
programmer errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceed-
ings. IEEE, 1–8.

[18] Eng LiehOuh, Benjamin Kok SiewGan, Kyong Jin Shim, and SwavekWlodkowski.
2023. ChatGPT, Can You Generate Solutions for my Coding Exercises? An
Evaluation on its Effectiveness in an undergraduate Java Programming Course.
arXiv preprint arXiv:2305.13680 (2023).

[19] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other
difficulties in introductory programming: A literature review. ACM Transactions
on Computing Education (TOCE) 18, 1 (2017), 1–24.

[20] Zahava Scherz, D Goldberg, and Z Fund. 1990. Cognitive implications of learning
Prolog—Mistakes andmisconceptions. Journal of Educational Computing Research
6, 1 (1990), 89–110.

[21] Derek Sleeman. 1986. The challenges of teaching computer programming. Com-
mun. ACM 29, 9 (1986), 840–841.

[22] James C Spohrer and Elliot Soloway. 1986. Novice mistakes: Are the folk wisdoms
correct? Commun. ACM 29, 7 (1986), 624–632.

[23] Weisong Sun, Chunrong Fang, Yudu You, Yun Miao, Yi Liu, Yuekang Li, Gelei
Deng, Shenghan Huang, Yuchen Chen, Quanjun Zhang, et al. 2023. Auto-
matic Code Summarization via ChatGPT: How Far Are We? arXiv preprint
arXiv:2305.12865 (2023).

[24] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques
Klein, and Tegawendé F Bissyandé. 2023. Is ChatGPT the Ultimate Programming
Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

9

	Experience Report: Identifying common misconceptions and errors of novice programmers with ChatGPT
	Citation

	Abstract
	1 Introduction
	2 Related Study
	3 Methodology
	3.1 Context
	3.2 Questions
	3.3 Workflow

	4 Results
	5 Discussions
	6 Threats to validity
	7 Future Work
	8 Conclusion
	References

