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ABSTRACT
Identifying the misconceptions of novice programmers is pertinent
for informing instructors of the challenges faced by their students
in learning computer programming. In the current literature, cus-
tom tools, test scripts were developed and, in most cases, manual
effort to go through the individual codes were required to identify
and categorize the errors latent within the students’ code submis-
sions. This entails investment of substantial effort and time from
the instructors. In this study, we thus propose the use of ChatGPT
in identifying and categorizing the errors. Using prompts that were
seeded only with the student’s code and the model code solution for
questions from two lab tests, we were able to leverage on ChatGPT’s
natural language processing and knowledge representation capabil-
ities to automatically collate frequencies of occurrence of the errors
by error types. We then clustered the generated error descriptions
for further insights into the misconceptions of the students. The
results showed that although ChatGPT was not able to identify
the errors perfectly, the achieved accuracy of 93.3% is sufficiently
high for instructors to have an aggregated picture of the common
errors of their students. To conclude, we have proposed a method
for instructors to automatically collate the errors latent within the
students’ code submissions using ChatGPT. Notably, with the novel
use of generated error descriptions, the instructors were able to
have a more granular view of the misconceptions of their students,
without the onerous effort of manually going through the students’
codes.

CCS CONCEPTS
• Applied computing → Interactive learning environments; •
Computing methodologies→ Information extraction.

KEYWORDS
datasets, neural networks, gaze detection, text tagging
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1 INTRODUCTION
Novice programmers often exhibit misconceptions which inhibit
their ability to learn and make progress [13, 19]. Understanding the
misconceptions of novice programmers is pertinent for informing
instructors of the challenges faced by the novices or their students in
learning computer programming. With knowledge of the common
misconceptions or errors made by their students, instructors can
then enact appropriate effective instructional strategies to resolve
these misconceptions. There were a number of studies [1, 7, 12,
22] which investigated into difficulties [8], errors [21], mistakes
[3] and misconceptions [19, 20] of novice programmers given its
pedagogical importance in computer science education.

In these studies, researchers have focused on detecting different
types of errors -syntax [7], semantic [11] and logical errors [9].
Syntax errors can be detected and flagged by modern compilers
as compilation errors while both semantic and logical errors are
more difficult to detect as they are non-syntactical and relates more
to bugs which causes the program to exhibit unintended, illogical
or undesirable behaviour. More recently, the advent of a popular
Large Language Model (LLM) – ChatGPT has seen unprecedented
research interest for its use in many application areas. Within the
area of computer programming, there were studies researching into
LLMs such as ChatGPT for their use in automatic program repair
[10, 16], automatic code summarization [2, 23], automatic code
documentation generation [14] and automatic program generation
[6, 18].

The positive results from these studies suggest that LLMs such
as ChatGPT, with its natural language processing and knowledge
representation capabilities, are capable of both comprehending and
generating programming codes. Thus, for our study, motivated by
the ability of ChatGPT to analyse and understand programming
codes, we investigate into the use of ChatGPT to identify and collate
the programming errors and misconceptions of students from their
code submissions.

We formulate the two research questions below:

• RQ1: Can we use ChatGPT to automatically collate sum-
mary of errors made by students from their code submis-
sions?

• RQ2: To what extent is the error summary from ChatGPT
useful in helping instructors identify the common miscon-
ceptions or errors of students?

1
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2 RELATED STUDY
Denny et al. [7] analyzed the syntax errors encountered by their
students in the writing of Java codes. In their study, the authors
collected the data using CodeWrite – a web-based drill and practice
tool developed by the authors. CodeWrite contains a repository
of pre-loaded exercises with the accompanying test cases. The
syntax errors encountered by students were collected automatically
when the students’ codes were compiled on the server. The authors
concluded from the results that students encounter a small number
of syntax errors more frequently than others.

In most studies within the current literature, researchers investi-
gating into the errors or misconceptions made by novice program-
mers had to develop additional tools to collect the list of errors.
For example, in the study by Ettles et al. [9], the authors had to
develop a set of functional test scripts. The test cases within the
scripts were ordered and students’ programs were tested against the
test scripts. The test results were then compiled into a test vector
for each student. The assumption is that students who made the
same logical errors would have the same test vector. The authors
acknowledged that this assumption though might not apply for all
cases. Moreover, to identify the logical error from the test vector,
the authors still had to manually go through all the students’ codes
to assign a broad classification to the logical errors.

In the study by Altadmri et al. [3], a year’s worth of compila-
tion events from over 250,000 students worldwide constituting the
Blackbox data set [5] was used for the analysis. The Blackbox data
set was a combination of editing, compilation and execution events
collected within the custom developed BlueJ Integrated Develop-
ment Environment (IDE). The BlueJ IDE was designed for those
learning object-oriented programming in Java. The authors then
used a fixed list of 18 error types for analysing students’ mistakes
extracted from the Blackbox data set. For four of the error types,
they were able to use the compiler error message from Blackbox’s
compilations to classify the errors. For the rest of the error types,
they had to apply a customized parser to parse the source codes
and identify the errors.

Davin and Michael [17] investigated logical errors as opposed
to errors identified through diagnostic messages produced by the
compiler. They argued that although the use of diagnostic messages
allowed errors to be automatically collected and identified, the logi-
cal errors would be more useful for identifying the misconceptions
of the students. They, however, alluded to the fact that a major
hurdle with the identification of logical errors when compared to
diagnostic errors is that the former cannot be automated and in-
volved substantial manual effort to identify and classify. Similar to
the study by Altadmri et al. [3], they collected the data for their
study using the BlueJ IDE. In their study, the authors collected com-
pilation events which had associated compiler diagnostic message.
This suggested that logical error e.g., those relating to mismatch
with the functional requirements but did not cause compilation
errors were not captured. The authors’ focus in their study was
more on judging whether manual classification provided enhanced
information over automatic classification using compiler diagnostic
messages.

In the above studies, custom developed tools e.g., IDEs and spe-
cially crafted test scripts were required to identify and categorize

the errors. In many of these cases, the custom tools and test scripts
were only developed for a particular programming language. Trans-
lating it for use in another programming language would incur
substantial development time and resources. In contrast, in our
study, we did not have to use custom developed tools or test scripts.
Only the students’ codes together with the model solution were
passed into ChatGPT for identification and categorization of the
errors.

Some of the previous studies also highlighted the usefulness of
logical errors for identifying the novice programmers’ misconcep-
tions. To illustrate, some students may face difficulties in iterating
through the elements of an array using a for loop. A possible logical
error could be that the student did not increment the index variable
of the array for each iteration of the loop which might indicate that
the student’s misconception was not with the use of a for loop but
with the concept of array indexing. The code is syntactically correct
and so there would be no compilation error which would thus pre-
clude automatic identification of such an error using compilation
messages. This adds to the significance of our study in investigating
whether such logical errors can be detected using LLMs such as
ChatGPT.

Although we only tested that the error identification and cate-
gorization worked for PHP codes, ChatGPT has been tested to be
reasonably capable of handling programming challenges in Python
[24], C and Java [15] as well. Thus, we posit that our approachwould
likely work for multiple popular programming languages and the
results should improve further with the continued advancement of
LLM models.

3 METHODOLOGY
3.1 Context
The data used in this study were from two classes of a first-year
programming course taught in university xxx in the year 2022. This
course is conducted over a duration of 17 weeks and is compulsory
for all first-year Information Systems or Computer Science students.

In this course, the students were taught how to develop both
static and dynamic web applications using PHP (back-end) and
HTML (front-end). Object Oriented programming and storage and
retrieval of data to and from database were also covered within the

Figure 1: q2.html as displayed on a web page
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Figure 2: process.php after submission as displayed on a
web page

course. The course assessment comprised of 2 lab tests and a final
exam. The lab tests were conducted in week 8 and 14 of the course.

The data for this study were extractions of students’ program
codes that were submitted for the two lab tests. Throughout the
course, the students also worked on in-class exercises provided
by the instructors each week. The students were encouraged to
collaborate to solve the problems in the in-class exercises and they
do not need to submit these exercises. We chose to use the code ex-
tractions from the lab tests instead as the students were required to
submit the lab test codes for assessment purpose. More importantly,
the codes and associated errors can be attributed to the individual
student’s own effort (with no external help) as it was completed
under the instructor’s invigilation within a set duration.

This study was approved by the university’s Institution Review
Board (IRB) and we extracted only the program codes of students
who consented to their use in this study. A total of 67 out of 78
students consented to the use of their program codes.

The objectives of the course are listed below.
• Understand how the web works
• Understand HTML and be able to create, modify and debug

static webpages involving various HTML tags

Figure 3: Memory state diagram of visits array

Figure 4: view2.php as displayed on a web page

• Demonstrate the ability to create, modify and debug dy-
namic webpages using PHP

• Understand the concepts of Classes and Objects and able
to use them to create dynamic webpages

• Understand how to interact with a database and be able to
store, modify, and retrieve data from PHP code

• Demonstrate the ability to create web applications imple-
menting the four main functionalities of persistent storage:
create, retrieve, update, delete

• Understand session and be able to perform session manage-
ment using PHP

• Demonstrate the ability to solve logic problems that can be
encountered while creating web applications, and create
suitable solutions using PHP

3.2 Questions
Listed below are the specifications of the questions for lab test 1
conducted in week 8 and lab test 2 conducted in week 14 of the
course. Lab test 1 assesses the students on the building of both
static and dynamic web applications while the coverage for lab test
2 focuses on Object Oriented Programming (OOP) and database
interaction using PHP.

3.2.1 Lab Test 1. The question for the first lab test required the
student to complete the codes for calculating car rental fees.

Students were provided with q2.html in Figure 1 and process.php.
The file process.php contains the codes for initialization of two
arrays. The first array provides a mapping between the selected lo-
cations to mileage in kilometres (km) and the second array provides
the mapping of the options e.g., GPS to the cost.

The students were provided the formula for the calculation of
mileage cost below.

• A flat cost of $5 for the first 10 km.
• For total mileage (x) between 10 and 30 km (exclusive),

every additional (x-10) km is charged at $2 per km.
• For total mileage (x) more than 30 km (inclusive), every

additional (x-10) km is charged at $1 per km.

The students were tasked to complete the codes for printing the
overall cost breakdown and the total cost for the booking in a table
within process.php as shown in Figure 2.

In addition, the following checks would have to be performed.

• If no options are selected and user clicks "Confirm booking",
only the mileage cost is calculated and displayed.

• If process.php is visited without going through q2.html,
redirect to q2.html.

3.2.2 Lab Test 2. In this question, the students were tasked to com-
plete view2.php. The file Visit.php contained Visit class definition
while the file view2.php which had template codes that loaded an
array of Visit object with the data from a database. Both Visit.php
and view2.php were provided to the students. A memory state dia-
gram of the visits array (Figure 3) was also provided to the students.
The students were tasked with completing view2.php to implement
the following functionalities:

• Iterate through the Visit objects in the visits array
3
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Figure 5: Sample prompt response from ChatGPT

• Identify the visits that were made by a senior citizen using
the wasMadeByASenior() method (within the Visit class)

• Identify the shops that were visited by a senior and display
them in a bulleted list

• If a shop was visited more than once, show the shop only
once in the list

The final expected output of view2.php is shown in Figure 4.

3.3 Workflow
For both lab tests, the students were provided with a minimal code
template for completion, and they were instructed to key in their
names and email addresses within the first three lines of comments.
To anonymize the extracted students’ programming code submis-
sions, we renamed the source file to a generic name e.g., LT1_XX
where XX is a running sequence of numbers and removed the first
three lines of comments (containing the students’ names and email
addresses).

We subscribed to OpenAI API and developed a Python script to
construct the prompts and interface to ChatGPT’s GPT-4 model
directly through the API. We designed the prompt passed into
GPT-4 as shown below.
Given the following model code solution
enclosed within ``` below.
```<Model code>```

Identify the errors in the code below that performs
the same function and enclosed within ``` below.

Show the error, original code lines,
corrected code lines and type of error in a tabular form.
```<Student’s code>```

The prompt was formulated for all the students’ submitted codes
before being passed into GPT-4. An example prompt response from
GPT-4 is shown in Figure 5.

From the prompt responses, we wrote a Python script to parse
and collate the prompt responses from GPT-4 for summarization
of the different error types. We then evaluate each of the prompt

Table 1: Verification results for errors picked up by GPT-4

Errors classified cor-
rectly? (Yes/No)

No. of errors (percentage)

Yes 348 (93.3%)
No 25 (6.7%)
Total 373 (100%)

responses for only the first lab test manually with the results of the
manual verification shown in Table 1.

As seen fromTable 1, 93.3% of the errors picked up byGPT-4were
correct (as verified manually). We did not constrain the error types
to a pre-specified list in the prompt passed into GPT-4 as we wanted
to explore whether GPT-4 model can generate more descriptive
and precise error types. Comparing passing in the natural language
instructions that detailed specifically what is to be achieved by the
student for the question as opposed to the model code or solution
into the prompt, we opted for the latter. The reason being that for
questions similar to lab test 1, an image of the web page instead of
lengthy descriptions using text would bemore efficient and effective
for illustrating the required look and feel. However, ChatGPT does
not support the input of images as of the date of this study.

We did also experiment with just passing in the program spec-
ifications instead of the model solution codes. This, however, re-
sulted in GPT-4 generating program codes which differed from
what was required for the question. Further clarification prompts
were required to tune the GPT-4 generated codes to the required
specifications. It is plausible that different clarification prompts
would be required for different program specifications or questions
which may entail even possibly the need to provide GPT-4 with
examples. In contrast, use of the model code solution allows for a
standardized prompt to be passed in to the GPT-4 model which will
not need to vary for different programming questions.

We recognize that one constraint with the use of a model code
solution is that it may not accommodate students’ codes that sat-
isfy the required specifications using programming constructs or
algorithms different from that used in the provided model solution.
In our study, however, the students were provided with a code
template that were partially filled as well as the related accompany-
ing codes. That constrained the variations of solution codes which
satisfy the program specifications. The generalization of LLM in
recognizing or understanding more open or different versions of
programming codes which fulfil the same set of specifications is not
within the scope of this study and can be investigated in a future
study.

4 RESULTS
Table 2 shows the code errors that were correctly picked up by
GPT-4. We chose these samples of code errors as they were difficult
to detect even with the use of custom code parsers and this also
explains whymost of the sample code errors listed are logical errors.

In the first row of the table, GPT-4 was able to detect that the
name within ‘POST’ array did not match with the input text field

4
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name in the HTML file and both the generated error type and error
description was apt.

In the second row, hard coding of the locations instead of retriev-
ing them from the HTML form was correctly picked up as well.
Rows 3 to 5 relate to the detection of computation errors which
may require the writing of custom test scripts for their detection
before the advent of LLMs.

The error in the last row of the table points to a deficiency in
the student’s code where duplicate shop names would be displayed.
The error description correctly and specifically advises that the list
of unique shops should be generated first instead before the loop
to display the unique shop names. It is worth highlighting here
that GPT-4 was able to understand from the student’s code that
duplicate shop names would be displayed which would not fulfill
the requirements of the question. Another finding from the results
is that the GPT-4 generated error description aptly describes the
specific error latent within each erroneous block of codes.

Table 3 shows the codes errors that were either wrongly picked
up or labelled with incorrect error types by GPT-4. The error in
row 1 which relates to the use of addition instead of concatenation
operator is incorrectly classified as a syntax error and should be a
run-time error instead.

The error listed in the second row should not be an error. GPT-4
was not able to infer that age is discrete and thus the condition that

age is greater than 59 is the same as age greater than or equals to
60. For ease of discussion, we will refer to this as the "discrete age"
issue.

The error listed in the third row should be a run-time error
instead of a syntax error as there is nothing wrong with the syntax
of the student’s code. The student’s code in the last row is correct
but differs from the model solution codes with the swapping of
the condition check for age. GPT-4 was not able to establish that
the student’s codes is actually similar to the solution in this case.
For ease of discussion, we will refer to this as the "condition check
swap" issue.

The top three collated types of errors across the two lab tests
are shown in Table 4. The types of error generated by GPT-4 were
not granular enough for identifying the specific difficulty or mis-
conception that students were facing. The error description (error
column in the prompt response) as seen in Figure 5, would fit the
purpose but it would be onerous for the instructor to go through all
the error descriptions to identify the misconceptions. Thus, for an
automated way of summarizing the error descriptions, we passed
in the list of error descriptions and prompted GPT-4 to group them
into clusters as shown in the prompt below.

Given the list enclosed within ``` below.
Cluster all the items in the list into minimal
number of clusters. Display the output in JSON format

Table 2: Sample errors or error types correctly identified up by GPT-4

Error description Erroneous code Correct Code Error type
The form field name in
the ’POST’ array does
not match the form
field name in HTML
file.

‘$from = $_POST["from"];
$to = $_POST["to"];‘

‘$from = $_POST["start_loc"];
$to = $_POST["end_loc"];‘

Logical Error

Locations are hard-
coded in PHP whereas
they should be ob-
tained from HTML
form

‘if ($from == ’AMK’ && $to == ’Jurong’)‘... ‘$startLoc = $_POST[’start_loc’];
$endLoc = $_POST[’end_loc’];
$combinedLoc = $startLoc . $endLoc;
$distance = $loca-
tion_mileage[$combinedLoc][1];‘...

Logical Error

$totalcost is calculated
twice

‘$totalcost=$mileagecost+$addon;
$totalcost=$mileagecost+$addon;‘

‘$totalCost = $mileageCost;
$totalCost += $addOnItemCost;‘

Logical error

Incorrect mileage cost
calculation

‘if ($distance > 20) {
$distance = $distance - 20;
$cost = $cost + 40;
$cost = $distance + $cost; }‘

‘if ($totalMileage>30) {
$mileageCost = 5 + ($totalMileage-10) * 1;
} else {
$mileageCost = 5 + ($totalMileage -10) * 2;
}‘

Mathematical Error

Calculation of No for
table entries is incor-
rect

$count=$count+count($option); $num +=1; Logical error

The list of unique
shops should be gener-
ated first before echo-
ing the shop names.
The provided solution
echos the shop names
directly in the loop.

‘foreach($visits as $visit) {... echo
"<li>$shopname</li>"; ...}‘

‘foreach($visits as $visit){... $visited[] =
$shopname; ...}‘
and ‘foreach ($visited as $shop){ echo
"<li>$shop</li>"; }‘

Logical Error
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Table 3: Sample errors or error types wrongly identified up by GPT-4

Error description Erroneous code Correct Code Error type
Wrong calculation
for $trip. It should
be concatenation not
addition

‘$trip = $start + $end;‘ ‘$combinedLoc = $startLoc . $endLoc;‘ Syntax Error

Incorrect comparison
operator

‘if($age > 59)‘ ‘if($age>=60)‘ Logical Error

Wrong method to get
age

$CusAge = $this->getAge($this-
>customer);

$CusAge = $this->customer->getAge(); Syntax Error

Different structure of
condition in the func-
tion "wasMadeByASe-
nior"

‘$customer = $this->customer;
$age = $customer->getAge();
if($age<60) return False;
else return True; ‘

‘if ($this->customer->getAge()>=60)
return true;
else return false; ‘

Logical error

as in {'cluster':, 'issues':[]}.
```

<List of error descriptions>
```

The clustering result output by GPT-4 for lab test 1 and lab test
2 are shown in Tables 5 and 6 respectively. The cluster labels in
Tables 5 and 6 are the actual cluster labels as generated by GPT-4
i.e. we did not rename the cluster labels.

5 DISCUSSIONS
To answer RQ1, we manually verified the summary of error gener-
ated by the GPT-4 model of ChatGPT on lab test 1. The verification
results as shown in Table 1 demonstrated that ChatGPT is able
to achieve 93.3% accuracy for the generation of error summary.
Although ChatGPT did not achieve perfect accuracy of 100%, the
accuracy of 93.3% is sufficiently high for aggregating error sum-
maries across the many students’ code submissions to offer us
a glimpse into the common errors made by students. With the
proposed methodology, we were also able to classify the error sum-
maries fromChatGPT into the top error types ranked by frequencies
as seen in Table 4.

In the prompt that we passed into GPT-4model, we included both
the students’ submitted codes and the model solution for generation
of the error description, original code, corrected code and type of
error. We did not constrain the types of errors to a specific list of
error types.

For most of the discovered erroneous code lines though, the
GPT-4 model managed to categorize most of them as syntax, logical
and semantic errors. There were also some of the other error types
generated which were more specific e.g., error handling logic where

Table 4: Top three collated types of error across the two lab
tests

Types of error Lab test 1 Lab test 2
Logical error 169 43
Syntax error 58 36
Semantic error 11 7

some exceptions were not handled, run-time error and omission
error which depicted that some functionalities specified in the ques-
tion were not implemented. We suspect that the model was able to
discover the omission of functionalities and wrong or missing han-
dling of exceptions because we passed in the model solution codes
which allowed the model to compare between the functionalities
implemented in the model solution with that implemented in the
students’ codes. However, we are not sure whether the same capabil-
ity can be achieved with just the inclusion of program specifications
in the prompt.

GPT-4 model was able to identify a number of logical errors
which can only be detected with custom code parsers and test
scripts. Some of these (listed in Table 2) include hard coding (fixing
of values within the programming codes) errors, computation errors
and even errors relating to program output which did not conform
to the specifications. GPT-4 was able to comprehend the codes and
interpret the intent of the programmer e.g., in identifying the incor-
rect computation of mileage cost. This is also evident in row 5 of
Table 2 where GPT-4 identifies that the correct intent of the student
was to display the sequence number of each entry (which should be
increased by 1 for every consecutive entry) in the HTML table. This
matching to the correct block of codes within the model solution is
even possible when the variables are named differently between
the student’s codes and the model code solution e.g., $distance
instead of $totalMileage (in row 5 of Table 2). Considering that we
only passed in the model solution code (without code comments to
explain the intent of the blocks of codes) and not the problem spec-
ification, it is thus credible that GPT-4 comprehends the codes and
is able to match it correctly with the original intent and the correct
block of codes within the model code solution. More importantly,
this would provide further support for the generalizability of our
study to different programming problems.

We noted, however that in some of the code submissions (listed in
Table 3), GPT-4 model mistakenly identified codes that were correct
as errors e.g. "discrete age" and "condition check swap" issues. In
addition, some of the codes were also assigned with incorrect error
type labels. This points to the need for further tuning of the GPT-4
model to achieve higher accuracy in identifying and classifying
the errors. One suggestion to rectify issues of false positives where
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Table 5: Clustering of error description for logical and syntax errors found in students’ codes for lab test 1

Types of er-
ror

Cluster label Subset of error description

Logical error Incorrect calculation - Wrong calculation for mileage
- The mileage calculation for distances greater than 30 is
incorrect

Form validation and
handling

- The option field name in the ’POST’ array does not match
the form field name in HTML file
- Elements ’from’ and ’to’ not defined

Incorrect loop usage - The incrementing of the count variable ’$i’ is missing after
adding the mileage cost to the ’add_on’_array
- For loop for fetching requested options is incorrect

Incorrect array usage - Incorrect array element $add_ons element index should be
a number
- Incorrect variable in array push

Syntax error Syntax error - The ’echo’ statement at the end does not have a semi-colon
which would lead to syntax error
- Missing closing parenthesis

HTML tag error - The tr tag in the foreach loop for creating the table rows is
not closed correctly
- The opening HTML tag left unclosed

Variable definition
error

- Undefined ’$price’ variable

- No variable ’$msg’ and ’$mileage’ defined

Table 6: Clustering of error description for logical and syntax errors found in students’ codes for lab test 2

Types of er-
ror

Cluster label Subset of error description

Logical error Redundancy issues - Shops’ names are repeatedly printed, regardless if it’s al-
ready printed before
- The shops are redundant and it is necessary to remove the
duplicates

HTML placement and
format Issues

- echo "ul" is placed inside the loop, it should be outside the
loop so that it is not repeatedly printed for each iteration
- The unordered list and closing tags ’<ul>’ and ’</ul>’ are
inside the foreach loop used to list out the different shops,
which causes an error where every shop is displayed as a
separate unordered list

Code structure and
logic errors

- The code doesn’t allow for a dynamic number of shops. It
assumes only shops A, B, and C exist
- The shops are predefined in the code but they should be
determined dynamically from the visits
- Not properly checking if an item is in the ‘$shops‘ array
before adding it.

Syntax error Syntax error - Missing braces in the foreach loop
- Missing semicolon at the end of the line

HTML tag error - Incorrect HTML tag for unordered list: Tag should be ul not
ui
- Incorrect closing tag placement of the unordered list

Variable misuse - Not initializing the $shops array
- Variable naming mismatch. Variable $shops used instead of
$shop
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GPT-4 wrongly identifies working codes as erroneous could be
to develop test scripts and couple that with the use of GPT-4 for
error identification and classification. The test scripts can either
be manually written or possibly auto-generated from GPT-4 by
passing in the program specifications. The prompts can then be
re-designed to incorporate the passing in of both the test scripts
and the model solution for more precise error identification and
classification. This should rectify issues such as "discrete age" and
"condition check swap" highlighted in the results section.

From the results, we also discovered that the error type sum-
mary alone, does not suffice in enabling instructors to understand
the misconceptions of students for enacting appropriate teaching
strategies. To illustrate, we were able to surmise from Table 4 that
there were more significantly more logical errors made by students
for the first lab test as compared to the second one. However, we
were still clueless as to which part of the program logic did majority
of the students encounter difficulties with implementing. As such,
we will require more granularity into the errors made by students
to investigate into the use of the error summaries for identifying
the misconceptions of students (RQ2).

After clustering of the error descriptions, we were able to get
more granular summary of the errors made by the students within
their code submissions and these were summarized in Table 5 and
6. From the clustering results as listed in Table 5 and 6, we surmise
that the errors are reasonably assigned to their relevant clusters
with adequate clustering labels (generated by GPT-4).

From Table 5, the logical errors made by students for lab test 1
can be traced to incorrect computation of costs, form validation
and handling and incorrect array and loop usage. The students find
it challenging to translate from the given cost computation formula
(for both mileage and the selected options e.g. GPS, child seat cost)
in the specification into the correct program codes.

Another misconception is with HTML form handling where
students used the label for the drop-down boxes instead of the
name attribute to retrieve the selected value for the start and end
location.

The final misconception had to do with the processing of arrays
and iteration of the elements of the array using a loop. It appears
that many of the students were not proficient with the iteration of
elements of an array using loops (e.g. using non-numerical vari-
ables as indexes for array) and how to insert new elements at the
end of an array using array_push function. For syntax errors, the
common mistakes made by students were missing semi-colons,
missing parenthesis, use of undefined variables and non-matching
of HTML opening and closing tags.

From the clustering results as shown in Table 6, the logical errors
made by students for lab test 2 can similarly be traced to duplicate
printing of shops, HTML placement and format issues and hard-
coding of the list of shops. Students were not sure how to iterate
through the visits array to get a unique list of shops visited by the
customers i.e. some shops may be visited by multiple customers
but the shop name should only be displayed once.

One surprising discovery here though is that the GPT-4 model
even manages to pick up hard-coding of the list of shops, a feat
which is unattainable with the use of existing techniques e.g. code
parser. These students pre-defined or hard-coded an array contain-
ing the values ‘Shop A’, ‘Shop B’ and ‘Shop C’ and use that to filter

out the visits for each in turn instead of retrieving the shop names
dynamically from the visits array. The syntax errors for lab test 2
were mostly similar to that made by students in lab test 1.

6 THREATS TO VALIDITY
The results presented are based on two PHP lab tests and involved
only the code submission from 67 students. This thus limits the
generalization of our results for other programming languages and
for a larger variety of programming problems.

In addition, in our study, the students were not required to write
the programming codes from scratch but were instead provided
with code templates where they had to fill in missing parts of the
programming codes. This likely constrained the search space for
error identification and classification within the submitted program-
ming codes. The results presented thus may not apply for cases
where the students are free to develop their own programming
codes to fulfill the specifications.

We did not empirically evaluate the clustering results generated
by GPT-4 model. These will entail the verification that all the errors
are assigned to a cluster (coverage), the errors within each cluster
are cohesive, the clusters are well separated and lastly, the clusters
are relatively balanced in size. It is thus possible that the clustering
results reported in this study may not be optimal and there are
other clustering or non-clustering algorithms which can possibly
perform better than GPT-4 in categorizing the error descriptions.

7 FUTUREWORK
We would suggest possible extensions to this study as listed below.

• Investigating the generalization of the error identification
capability across different programming languages and
code complexity.
In this study, we used GPT-4 for error identification of PHP
programs. Conceivably, the ability of LLMs to understand
and generate programming codes across different languages
should allow it to identify and categorize errors across dif-
ferent programming languages and for codes with different
complexities. This would, however, require validation from
future studies.

• Refining the clustering and categorization of error descrip-
tions.
The error descriptions were clustered into the different cat-
egories using only GPT-4 model. It is plausible that the
clustering by GPT-4 may not be optimal and other cluster-
ing techniques may offer better categorization of the error
descriptions.

• Seeding the model with inputs other than the model code
solution to further enhance identification and categoriza-
tion of the errors.
We passed in both the students’ codes and model code
solution into GPT-4 for the error identification and catego-
rization and this was validated to work well in this study.
With further enhancement in the capability of LLMs e.g.
interpreting images,we can possibly pass in other inputs
such as program specifications in the form of images and
investigate into its viability for enhanced error identifica-
tion.
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• Investigating the impact of automated error identification
and categorization on teaching of computer programming.
Brown and Altadmri [4] concluded in their study (compar-
ing instructors’ opinions versus actual students’ misconcep-
tions in Java programming) that instructors failed to form
an accurate consensus on the programming misconceptions
of their students. Qian and Lehman [19] further posited that
with an accurate picture of the students’ misconceptions,
instructors can then formulate effective teaching strategies
and tools to address these misconceptions. We thus suggest
future extensions of this study to investigate and evaluate
the various teaching strategies which may be devised with
this enhanced understanding of the students’ misconcep-
tions.

8 CONCLUSION
The identification of students’ misconceptions is imperative for
informing instructors on the difficulties faced by their students in
the learning of computer programming. It is however onerous for
the instructors to manually go through each student’s erroneous
programming codes for compilation of the common errors and
misconceptions. The current state of the art techniques for identifi-
cation of the errors require custom tools and scripts to be developed
and adapted for the different programming languages and this may
not be feasible to implement for every educational institution. In
this study, we proposed the use of ChatGPT in identifying and
summarizing the errors and misconceptions of students through
seeding the model with the students’ code submissions and the
model code solution. The results demonstrated that ChatGPT is
able to not only identify syntax but also the more difficult category
of logical errors. In addition, ChatGPT is also capable of more gran-
ular categorization of the errors, providing the instructors with
insights into the common misconceptions of their students.
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