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Abstract—Deep learning models have been successfully applied
to a variety of software engineering tasks, such as code classi-
fication, summarisation, and bug and vulnerability detection. In
order to apply deep learning to these tasks, source code needs
to be represented in a format that is suitable for input into the
deep learning model. Most approaches to representing source
code, such as tokens, abstract syntax trees (ASTs), data flow
graphs (DFGs), and control flow graphs (CFGs) only focus on
the code itself and do not take into account additional context
that could be useful for deep learning models. In this paper,
we argue that it is beneficial for deep learning models to have
access to additional contextual information about the code being
analysed. We present preliminary evidence that encoding context
from the call hierarchy along with information from the code
itself can improve the performance of a state-of-the-art deep
learning model for two software engineering tasks. We outline
our research agenda for adding further contextual information
to source code representations for deep learning.

Index Terms—Source code representation, deep learning, ad-
ditional context

I. INTRODUCTION

Program comprehension is a complex task that often re-

quires developers to refer to multiple software artefacts [1]

which might be useful in helping developers construct a mental

model of a program [2]. Experienced developers are better at

deciding which cues from different artefacts might be useful to

aid in program comprehension [3]. For example, Kulkarni and

Varma propose a developer’s perception model for program

investigation which indicates the role of twelve artefacts such

as control flow, version history changes, and bug reports in

comprehension tasks related to concepts, procedures, features,

and modules [3]. In another example, eye tracking has found

that developers looked beyond a particular method to under-

stand that method [4]. This type of work has well established

that developers use additional context when analysing source

code—not just the code itself.

In this paper, we argue that when asking deep learning

models to comprehend source code, we should give them the

same benefit, i.e., access to information beyond the source

code that the deep learning model is asked to analyse. The field

of source code representation has seen many recent advances,

with most work focusing on improving models by applying the

latest innovations from the deep learning research community.

Different data structures have been explored, including tokens,

trees, and graphs [5], to encode lexical, syntactic, and/or

semantic information [6]. However, the input to all these

approaches has mostly remained the same—a snippet of source

code.

Our preliminary work presented in this paper provides

evidence that adding contextual information to the input of

the state-of-the-art code representation approach ASTNN [7]

can improve the performance of two software engineering

tasks that are often used to evaluate the quality of code

representation, i.e., clone detection [8] and code classifica-

tion [9]. ASTNN takes code fragments as input and uses

a neural network based on abstract syntax trees (ASTs) to

capture statement-level lexical and syntactical knowledge as

well as the naturalness of statements. We investigate the

performance of ASTNN on source code methods from the

SeSaMe dataset [10] of semantically similar Java methods,

using the publicly available implementation of ASTNN as a

baseline and comparing it to modified versions which add

context from a method’s call hierarchy to the input. We explore

different alternatives for encoding context and combining it

with the encoding of a method into a combined representation.

Adding context from the call hierarchy (i.e., caller and callee

context) can improve the performance in the clone detection

scenario by 8% (from an F1 score of 0.706 to an F1 score of

0.765). Interestingly, this performance improvement can only

be achieved when we encode the difference between methods

along with the information from their callers and callees, see

Section III-C for details. Concatenation and max-pooling do

not have a positive effect on performance in this scenario.

In the code classification scenario, we observe performance

improvements of 11% for concatenation (from an F1 score of

0.633 to an F1 score of 0.704) and 5% for max-pooling (from

an F1 score of 0.711 to an F1 score of 0.747). Interestingly,

performance gains differ between adding caller and/or callee

context, and adding the callee context only actually decreased

performance.

Adding context of source code fragments can improve

the quality of source code representations for deep learning.

However, which context to encode, how to encode it, and how

to combine its encoding with the encoding of the original

source code fragment all have implications on the performance

of a deep learning model for downstream software engineering

tasks. Based on these insights, we put forward our research

agenda for adding context to source code representations for
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deep learning, with a focus on which context to add, how

to combine source code fragments and their context, and

dissecting how context plays a role in the deep learning

models. We summarise related work in Section II and present

our preliminary study in Section III before we conclude with

our research agenda in Section IV.

II. RELATED WORK

Our work lies at the intersection of related work on source

code representation and on the role of context in software

engineering.

A. Source Code Representations

In recent years, there has been a lot of work done on

representing source code for machine learning applications.

This can roughly be divided into work based on lexical,

syntactical, and semantic information [6]. In approaches aimed

at representing lexical information, a program is transformed

into a sequence of tokens. For example, related work has

shown that n-gram models can successfully handle token

prediction across different project domains, given a large

corpus for training [11], and n-gram models have been used

to synthesise code completions for API method calls [12].

Approaches aimed at representing syntactical information

often rely on the AST. They use heuristic rules [13] or machine

and deep learning algorithms [7] for encoding information

from the AST, e.g., in the form of a vector. For example,

ASTNN [7] splits each large AST into a sequence of smaller

sub-trees, and then learns syntactic knowledge from each sub-

tree separately. Approaches aimed at representing semantic
information additionally incorporate code dependency infor-

mation, often related to data flow and control flow informa-

tion [14]. Recent work has shown that combining low-level

syntactic information and high-level semantic information can

improve source code representation for multiple program com-

prehension tasks [6]. Hybrid representation approaches which

combine mulitple representations are becoming increasingly

common, compared to representations that use tokens, trees,

or graphs only [5].

None of these methods have focused on the input to

source code representation. In this work, we argue that adding

additional context from outside of the code fragment that is to

be represented has the potential of improving the performance

of any of the approaches.

B. Context in Software Engineering

The need for context in software engineering is well es-

tablished. For example, IDEs need context to understand the

task they are supporting [15], developers need context to

navigate technical discussions on Stack Overflow [16], and

tools need context to automatically process source code [17],

[18]. Context can include static artefacts such as documen-

tation [19], historical information such as past changes [20],

dynamic execution information such as traces [21], individual

developer activity such as IDE interactions [22], and team and

organisation activity such as communication and coordination

archives [23].

In this paper, we argue that all of these forms of context

are potentially useful to augment the input to source code

representation approaches—just as human developers have

access to this information, deep learning models might benefit

from this additional context. In our preliminary study (see next

section), we rely on the call hierarchy for context, similar

to the source code summarisation work by McBurney and

McMillan [17].

III. PRELIMINARY STUDY

In this section, we present our preliminary study to establish

that adding context can indeed improve the performance of a

state-of-the-art deep learning model for software engineering

tasks. As a first step, we use the call hierarchy of a source

code method as its context, but we believe that a similar

methodology can be applied to other types of context, such

as the ones described above.

A. Research Questions

To understand the potential of our idea and investigate how

to best implement it, we ask two research questions:

RQ1 What is the impact of encoding additional context on

the performance of a state-of-the-art deep learning

model?

RQ2 What is the impact of different approaches to aggre-

gate the representation of code and its context?

B. Data Collection

To conduct our experiments, we chose the SeSaMe dataset

which contains 857 Java method pairs from eleven open source

projects that have been manually classified according to their

semantic similarity [10]. Unlike popular datasets such as Big-

CloneBench [24], SeSaMe contains the repository link for each

of its methods which allows us to extract their call hierarchies.1

For each method in the SeSaMe dataset, we extract its callers

and callees. If a method has multiple callers and callees, we

choose the largest one to encode as additional context. We use

the state-of-the-art code representation approach ASTNN [7]

as a baseline. Exploring other approaches as baselines, in

particular those based on graph representations, is part of our

future work. Since ASTNN relies on ASTs, we parse each

method as well as its caller and callee methods into an AST.

We exclude methods that cannot be parsed.

Following the long line of work on source code represen-

tations (e.g., [7]), we use clone detection and source code

classification as downstream software engineering tasks for

evaluating the models:

• Code Clone Detection: For each method pair, the SeSaMe

dataset contains up to eight valid ratings from expert

programmers for semantic similarity in terms of goals,

operations, and effects, along with the corresponding

confidence. To construct our ground truth, we apply

1https://github.com/gousiosg/java-callgraph
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TABLE I: Datasets

Dataset Count

Classification Train Set 834
Classification Dev Set 104
Classification Test Set 105

Clone Detection Train Set 448
Clone Detection Dev Set 56
Clone Detection Test Set 57

weights of 0.6, 0.8, and 1 to the confidence of low,

medium, and high, respectively, and then average the data

across valid ratings and dimensions to create a binary

label.

• Code Classification: We treat the origin of each source

code method as its class, resulting in eleven classes since

the SeSaMe dataset contains methods from eleven open

source projects.

We adopt an 80%, 10%, 10% split for training, validation,

and testing. Table I shows the size of the corresponding

datasets.

C. Aggregation

ASTNN relies on 200-dimensional vectors to represent a

source code snippet. Since there are multiple ways in which

data can be combined in the context of machine learning (e.g.,

pooling [25]), we experiment with different approaches to

combine the representation of a method and the representation

of its context, according to the two application scenarios

detailed above. Our focus in this preliminary study is not on

inventing new aggregation approaches, but on evaluating well-

established approaches for our problem domain.

For code clone detection, we explore three aggregation

methods as shown in Figure 1. In the concatenation scenario,

the 200-dimensional representation of a method is concate-

nated with the 200-dimensional representations of its caller

and callee, resulting in two 600-dimensional representations

for each code pair. We calculate the absolute value of the

difference of these vectors, and send the result into a linear

layer and a sigmoid layer to determine whether the two

methods are clones of each other. In the max-pooling scenario,

we rely on pooling to select the maximum values of the

method, caller, and callee vectors in each dimension to form

a new vector. In the concatenation of absolute difference
scenario, we reverse the process by calculating the difference

between the method vectors first and then performing the

concatenation of all relevant context, i.e., callers and callees

of both methods.

For code classification, our unit of analysis are individual

methods instead of method pairs. We explore two aggregation

methods as shown in Figure 2. In the concatenation scenario,

we concatenate the method, caller, and callee vectors and use

a softmax layer [26] to assign each method to one of eleven

classes. In the max-pooling scenario, we use pooling to select

the maximum values of the method, caller, and callee vectors

TABLE II: Performance in the clone detection scenario

Method Accuracy Precision Recall F1

Without Context 0.825 0.857 0.600 0.706
Concatenation 0.807 0.800 0.600 0.686
Max-Pooling 0.789 0.700 0.700 0.700
Difference & Concatenation 0.860 0.929 0.650 0.765

TABLE III: Performance in the classification scenario

Method Accuracy Precision Recall Macro-F1

Without Context 0.571 0.571 0.402 0.397
Concatenation 0.810 0.748 0.686 0.704
Max-Pooling 0.790 0.836 0.707 0.747
Concatenat. w/ Random Context 0.771 0.681 0.637 0.633
Max-Pooling w/ Random Context 0.800 0.747 0.698 0.711
Max-Pooling w/ Caller Context 0.733 0.651 0.654 0.647
Max-Pooling w/ Callee Context 0.676 0.697 0.530 0.550

in each dimension to form a new vector, which is then passed

to the softmax layer.

D. Results

Table II summarises our results for the code clone detec-

tion scenario. Without any customisation related to context,

ASTNN achieves an F1 score of 0.706. This performance

degrades when adding context via concatenation and max-

pooling, with F1 scores of 0.686 and 0.700, respectively.

However, we see an improvement in performance for the

aggregation method of concatenating the absolute difference of

the method vectors along with caller and callee context of both,

for an F1 score of 0.765 (an 8% improvement). We observe

similar trends for accuracy, and note that the best recall was

achieved in the max-pooling scenario.

These results show that adding additional context to source

code representations for deep learning can have a positive im-

pact on the performance of a downstream software engineering

task. The way in which additional context is represented and

aggregated can determine whether performance improves or

decreases, so it is important to choose an approach that yields

the best results.

Table III summarises our results for the classification sce-

nario. Without adding context, ASTNN achieves a Macro-F1

score of 0.397 on our data, across eleven classes. Adding

context substantially improves this performance, with Marco-

F1 scores of 0.704 and 0.747 for concatenation and max-

pooling, respectively.

We note that the addition of context from the call hierarchy

alone does not necessarily explain the improved performance

of code classification. The baseline model without added

context has to assign methods to one of eleven projects based

on information from a single method, whereas in the other

two scenarios (concatenation and max-pooling), the models

have access to information from up to three methods from the

same project. It is unsurprising that a classifier achieves better

performance on this task if it has up to three data points for

each decision instead of just one.
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(a) Concatenation (b) Max-pooling (c) Concatenation of absolute difference

Fig. 1: Aggregation approaches in the clone detection scenario

(a) Concatenation (b) Max-pooling

Fig. 2: Aggregation approaches in the classification scenario

To determine the extent to which context from the call

hierarchy specifically can improve performance, we compared

performance against additional baselines which add random

methods from same project as additional context. Table III

shows that some of the performance gain can indeed be

attributed to information from the call hierarchy: Compared

to adding random context, the performance improves by 11%

for concatenation (from an F1 score of 0.633 to an F1 score

of 0.704) and 5% for max-pooling (from an F1 score of 0.711

to an F1 score of 0.747). The table further shows that adding

caller or callee context in isolation is not sufficient—in fact,

adding callee context only led to a degradation of performance.

We answer our two research questions as follows:

SUMMARY

Our preliminary study shows that encoding additional

context in source code representations for deep learning

can improve the performance of a state-of-the-art deep

learning model for two downstream tasks (RQ1). In

terms of aggregating the representation of code and its

context (RQ2), we find that the aggregation approach

has a substantial impact, and performance can degrade

if an inadequate aggregation approach is chosen.

IV. RESEARCH AGENDA

The preliminary study that we conducted yields encouraging

results, so in this section, we outline our broader research

agenda for adding context to source code representations for

deep learning. We discuss different types of context, different

aggregation methods, and empirical studies in the following

paragraphs.

A. Other Context

When developers understand source code, they benefit from

additional context, e.g., in the form of documentation [27],

execution traces [28], or navigation patterns [29]. We argue

that source code representations can benefit from such context

as well. We distinguish two types of context:

• Definite Context: The identification of definite context

is based on facts and does not rely on probabilistic

reasoning. Types of definite context for a code fragment

include its version history, its execution traces, and its

call hierarchy.

• Possible Context: The identification of possible context is

affected by uncertainty, similar to how a developer might

search for information about a code fragment but be

faced with uncertainty as to whether a particular piece of

information, such as a Stack Overflow thread, is actually

related to this code fragment. Types of possible context

for a code fragment include its documentation, issues that

have been reported against it, and its rationale. While

research has made great progress towards establishing

such traceability links [30], information inference often

happens under uncertainty [31].

We argue that source code representations could potentially

benefit from all of these types of context, depending on

encoding and downstream tasks.

B. Aggregation

Pooling is an aggregation technique used in deep learning to

reduce the number of parameters and improve performance. It

works by combining multiple input features into a single fea-

ture, which is then passed through the network. This approach

can be used with convolutional neural networks (CNNs) and

fully connected nets, and can be applied at different levels in

the network depending on what is being optimised. An ideal

pooling method is expected to extract only useful information

and discard irrelevant details [25]. We argue for the use of two

classes of aggregation techniques:

• General-purpose pooling: In addition to max-pooling and

concatenation used in our preliminary study, many other

pooling techniques have been proposed in the context

of CNNs, e.g., average pooling, stochastic pooling, and
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weighted pooling. We refer readers to Gholamalinezhad

and Khosravi [25] for an overview.

• Domain-specific aggregation: The most suitable way of

aggregating data will often depend on the domain and the

downstream task, just as in our preliminary study where

the aggregation technique which calculates the difference

between two method representations achieved the best

performance for code clone detection. We expect to see

similar advantages when exploring other domain-specific

aggregation methods, e.g., by taking time series infor-

mation into account when aggregating version histories

or by encoding probabilities when context inference was

done under uncertainty.

We argue for extensive experiments to evaluate the effect of

these techniques on aggregating the representation of source

code and its context for deep learning, as well as the ex-

ploration of different neural network architectures and their

suitability for this task.

C. Dissection

Interpreting and dissecting what a deep learning model

has learned has become a key ingredient for the validation

of such models [32]. We posit that developers and tool

builders can benefit from understanding which context a model

found beneficial for which software engineering task and why,

with particular focus on the interplay of source code and

its context. Ultimately, we argue for a feedback loop: By

enabling deep learning methods to benefit from the same

context that developers have access to, we can improve the

models’ understanding of source code, and by dissecting what

the models have learned [33], we can improve how developers

complete their tasks, benefiting from knowledge about how to

best make use of source code and its context.
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