
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

1-2024 

SOCI+: An enhanced toolkit for Secure Outsourced Computation SOCI+: An enhanced toolkit for Secure Outsourced Computation 

on Integers on Integers 

Bowen ZHAO 

Weiquan DENG 

Xiaoguo LI 

Ximeng LIU 

Qingqi PEI 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Information Security Commons 

Citation Citation 
ZHAO, Bowen; DENG, Weiquan; LI, Xiaoguo; LIU, Ximeng; PEI, Qingqi; and DENG, Robert H.. SOCI+: An 
enhanced toolkit for Secure Outsourced Computation on Integers. (2024). IEEE Transactions on 
Information Forensics and Security. 1. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8815 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8815&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Bowen ZHAO, Weiquan DENG, Xiaoguo LI, Ximeng LIU, Qingqi PEI, and Robert H. DENG 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/8815 

https://ink.library.smu.edu.sg/sis_research/8815


ar
X

iv
:2

30
9.

15
40

6v
1 

 [
cs

.C
R

] 
 2

7 
Se

p 
20

23
1

SOCI+: An Enhanced Toolkit for Secure Outsourced

Computation on Integers
Bowen Zhao, Member, IEEE, Weiquan Deng, Xiaoguo Li, Ximeng Liu, Senior Member, IEEE, Qingqi Pei, Senior

Member, IEEE, Robert H. Deng, Fellow, IEEE

Abstract—Secure outsourced computation is critical for cloud
computing to safeguard data confidentiality and ensure data us-
ability. Recently, secure outsourced computation schemes follow-
ing a twin-server architecture based on partially homomorphic
cryptosystems have received increasing attention. The Secure
Outsourced Computation on Integers (SOCI) [1] toolkit is the
state-of-the-art among these schemes which can perform secure
computation on integers without requiring the costly bootstrap-
ping operation as in fully homomorphic encryption; however,
SOCI suffers from relatively large computation and communi-
cation overhead. In this paper, we propose SOCI+ which signif-
icantly improves the performance of SOCI. Specifically, SOCI+

employs a novel (2, 2)-threshold Paillier cryptosystem with fast
encryption and decryption as its cryptographic primitive, and
supports a suite of efficient secure arithmetic computation on
integers protocols, including a secure multiplication protocol
(SMUL), a secure comparison protocol (SCMP), a secure sign
bit-acquisition protocol (SSBA), and a secure division protocol
(SDIV), all based on the (2, 2)-threshold Paillier cryptosystem
with fast encryption and decryption. In addition, SOCI+ incor-
porates an offline and online computation mechanism to further
optimize its performance. We perform rigorous theoretical anal-
ysis to prove the correctness and security of SOCI+. Compared
with SOCI, our experimental evaluation shows that SOCI+ is
up to 5.4 times more efficient in computation and 40% less in
communication overhead.

Index Terms—Secure outsourced computation; Paillier cryp-
tosystem; threshold cryptosystem; homomorphic encryption; se-
cure computing.

I. INTRODUCTION

C
LOUD computing provides flexible and convenient ser-

vices for data outsourced computation, but it is prone

to leak outsourced data. Users with limited computation and

storage capabilities can outsource their data to the cloud server

and perform efficient computations over outsourced data [2].

However, the cloud server may intentionally or unintentionally

steal and leak the outsourced data, leading to privacy concerns.

At present, numerous data breaches have occured over the

world. For example, Facebook exposed a large amount of

user data online for a fortnight due to misconfiguration in

the cloud [3]. In addition, according to the data breach

chronology published by [4], from 2005 to 2022, there have

been about 20,000 instances of data breaches in the United

States, affecting approximately two billion records.

To prevent data leakages, users can encrypt data before

outsourcing [5]. However, performing computations over en-

crypted data (also known as ciphertext) is challenging, as con-

ventional cryptosystems usually fail to enable computations

Manuscript received x x, x; revised x x, x.

over ciphertext directly. Secure outsourced computation is an

effective manner balancing data security and data usability [2],

which enables computations on encrypted data directly. Secure

outsourced computation that ensures data security offers a

promising computing paradigm for cloud computing, and it

can be used in many fields, such as privacy-preserving ma-

chine learning training [6] and privacy-preserving evolutionary

computation [7].

Homomorphic cryptosystems enable secure outsourced

computation as their features achieving addition, multiplica-

tion, or both of addition and multiplication over ciphertext.

Unfortunately, secure outsourced computation based on ho-

momorphic cryptosystems still suffers from several challenges.

Secure outsourced computation solely based on homomorphic

cryptosystems is challenging to achieve nonlinear operations

(e.g., comparison) [1] and obtain the intermediate result. In

certain scenarios, it is necessary to obtain the intermediate

result, such as privacy-preserving person re-identification [8].

Homomorphic cryptosystems, such as fully homomorphic en-

cryption that supports addition and multiplication over cipher-

text simultaneously, suffer from significant storage costs [1].

Partially homomorphic encryption (PHE) supports addition or

multiplication over ciphertext and has a less ciphertext size.

To mitigate the limitations imposed by restricted computation

types and high storage costs, a combination of PHE and

a twin-server architecture has emerged as a promising and

increasingly popular paradigm. Despite these advancements,

secure outsourced computation solutions [1], [9] based on

PHE and the twin-server architecture still bring slightly high

computation costs and communication costs.

To tackle the above challenges, in this paper, we propose

an enhanced toolkit for secure outsourced computation on

integers, named SOCI+, which is inspired by SOCI (a toolkit

for secure outsourced computation on integers) [1]. Build-

ing on the Paillier cryptosystem with fast encryption and

decryption [10], we propose a novel (2, 2)-threshold Paillier

cryptosystem to mitigate computation costs. Subsequently, we

redesign all secure computation protocols proposed by SOCI

[1]. Additionally, considering the underlying features of secure

outsourced computation protocols, which allow a multitude of

pre-encryption processes, we divide the computations of these

protocols into two phases: offline phase and online phase. In

short, the contributions of this paper are three-fold.

• A novel (2, 2)-threshold Paillier cryptosystem (Fast-

PaiTD). For the first time, we propose a novel (2, 2)-
threshold Paillier cryptosystem called FastPaiTD, which

is based on the Paillier cryptosystem with fast encryption

http://arxiv.org/abs/2309.15406v1


2

and decryption [10]. FastPaiTD is specially designed to

seamlessly adapt to a twin-server architecture.

• An offline and online mechanism. To expedite the

computations of secure computation protocols, we intro-

duce an offline and online mechanism. Specifically, the

encryption of random numbers and some constants in

secure computation protocols are computed in advance

at the offline phase, while the online phase only perform

operations except for these operations performed offline.

• A suite of secure computation protocols with superior

performance. To support linear operations and nonlinear

operations, inspired by SOCI [1], we adopt the proposed

FastPaiTD to design a suite secure computation proto-

cols, including a secure multiplication protocol (SMUL),

a secure comparison protocol (SCMP), a secure sign

bit-acquisition protocol (SSBA), and a secure division

protocol (SDIV). Compared with SOCI [1], our proposed

protocols can improve up to 5.4 times in computation ef-

ficiency and saves up to 40% in communication overhead.

The rest of this paper is organized as follows. We briefly

review related work in Section II, and show the preliminaries

for constructing SOCI+ in Section III. The system model and

threat model are given in Section IV. In Section V, we firstly

present the proposed (2, 2)-threshold Paillier cryptosystem,

along with the introduction of the offline and online mech-

anism to speed up computations. Subsequently, we elaborate

on four secure computation protocols based on the proposed

threshold Paillier cryptosystem. The analysis of correctness

and security is presented in Section VI, and experimental

evaluations are executed in Section VII. Finally, this paper

is concluded in Section VIII.

II. RELATED WORK

Secure outsourced computation is a powerful tool that

allows users with limited storage and computation capabilities

to outsource their data and computations over data to cloud in

a secure manner. To enhance the security of data stored in the

cloud, numerous solutions for secure outsourced computation

have been proposed.

Rahulamathavan et al. [11] proposed a privacy-preserving

approach for outsourcing support vector machine data clas-

sification to the cloud, which is based on a single-server

architecture. In their work [11], the operations over encrypted

data are rely on Paillier cryptosystem [12] and secure two-

party computation. In the work [13], a secure outsourced

approach for logistic regression in cloud is proposed, which

is also based on Paillier cryptosystem and single-server archi-

tecture. Despite the utilization of a powerful cloud server in

the aforementioned work, the burden on the client is not truly

alleviated due to the execution of some interactions between

client and server.

Twin-server architecture emerges as a more practical solu-

tion for secure outsourced computation, which significantly

reduces the burden of client (or data user). The schemes

proposed in [14], [15], [16], [17] exploited twin-server ar-

chitecture and Paillier cryptosystem to implement secure out-

sourced computation. Wang et al. [18] implemented a secure

addition using the twin-server architecture and the ElGamal-

based proxy re-encryption with multiplicatively homomor-

phism. Feng et al. [19] leveraged Paillier cryptosystem and

twin-server architecture, proposing a secure integer division

protocol (SD) and a secure integer square root protocol (SSR).

Cui et al. [20] proposed a secure division computation protocol

(SDC) that leverages random numbers to conceal the real value

of dividend and divisor. However, in all of the aforementioned

work, a server with a private key is introduced, leading to a sin-

gle point of security failure. Furthermore, the above work fails

to access to intermediate result, making it unsuitable in some

settings such as privacy-preserving person re-identification [8].

To mitigate the risk of a single point of security failure and

enable access to intermediate result, extensive research has

been conducted. The work in [9] and [21] proposed secure

outsourced computation solutions by exploiting threshold Pail-

lier cryptosystem. Specifically, in the work [9], the private key

of Paillier cryptosystem is split into two parts and distributed

to two servers. Consequently, the ciphertext can be decrypted

collaboratively by the two servers. In the work [21], the private

key is split into multiple partially private keys held by multiple

servers, and a ciphertext can be decrypted by a threshold

number of servers holding different partially private keys.

However, both [9] and [21] introduce a trusted third party

to distribute and manage the private keys.

To overcome all the aforementioned weaknesses, a toolkit

for secure outsourced computation on integer named SOCI is

proposed in [1], which is based on twin-server architecture

and threshold Paillier cryptosystem. In addition to supporting

additive homomorphism and scalar multiplication homomor-

phism, SOCI enables secure outsourced computation for four

types, including secure multiplication, secure comparison,

secure sign bit-acquisition, and secure division. Compared to

the protocols in the integer calculation toolkit proposed by

[9], the protocols of SOCI are more efficient. However, the

computation costs and communication costs of SOCI are still

relatively high.

III. PRELIMINARIES

Ma et al. [10] proposed a Paillier cryptosystem with fast

encryption and decryption. In the rest of this paper, we refer

to it as FastPai for its fast encryption and decryption. FastPai

is comprised of the following components. n(κ) and l(κ) refer

to the bit length of N and private key, respectively.

1) N Generation (NGen): FastPai calls NGen to generate

the modulus N for the Paillier cryptosystem. Specifically,

NGen takes a security parameter κ as input and outputs

(N,P,Q, p, q).
The execution of NGen proceeds as follows.

(i) Randomly select
l(κ)
2 -bit odd primes p, q.

(ii) Randomly select (
n(κ)−l(κ)

2 − 1)-bit odd integers p′, q′.
(iii) Compute P = 2pp′ + 1 and Q = 2qq′ + 1.

(iv) If p, q, p′, q′ are not co-prime, or if P or Q is not a prime,

then go back to step (i).

(v) Compute N = PQ, and output (N,P,Q, p, q).

2) Key generation (KeyGen): KeyGen generates a private

key sk and a public key pk based on a given parameter κ. It



3

firstly calls NGen to obtain (N,P,Q, p, q). Subsequently, it

computes α = pq and β = (P − 1)(Q − 1)/(4pq). Next, it

computes h = −y2β(mod N), where y is a number chosen

from Z
∗
N uniformly and randomly. Finally, it outputs pk =

(N, h) and sk = α.

3) Encryption (Enc): Enc takes a message m ∈ ZN and

a public key pk = (N, h) as input and outputs a ciphertext

c ∈ ZN2 , which is defined as follows.

c← Enc(pk,m) = (1 +N)
m
· (hr mod N)

N
mod N2.

(1)

In Eq.(1), r is a random number and satisfying r ←

{0, 1}
l(κ)

. In the rest of this paper, we use JxK to represent an

encrypted x.

4) Decryption (Dec): Dec takes a ciphertext c ∈ ZN2

and a private key sk = α as input and outputs a plaintext

message m ∈ ZN , which is defined as follows.

m← Dec(sk, c)

= (
(c2α mod N2)− 1

N
mod N) · (2α)−1 mod N.

(2)

IV. SYSTEM MODEL AND THREAT MODEL

Fig. 1. SOCI+ system architecture

A. System Model

As shown in Fig. 1, SOCI+ consists of a Data Owner (DO)

and two non-colluding servers (S0 and S1).

• Data Owner (DO). DO is responsible for generating the

private key and public key of FastPaiTD, and distributing

the public key and the partially private keys sk1 and sk2
to S0 and S1, respectively. To ensure data security, DO

encrypts data with pk and outsources the encrypted data

to S0. Subsequently, DO outsources the computations on

ciphertext to S0 and S1.

• Servers. S0 is responsible for the storage and the manage-

ment of the encrypted data uploaded by DO. Additionally,

S0 interacts with S1 to perform the proposed secure

outsourced computation protocols. S1 only provides com-

putation services and collaborates with S0 to perform the

proposed secure outsourced computation protocols.

B. Threat Model

Following the previous work falling in twin-server archi-

tecture [1], [22], [23], [24], SOCI+ comprises three entities,

DO, S0 and S1. DO is regarded as fully trusted. In SOCI+,

there is only one type of adversary, which involves S0 and

S1, and the adversary attempts to obtain DO’s data during

execution of secure outsourced computations. Similar to the

previous the solutions [25], [26], we assume that S0 and S1

are non-colluding. Moreover, we assume S0 and S1 both are

curious-but-honest, i.e., both S0 and S1 strictly adhere to the

principle of not revealing additional information to each other,

except for the necessary information required for performing

secure outsourced computations.

It is practical that assuming S0 and S1 are non-colluding,

when S0 and S1 are two different and competitive cloud

service providers. The collusion between S0 and S1 means that

they share the private information (e.g., the partially private

keys and the random numbers) to each other. Once S0 leaks

information to S1, S1 can leverage the law to punish S0 and

further occupies the market share of S0, and vise versa. For

the interest of business, both S0 and S1 will not reveal its

private information to each other.

V. SOCI+ DESIGN

A. (2, 2)-threshold Paillier cryptosystem (FastPaiTD)

Inspired by the work [1] and [9], we propose FastPaiTD, a

novel (2, 2)-threshold Paillier cryptosystem, which is based on

FastPai [10]. FastPaiTD encompasses the operations of NGen,

KeyGen, Enc, and Dec from FastPai.

Previous works such as the PaillierTD [27] adopted by

SOCI [1] and the PCPD in POCF [9] split the private key

(e.g., sk = λ) into two partially private keys sk1 and sk2. In

contrast to these methods, we split FastPai’s double private

key (e.g., 2sk = 2α) into two partially private keys sk1
and sk2, s.t., sk1 + sk2 = 0 mod 2α and sk1 + sk2 = 1
mod N . In the output of keygen in FastPai, N is an odd

number that satisfies gcd(2α,N) = 1. To hold sk1 + sk2 = 0
mod 2α and sk1 + sk2 = 1 mod N at the same time, we

can apply the Chinese remainder theorem [28] to calculate

δ = sk1 + sk2 = (2α) · ((2α)−1 mod N) mod (2α ·N ). We

can randomly set sk1 as a σ-bit (e.g., σ = 128) number, and

set sk2 = ((2α)−1 mod N) · (2α) − sk1 + η · 2α ·N , where

η ≥ 0. The splitting operation of the private key should be

performed in the keygen phase.

In addition to the fundamental components of FastPai,

FastPaiTD incorporates PDec and TDec operations. These

supplementary operations significantly enhance the flexibility

of FastPaiTD, making it a practical tool for secure outsourced

computation.

Partial Decryption (PDec): This operation enables a

party to partially decrypt the ciphertext without revealing the

original message. PDec takes a ciphertext c ∈ ZN2 and a

partially private key ski (i ∈ {1, 2}) as input, and outputs a

ciphertext Mi ∈ ZN2 . The partial decryption process is defined

as follows.

Mi ← PDec(ski, c) = cski mod N2. (3)

Threshold Decryption (TDec): This operation enables

two authorized parties to collaboratively decrypt the ciphertext

and obtain the original message without knowing the private

key sk. TDec takes the results of partial decryption M1 and



4

Typical Workflow of SOCI

Server 0 (S0) Server 1 (S1)

1 : S0 masks the inputs with with random numbers by computing masked val =M(JxK, JyK, r1, r2);

M(ciphertexts, r) means masking ciphertexts with random numbers;

S0 computes PDec val = PDec(masked val).

masked val, PDec val

2 : S1 performs functions on masked val and PDec val, i.e., performing operated val =

F(masked val, PDec val);

F(masked val, PDec val) may involve decryption, partial decryption, threshold

decryption and so on.

operated val

3 : S0 gets the unmasked results in an encrypted form by computing M−1(operated val, r), where

M−1(operated val, r) means unmasking the operated val with random numbers.

Fig. 2. Typical Workflow of SOCI

M2 as input, and outputs a plaintext m ∈ ZN . The threshold

decryption process is defined as follows.

m← TDec(M1,M2) =
(M1 ·M2 mod N2)− 1

N
mod N.

(4)

Remark. Similar to the PaillierTD [27] adopted by SOCI

[1], our (2, 2)-threshold Paillier cryptosystem (FastPaiTD)

supports additive homomorphism and scalar-multiplication ho-

momorphism:

• Enc(pk,m1) · Enc(pk,m2) = Enc(pk,m1 +m2).
• Enc(pk,m)

r
= Enc(pk, r · m), where r is a constant.

When r = N−1, it holds Enc(pk,m)
r
= Enc(pk,−m).

Besides, to enable FastPaiTD supporting the operations on

negative integers, we perform a conversion on the negative

number m as m = N−|m|. Specifically, we take the message

spaces [0, N2 ] and [N2 + 1, N − 1] for non-negative numbers

and negative numbers, respectively.

B. Offline and online mechanism

As shown in Fig. 2, to hide the real values of inputs,

SOCI masks the inputs with random numbers. To securely

and correctly obtain the results, the protocols in SOCI involve

a large amount of encryption for random numbers. To avoid

the expensive encryption overhead during executing the secure

outsourced computation protocols, we propose an offline and

online mechanism for SOCI+ as detailed below.

1) Offline Phase: In contrast to SOCI, we pre-encrypt the

random numbers and some constants in the offline phase, such

as r1, r2, −r1 · r2, 0 and 1, thereby avoiding to encrypt them

in the online phase, which alleviates the computation costs for

the secure outsourced computation protocols. Specifically, in

the offline phase, we separately establish a tuple for S0 and

S1, and denote them as tupleS0
and tupleS1

, respectively.

tupleS0
is consist of r1, r2, Jr1K, Jr2K, J−r1 · r2K, r3, r4,

Jr3 + r4K, Jr4K, J0K and J1K. The elements in tupleS0
satisfy

the following properties.

• r1, r2 ← {0, 1}
σ (e.g., σ = 128).

• r3 ← {0, 1}
σ
\{0} (e.g., σ = 128).

• r4 is a random number, s.t., r4 ≤
N
2 and r3 + r4 > N

2 .

tupleS1
is consist of J0K and J1K. Compared to SOCI, S0

and S1 in SOCI+ have a simplified process where they only

need to extract a ciphertext from their tuples and refresh it

atfer usage when it comes to encryption of random numbers

and some constants.

However, there is still a number needed to be encrypted in

the online phase when we adopt the above mechanism in our

SOCI+. To speed up the encryption, we can construct a pre-

computation table in the offline phase. Moreover, the Enc in

FastPai has another equivalent form, as shown below.

c← Enc(pk,m) = (1 +m ·N) · (hN mod N2)
r
mod N2.

(5)

The Enc involves a constant hN mod N2, hence we can

pre-compute this constant to speed up the Enc. Besides, the

Enc in FastPai involves a fixed-base modular exponentiation

as below.

(hN mod N2)
r
mod N2. (6)

Therefore, constructing a pre-computation table can opti-

mize the efficiency of the Enc. Ma et al. [10] presented

the method of constructing a pre-computation table, which is

detailed as follows.

To compute y = ax, where a is a fixed base, we can pre-

compute the powers of a so that turn the modular exponentia-

tion into modular multiplication since modular multiplication

is more efficient than modular exponentiation. Specifically,

we let x =
∑⌈len/b⌉−1

i=0 xi · 2
ib, where len is the bit length

of x and xi is the i-th b-bit block. Note that the last block

x⌈len/b⌉−1 may be less than b bit. We can calculate y = ax

by the following equation.

y = ax = a
∑⌈len/b⌉−1

i=0 xi·2
ib

=
∏⌈len/b⌉−1

i=0 (a2
ib

)
xi

. (7)

Therefore, we can build a two-dimensional pre-computation

table with ⌈len/b⌉ rows and 2b columns, and the index of rows

and columns start from 0. The element in row i and column j

is (a2
ib

)
j
, where i ∈ [0, ⌈len/b⌉− 1] and j ∈ [0, 2b − 1]. The

table has ⌈len/b⌉ · 2b elements and every element belongs to

ZN2 , hence the table size is ⌈len/b⌉ · 2b · (2n) bits.

2) Online Phase: In SOCI+, S0 and S1 construct the

tupleS0
, tupleS1

and pre-computation table in the offline

phase, and utilize the tupleS0
, tupleS1

and pre-computation

table when perform secure outsourced computation protocols

in the online phase.

During the execution of secure outsourced computation

protocols, SOCI performs encryption operations on random



5

Secure Multiplication (SMUL): SMUL(JxK, JyK)→ Jx · yK

Server 0 (S0) Server 1 (S1)

// Offline Phase

S0 constructs a tupleS0
, which is consist of r1, r2, Jr1K, Jr2K, J−r1 · r2K, r3, r4, Jr3 + r4K,

Jr4K, J0K and J1K.

S1 constructs a pre-computation table for speeding up the encryption that cannot pre-compute.

// Online Phase

1 : S0 inputs JxK and JyK, where x, y ∈ [−2l, 2l];

S0 extracts r1, r2, Jr1K, Jr2K, and J−r1 · r2K from tupleS0
;

S0 refreshes Jr1K, Jr2K and J−r1 · r2K in tupleS0
, using the method mentioned in V-B2;

S0 computes X = JxK · Jr1K and Y = JyK · Jr2K;

S0 computes C = XL · Y and C1 ←PDec(sk1, C), where L is a constant satisfying

L ≥ 2σ+2.

C,C1

2 : S1 computes C2 ← PDec (sk2, C) and (L · (x+ r1) + y + r2)← TDec(C1, C2);

S1 sets (x+ r1) = ⌊(L · (x+ r1) + y + r2)/L⌋;

S1 computes (y + r2) = (L · (x+ r1) + y + r2) mod L and J(x+ r1) · (y + r2)K← Enc

(pk, (x+ r1) · (y + r2)).

J(x+ r1) · (y + r2)K

3 : S0 computes J−r2 · xK = JxK−r2 and J−r1 · yK = JyK−r1 ;

S0 gets Jx · yK = J(x+ r1) · (y + r2)K · J−r2xK · J−r1yK · J−r1 · r2K.

Fig. 3. Secure Multiplication (SMUL)

numbers and some constants, whereas SOCI+ extracts the pre-

computed encryption values from tuples and hence reduces

a large amount of encryption operations. In the proposed

FastPaiTD, multiplying a ciphertext Enc(pk,m) by a cipher-

text Enc(pk, 0) produces a new ciphertext Enc(pk,m + 0).
Although Enc(pk,m) and Enc(pk,m + 0) are not identi-

cal, their decrypted results are identical. Consequently, after

utilizing the ciphertexts in tuples, S0 and S1 refresh the

ciphertexts in their tuples by multiplying J0K. It should be

noted that the J0K is also included in their tuples. By refreshing

the ciphertext, even if the plaintext remains unchanged, the

corresponding ciphertext changes. This refresh process creates

the illusion that all random numbers and constants are re-

encrypted, providing security while reducing computation cost.

Moreover, S0 and S1 can utilize the pre-computation table

to expedite the encryption process when encrypting messages

other than the aforementioned random numbers and constants.

C. Secure Multiplication Protocol (SMUL)

FREED [29] proposed a SMUL protocol which is more

efficient than the one in SOCI and with the same input and

output as SOCI. Same as SOCI, FREED splits the private

key of Paillier cryptosystem into two parts and achieves

SMUL through the interaction between the two servers. In this

paper, we re-design the SMUL in FREED by incorporating the

proposed FastPaiTD and the offline and online computation

mechanism.

Given JxK and JyK as input, where x, y ∈ [−2l, 2l], S0

and S1 collaboratively compute Jx · yK ← SMUL(JxK, JyK) as

output. It should be noted that the input is held by S0 and

only S0 has the access to the output. When describing SMUL

in Fig. 3, we omit the input and output for conciseness. As

shown in Fig. 3, SMUL has two phase, i.e., offline phase and

online phase. In the offline phase, S0 constructs a tupleS0

which is consist of r1, r2, Jr1K, Jr2K, J−r1 · r2K, r3, r4,

Jr3 + r4K, Jr4K, J0K and J1K (how to choose these random

numbers is elaborated in V-B1). Meanwhile, S1 constructs

a pre-computation table for speeding up the encryption that

cannot pre-compute. The online phase of SMUL comprises

three steps as detailed below.

(1) S0 extracts r1, r2, Jr1K, Jr2K, and J−r1 ·r2K from tupleS0
.

Subsequently, S0 refreshes these ciphertexts in tupleS0
,

and masks x and y through additive homomorphism. This

is accomplished by computing X = JxK · Jr1K and Y =
JyK · Jr2K. S0 then computes C = XL · Y , where L is a

constant satisfying L ≥ 2σ+2. After partially decrypting

C to obtain C1 by calling PDec, S0 sends C and C1 to

S1.

(2) Upon receiving C and C1, S1 calls PDec to partially

decrypt C, resulting in C2. Additionally, S1 obtains

L · (x + r1) + y + r2 by calling TDec with C1 and C2.

Subsequently, S1 computes ⌊(L · (x+ r1) + y + r2)/L⌋
and (L · (x+ r1) + y+ r2)mod L to derive the values of

(x+ r1) and (y+ r2), respectively. Finally, S1 calls Enc

to encrypt (x+r1) ·(y+r2) and sends J(x+r1) ·(y+r2)K
to S0.

(3) As having the knowledge of JxK, JyK, r1, r2 and J−r1 ·r2K,

S0 can computes JxK
−r2 and JyK

−r1 to get J−r2 · xK and

J−r1 · yK, respectively. Subsequently, S0 computes J(x+
r1) · (y+ r2)K · J−r2xK · J−r1yK · J−r1 · r2K to get Jx · yK.

D. Secure Comparison Protocol (SCMP)

In this subsection, we re-design the SCMP in SOCI by

leveraging the proposed FastPaiTD and the offline and online

computation mechanism.

Given JxK and JyK as input, where x, y ∈ [−2l, 2l], S0 and

S1 collaboratively compute JµK← SCMP(JxK, JyK) as output.

If µ = 0, x ≥ y, otherwise, x < y. It should be noted that

the input is held by S0 and only S0 has the access to the

output. When describing SCMP in Fig. 4, we omit the input

and output for conciseness. As shown in Fig. 4, the proposed

SCMP has offline phase and online phase. In the offline phase,

S0 constructs a tupleS0
, which is consist of r1, r2, Jr1K, Jr2K,

J−r1 · r2K, r3, r4, Jr3 + r4K, Jr4K, J0K and J1K. Meanwhile,

S1 constructs a tupleS1
, which is consist of J0K and J1K. The

online phase of SCMP consists of three steps as detailed bellow.



6

Secure Comparison (SCMP): SCMP(JxK, JyK)→ JµK

Server 0 (S0) Server 1 (S1)

// Offline Phase

S0 constructs a tupleS0
, which is consist of r1, r2, Jr1K, Jr2K, J−r1 · r2K, r3, r4,

Jr3 + r4K, Jr4K, J0K and J1K.

S1 constructs a tupleS1
, which is consist of J0K and J1K.

// Online Phase

1 : S0 inputs JxK and JyK, where x, y ∈ [−2l, 2l];

S0 extracts r3, r4, Jr3 + r4K and Jr4K from tupleS0
, then labels them as r1, r2, Jr1 + r2K

and Jr2K, respectively;

S0 refreshes Jr3 + r4K and Jr4K in tupleS0
, using the method mentioned in V-B2;

S0 randomly chooses a number π, where π ← {0, 1};

If π = 0, S0 calculates D = (JxK · JyKN−1)
r1
· Jr1 + r2K, otherwise, S0 calculates D =

(JyK · JxKN−1)
r1
· Jr2K;

S0 computes D1 ← PDec(sk1, D).

D,D1

2 : S1 computes D2←PDec(sk2, D) and d←TDec(D1, D2);

S1 extracts J0K and J1K from tupleS1
, then refreshes J0K and J1K in tupleS1

, using the

method mentioned in V-B2;

If d > N

2
, S1 sets Jµ0K = J0K, otherwise, S1 sets Jµ0K = J1K.

Jµ0K

3 : If π = 0, S0 sets JµK = Jµ0K;

Conversely, if π = 1, S0 extracts J1K from tupleS0
, and then refreshes J1K in tupleS0

,

using the method mentioned in V-B2, finally S0 sets JµK = J1K · Jµ0K
N−1

.

Fig. 4. Secure Comparison (SCMP)

Secure Sign Bit-Acquisition Protocol (SSBA): SSBA(JxK)→ (JsxK, Jx∗K)

Server 0 (S0) Server 1 (S1)

// Offline Phase

S0 constructs a tupleS0
, which is consist of r1, r2, Jr1K, Jr2K, J−r1 · r2K, r3, r4, Jr3 + r4K, Jr4K, J0K and J1K.

// Online Phase

1 : S0 inputs JxK, where x ∈ [−2l, 2l];

S0 extracts J0K and J1K from tupleS0
;

S0 refreshes J0K and J1K in tupleS0
, using the method mentioned in V-B2.

2 : S0 and S1 collaboratively perform SCMP(JxK, J0K);

Interaction for SCMP

S1 and S0 collaboratively perform SCMP(JxK, J0K);

Interaction for SCMP

S0 gets JsxK← SCMP(JxK, J0K).

3 : S0 computes J1− 2sxK = J1K · JsxKN−2
.

4 : S0 and S1 collaboratively perform SMUL(J1− 2sxK, JxK);

Interaction for SMUL

S1 and S0 collaboratively perform SMUL(J1−2sxK, JxK);

Interaction for SMUL

S0 gets Jx∗K← SMUL(J1− 2sxK, JxK).

Fig. 5. Secure Sign Bit-Acquisition Protocol (SSBA)

(1) S0 extracts r3, r4, Jr3 + r4K and Jr4K from tupleS0
, then

labels them as r1, r2, Jr1 + r2K and Jr2K, respectively.

S0 then refreshes Jr3 + r4K and Jr4K in tupleS0
. Next, S0

randomly selects a number π from the set {0, 1}. If π = 0,

S0 calculates D = (JxK · JyK
N−1

)
r1
·Jr1+r2K. If π = 1, S0

calculates D = (JyK · JxKN−1)
r1
· Jr2K. Subsequently, S0

performs a partial decryption of D using PDec to obtain

D1, and sends D and D1 to S1.

(2) Upon receiving D and D1, S1 performs a partial decryp-

tion of D using PDec to obtain D2. Subsequently, S1

obtains d by calling TDec with D1 and D2. Next, S1

extracts J0K and J1K from tupleS1
and refreshes them in

tupleS1
. If π = 0, d = r1 · (x− y)+ (r1 + r2), otherwise,

d = r1 · (y − x) + r2. If d > N
2 , S1 sets Jµ0K = J0K.

Conversely, if d ≤ N
2 , S1 sets Jµ0K = J1K. Finally, S1

sends Jµ0K to S0.

(3) If π = 0, S0 sets JµK = Jµ0K. Conversely, if π = 1, S0

extracts J1K from tupleS0
, and refreshes it in tupleS0

, then

sets JµK = J1K · Jµ0K
N−1

.

E. Secure Sign Bit-Acquisition Protocol (SSBA)

In this subsection, we re-design the SSBA in SOCI by

leveraging the proposed FastPaiTD and the offline and online

computation mechanism.

Given JxK as input, where x ∈ [−2l, 2l], S0 and S1

collaboratively compute (JsxK, Jx∗K)← SSBA(JxK) as output.

sx is the sign bit of x, and x∗ represents the magnitude of x. If

x ≥ 0, sx = 0 and x∗ = x, otherwise, sx = 1 and x∗ = −x.

It should be noted that the input is held by S0 and only S0

has the access to the output. When describing SSBA in Fig.

5, we omit the input and output for conciseness. As shown in

Fig. 5, SSBA consists of offline phase and online phase. In the

offline phase, S0 constructs a tupleS0
, which is consist of r1,

r2, Jr1K, Jr2K, J−r1 · r2K, r3, r4, Jr3 + r4K, Jr4K, J0K and J1K.

The online phase of SSBA consists of four steps as detailed

below.

(1) S0 extracts J0K and J1K from tupleS0
and refreshes them

in tupleS0
.

(2) S0 and S1 collaboratively perform JsxK ←



7

Secure Division Protocol (SDIV): SDIV(JxK, JyK)→ (JqK, JeK)

Server 0 (S0) Server 1 (S1)

// Offline Phase

S0 constructs a tupleS0
, which is consist of r1, r2, Jr1K, Jr2K, J−r1 · r2K, r3, r4, Jr3 + r4K, Jr4K, J0K and J1K.

// Online Phase

1 : S0 inputs JxK and JyK, where x ∈ [0, 2l] and y ∈ (0, 2l];

S0 extracts J0K and J1K from tupleS0
;

S0 refreshes J0K and J1K in tupleS0
, using the method mentioned in V-B2; S0 sets q = J0K.

for i in {l, l − 1, . . . , 1, 0} do

2 : S0 computes JcK = JyK2
i

.

3 : S0 and S1 collaboratively perform SCMP(JxK, JcK);

Interaction for SCMP

S1 and S0 collaboratively perform SCMP(JxK, JcK);

Interaction for SCMP

S0 gets JµK← SCMP(JxK, JcK).

4 : S0 computes Jµ′K = J1K · JµKN−1
and JqK = JqK · Jµ′K

2
i

.

S0 and S1 collaboratively perform SMUL(Jµ′K, JcK);

Interaction for SMUL

S1 and S0 collaboratively perform SMUL(Jµ′K, JcK);

Interaction for SMUL

S0 obtains JmK← SMUL(Jµ′K, JcK).

5 : S0 computes JxK = JxK · JmKN−1
.

endfor

6 : S0 gets JeK = JxK.

Fig. 6. Secure Division Protocol (SDIV)

SCMP(JxK, J0K). If x ≥ 0, sx = 0, otherwise, sx = 1.

(3) S0 computes J1− 2sxK = J1K · JsxK
N−2

.

(4) Finally, S0 and S1 collaboratively perform Jx∗K ←
SMUL(J1 − 2sxK, JxK). Obviously, Jx∗K = (1 − 2sx) · x.

Furthermore, if x ≥ 0, x∗ = x, otherwise, x∗ = −x.

F. Secure Division Protocol (SDIV)

In this subsection, we re-design the SDIV in SOCI by

leveraging the proposed FastPaiTD and the offline and online

computation mechanism.

Given JxK and JyK as input, where x ∈ [0, 2l] and

y ∈ (0, 2l], S0 and S1 collaboratively compute (JqK, JeK) ←
SDIV(JxK, JyK) as output. In the output of SDIV, q represents

the quotient of division and e represents the remainder of

division, such that x = q · y + e. It should be noted that the

input is held by S0 and only S0 has the access to the output.

When describing SDIV in Fig. 6, we omit the input and output

for conciseness. As shown in Fig. 6, SDIV consists of offline

phase and online phase. In the offline phase, S0 constructs a

tupleS0
, which is consist of r1, r2, Jr1K, Jr2K, J−r1 · r2K, r3,

r4, Jr3 + r4K, Jr4K, J0K and J1K. The online phase of SDIV

consists of seven steps as detailed below.

(1) S0 extracts J0K and J1K from tupleS0
and refreshes them

in tupleS0
. Subsequently, S0 sets JqK = J0K and i = l.

(2) S0 obtains J2i · yK by computing JcK = JyK
2i

, where i ∈
{l, l− 1, ..., 1, 0}.

(3) S0 and S1 collaboratively perform JµK← SCMP(JxK, JcK).
If x ≥ 2i · y, µ = 0, otherwise, µ = 1.

(4) S0 computes Jµ′K = J1K ·JµK
N−1

and JqK = JqK ·Jµ′K
2i

. It

is important to note that µ′ = 1− µ. Besides, q = q + 2i

if µ′ = 1, otherwise, q remains unchanged.

(5) S0 and S1 collaboratively perform JmK ←
SMUL(Jµ′K, JcK) , where m = µ′ · 2i · y. If µ′ = 1
(i.e., x ≥ 2i · y), m = 2i · y, otherwise, m = 0.

(6) S0 obtains JxK = Jx − mK by computing JxK = JxK ·
JmK

N−1
. If m = 2i · y (i.e., x ≥ 2i · y), x = x − 2i · y,

otherwise, x remains unchanged. Next, sets i = i − 1.

Steps (2)-(6) should be repeated until i < 0.

(7) S0 obtain the remainder JeK by setting JeK = JxK.

VI. CORRECTNESS AND SECURITY ANALYSIS

A. Correctness Analysis

In this subsection, we provide the rigorous correctness

proofs for the proposed FastPaiTD and the secure outsourced

computation protocols in SOCI+.

Theorem 1. In FastPaiTD, given two ciphertexts M1 ←
PDec(sk1, c) and M2 ← PDec(sk2, c), TDec(M1,M2) can

correctly recover the plaintext m.

Proof. Before proceeding with the proof, we introduce two

important equations. The work [10] has proven that their

FastPai satisfies the following equation.

c2α mod N2 = (1 +N)
2αm

. (8)

In Eq. (8), c is a ciphertext, m is the corresponding plaintext,

and α is the private key. Besides, it is widely recognized that

the following equation holds for any integer m.

(1 +N)
m

mod N2 = (1 +m ·N) mod N2. (9)

Now we demonstrate the correctness of the proposed Fast-

PaiTD. To simplify the proof process, we adopt the notations

L(x) for x−1
N and (2α)

−1
for (2α)

−1
mod N . The proof

process is as follow.

By substituting M1 and M2 with csk1 mod N2 and csk2

mod N2, respectively, we can easily calculate the following

equation.

TDec(M1,M2) = L(c(2α)
−1·(2α) · cη·2α·N mod N2) mod N.

(10)



8

Next, we can obtain the following equation by utilizing Eqs.

(8) and (9).

TDec(M1,M2) = L((1 +N)
2α·(2α)−1m

mod N2) mod N.
(11)

Afterward, we can adopt Eq.(9) and expand L(x) to get the

following equation.

TDec(M1,M2) =
(1 +mN)− 1

N
mod N. (12)

Finally, we can conclude that TDec(M1,M2) = m
mod N .

Theorem 2. Given JxK and JyK as input, where x, y ∈
[−2l, 2l], the proposed SMUL protocol correctly outputs Jx·yK.

Proof. We assume that the operations in offline phase have

been executed correctly. Therefore, our focus now lies on the

correctness of online phase.

In step 1, S0 computes X = JxK · Jr1K = Jx + r1K and

Y = JyK · Jr2K = Jy + r2K. Subsequently, S0 computes C =
XL · Y = JL · (x+ r1) + y + r2K and C1 ← PDec(sk1, C).

In step 2, upon receiving C and C1, S1 performs C2 ←
PDec(sk2, C). Subsequently, S1 performs L · (x+ r1) + y +
r2 ← TDec(C1, C2), which yields x+ r1 and y + r2.

In step 3, upon receiving J(x + r1) · (y + r2)K from S1,

S0 computes J−r2xK = JxK−r2 and J−r1yK = JyK−r1 .

Subsequently, S0 computes J(x+r1)·(y+r2)K·J−r2xK·J−r1yK·
J−r1r2K = J(x+r1)·(y+r2)−r2x−r1y−r1r2K = Jx·yK.

Theorem 3. Given JxK and JyK as input, where x, y ∈
[−2l, 2l], the proposed SCMP protocol correctly outputs JµK.

If µ = 0, x ≥ y, otherwise, x < y.

Proof. According to Fig. 4, there are two possible values for D

that can be obtained, i.e., r1 ·(x−y+1)+r2 and r1 ·(y−x)+r2.

In Fig. 4, r1 and r2 are derived from r3 and r4 in tupleS0
,

hence we have r1 ← {0, 1}
σ
\{0}, r2 ≤

N
2 and r1 + r2 > N

2 .

Since r1 ← {0, 1}
σ
\{0}, r2 ≤

N
2 , r1 + r2 > N

2 and x, y ∈
[−2l, 2l], we can easily obtain 0 < r1 · (x− y + 1) + r2 < N
and 0 < r1 · (y − x) + r2 < N .

When 0 < r1 · (x − y + 1) + r2 ≤
N
2 , it implies that

x − y + 1 ≤ 0. Consequently, we have x < y, and SCMP

outputs J1K. When N
2 < r1 · (x− y+ 1)+ r2 ≤ N , it implies

that x − y + 1 ≥ 1. In this case, we have x ≥ y, and SCMP

outputs J0K.

When 0 < r1 · (y−x) + r2 ≤
N
2 , it implies that y− x ≤ 0.

In this case, we have x ≥ y, and SCMP outputs J0K. When
N
2 < r1 · (y − x) + r2 < N , it implies that y − x ≥ 1. In this

case, we have x < y, and SCMP outputs J1K.

Therefore, the proposed SCMP correctly compares x and

y.

Theorem 4. Given JxK as input, where x ∈ [−2l, 2l], the

proposed SSBA protocol correctly outputs JsxK and Jx∗K. sx
is the sign bit of x, and x∗ represents the magnitude of x. If

x ≥ 0, sx = 0 and x∗ = x, otherwise, sx = 1 and x∗ = −x.

Proof. Given JxK and J0K as input, where x ∈ [−2l, 2l],
according to Theorem 3, we can easily observe that the

SCMP(JxK, J0K) outputs J1K when x ∈ [−2l, 0) and outputs J0K

when x ∈ [0, 2l]. Therefore, if x ∈ [0, 2l], sx = 0, otherwise,

sx = 1.

According to Theorem 2, we can correctly obtain J(1− 2 ·
sx)·xK← SMUL(J1−2·sxK, JxK). When x ≥ 0, (1−2·sx)·x =
x as (1 − 2 · sx) = 1. When x < 0, (1 − 2 · sx) · x = −x as

(1− 2 · sx) = −1.

Therefore, the proposed SSBA correctly outputs JsxK and

Jx∗K.

Theorem 5. Given JxK and JyK as input, where x ∈ [0, 2l] and

y ∈ (0, 2l], the proposed SDIV protocol correctly outputs JqK
and JeK. q is the quotient of division, and e is the remainder

of division, i.e., x = q · y + e.

Proof. It is widely recognized that any quotient q satisfying

q ∈ [0, 2l] and 0 ≤ x − q · y < y can be represented as
∑i=l

0 qi · 2
i, where qi ∈ {0, 1}. As shown in the loop of Fig.

6, for any i ∈ {l, l − 1, ..., 1, 0}, if x ≥ 2i · y, then we have

µ′ = 1, qi = 1 · 2i and x = x − 1 · 2i · y, otherwise, µ′ = 0,

qi = 0 ·2i and x = x−0 ·2i ·y. We observe that
∑i=l

0 qi · 2
i =

∑i=l
0 µ′ · 2i, where µ′ ∈ {0, 1}. Therefore, any q ∈ [0, 2l]

can be represented by
∑i=l

0 µ′ · 2i. Since
∑i=l

0 qi · 2
i = q,

e = x−y ·
∑i=l

0 qi ·2
i. Therefore, the proposed SDIV protocol

correctly outputs JqK and JeK.

B. Security Analysis

Liu et al. [9] has proven the semantic security of their

Paillier cryptosystem with partial decryption (PCPD) in POCF.

In this paper, we adopt the same method used in POCF [9]

to prove the security of FastPaiTD. In SOCI+, we assume that

S0 is not colluding with S1. Following the approach of POCF

[9], we define the semantic security model for FastPaiTD.

Definition 1. Let ζ = (NGen, keygen, Enc, Dec, PDec,

TDec) be a public key cryptosystem that supports partial de-

cryption (PDec) and threshold decryption (TDec). Assuming

a polynomial adversary A, if A has negligible advantage in

the challenger-adversary game, then ζ is semantically secure.

The challenger-adversary game is defined as follows.

• The challenger obtains the public key pk and private key

sk of ζ by calling keygen. Subsequently, the challenger

splits sk into sk1 and sk2, and sends pk and one of sk1
and sk2 to A.

• A randomly selects two plaintexts m0 and m1 with equal

bit-length, and sends them to the challenger through a

secure communication channel.

• The challenger flips a coin to randomly choose a bit b ∈
{0, 1}, then adopts Enc to encrypt mb into ciphertext c
and sends c to A.

• The A outputs a bit b′. If b′ = b, A succeeds, otherwise,

A fails.

The advantage of A in this game is defined as Advξ(κ) =
∣

∣Pr[b = b′]− 1
2

∣

∣, where κ is a secure parameter.

We now formally adopt the method presented in [9] to prove

the semantic security of our novel (2, 2)-threshold Paillier

cryptosystem (FastPaiTD).

Theorem 6. Assuming FastPai is semantically secure, the

FastPaiTD in V-A is also semantically secure.



9

Proof. The semantic security of FastPai has been proven in

[10]. As same as [9], we assume a probabilistic polynomial-

time adversary A who breaks the semantic security of Fast-

PaiTD with an advantage at most ǫ. We also construct a

simulator S with the same time complexity as A. Then, S,

A and the challenger perform the following operations.

• The challenger obtains the public key pk = (N, h) of

FastPai.

• S randomly chooses sk1, where sk1 ∈ [0, N(N − 1)].
• A receives pk and sk1 from S, then randomly chooses

two plaintexts m0 and m1 with same bit-length, and sends

m0 and m1 to S.

• After receiving m0 and m1 from A, S sends them to the

challenger of FastPai.

• The challenger randomly chooses a bit b, and encrypts

mb into a ciphertext c by calling Enc. Subsequently, the

challenger sends c to S.

• S sends c to A.

• A finally outputs a bit b′ as the guess of S and sends it

to S.

From the view of A, excepting sk1, the distributions of

pk and challenger’s ciphertexts are as same as in the real

semantic security experiment. According to V-A, the real

sk1 ∈ [0, 2αN ]. Therefore, given X ∈ [0, 2αN ] and Y ∈
[0, N(N − 1)], we can calculate that X and Y have at most
2α

N−1 statistical distance. Hence, S breaks the semantic security

of FastPaiTD with advantage at least ǫ − 2α
N−1 .

The offline and online mechanism consists of two parts.

The first part involves computing the encryption of random

numbers and some constants. The second part involves con-

structing a pre-computation table to speed up Enc. We now

prove that the offline and online mechanism is secure, meaning

that it does not reveal any information about the plaintext.

Theorem 7. The offline and online mechanism in SOCI+ does

not leak any information when performing secure outsourced

computations.

Proof. The security of the first part is proven as follow. Each

time S0 and S1 extract a ciphertext JmK from tupleS0
and

tupleS1
, respectively, they immediately adopt the J0K in their

tuple to compute Jm′K = JmK ·J0K. Subsequently, they replace

JmK in their tuple with Jm′K. Although Jm′K and JmK are the

encrypted values of the same number, Jm′K is not identical

as JmK. Therefore, after refreshing a ciphertext, it appears as

if S0 and S1 encrypt a message each time. Consequently, the

first part of the offline and online mechanism does not disclose

any plaintext information.

In the second part, the pre-computation table is constructed

from the public key, allowing anyone to create it. Its sole

function is to accelerate the Enc. Therefore, the second part

of the offline and online mechanism does not disclose any

plaintext information.

SOCI adopts the simulation paradigm [30], also known as

the real/ideal model, to prove the security of its SMUL protocol.

Therefore, we employ the same method to prove the security

of SMUL in SOCI+. Similar to SOCI, SOCI+ assumes that S0

and S1 are semi-honest and non-colluding, which means that

S0 and S1 may act as adversaries. We use AS0
and AS1

to

denote S0 and S1 as polynomial-time adversaries, respectively.

We now adopt the same method in SOCI to prove the security

of SMUL in SOCI+.

Theorem 8. Given ciphertexts JxK and JyK, where x, y ∈
[−2l, 2l], in the case of semi-honest attackers AS0

and AS1
,

the proposed SMUL protocol in SOCI+ is able to compute

Jx · yK securely.

Proof. To simulate S0 and S1, we construct independent

simulators SS0
and SS1

, respectively.

SS0
simulates the view of AS0

as follows.

• SS0
takes JxK, JyK, J(x + r1) · (y + r2)K as input, and

randomly chooses x̃ and ỹ, where x̃, ỹ ∈ [−2l, 2l].
Besides, SS0

also randomly chooses r̃1, r̃2, and ˜sk1,

where r̃1, r̃2, ˜sk1 ← {0, 1}
σ

. Subsequently, SS0
ran-

domly chooses L̃ with (σ+2) bits.

• SS0
obtains Jx̃K, JỹK, X̃ , Ỹ , J−r̃2x̃K, J−r̃1ỹK and J−r̃1r̃2K

by calling Enc to encrypt x̃, ỹ, x̃+r̃1, ỹ+r̃2, −r̃2x̃, −r̃1ỹ
and −r̃1r̃2, respectively. Subsequently, SS0

computes

C̃ = X̃ L̃ · Ỹ , and gets C̃1 ← PDec( ˜sk1, C̃).
• SS0

computes Jx̃ · ỹK = J(x + r1) · (y + r2)K · J−r̃2x̃K ·
J−r̃1ỹK · J−r̃1r̃2K.

• Finally, SS0
outputs the simulation of AS0

’s entire view,

consisting of Jx̃K, JỹK, X̃ , Ỹ , C̃, C̃1, J−r̃2x̃K, J−r̃1ỹK,

J−r̃1r̃2K and Jx̃ · ỹK.

We conclude that SS0
’s view in the ideal world and AS0

’s

view in the real word are computationally indistinguishable

since the Paillier cryptosystem in [10] is semantically secure.

SS1
simulates the view of AS1

as follows.

• SS1
takes Jx+ r1K

L
· Jy + r2K, (Jx + r1K

L
· Jy + r2K)

sk1

as input, and randomly chooses x̃ and ỹ, where x̃, ỹ ∈
[−2l, 2l]. Subsequently, SS1

also randomly chooses r̃1,

r̃2, ˜sk1 and ˜sk2, where r̃1, r̃2, ˜sk1, ˜sk2 ← {0, 1}
σ

. Next,

SS1
randomly chooses L̃ with (σ+2) bits.

• SS1
obtains X̃ , Ỹ and J(x̃+ r̃1)·(ỹ+ r̃2)K by calling Enc

to encrypt x̃+ r̃1, ỹ+ r̃2 and (x̃+ r̃1) ·(ỹ+ r̃2). Moreover,

SS1
computes C̃ = X̃ L̃ · Ỹ , C̃1 ← PDec( ˜sk1, C̃) and

C̃2 ← PDec( ˜sk2, C̃).
• Finally, SS1

outputs the simulation of AS1
’s entire view,

consisting of C̃, C̃1, C̃2, x̃+ r̃1, ỹ+ r̃2, (x̃+ r̃1) · (ỹ+ r̃2)
and J(x̃+ r̃1) · (ỹ + r̃2)K.

We conclude that SS1
’s view in the ideal world and AS1

’s

view in the real word are computationally indistinguishable,

since the Paillier cryptosystem is semantically secure and

SOCI [1] has proven that the one-time key encryption scheme

x+ r is able to securely hide x.

Theorem 9. Given ciphertexts JxK and JyK, where x, y ∈
[−2l, 2l], in the case of semi-honest attackers AS0

and AS1
,

the proposed SCMP protocol in SOCI+ is able to compare x
and y securely.

Proof. The proposed SCMP in SOCI+ roots in the SCMP in

SOCI [1]. Since SOCI [1] has proven the security of its SCMP

and our building blocks (i.e., FastPaiTD and the offline and



10

(a) Comparison of Enc in Different Schemes (b) Comparison of Dec in Different Schemes (c) Comparison of PDec (using sk2) in Different
Schemes

Fig. 7. Comparison of Different Threshold Paillier Cryptosystems with a Varying Bit-Length of N

online mechanism) are secure, the proposed SCMP protocol is

able to compare x and y in a secure manner.

Theorem 10. Given ciphertext JxK, where x ∈ [−2l, 2l], in

the case of semi-honest attackers AS0
and AS1

, the proposed

SSBA protocol in SOCI+ is able to obtain JsxK and Jx∗K
securely.

Proof. The proposed SSBA is constructed by calling SCMP

and SMUL. Since these protocols and the building blocks (i.e.,

FastPaiTD and the offline and online mechanism) are secure,

the proposed SSBA protocol is able to obtain JsxK and Jx∗K
in a secure manner.

Theorem 11. Given ciphertexts JxK and JyK, where x ∈ [0, 2l]
and y ∈ (0, 2l], in the case of semi-honest attackers AS0

and

AS1
, the proposed SDIV protocol in SOCI+ is able to obtain

JqK and JeK securely.

Proof. The proposed SDIV is constructed by calling SCMP

and SMUL. Since these protocols and the building blocks (i.e.,

FastPaiTD and the offline and online mechanism) are secure,

the proposed SDIV protocol is able to obtain JqK and JeK in

a secure manner.

VII. EXPERIMENTAL EVALUATION

SOCI+ has protocols similar to the privacy preserving in-

teger calculation protocols in POCF [9]. In the rest of this

paper, for simplicity, we denote the privacy preserving integer

calculation protocols in POCF as POCF. To evaluate the

computation and communication costs, we implement SOCI+

(which is open source1), SOCI, and POCF using gmpy2-

2.1.0a1 in Python 3.6.8 on two identical servers (CPU: AMD

EPYC 7402 24-Core Processor; Memory: 128 GB). In our

experiments, we set l = 32 and σ = 128. Specially, we set

l = 10 when evaluating the SDIV protocol. When constructing

a pre-computation table to speed up Enc in SOCI+, we set

b = 5, and the parameter len is equal to the bit-length of

sk. It should be noted that POCF fails to support SSBA and

SDIV. Therefore, we adopt the system architecture of POCF to

implement SSBA and SDIV proposed by [31], and regard them

as components of POCF. We repeat all experiments for 500

times with a single thread and take the average as experimental

1https://github.com/W-Q-Deng/SOCI-plus

results. In the rest of this paper, we adopt |N | to denote the

bit length of N . When presenting the experimental results in

the form of table, we highlight all the best results in bold.

A. Performance of Different Threshold Paillier Cryptosystem

In this subsection, we evaluate the performance of different

threshold Paillier cryptosystems, which form the foundation

of SOCI+, SOCI and POCF.

In our experiments, the size of private key in SOCI+ is 448

bits when |N | = 2048, thus the size of private key in SOCI+

is about 0.055 KB. A smaller private key in SOCI+ leads to

faster PDec. Figs. 7(a) and 7(b) compare the computation

costs of Enc and Dec with different bit-length of N among

SOCI+, SOCI and POCF. The results show that SOCI+ has

fastest encryption and decryption.

In SOCI+ and SOCI, we can compute M1 ← PDec(c, sk1)
and M2 ← PDec(c, sk2) to partially decrypt a ciphertext c,

respectively. After obtaining M1 and M2, the corresponding

plaintext m can be obtained by computing TDec(M1,M2). In

[9], POCF has the operations of PDec1 and PDec2, where

PDec1 is equivalent to PDec(c, sk1), and PDec2 integrates

PDec(c, sk2) and TDec(M1,M2). For convenience, when de-

scribing POCF, we adopt PDec and TDec instead of PDec1

and PDec2. For SOCI+, SOCI, and POCF, sk1 is set to be the

same number with σ bits. For SOCI and POCF, we set sk2 =
λ · (λ−1 mod N) − sk1, where λ is the private key of SOCI

and POCF, and we set sk2 = ((2α)−1 mod N) · (2α) − sk1
for SOCI+. Table I presents the computation costs comparison

of PDec and TDec among SOCI+, SOCI and POCF. The

computation costs of PDec (using sk1) and TDec are almost

the same in all schemes, but SOCI+ achives best performance

in PDec (using sk2). Fig. 7(c) presents an intuitive comparison

of PDec (using sk2), demonstrating that SOCI+ outperforms

the other two schemes and improves the computation costs by

approximately 1.6 times compared to SOCI when |N | = 2048.

B. Evaluations for Secure Outsourced Computation Protocols

In this subsection, we compare the computation costs,

communication costs, and running time of SMUL, SCMP, SSBA

and SDIV to evaluate their performance. We define the running

time as the sum of computation time and communication time,

and assuming a bandwidth with 100 Mbps.



11

TABLE I
COMPARISON OF BASICALLY CRYPTOGRAPHIC OPERATIONS AND STORAGE COSTS ASSUMING THE BIT-LENGTH OF N IS 2048 (112-BIT SECURITY)

Scheme Keygen Enc Dec PDec (sk1) 1 PDec (sk2) 1 TDec Addition Scalar-mul2 Subtraction PK3 SK3 Ciphertext3

SOCI+ 148.036 ms 0.522 ms 2.340 ms 0.704 ms 12.412 ms 0.007 ms 0.006 ms 0.066 ms 0.058 ms 0.500 KB 0.055 KB 0.500 KB
SOCI 1036.621 ms 10.269 ms 10.207 ms 0.705 ms 20.168 ms 0.007 ms 0.006 ms 0.066 ms 0.058 ms 0.250 KB 0.250 KB 0.500 KB
POCF 1043.951 ms 10.273 ms 10.246 ms 0.706 ms 20.264 ms 0.007 ms 0.006 ms 0.066 ms 0.058 ms 0.250 KB 0.250 KB 0.500 KB

1 PDec (sk1) and PDec (sk2) stand for performing PDec with sk1 and sk2, respectively.
2 Scalar-mul stands for scalar-multiplication.
3 PK, SK and Ciphertext stand for size of public key, size of private key and size of ciphertext, respectively.

TABLE II
COMPARISON OF COMPUTATION COSTS AND COMMUNICATION COSTS ASSUMING 112-BIT SECURITY

Algorithm
Computation Costs Communication Costs Running Time

SOCI+ SOCI POCF SOCI+ SOCI POCF SOCI+ SOCI POCF

SMUL 15.698 ms 84.098 ms 92.104 ms 1.498 KB 2.498 KB 2.498 KB 15.821 ms 84.303 ms 92.309 ms
SCMP 19.037 ms 52.342 ms 53.015 ms 1.498 KB 1.499 KB 1.499 KB 19.160 ms 52.465 ms 53.138 ms
SSBA 34.773 ms 157.054 ms 155.460 ms 2.997 KB 3.996 KB 3.997 KB 35.019 ms 157.381 ms 155.787 ms
SDIV 382.624 ms 1524.189 ms 8524.647 ms 32.965 KB 43.959 KB 244.314 KB 385.324 ms 1527.790 ms 8544.661 ms

TABLE III
THEORETICAL COMPARISON OF COMMUNICATION COSTS

Scheme SMUL SCMP SSBA SDIV

SOCI+ 3|N2| bits 3|N2| bits 6|N2| bits 6(l + 1)|N2| bits

SOCI 5|N2| bits 3|N2| bits 8|N2| bits 8(l + 1)|N2| bits

POCF 5|N2| bits 3|N2| bits 8|N2| bits (3l2 + 13l + 59)|N2| bits

Table II presents the comparison of computation costs,

communication costs, and running time among SOCI+, SOCI

and POCF. The experimental results demonstrate that SOCI+

outperforms the other two schemes. Specifically, experimental

results indicate that SOCI+ improves the computation costs

by 2.7 − 5.4 times compared to SOCI. Figs. 8(a), 8(b), 8(c)

and 8(d) present the computation costs comparison of SMUL,

SCMP, SSBA and SDIV, respectively. The results indicate

that SOCI+ outperforms both SOCI and POCF in terms of

computation costs, and the advantage of SOCI+ increase with

|N |.

Table II demonstrates that SOCI+ generally reduces com-

munication costs by approximately 25% − 40% compared

to SOCI, except for SCMP. The experimental results for

communication costs of SMUL, SCMP, SSBA and SDIV are

presented at Figs. 9(a), 9(b), 9(c) and 9(d), respectively.

While the three shcemes has almost the same communication

costs for SCMP, SOCI+ exhibits significant advantage in other

protocols when N is large. To better understand the differences

in communication costs among the three schemes, we present a

theoretical analysis of communication costs for SOCI+, SOCI

and POCF in Table III. The experimental results align with

theoretical analysis of communication costs.

The running time of the proposed protocols is affected by

computation power and bandwidth. As previously mentioned,

the running time is the sum of computation time and com-

munication time, and we assume the bandwidth is 100 Mbps.

The experimental results for running time are presented in the

right-hand side of Table II. The results indicate that SOCI+

improves 2.7− 5.3 times in terms of running time compared

to SOCI. Figs. 10(a), 10(b), 10(c) and 10(d) present the

experimental results for running time with a varying |N |. The

results show that SOCI+ outperforms both SOCI and POCF in

terms of running time with different |N |.

VIII. CONCLUSION

In this paper, we proposed SOCI+, an enhanced toolkit

for secure outsourced computation on integers. Specifically,

we designed a novel (2, 2)-threshold Paillier cryptosystem

(FastPaiTD) falling in the twin-server architecture based on

the scheme of Ma et al. [10] (FastPai). Additionally, we

proposed an offline and online mechanism for SOCI+. Our

FastPaiTD and offline and online mechanism significantly

improve the performance of secure outsourced computation

protocols. SOCI+ strictly outperforms the state-of-the-art in

terms of computation costs and communication costs and is

correct and secure. In the future work, we will upgrade SOCI+

to support floating point arithmetic and more types of secure

outsourced computations.

REFERENCES

[1] B. Zhao, J. Yuan, X. Liu, Y. Wu, H. H. Pang, and R. H. Deng,
“Soci: A toolkit for secure outsourced computation on integers,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 3637–
3648, 2022.

[2] Z. Shan, K. Ren, M. Blanton, and C. Wang, “Practical secure computa-
tion outsourcing: A survey,” ACM Computing Surveys (CSUR), vol. 51,
no. 2, pp. 1–40, 2018.

[3] P. Muncaster. (2019) Data leak exposes 267
million facebook users. [Online]. Available:
https://www.infosecurity-magazine.com/news/data-leak-exposes-267-million/

[4] 2023. [Online]. Available: https://privacyrights.org/data-breaches

[5] P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen, “Privacy-
preserving outsourced classification in cloud computing,” Cluster Com-
puting, vol. 21, pp. 277–286, 2018.

[6] C. Wang, A. Wang, J. Xu, Q. Wang, and F. Zhou, “Outsourced privacy-
preserving decision tree classification service over encrypted data,”
Journal of Information Security and Applications, vol. 53, p. 102517,
2020.

https://www.infosecurity-magazine.com/news/data-leak-exposes-267-million/
https://privacyrights.org/data-breaches


12

(a) Computation Costs of SMUL in
Different Schemes

(b) Computation Costs of SCMP in
Different Schemes

(c) Computation Costs of SSBA in
Different Schemes

(d) Computation Costs of SDIV in
Different Schemes

Fig. 8. Computation Costs Comparison of Different Schemes with a Varying Bit-Length of N

(a) Communication Costs of SMUL in
Different Schemes

(b) Communication Costs of SCMP in
Different Schemes

(c) Communication Costs of SSBA in
Different Schemes

(d) Communication Costs of SDIV in
Different Schemes

Fig. 9. Communication Costs Comparison of Different Schemes with a Varying Bit-Length of N

(a) Running Time of SMUL in Differ-
ent Schemes

(b) Running Time of SCMP in Differ-
ent Schemes

(c) Running Time of SSBA in Differ-
ent Schemes

(d) Running Time of SDIV in Different
Schemes

Fig. 10. Running Time Comparison of Different Schemes with a Varying Bit-Length of N , assuming the Bandwidth is 100 Mbps

[7] B. Zhao, W.-N. Chen, F.-F. Wei, X. Liu, Q. Pei, and J. Zhang, “Evolution
as a service: A privacy-preserving genetic algorithm for combinatorial
optimization,” arXiv preprint arXiv:2205.13948, 2022.

[8] B. Zhao, Y. Li, X. Liu, X. Li, H. H. Pang, and R. H. Deng, “Identifiable,
but not visible: A privacy-preserving person reidentification scheme,”
IEEE Transactions on Reliability, 2023.

[9] X. Liu, R. H. Deng, W. Ding, R. Lu, and B. Qin, “Privacy-preserving
outsourced calculation on floating point numbers,” IEEE Transactions

on Information Forensics and Security, vol. 11, no. 11, pp. 2513–2527,
2016.

[10] H. Ma, S. Han, and H. Lei, “Optimized paillier’s cryptosystem with fast
encryption and decryption,” in Annual Computer Security Applications

Conference, 2021, pp. 106–118.

[11] Y. Rahulamathavan, R. C.-W. Phan, S. Veluru, K. Cumanan, and
M. Rajarajan, “Privacy-preserving multi-class support vector machine
for outsourcing the data classification in cloud,” IEEE Transactions on

Dependable and Secure Computing, vol. 11, no. 5, pp. 467–479, 2013.

[12] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology—EUROCRYPT’99: Inter-

national Conference on the Theory and Application of Cryptographic

Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18.
Springer, 1999, pp. 223–238.

[13] X. D. Zhu, H. Li, and F. H. Li, “Privacy-preserving logistic regression
outsourcing in cloud computing,” International Journal of Grid and
Utility Computing, vol. 4, no. 2-3, pp. 144–150, 2013.

[14] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Generating private
recommendations efficiently using homomorphic encryption and data
packing,” IEEE transactions on information forensics and security,

vol. 7, no. 3, pp. 1053–1066, 2012.

[15] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest
neighbor query over encrypted data in outsourced environments,” in
2014 IEEE 30th International Conference on Data Engineering. IEEE,
2014, pp. 664–675.

[16] H. Chun, Y. Elmehdwi, F. Li, P. Bhattacharya, and W. Jiang, “Out-
sourceable two-party privacy-preserving biometric authentication,” in
Proceedings of the 9th ACM symposium on Information, computer and

communications security, 2014, pp. 401–412.

[17] B. K. Samanthula, W. Jiang, and E. Bertino, “Privacy-preserving
complex query evaluation over semantically secure encrypted data,”
in Computer Security-ESORICS 2014: 19th European Symposium on

Research in Computer Security, Wroclaw, Poland, September 7-11, 2014.
Proceedings, Part I 19. Springer, 2014, pp. 400–418.

[18] B. Wang, M. Li, S. S. Chow, and H. Li, “A tale of two clouds: Computing
on data encrypted under multiple keys,” in 2014 IEEE Conference on

Communications and Network Security. IEEE, 2014, pp. 337–345.

[19] J. Feng, L. T. Yang, Q. Zhu, and K.-K. R. Choo, “Privacy-preserving
tensor decomposition over encrypted data in a federated cloud envi-
ronment,” IEEE Transactions on Dependable and Secure Computing,
vol. 17, no. 4, pp. 857–868, 2018.

[20] N. Cui, X. Yang, B. Wang, J. Li, and G. Wang, “Svknn: Efficient
secure and verifiable k-nearest neighbor query on the cloud platform,” in
2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 2020, pp. 253–264.

[21] X. Liu, K.-K. R. Choo, R. H. Deng, R. Lu, and J. Weng, “Efficient and
privacy-preserving outsourced calculation of rational numbers,” IEEE

Transactions on Dependable and Secure Computing, vol. 15, no. 1, pp.



13

27–39, 2016.
[22] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and

N. Taft, “Privacy-preserving ridge regression on hundreds of millions
of records,” in 2013 IEEE symposium on security and privacy. IEEE,
2013, pp. 334–348.

[23] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE symposium on security and

privacy (SP). IEEE, 2017, pp. 19–38.
[24] J. Chen, L. Liu, R. Chen, W. Peng, and X. Huang, “Secrec: a privacy-

preserving method for the context-aware recommendation system,” IEEE

Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp.
3168–3182, 2021.

[25] B. Xie, T. Xiang, X. Liao, and J. Wu, “Achieving privacy-preserving
online diagnosis with outsourced svm in internet of medical things en-
vironment,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, no. 6, pp. 4113–4126, 2021.

[26] C. Hu, C. Zhang, D. Lei, T. Wu, X. Liu, and L. Zhu, “Achieving privacy-
preserving and verifiable support vector machine training in the cloud,”
IEEE Transactions on Information Forensics and Security, 2023.

[27] A. Lysyanskaya and C. Peikert, “Adaptive security in the threshold
setting: From cryptosystems to signature schemes,” in Advances in

Cryptology—ASIACRYPT 2001: 7th International Conference on the

Theory and Application of Cryptology and Information Security Gold

Coast, Australia, December 9–13, 2001 Proceedings 7. Springer, 2001,
pp. 331–350.

[28] D. Pei, A. Salomaa, and C. Ding, Chinese remainder theorem: applica-

tions in computing, coding, cryptography. World Scientific, 1996.
[29] B. Zhao, Y. Li, X. Liu, H. H. Pang, and R. H. Deng, “Freed: An efficient

privacy-preserving solution for person re-identification,” in 2022 IEEE

Conference on Dependable and Secure Computing (DSC). IEEE, 2022,
pp. 1–8.

[30] S. Micali, O. Goldreich, and A. Wigderson, “How to play any mental
game,” in Proceedings of the Nineteenth ACM Symp. on Theory of

Computing, STOC. ACM New York, NY, USA, 1987, pp. 218–229.
[31] X. Liu, R. H. Deng, K.-K. R. Choo, and J. Weng, “An efficient privacy-

preserving outsourced calculation toolkit with multiple keys,” IEEE

Transactions on Information Forensics and Security, vol. 11, no. 11,
pp. 2401–2414, 2016.

Bowen Zhao (Member, IEEE) received the Ph.D.
degree in cyberspace security from South China
University of Technology, Guangzhou, China, in
2020.

He was a Research Scientist with the School
of Computing and Information Systems, Singa-
pore Management University, from 2020 to 2021.
He is currently an Associate Professor with
Guangzhou Institute of Technology, Xidian Uni-
versity, Guangzhou. His current research interests
include privacy-preserving computation and learning

and privacy-preserving crowdsensing.

Weiquan Deng received the B.S. degree in Infor-
mation Security from Guangxi University, Nanning,
China, in 2023.

He is currently working toward the M.S. degree
in Guangzhou Institute of Technology, Xidian Uni-
versity, Guangzhou. His research interest is privacy-
preserving computation.

Xiaoguo Li received his Ph.D. degree in computer
science from Chongqing University, China, in 2019.

He worked at Hong Kong Baptist University as a
Postdoctoral Research Fellow from 2019-2021. He
is currently a Research Fellow at Singapre Man-
agement University, Singapore. His current research
interests include trusted computing, secure compu-
tation, and public-key cryptography.

Ximeng Liu (Senior Member, IEEE) received the
B.Sc. degree in electronic engineering and the Ph.D.
degree in cryptography from Xidian University,
Xi’an, China, in 2010 and 2015, respectively.

He is currently a Full Professor with the College
of Computer Science and Data Science, Fuzhou
University. He was a Research Fellow with Peng
Cheng Laboratory, Shenzhen, China. He has pub-
lished more than 200 papers on the topics of cloud
security and Big Data security including papers in
IEEE TOC, IEEE TII, IEEE TDSC, IEEE TSC,

IEEE IoT Journal, etc. His research interests include cloud security, applied
cryptography and Big Data security.

Dr. Liu received “Minjiang Scholars” Distinguished Professor Award,
“Qishan Scholars” at Fuzhou University and ACM SIGSAC China Rising
Star Award (2018).

Qingqi Pei (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer science
and cryptography from Xidian University, Xi’an,
China, in 1998, 2005, and 2008, respectively.

He is currently a Professor and Member of the
State Key Laboratory of Integrated Services Net-
works, Xidian University. His research interests in-
clude digital content protection and wireless network
and security.

Dr. Pei is a Professional Member of the Association for Computing
Machinery and a Senior Member of the Chinese Institute of Electronics and
the China Computer Federation.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.i

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may ch

ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2020 16

on top of encrypted data. In 16, pages 1353–1364. ACM
Press, 2016.

Grubbs, Thomas Ristenpart, and Vitaly Shmatikov. Why
encrypted database is not secure. In Proceedings of the 16th

Workshop on Hot Topics in Operating Systems, pages 162–168. ACM,

Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad

order-revealing encryption. In , pages 655–672, 2017.
Yu Guo, Xingliang Yuan, Xinyu Wang, Cong Wang, Baochun Li,

in distributed
Transactions on Parallel and Distributed

, 30(6):1283–1297, 2019.
Tarik Moataz. Computationally volume-hiding

ed encryption. In , pages 183–213, 2019.
Tarik Moataz, and Olga Ohrimenko. Structured

In CRYPTO 2018, pages 339–

ge Kollios, Kobbi Nissim, and Adam
preserving privacy. In

. 2017.
ge Kollios, Kobbi Nissim, and Adam
on secure outsourced databases. In

16, pages 1329–1340. ACM Press, 2016.
e, Brice Minaud, and Kenneth G. Paterson.

reconstruction attacks on encrypted data using range
In on Security and Privacy,

, pages 297–314, 2018.
frey D. Ullman, Dhruba-

on outsourced sensitive and non-sensitive data.

V Wright. Infer-
on property-preserving encrypted databases. In

15, pages 644–655. ACM Press, 2015.
K Liu, Chunhua

Wu. Efficient encrypted data search with ex-
pressive queries and flexible update. Transactions on Services

, 2020.
and Ee-Chien

Transactions on Information Forensics and Security, 14(3):789–802,

Yeo, and Moti Yung. Mit-
in secure cloud-hosted data structures: Volume-

In , pages 79–

revisited. In
in Cryptology - CRYPTO 2010, pages 502–519, 2010.

, Tobias Boelter, and Raluca Ada Popa. Arx: an
e encryption. Proceed-

of the VLDB Endowment, 12(11):1664–1678, 2019.
V Wright. The shadow nemesis:

on efficiently deployable, efficiently searchable
In 16, pages 1341–1352. ACM Press, 2016.

, Vitaly Shmatikov, and Eran Tromer. Beauty and
of encrypted video streams. In

17, pages 1357–1374.
, Marten Van Dijk, Elaine Shi, Christopher Fletcher,

Yu, and Srinivas Devadas. Path oram: an
protocol. In 13, pages

Press, 2013.
Vinod Vaikuntanathan. Computing blindfolded: New develop-

in fully homomorphic encryption. In , pages

Wang, Rishabh Poddar, Jianan Lu, and Raluca Ada
on encrypted databases.

Arch., 2019:1224, 2019.
Wang and Yunlei Zhao. Order-revealing encryption:

d security. In , pages

ui Wu, Qi Li, Guoliang Li, Dong Yuan, Xingliang Yuan,
Wang. Servedb: Secure, verifiable, and efficient range

on outsourced database. In , pages 626–637,

Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou.
are belong to us: The power of file-injection

on searchable encryption. In 16, pages

ed the Ph.D. degree from
rtment of Computer Science and Engi-

Tong University in 2016.
He is currently a research fellow at School of

ormation Systems, Singapore Managemen-
t University and a Professor with Fujian Nor-

, China. His research interests in-
cryptography and information se-

. He has published papers in major con-
ferences/journals such as ACM CCS, ESORICS,

, IEEE TDSC, etc.

Poh ed his PhD degree in In-
formation Security from Royal Holloway, Univer-

of London, UK. His main research interests
le encryption and cryptograph-

ic schemes for computations in the encrypted
He was a committee member in the

for cryptography working group

for various international conferences. He has
in major conferences/journals

as ACM CCS, IEEE TIFS, IEEE TDSC, etc.

yi Huang ed his Ph.D. degree from the
of Computer Science and Software Engi-

of Wollongong, Australia, in
He is currently a Professor at the Fujian

Key Laboratory of Network Security
Cryptology, College of Mathematics and In-

formatics, Fujian Normal University, China. His
cryptography and in-

formation security. He has published papers in
as ACM CCS,

, IEEE TDSC, etc.

t H. Deng is AXA Chair Professor of
of the Secure Mo-

, School of Information Systems, Sin-

in the areas of data se-
privacy, cloud security and Internet

of Things security. He received the Outstanding
Award from National Uni-

versity of Singapore, Lee Kuan Yew Fellowship
for Research Excellence from SMU, and Asia-
Pacific Information Security Leadership Achieve-

ormation Systems
ibutions include

an extensive list of positions in several industry and public services
y boards, editorial boards and conference committees. These

of IEEE Security & Privacy Magazine, IEEE
Transactions on Dependable and Secure Computing, IEEE Transactions
on Information Forensics and Security, Journal of Computer Science

Technology, and Steering Committee Chair of the ACM Asia Confer-
on Computer and Communications Security. He is an IEEE Fellow.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on September 18,2020 at 12:45:49 UTC from IEEE Xplore.  Restrictions apply. 

Robert H. Deng (Fellow, IEEE) received the Ph.D.
degree from the Illinois Institute of Technology,
Chicago, IL, USA, in 1985.

He is AXA Chair Professor of Cybersecurity, Di-
rector of the Secure Mobile Centre, School of Com-
puting and Information Systems, Singapore Manage-
ment University, Singapore. His research interests
include applied cryptography, data security and pri-
vacy, and network security.


	SOCI+: An enhanced toolkit for Secure Outsourced Computation on Integers
	Citation
	Author

	Introduction
	Related Work
	Preliminaries
	N Generation (NGen)
	Key generation (KeyGen)
	Encryption (Enc)
	Decryption (Dec)


	System model and threat model
	System Model
	Threat Model

	SOCI+ Design
	(2, 2)-threshold Paillier cryptosystem (FastPaiTD)
	Offline and online mechanism
	Offline Phase
	Online Phase

	Secure Multiplication Protocol (SMUL)
	Secure Comparison Protocol (SCMP)
	Secure Sign Bit-Acquisition Protocol (SSBA)
	Secure Division Protocol (SDIV)

	Correctness and Security Analysis
	Correctness Analysis
	Security Analysis

	Experimental Evaluation
	Performance of Different Threshold Paillier Cryptosystem
	Evaluations for Secure Outsourced Computation Protocols

	Conclusion
	References
	Biographies
	Bowen Zhao
	Weiquan Deng
	Xiaoguo Li
	Ximeng Liu
	Qingqi Pei
	Robert H. Deng


