
1 

 

Granular3D: Delving into multi-granularity 3D scene graph prediction  

Kaixiang Huang a,b , Jingru Yang a,b , Jin Wang a,b,f,∗ , Shengfeng He c , Zhan Wang d , Haiyan He e , Qifeng 

Zhang a,b , Guodong Lu a,b  
 

a Zhejiang University, State Key Laboratory of Fluid Power & Mechatronic Systems, Hangzhou, 310027, Zhejiang, China  

b Zhejiang University, Robotics Institute of Zhejiang University, Hangzhou, 310027, Zhejiang, China  

c Singapore Management University, 178903, Singapore  

d Zhejiang Energy Digital Technology Co., Ltd, Department of Artificial Intelligence and Robotics, Hangzhou, 310027, 

Zhejiang, China  

e Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang, China  

f Jinhua Key Laboratory of Robot Intelligent Welding Technology, Jinhua, 321000, Zhejiang, China 

 

 

Published in Pattern Recognition (2024) 153, 110562. DOI: 10.1016/j.patcog.2024.110562 

 

Abstract: This paper addresses the significant challenges in 3D Semantic Scene Graph (3DSSG) prediction, essential for 

understanding complex 3D environments. Traditional approaches, primarily using PointNet and Graph Convolutional 

Networks, struggle with effectively extracting multi-grained features from intricate 3D scenes, largely due to a focus on 

global scene processing and single-scale feature extraction. To overcome these limitations, we introduce Granular3D, a novel 

approach that shifts the focus towards multi-granularity analysis by predicting relation triplets from specific sub-scenes. One 

key is the Adaptive Instance Enveloping Method (AIEM), which establishes an approximate envelope structure around 

irregular instances, providing shape-adaptive local point cloud sampling, thereby comprehensively covering the contextual 

environments of instances. Moreover, Granular3D incorporates a Hierarchical Dual-Stage Network (HDSN), which 

differentiates and processes features of instances and their pairs at varying scales, leading to a targeted prediction of instance 

categories and their relationships. To advance the perception of sub-scene in HDSN, we design a Gather Point Transformer 

structure (GaPT) that enables the combinatorial interaction of local information from multiple point cloud sets, achieving a 

more comprehensive local contextual feature extraction. Extensive evaluations on the challenging 3DSSG benchmark 

demonstrate that our methods provide substantial improvements, establishing a new state-of-the-art in 3DSSG prediction, 

boosting the top-50 triplet accuracy by ＋2.8%. 
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1. Introduction 

Understanding complex 3D real-world environments is 

pivotal for various applications, including robotics, 

AR/VR, and navigation [1]. In this context, the prediction 

of 3D Semantic Scene Graphs (3DSSG) [2] has garnered 

significant attention. As illustrated in Fig. 1, predicting 

the categories of instances within a 3D point cloud 

environment, associated with class-agnostic instance 

masks, and determining their potential relationships 

forms the basis of relation triplets (e.g., <chair, close by, 

table>). Extending this approach to every possible 

instance pair in the environment results in a structured and 

comprehensive representation of 3D scenes. 

However, despite its importance, the task of 3DSSG 

prediction faces substantial challenges. Unlike 2D 

semantic scene graph prediction [3], [4], 3D indoor scenes 

often present complex and densely populated instances, 

as exemplified by the room shown in Fig. 1. Current 

3DSSG prediction methods, which predominantly focus 

on global scene processing [2], struggle to simultaneously 

identify all instances and their potential relationships 

within these intricate scenes. This process necessitates 

feature extraction from extensive point cloud patches, 

making it challenging to provide comprehensive and 

targeted multi-granularity feature extraction for instance 

identification and relationship prediction that forms the 

semantic scene graph. In particular, the primary 

limitations stem from three factors: (1) the point cloud 

patches sampled by the 3D bounding box are coarse and 

uneven, leading to incomplete contextual environmental 

information for feature extraction; (2) the reliance on 

single-scale point cloud feature extraction, which is 

incapable of discerning the fine-grained local patterns 

required for instance identification and the broader 

receptive field needed for relationship prediction; and (3) 

the employed PointNet [5] is deficient in perceiving 
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Fig. 1. Illustration of a sub-scene within a complex environment, mirroring human
observational tendencies. It focuses on a localized area encompassing target instances,
enabling the recognition of instance categories and the assessment of their relationships,
predicting the relationship triplet <subject, predicate, object> independent of other in-
stances in the environment. The emphasis is on the effective extraction of multi-grained
information from the sub-scene.

the complex environment as it struggles to capture the local contextual
information.

To date, few studies have deviated from the established 3DSSG
prediction architecture to focus on effective multi-granularity analysis.
Specifically, the pioneering work of SGPN [2] and its successors, such
as SGGpoint [6] and SGFN [7], have continued to employ a combination
of PointNet [5] and Graph Convolutional Networks (GCNs) [8] with
coarse 3D bounding box sampling method to understand entire complex
scenes simultaneously. Frustratingly, this original single-scale global
scene processing restricts the introduction of multi-scale and compre-
hensive feature extraction for instances and inter-instance relationships
within the complete contextual environment, thereby directly limiting
the effectiveness of 3DSSG prediction. Even recent advancements like
VL-SAT [9], which acknowledges the need for enhanced sub-scene
analysis, have not altered the fundamental architecture of point cloud
feature extraction. On the contrary, as shown in Fig. 1, focusing on
multi-granularity analysis from specific sub-scenes with complement
contextual environment information should be an effective approach
for predicting relationship triplets in the scene graph, while also better
reflecting human observation patterns.

In contrast, although current 3DSSG prediction methods struggle
in the single-scale analysis, hierarchical 3D point cloud feature ex-
traction has seen considerable progress [10]. With the prior work
PointNet++ [11] that utilizes set abstraction blocks for capturing local
point cloud features at different granularity, the subsequent research
has focused on enhancing local context perception, where Transformer-
based networks show promising results. For instance, the Point Trans-
former [12] employs self-attention blocks for local information aggre-
gation, while the Stratified Transformer [13] introduces a long-range
local point cloud sampling strategy. However, these advancements have
predominantly concentrated on single local point cloud set interactions,
overlooking the potential benefits of combinatorial interactions among
different local sets, a critical aspect of point cloud perception [5].

In this paper, we address the challenges posed by single-granularity
feature extraction for global scenes in current 3DSSG prediction ar-
chitectures. We present a novel solution, Granular3D, which diverges
from the traditional architectures, reorganizing the environment infor-
mation sampling method, network architecture, and contextual feature
extraction structure for effective multi-granularity analysis. This strat-
egy more accurately reflects human perceptual processes and empha-
sizes the prediction of individual relation triplets within a sub-scene

to construct a comprehensive 3DSSG. Unlike the current coarse 3D
bounding box partitioning strategy, a central to Granular3D is the
Adaptive Instance Enveloping Method (AIEM), employing an approx-
imate envelope around irregular instances to establish shape-adaptive
local point cloud sampling. As a foundation of the subsequent multi-
granularity analysis, this method allows Granular3D to construct a
sub-scene with comprehensive contextual environment information.
Furthermore, compared to the single-granular structure, our Hierar-
chical Dual-Stage Network (HDSN) within Granular3D identifies fine-
grained local patterns within instances, as well as captures features
with a larger receptive field for accurate prediction of inter-instance
relationships. This hierarchical approach is instrumental in extracting
multi-granularity information from the sub-scene. To promote the fea-
ture extraction of each granular in Granular3D, we introduce the Gather
Point Transformer structure (GaPT) as the encoder of HDSN. In terms of
innovatively gathering features from multiple local sets, this component
facilitates the combinatorial interaction of local information, resulting
in a more comprehensive contextual understanding across different
granularities. Extensive evaluations demonstrate that Granular3D sig-
nificantly outperforms existing 3DSSG prediction methods, establishing
a new state-of-the-art with a remarkable +2.8% increase in top-50
triplet accuracy.

In summary, our main contributions are fourfold:

1. We propose Granular3D, comprising an Adaptive Instance En-
veloping Method which establishes a shape-adaptive sampling
around irregular instances, thereby constructing sub-scenes with
comprehensive contextual environment information for the sub-
sequent multi-granularity analysis.

2. Additionally, Granular3D incorporates a Hierarchical Dual-Stage
Network to process and differentiate features of instances and
their associated pairs across multiple scales. The multi-
granularity analysis significantly enhances the accuracy of pre-
dicting instance categories and their interrelations, thereby
achieving superior performance.

3. We design the Gather Point Transformer for Granular3D.
Through the interaction of features across multiple point cloud
sets, this unique multi-local feature extraction results in a more
comprehensive contextual feature extraction, markedly enhanc-
ing the perception capability under various granularity.

4. Extensive experimental evaluations demonstrate the significant
advancements brought by Granular3D. Notably, our approach
establishes a new state-of-the-art in 3DSSG prediction, evidenc-
ing the substantial potential of multi-granularity analysis in this
field.

2. Related work

Scene Graph Prediction in Point Cloud: Building upon the founda-
tion laid by 2D image-based scene graph prediction [14–19], recent
endeavors in the 3D point cloud domain [2,6,7,9] seek to replicate this
success, which aims to identify instances and their interrelationships
within a 3D scene to construct the scene graphs. The seminal work [2]
introduces the 3DSSG benchmark, along with the SGPN model, which
pioneered the use of the PointNet [5] and GCN [8] architecture in this
context. Following this, SGGpoint [6] enhances the GNN module with an
edge-oriented scene graph reasoning method. Zhang et al. [20] intro-
duces a graph auto-encoder network to automatically learn and inject
per-learned knowledge into the 3DSSG prediction network. Addition-
ally, SGFN [7] explores incremental 3DSSG prediction in dynamically
created RGB-D scenes. Despite these advancements, current methods
still adhere to the foundational SGPN architecture that focuses on
global scene processing, lacking in providing comprehensive contextual
environment information while exhibiting limitations in point cloud
feature extraction. The recent work VL-SAT [9] while recognizing the
deficiency of current architecture in sub-scene information extraction,
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Fig. 2. Overview of the proposed Granular3D. For complex 3D indoor environments, we first apply the proposed Adaptive Instance Enveloping Method (AIEM) to sample
sub-scenes, ensuring comprehensive coverage of the contextual environments of instances. Building upon the AIEM, we introduce a Hierarchical Dual-Stage Network (HDSN) for
targeted multi-granularity analysis of instance identification and inter-instance relationship prediction, thereby obtaining the implied relation triplets that form the scene graph.
Furthermore, in both stages of the HDSN, we employ the proposed Gather Point Transformer (GaPT) for effective feature extraction from point clouds at various granularities.
Altogether, the Granular3D provides multi-granularity feature extraction, thereby significantly elevating the 3DSSG prediction performance.

frustratingly relies on supplemental 2D image and natural language
descriptions rather than breaking the established architecture.

3D Scene Understand with Hierarchical Network: Hierarchical net-
works, due to their effective perception of 3D point cloud environ-
ments, have been widely studied and applied. Mirroring the success of
hierarchical feature learning in 2D fields [21,22], PointNet++ [11] first
introduces the set abstraction block to capture fine-grained 3D point
cloud structures and features with a broader receptive field at varying
scales. Following the paradigm of PointNet++, various researches with
hierarchical network are emerged [10,23–29]. For example, in 3D
point cloud recognition, PatchAugNet [29] employs a pyramid point
cloud transformer network for multi-stage feature capture and enhances
discrimination. Additionally, in 3D object detection, HVNet [26] also
extracts and aggregates the voxel features from different scales and
achieves competitive results. However, the effective hierarchical net-
work has not been applied in current 3DSSG prediction methods, even
though the multi-grained information provided by the hierarchical
network fits the targeted recognition of instance categories and their
relationships.

Local Point Cloud Feature Perception: Analogous to the set abstrac-
tion block in PointNet++ [11], local point feature perception is the
crucial component in hierarchical network and has attracted plen-
tiful attention [10–12,30–32]. Specifically, PointWeb [32] proposes
an adaptive feature adjustment module that uses trainable indicators
to distribute point features in the local set. Moreover, RandLA Net
adopts attentive pooling with attention scores in local feature per-
ception. Meanwhile, driven by the remarkable success of Transformer
and self-attention mechanisms in NLP and 2D image [33–36], many
approaches investigate the application of Transformer in point cloud
feature perception [12,13,37]. For example, Point Transformer [12]
leveraged vector attention for contextual feature aggregation. Stratified
Transformer [13] then explores the memory-efficient transformer with
an enlarged local set receptive field. However, these methods primarily
focus on single local sets, overlooking the combinatorial interactions
among different local sets, which is a main attribute of 3D point cloud
perception [5]. In contrast, our proposed Gather Point Transformer
innovatively merges features from multiple local sets, enabling the
extraction of more comprehensive contextual features.

3. Methodology

Predicting 3D Semantic Scene Graphs (3DSSG) is pivotal in compre-
hending complex 3D environments. It involves identifying categories
of instances and the relationships between linked subject-object pairs,
thereby constructing a structured scene graph. To delineate our pro-
posed Granular3D, this section is organized as follows. In Section 3.1,
we first formulate the 3DSSG prediction problem in point cloud, while

presenting an overview of our methods. In Section 3.2, we detailly
introduce our proposed Granular3D, including the Adaptive Instance
Enveloping Method (AIEM), Hierarchical Dual-Stages Network (HDSN),
and Gather Point Transformer (GaPT).

3.1. Problem formulation and method overview

Suppose a 3D scene  consisting of a set of points, where each point
𝑥 = (𝒑,𝒇 , 𝑚) encompasses not only the essential position information
𝒑 ∈ R3, attribute information 𝒇 ∈ R𝑛 (e.g., color) but also appends
a class-agnostic instance mask 𝑚 ∈ {1,… , 𝑘} to distinguish individual
instance

{

1,… ,𝑘
}

within  . Following the principles outlined
by SGPN [2], the ultimate goal is to construct a scene graph  =
(,), where the predictions of instances categories  and their inner
relationships  depict the nodes and edges of the scene graph. Within
graph , the relation triplet <subject, predicate, object>, denoted as  , is
the basic component. Concretely, for a pair of instances 𝑖 and 𝑗 in
 , the categories of instance 𝑐𝑖 and 𝑐𝑗 serve as the subject (head node)
and object (tail node), respectively, while their potential relationship
𝑟𝑖𝑗 forms the predicate (edge).

In contrast to prevailing methods that focus on global scene process-
ing and single-scale feature extraction, methodology pivots towards the
multi-granularity analysis, which efficiently predicts relation triplets
within each sub-scene, thereby organizing the 3D scene graph. As
demonstrated in Fig. 2, the proposed AIEM is initially employed to
sample sub-scene containing subject-object instance pair, aiming to
adaptively extract comprehensive contextual environment information,
serving as the foundation for subsequent multi-granularity analysis.
Next, the HDSN differentiates and processes features of instances and
the instance pair at varying scales, providing specific features for
the targeted prediction of the relation triplet. Moreover, as a crucial
component of HDSN, we introduce the innovative GaPT as the encoder
to extract features from point clouds at various granularities, enhancing
the ability of local contextual feature perception.

3.2. Granular3D

3.2.1. Adaptive instance enveloping method
Mirroring human observation patterns, sampling target instances

from complex global scenes while ensuring the completeness of their
contextual environmental information forms the foundation for subse-
quent multi-granularity feature extraction, particularly crucial in in-
stance identification. As the example shown in Fig. 3, observing the
adjacent table intuitively enhances the accuracy and credibility of the
chair identification. Therefore, for a pair of subject-object instances 𝑖
and 𝑗 , the first challenge is to construct an informative sub-scene 𝑖𝑗
from the global scene.
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Fig. 3. Illustration of the proposed Adaptive Instance Enveloping Method (AIEM). Contrasting with traditional BBox Sampling, AIEM first evenly samples key points within target
instances and employs Ball Query around these points to establish an approximate envelope structure, achieving adaptive surrounding environment sampling, especially for irregular
instances. Meanwhile, AIEM further offers the distance features to the subject/object instance, enriching the contained information.

Noticing the current 3D bounding box sampling method coarsely
defines the border of sub-scene by the range of instances, providing
incomplete contextual environmental information, we then propose the
Adaptive Instance Enveloping Method (AIEM) to adaptively sample
the neighborhood point cloud by creating an approximate envelope
structure around each instance.

Denotes the targeted subject as 𝑖, since the 3D envelop structure
can be approached by a finite number of spheres [38], the initial step
in AIEM involves selecting a set of key points 𝑖 from 𝑖, which
uniformly distributes over the irregular instance, especially including
protruding structures. For this, we innovatively implement the Farthest
Point Sampling (FPS) algorithm that keeps the selected 𝑖 evenly
covering the whole set [39]. Furthermore, we consider each key point
𝒙𝑛𝑖 in 𝑖 as centroid, then perform Ball Query to identify all scene points
𝑖 which are within a radius of the key point. Finally, by combining
both scene points in instance pair 𝑖 and 𝑗 , the entire sub-scene 𝑖𝑗
is generated. In summary, the neighborhood point cloud sampled via
AIEM is expressed as follows:

𝑖 =
{

𝐵
(

𝒙𝑛𝑖 , 𝑅
)

|∀𝒙𝑛𝑖 ∈ 𝐹
(

𝑖
)}

𝑖𝑗 =
{

𝑖,𝑗
} (1)

where, 𝐵 (⋅) and 𝐹 (⋅) represent the Ball Query and FPS algorithm
correspondingly, and 𝑅 represents the radius used for the ball query
searching.

The incorporation of an approximate envelope structure in the
sampling of the surrounding environment allows AIEM to adaptively
construct sub-scenes. As depicted in Fig. 3, AIEM surpasses tradi-
tional BBox sampling methods by capturing a more comprehensive
neighborhood context, such as including bookshelves and walls around
the table. Furthermore, the congruence of sub-scene edges with the
irregular shapes of instances, like the desktop, further demonstrates the
adaptability of our AIEM to irregular instances.

Moreover, in addition to the shape-adaptive sub-scene point cloud
sampling, the AIEM introduces subject/object distance features, enrich-
ing the contained information. Specifically, for a point 𝒙𝑚𝑠 within 𝑖𝑗 ,
the subject distance feature 𝑑𝑚𝑠𝑢𝑏𝑗 is directly calculated as the normalized
nearest distance to the subject instance, as follows:

𝑑𝑚𝑠𝑢𝑏𝑗 = max
((

𝑅 −𝐷𝑖𝑠𝑡
(

𝑥𝑚𝑠 ,𝑖
))

, 0
)

∕𝑅 (2)

where, the 𝐷𝑖𝑠𝑡 (⋅) represents the nearest neighbor distance calcula-
tion. Analogously, the object distance feature 𝑑𝑚𝑜𝑏𝑗 is determined by
calculating the distance to the object instance.

As illustrated in Fig. 3, the 𝑑𝑠𝑢𝑏𝑗 and 𝑑𝑜𝑏𝑗 features visually indicate
the proximity of each point to the corresponding instance. Meanwhile,
within a local point set, the trend of distance features indirectly char-
acterizes the relative spatial orientation between the point and target
instances, thus aiding in the prediction of spatial relationships, such
as left, right. Finally, the AIEM also integrates the subject-object mask
𝑓𝑚𝑎𝑠𝑘 and distinctly labels the subject instance, object instance, and
neighboring points as 𝑚𝑠𝑢𝑏𝑗 , 𝑚𝑜𝑏𝑗 , and 𝑚𝑛𝑒𝑖, for identification.

In summary, the innovative approach to shape-adaptive neighbor-
hood environment sampling of our AIEM, coupled with the introduction
of additional features, enables the construction of sub-scenes with
comprehensive contextual information. This forms a robust foundation
for the subsequent multi-granularity feature extraction and analysis.

3.2.2. Hierarchical dual-stages network
In a complex 3D indoor environment, identifying instances requires

fine-grained local patterns, while predicting their potential relationship
needs a broader receptive field. This conflict renders single-granularity
3D scene extraction incapable of achieving targeted 3DSSG prediction.
Therefore, we further proposed the Hierarchical Dual-Stages Network
(HDSN) within the Granular3D, aiming to comprehensively extract
the features at multiple granularities. As visualized in Fig. 4, dur-
ing the hierarchical feature encoding and down-sampling process of
sub-scene, our HDSN divides two specific stages dedicated to classify-
ing instances and relationships respectively, eventually leading to the
multi-granularity analysis.

Backbone Structure. Generally, the backbone of our proposed
HDSN is organized by multiple feature encoders that process the pro-
gressively down-sampled sub-scene. Specifically, the backbone is bifur-
cated into two stages, each targeting a different granularity of feature
extraction: the instance and the relationship stages. The down-sampling
rates for the first stage are [1, 4, 4, 2], thus generating an instance-
level feature map 𝑭 𝑖𝑛𝑠, reducing the original point count to 𝑁∕16,
where 𝑁 is the number of sub-scene points. Building upon 𝑭 𝑖𝑛𝑠, the
HDSN transitions to the second stage, employing down-sampling rates
of [2, 2], and thereby forms the relationship-level feature map 𝑭 𝑟𝑒𝑙,
further reducing the point count to 𝑁∕64. The instance-level feature
map 𝑭 𝑖𝑛𝑠, with a relatively lower down-sampling rate, preserves more
local structural details pertinent to categorizing instances. Conversely,
the relationship-level feature map 𝑭 𝑟𝑒𝑙, derived from deeper network
layers, benefits from a higher down-sampling rate, resulting in an
expanded receptive field conducive to discerning relationships between
instances.
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Fig. 4. Illustration of the proposed Hierarchical Dual-Stage Network (HDSM). Focus on the multi-granularity analysis, HDSM hierarchically processes the sub-scene, encoding the
point cloud at multiple scales to extract feature maps at both the instance and relationship stages. Next, features with different granularity are separated and aggregated according
to the instance mask, with attribute encoding supplementing basic shape and spatial information before decoding.

Separation and Aggregation. After obtaining the targeted feature
maps, the subsequent stage involves minimizing the interference of
background features. Therefore, we adopt a feature separation and
aggregation method, which isolates the essential point features by
tracking the subject-object mask 𝑓𝑚𝑎𝑠𝑘 during down-sampling. As de-
picted in Fig. 1, through the mask, our HDSN leverages this mask
to segregate the point clouds corresponding to the subject instance,
object instance, and neighboring points, thus refining the multi-grained
features for analysis. Detailly, at the instance level, HDSN ought to
aggregate the features specific to subject and object instances respec-
tively. While at the relationship level, the HDSN amalgamates the
features of both instances to comprehensively perceive their correla-
tion. The global average pooling is performed across pointwise features
during the aggregation process. The mathematical formulation of this
feature separation and aggregation is described as follows:

𝒇 𝑠𝑢𝑏𝑗 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔
({

𝒇 𝑝
𝑖𝑛𝑠 ∈ 𝑭 𝑖𝑛𝑠|𝑓

𝑝
𝑚𝑎𝑠𝑘 = 𝑚𝑠𝑢𝑏𝑗

})

𝒇 𝑟𝑒𝑙 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔
({

𝒇 𝑝
𝑟𝑒𝑙 ∈ 𝑭 𝑟𝑒𝑙|𝑓

𝑝
𝑚𝑎𝑠𝑘 ≠ 𝑚𝑛𝑒𝑖

}) (3)

where, the 𝒇 𝑠𝑢𝑏𝑗 and 𝒇 𝑟𝑒𝑙 represent the aggregated subject feature and
relationship feature respectively, 𝒇 𝑝

𝑖𝑛𝑠 and 𝒇 𝑝
𝑟𝑒𝑙 represent a sampling

point in 𝑭 𝑖𝑛𝑠 and 𝑭 𝑟𝑒𝑙 which fits the screening mask. And by replacing
the screening conditions of 𝒇 𝑠𝑢𝑏𝑗 to 𝑚𝑜𝑏𝑗 , the aggregated object feature
𝒇 𝑜𝑏𝑗 is constructed.

Attribute Encoding. The attributes of instances, including the
geometry center 𝒈 =

(

𝑔𝑥, 𝑔𝑦, 𝑔𝑧
)

, size 𝒔 =
(

𝑠𝑥, 𝑠𝑦, 𝑠𝑧
)

, and volume
𝑣 = 𝑠𝑥𝑠𝑦𝑠𝑧, play a significant role in representing the primitive
shape and spatial information of each instance [7]. Therefore, except
for the aggregated features in instance and relationship level, the
proposed HDSN further introduces the trainable attribute encodings
for both instance features and relationship features via multi-layer
perceptron (MLP) layers. Specifically, the instance-specific attribute
encoding 𝛿𝑖𝑛𝑠 focuses only on the attributes of the corresponding single
instance, while the relation-specific attribute encoding 𝛿𝑟𝑒𝑙 measures the
difference between the subject instance and object instance, as follows:

𝛿𝑖𝑖𝑛𝑠 = 𝑀𝐿𝑃𝑖𝑛𝑠
(

𝐶𝑎𝑡
(

𝒈𝑖, 𝒔𝑖
))

𝛿𝑟𝑒𝑙 = 𝑀𝐿𝑃𝑟𝑒𝑙
(

𝐶𝑎𝑡
(

𝒈𝑖 − 𝒈𝑗 , 𝒔𝑖 − 𝒔𝑗 , ln
(

𝑣𝑖∕𝑣𝑗
))) (4)

where, the 𝑀𝐿𝑃𝑖𝑛𝑠 (⋅) and 𝑀𝐿𝑃𝑟𝑒𝑙 (⋅) denote the mapping functions, and
the 𝐶𝑎𝑡 (⋅) denotes the concatenation operation.

Subsequently, attribute encodings are directly added with the corre-
sponding instance feature and relationship feature to complement the
primitive shape information and relative spatial relationship.

Output Head. In the final phase, to respectively focus on instance
features and relational features with different granularities, we imple-
ment two MLP layers. These layers independently decode the instance

categories and their relationships, resulting in the formation of relation
triplet 𝑖𝑗 = {𝑐𝑖, 𝑟𝑖𝑗 , 𝑐𝑗} which describes the sub-scene. By systematically
predicting all possible instance pairs in the scene through HDSN, we
then obtain the comprehensive scene graph.

Losses. We perform a joint loss 𝑡𝑟𝑖 when training the HDSN, which
optimizes both the instance classification loss 𝑖𝑛𝑠 and the relationship
classification loss 𝑟𝑒𝑙, as follows:

𝑡𝑟𝑖 = 𝜆𝑖𝑛𝑠𝑖𝑛𝑠 + 𝜆𝑟𝑒𝑙𝑟𝑒𝑙 (5)

where, 𝜆𝑖𝑛𝑠 and 𝜆𝑟𝑒𝑙 are the respective weighting factors, with values set
to 0.3 and 1. Given that a pair of instances can simultaneously exhibit
multiple relationships [2], we utilize per-class binary cross entropy
when calculating 𝑟𝑒𝑙. Conversely, multi-class cross entropy is used to
calculate 𝑖𝑛𝑠.

In summary, focusing on instances and subject-object instance pairs,
the proposed Hierarchical Dual-Stage Network (HDSN) in our Granu-
lar3D innovatively applies a multi-granularity feature extraction struc-
ture. This enables targeted prediction of instance categories and their
potential relationship in complex environments, significantly enhanc-
ing the effectiveness of scene graph prediction.

3.2.3. Gather point transformer
For each scale of HDSN, the local point cloud feature encoder is

utilized to capture the corresponding point cloud structures and pat-
terns through local point set feature perception, which directly impacts
the perception capability of complex environments. However, existing
methods isolate the various local features of point clouds. Therefore,
as a pivotal component of our Granular3D, we innovatively propose
the Gather Point Transformer structure (GaPT), designed to enable
combinatorial interaction among point features across multiple local
sets, leading to more comprehensive contextual information extraction
through the interaction of multiple local contextual features.

POS Encoding. Acknowledging that the fine-grained point infor-
mation may lost in the deep network layers [40], we first introduce
a POS Encoding to complement not only the position information
which represents the local structure but also includes the subject/object
distance features, 𝑑𝑠𝑢𝑏𝑗 and 𝑑𝑜𝑏𝑗 , designed in AIEM that describe the
correlation to subject/object instance. Specifically, for each point 𝒙𝑖
within the local point cloud set 

(

𝒙𝑎
)

that centered around 𝒙𝑎, the
POS encoding 𝛿𝑖𝑃𝑂𝑆 is formulated as:

𝛿𝑖𝑃𝑂𝑆 = 𝑀𝐿𝑃𝑃𝑂𝑆

(

𝐶𝑎𝑡
(

𝒑𝑎 − 𝒑𝑖, 𝑑𝑎𝑠𝑢𝑏𝑗 − 𝑑𝑖𝑠𝑢𝑏𝑗 , 𝑑
𝑎
𝑜𝑏𝑗 − 𝑑𝑖𝑜𝑏𝑗

))

(6)

where, the 𝑀𝐿𝑃𝑃𝑂𝑆 (⋅) is the mapping function. Subsequently, through
a straightforward vector addition, 𝒙̂𝑖 = 𝒙𝑖 + 𝛿𝑖𝑃𝑂𝑆 , a more informative
local set 

(

𝒙̂𝑎
)

is generated.
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Fig. 5. Illustration of the proposed Gather Point Transformer (GaPT), where each point cloud patch or circle indicates a local set. The left part shows the combinatorial interaction
of point features from multiple local sets. The right part demonstrates the application of our GaPT. For each point, the gathering of its features among multiple encoded local sets
enables the interaction of extracted local structures and patterns, leading to a more comprehensive contextual information perception.

Local Set Self-Attention. With the enhanced local set feature


(

𝒙̂𝑎
)

∈ R𝑛×(ℎ×𝑑), GaPT then employs the original multi-head self-
attention to encode the local set. Formally, 𝑛 represents the point
number within the local set, ℎ and 𝑑 represent the head number and
head dimension, and 𝑐 = ℎ × 𝑑 is the dimension of the point feature in


(

𝒙̂𝑎
)

. Consequently, the multi-head self-attention in the local set is
defined as follows:

𝑄 = 𝑊𝑞
(


(

𝒙̂𝑎
))

, 𝐾 = 𝑊𝑘
(


(

𝒙̂𝑎
))

, 𝑉 = 𝑊𝑣
(


(

𝒙̂𝑎
))


(

𝒚𝑎
)

= softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉
(7)

where, the 𝑊𝑞 , 𝑊𝑘, and 𝑊𝑣 are the trainable weight matrixes, 
(

𝒚𝑎
)

∈
R𝑛×(ℎ×𝑑) represents the encoded local set point features, and

√

𝑑𝑘 is a
scaling factor.

Feature Gathering. Through the multi-head self-attention, each
point feature in the encoded local set 

(

𝒚𝑎
)

can attend to all point
features in the 

(

𝒙̂𝑎
)

, thereby weighting the correlation of different
points in the set. Consequently, for the central point 𝒙𝑎, this mechanism
extracts local contextual features, resulting in the generation of 𝒚𝑎.
When this local set encoding is applied across the entire sub-scene,
each point has the capability to aggregate contextual features from its
neighboring points. However, in this case, the feature extraction for
each local set is typically isolated, while serving only the respective
center point. As shown in Fig. 5, even if the nearest local set 

(

𝒙𝑏
)

which is centered around 𝒙𝑏 contains 𝒙𝑎, the feature in 𝒚𝑏𝑎 ∈ 
(

𝒚𝑏
)

remains unutilized. To address this, our GaPT introduces the feature
gathering block which fully utilizes the feature extraction of self-
attention across different local sets, thereby facilitating the interaction
between multiple local features.

Specifically, for a sampled point 𝒙𝑎, the primary objective is to
consider not only its basis egocentric local set 

(

𝒙𝑎
)

, but also the
surrounding local sets that include 𝒙𝑎, such as the 

(

𝒙𝑏
)

and 
(

𝒙𝑐
)

in Fig. 5. To be specific, before encoding local sets, we first apply the
k-nearest neighbor (kNN) search in 𝒙𝑎, yielding a set of neighboring
points 

(

𝒙𝑎
)

=
{

𝒙𝑎,𝒙𝑏,… ,𝒙𝑛
}

. Next, after the feature encoding
through multi-head self-attention, the example point feature 𝒚𝑏𝑎 ∈


(

𝒚𝑏
)

then symbolizes the correlation between 𝒙𝑎 and the pattern in


(

𝒙𝑏
)

, essentially capturing contextual information from an alternate
perspective. Parallelly, the features set 

(

𝒚𝑎
)

∈ R𝑠×𝑐 of 𝒙𝑎 in multiple
local sets is constructed, where the 𝑠 represents the number of searched
local sets, inclusive of 

(

𝒙𝑎
)

itself. Furthermore, the GaPT employs
a series of SharedMLP [5] for the channel-wise gathering of these
features, culminating in the formation of the aggregated feature 𝒈𝑎.
Generally, the mathematical expression for feature gathering in the

GaPT is expressed as follows:


(

𝒙𝑎
)

= kNN
(

𝒙𝑎,
)


(

𝒚𝑎
)

=
{

𝒚𝑎𝑎, 𝒚
𝑏
𝑎, 𝒚

𝑐
𝑎,… |∀𝒚𝑘𝑎 ∈ 

(

𝒚𝑘
)

and 𝒙𝑘 ∈ 
(

𝒙𝑎
)}

𝒈𝑎 = Ga
(


(

𝒚𝑎
))

(8)

where, the  represents the sub-scene, and the Ga (⋅) represents the
channel-wise gathering function.

To summarize, the proposed Gather Point Transformer (GaPT) ex-
tends beyond mere feature aggregation within the local neighborhood
of a sampling point. It innovatively captures the point’s connections
with multiple surrounding neighborhoods, effectively establishing com-
binatorial interactions between various local sets. This approach allows
GaPT to perceive complex local structures and patterns from a multi-
tude of perspectives, contributing to a more comprehensive contextual
information perception across different granularities in the HDSN, and
thereby achieving improved 3DSSG prediction performance.

4. Experiment

In this section, to evaluate the benefits of our proposed Granular3D,
we conduct intensive experiments on the large-scale 3D point cloud
semantic scene graph prediction dataset, 3DSSG [2]. Furthermore, we
also conduct extensive ablation experiments to validate the efficacy of
each component within our methods.

4.1. Setups and implementation details

Dataset: We chose to conduct experiments on the 3DSSG dataset [2]
to validate the effectiveness of the proposed method, which is a large-
scale 3D dataset that expands upon the 3RScan [41] with detailed
semantic scene graph annotations. The 3DSSG dataset encompasses
1553 real-world indoor point cloud scenes, where each point possesses
coordinates, RGB information, and a class-agnostic instance mask. For
the various instances in the complex indoor scene, the 3DSSG dataset
includes semantic labels from 160 semantic categories and 26 types of
predicates to represent their potential relationships. We evaluate our
proposed methods in the same training/validation split as applied in
the 3DSSG dataset [2].

Evaluation Metrics: Since the key to scene graph prediction lies
in classifying instances and their potential relationship, we then re-
spectively adopt the top-k accuracy metric to evaluate the prediction
performance of the instance and predicate, denoted as Object A@𝑘
and Predicate A@𝑘 as defined in [9]. This allows us to finely evaluate
the performance of our Granular3D, demonstrating the effectiveness
of multi-granularity analysis in the scene graph prediction process.
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Table 1
Quantitative results (%) on 3DSSG [2] validation set. The bold denotes the best performance.

Model Encoder Object Predicate Triplet

A@1 A@5 A@10 A@1 A@3 A@5 A@50 A@100

SGPN [2]

PointNet [5]

48.28 72.94 82.74 91.32 98.09 99.15 87.55 90.66
SGGpoint [6] 51.42 74.56 84.15 92.40 97.78 98.92 87.89 90.16
SGFN [7] 53.67 77.18 85.14 90.19 98.17 99.33 89.02 91.71
VL-SAT [9] 55.66 78.66 85.91 89.81 98.45 99.53 90.35 92.89

Granular3D GaPT (Ours) 66.02 86.13 91.60 91.29 98.35 99.45 93.15 95.13

Granular3D PointNet [5] 57.48 81.37 88.67 89.56 97.78 99.11 90.90 93.36
Granular3D PointNet++ [11] 64.09 84.75 90.16 90.62 98.23 99.42 92.52 94.58
Granular3D Point Transformer [12] 65.23 85.81 91.26 91.31 98.11 99.36 92.87 94.91

Meanwhile, as an essential component of scene graphs, which com-
prehensively represents the prediction effect, we also apply the top-k
accuracy metric to evaluate the predicted relationship triplets  =
⟨𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡⟩. Following the methodology from [9], we
first multiply the prediction scores of subject, predicate, and object to
derive a combined relation triple score, subsequently ranked in order.
Additionally, in this standard, the relation triple is ultimately consid-
ered correct only if all components (subject, predicate, and object) are
accurately predicted, thereby effectively measuring the superiority of
different algorithmic comprehensive performances.

Further, we also follow the Zhang et al. [20] and report the per-
formance of our methods in two specific tasks to assist in evaluating
method effectiveness: (1) Scene Graph Classification (SGCls) and (2)
Predicate Classification (PredCls). Specifically, the SGCls task assesses
the accuracy of the entire triplet, while the PredCls task focuses solely
on predicate accuracy, given the ground-truth labels of the instance
entities. Therefore, the SGCls task reflects the comprehensive prediction
effect of the scene graph, while PredCls evaluates the accuracy of
predicate prediction. As defined in Zhang et al. [20], the recall at the
top-k (R@𝑘) triplets is considered as the metric of the two tasks, where
the triplet is considered correct when the subject, predicate, and object
are all correct.

Baseline methods: We compare our method with a list of advanced
methods, including SGPN [2], SGGpoint [6], SGFN [7], Co-Occurrence
[20], KERN [14], Schemata [42], Zhang et al. [20] and the current
state-of-the-art method VL-SAT [9]. In addition, considering the flexi-
bility of our proposed Granular3D in terms of applying different point
cloud encoding methods in the HDSN, we also evaluated the perfor-
mance under various point cloud encoders, including PointNet [5],
PointNet++ [11] and Point Transformer [12].

Implementation details: Empirically, considering the spatial relation-
ships (e.g. left and right) strongly correlate with the coordinates, we
standardize all 3D scenes to a common coordinate system during train-
ing and testing, to maintain the spatial relation predicates unam-
biguous. Our experiments are conducted on a computational platform
equipped with Intel(R) Xeon(R) CPU E5- 2680v3 @2.50 GHz CPU x2,
128G memory, and RTX 3090 GPU x8. All models are trained using a
single RTX 3090 GPU.

4.2. Evaluation on 3DSSG

To verify the effectiveness of our proposed methods, we first com-
pare our methods with other leading approaches [6,7,9] on the 3DSSG
validation dataset. Evaluations are conducted in terms of object (in-
stance), predicate, and triplet.

As shown in Table 1, the proposed Granular3D outperforms current
methods by a large margin, indicating the effectiveness of comprehen-
sive multi-granularity analysis. Notably, the Granular3D (with GaPT
as encoder) demonstrates superior performance in the relation triplet
prediction than all other approaches, boots the current state-of-the-
art method VL-SAT by a significant improvement of +2.8 and +2.24
in Triplet A@50/100. Meanwhile, in comparison with other 3D en-
coders, our Granular3D+GaPT also exhibits competitive performance.

As the essential component of semantic scene graphs, these results
demonstrate that Granular3D achieves remarkable comprehensive per-
formance in 3DSSG prediction. In terms of the instance classification
evaluation, the proposed Granular3D particularly exhibits dominant
performance, with improvements of +10.36, +7.44, and +5.96 at Ob-
ject A@1/5/10 compared to the VL-SAT, respectively. This highlights
the advantages of providing targeted and comprehensive granularity
analysis in identifying instances within complex scenes. While in the
prediction of relationships, our method falls slightly short of fully
surpassing VL-SAT, with +1.42%, −0.1%, and −0.08% in Predicate
A@1/3/5. This could be attributed to VL-SAT leveraging the CLIP
model [43] to introduce natural language features for expressing object
relationships, which bring additional performance. Meanwhile, due to
the introduction of object relation feature attention in the SGGpoint
model, our Granular3D lags in the Predicate A@1 metric, while still
achieving +0.57 and +0.53 at A@3/5.

Moreover, when the PointNet [5] is equally utilized as the 3D point
cloud encoder, our methods (Granular3D+PointNet) already show a
marked improvement, with a +0.55 increase in Triplet A@50 metrics
compared to VL-SAT. The experimental results further suggest the
rationality and effectiveness of the proposed architecture. Integrat-
ing Granular3D with advanced encoders like PointNet++ [11] and
Point Transformer [12] leads to notable overall performance gains.
Typically, in comparison to the PointNet, employing PointNet++ or
Point Transformer as the encoder shows improvement of +1.62 and
+1.97 on Triplet A@50 respectively, while our GaPT achieves the best
performance. This highlights the importance of enhancing the ability to
extract local contextual features from point clouds for multi-granularity
analysis.

For a more comprehensive evaluation of our proposed method,
we additionally report the results of our proposed methods under the
SGCls and PredCls tasks, followed by [20]. As shown in Table 2,
our proposed Granular3D significantly outperforms current methods,
particularly in the SGCls task, which is considered a more challenging
testing scenario [9] (+7.9, +10.5 and +12.2 in R@20/50/100 compare
with the VL-SAT). In the PredCls task, which focuses solely on predicate
accuracy, the proposed method also maintains a similar level to the VL-
SAT, which incorporates CLIP knowledge. Once again, the results of
SGCls and PredCls tasks subsequently confirm the effectiveness of our
proposed methods through the innovative multi-granularity analysis.

To more intuitively demonstrate the 3DSSG prediction ability of
our proposed Granular3D, we select several typical indoor scenes and
demonstrate in Fig. 6, including a dining room (left part in 1st row),
a laundry room (right part in 1st row), a kitchen (2nd row) and a
bathroom (3rd row). The results depicted in Fig. 6 exhibit that our
proposed methods maintain the efficiency of instance category iden-
tification and their internal relationship prediction across a variety of
real-world indoor environments.

Remark. The experimental results with our state-of-the-art perfor-
mance continuously demonstrate the effectiveness of multi-granularity
analysis in 3D semantic scene graph prediction, with particularly out-
standing performance in instance identification. Additionally, the com-
parison of various point cloud feature encoders also showcases the



8

Table 2
Quantitative results (%) of the SGCls and PredCls tasks, with and without graph constraints.

Model With graph constraints Without graph constraints

SGCls PredCls SGCls PredCls

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

Co-Occurrence [20] 14.8 19.7 19.9 34.7 47.4 47.9 14.1 20.2 25.8 35.1 55.6 70.6
KERN [14] 20.3 22.4 22.7 46.8 55.7 56.5 20.8 24.7 27.6 48.3 64.8 77.2
SGPN [2] 27.0 28.8 29.0 51.9 58.0 58.5 28.2 32.6 35.3 54.5 70.1 82.4
Schemata [42] 27.4 29.2 29.4 48.7 58.2 59.1 28.8 33.5 36.3 49.6 67.1 80.2
Zhang et al. [20] 28.5 30.0 30.1 59.3 65.0 65.3 29.8 34.3 37.0 62.2 78.4 88.3
SGFN [7] 29.5 31.2 31.2 65.9 78.8 79.6 31.9 39.3 45.0 68.9 82.8 91.2
VL-SAT [9] 32.0 33.5 33.7 67.8 79.9 80.8 33.8 41.3 47.0 70.5 85.0 92.5
Granular3D (Ours) 43.4 53.0 59.2 73.2 79.4 79.5 41.7 51.8 59.2 69.5 86.1 91.3

Fig. 6. Visualization of some typical 3D semantic scene graph prediction results on the 3DSSG validation set. The small colored circle represents an instance in the scene. And the
red denotes misclassified instances or relationships. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Ablation study of the Adaptive Instance Enveloping Method (%).

Env. Dist. Object Predicate Triplet

A@1 A@5 A@1 A@3 A@50 A@100

63.33 85.17 90.55 98.14 92.38 94.70
√

65.89 86.55 91.03 98.26 93.10 95.02
√

63.81 85.11 90.81 98.29 92.45 94.77
√ √

66.02 86.13 91.29 98.35 93.15 95.13

compatibility and stability of our Granular3D, while highlighting the
advantages of the proposed GaPT in extracting local contextual features
at different granularities.

4.3. Ablation study

To thoroughly evaluate the individual contributions of the vari-
ous components within our proposed Granular3D, we then conducted
several ablation studies on the 3DSSG validation set.

Adaptive Instance Enveloping Method: We initially report the ab-
lation study of our proposed Adaptive Instance Enveloping Method

Table 4
Ablation study of the down-sampling scales in our Hierarchical Dual-Stages Network
(%).

Down-sampling scales Object Predicate Triplet

A@1 A@5 A@1 A@3 A@50 A@100

[1,2,2,2; 2,2] 63.76 85.40 91.11 98.35 92.43 94.60
[1,4,4,2; 2,2] (Ours) 66.02 86.13 91.29 98.35 93.15 95.13
[1,4,4,4; 4,2] 63.50 85.60 91.26 98.29 92.42 94.65
[1,4,4,2] + [1,4,8,4] 64.83 85.39 90.54 98.26 92.93 95.02

Table 5
Ablation study of the attribute encoding in our HDSN (%).

Ins. Enc. Rel. Enc. Object Predicate Triplet

A@1 A@5 A@1 A@3 A@50 A@100

65.24 86.09 83.77 95.49 91.78 94.02
√

66.03 86.10 82.92 95.23 91.80 94.03
√

65.45 86.02 91.06 98.36 92.83 94.93
√ √

66.02 86.13 91.29 98.35 93.15 95.13
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Table 6
Ablation study of weighting factors (%).

Ins. F. Rel. F. Object Predicate Triplet

A@1 A@5 A@1 A@3 A@50 A@100

0.1 1.0 63.25 84.90 91.32 98.23 91.40 93.68
0.3 1.0 66.02 86.13 91.29 98.35 93.15 95.13
0.7 1.0 65.40 86.85 90.30 98.04 93.08 94.99
1.0 1.0 65.87 86.66 90.61 98.03 93.00 95.02

(AIEM), which constructs the sub-scene with comprehensive contextual
environment information and is a vital component of our proposed
Granular3D. In this ablation study, we respectively examine the im-
pact of the enveloping sampling method denoted as ‘Env.’, and the
distance features, denoted as ‘Dist.’, in our AIEM. As shown in Ta-
ble 3, in general, the application of our proposed AIEM significantly
raises the performance with notable improvements of +2.69, +0.74,
and +0.77 in Object A@1, Predicate A@1, and Triplet A@50, which
illustrates the effectiveness of enriching the contextual information,
especially in the recognition of instance categories. Specifically, after
incorporating the enveloping sampling method, the ‘Env.’ component
overtakes the baseline model with +2.56 and +0.48 in Object A@1
and Predicate A@1, substantiating the potency of our shape-adaptive
contextual information sampling method. Moreover, the superior per-
formance of ‘Dist.’ compares with the baseline model and ‘Env. +
Dist.’ compares ‘Env.’ consistently affirming the value of incorporat-
ing distance features in our AIEM. Overall, the results suggest that
our proposed AIEM, by providing comprehensive contextual informa-
tion for the subsequent multi-granularity feature analysis, substan-
tially improves instance identification and relationship prediction in
Granular3D.

Down-sampling Scales: We then investigate the setting of down-
sampling scales of our Hierarchical Dual-Stages Network (HDSN) in
Granular3D, which determines the grained of point cloud feature en-
coding in both instance and relation stages. Each number represents
the scale of a down-sampling in the hierarchical HDSN, while the
‘;’ denotes the dividing line of the two stages. The results shown in
Table 4 illustrate that the optimal performance is achieved when the
point cloud is down-sampled 16 times in the instance stage, while is
down-sampled 64 times in the relation stage. When the down-sampling
scales are smaller, the network may not have sufficient context for the
predictions of both instances and their relationships. On the contrary,
the larger scales may limit the network in capturing local patterns, thus
reducing the performance. Meanwhile, in addition to the gradual down-
sampling across two stages, we also perform a study that splits the
prediction of instance and relationship into two independent branches
with the same overall down-sampling scales. And the result drops
significantly, underscoring the importance of the cooperation between
the two stages.

Attribute Encoding: We report the ablation study of the attribute
encoding in the HDSN, which intends to complement the primitive
shape information and relative spatial relationship. In this part, we
comprehensively compared the impact of introducing instance-specific
encoding, denoted as ‘Ins. Enc.’ and relation-specific encoding, denotes
as ‘Rel. Enc.’ on model performance. The results in Table 5 demonstrate
that the ‘Ins. Enc.’ and ‘Rel. Enc.’ directly influences the performance
of their corresponding parts. Specifically, after integrating instance-
specific encoding, the ‘Ins. Enc.’ gains an improvement of +0.79 in
Object A@1. More obviously, after introducing relation-specific en-
coding, the ‘Rel. Enc.’ significantly boosts Predicate A@1 by +7.29.
Overall, the ‘Ins. Enc. + Rel. Enc.’ approach outperforms the model
without attribute encoding by +1.37 in Triplet A@50. In conclusion,
these results highlight the importance of attribute encoding, especially

Table 7
Ablation study of the GaPT method (%).

POS Ins. Ga. Rel. Ga. Object Predicate Triplet

A@1 A@5 A@1 A@3 A@50 A@100

65.06 85.23 90.61 98.16 92.46 94.71
√

65.13 85.27 90.74 98.15 92.57 94.82
√ √

65.91 86.36 90.67 98.21 93.01 95.01
√ √

65.10 85.74 91.35 98.25 93.00 94.94
√ √ √

66.02 86.13 91.29 98.35 93.15 95.13

Table 8
Ablation study of the channel-wise gathering method used in our GaPT (%).

Gather method Object Predicate Triplet

A@1 A@5 A@1 A@3 A@50 A@100

Max pooling 64.58 85.53 91.36 98.33 92.89 95.09
Average pooling 65.21 86.45 91.17 98.30 93.02 95.03
Vector attention 65.11 85.71 91.30 98.34 92.93 95.04
GaPT (Ours) 66.02 86.13 91.29 98.35 93.15 95.13

Table 9
Ablation study of model efficiency.

Model Encoder Params. (M) Inference time (sec) Triplet A@50 (%)

VL-SAT [9] PointNet 25.06 74.99 90.35

Granular3D PointNet 1.49 68.32 90.90
GaPT 2.08 316.56 93.15

Table 10
Ablation study of module design (%).

ID Granular3D Object Predicate Triplet

AIEM HDSN GaPT A@1 A@5 A@1 A@3 A@50 A@100

① 56.79 79.51 82.30 95.31 88.51 91.54
②

√

57.01 79.83 83.56 95.27 88.97 91.71
③

√

62.59 84.64 89.24 97.88 91.92 94.25
④

√

57.77 80.06 83.44 95.38 89.06 92.00
⑤

√ √

63.33 85.17 90.55 98.14 92.38 94.70
⑥

√ √

58.49 80.46 83.96 95.39 89.13 91.93
⑦

√ √

65.06 85.23 90.61 98.16 92.46 94.71
⑧

√ √ √

66.02 86.13 91.29 98.35 93.15 95.13

in complementing relative spatial relationships to assist in predicting
predicates.

Weighting Factors: We also investigate the setting of the weighting
factors applied in the joint loss of our HDSN, which determines the
sensitivity during training to instance identification and relationship
prediction. The results are shown in Table 6, where the best perfor-
mance is achieved when the instance classification loss factor, denoted
as ‘Ins. F.’ is set to 0.3 and the relationship classification loss factor,
denoted as ‘Rel. F.’ is set to 1. Intuitively, when ‘Ins. F. diminishes, and
the performance of instance identification will decrease. Conversely,
when the relative proportion of ‘Ins. F. increases, it will affect the accu-
racy of relationship prediction. This study underscores the importance
of balancing the two tasks in the 3DSSG prediction task.

Gather Point Transformer: We then show the performance of our pro-
posed Gather Point Transformer (GaPT) in Granular3D. In this ablation
study, we first evaluate the POS encoding in the GaPT, denoted as
‘POS’. As displayed in Table 7, the encoding without distance features
is less effective than ‘POS’. Additionally, we investigate the influence
of applying our GaPT in both instance and relation stages, denoted as
‘Ins. Ga.’ and ‘Rel. Ga.’ respectively. Detailly, the results indicate that
compared with the model using only POS encoding, after respectively
introducing GaPT in the two stages, the prediction performances are
correspondingly enhanced (+0.85 in Object A@1 by ‘Ins. Ga.’, and
+0.61 in Predicate A@1 by ‘Rel. Ga.’), which reflects the positive
impact of the GaPT. Moreover, the complete integration of GaPT leads
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to a further enhancement of +0.69 in Triplet A@50 compared to the
baseline model. These findings, as summarized in Table 7, conclude
that the design of our proposed GaPT excels in perceiving the sub-
scene in the hierarchical network by establishing the combinatorial
interaction between multiple local sets.

Channel-wise Gathering Method: We also study the channel-wise
gathering method used in our Gather Point Transformer (GaPT). Ini-
tially, we compare our method with basic feature fusion methods: Max
Pooing and Average Pooling. As illustrated in Table 8, compared with
the channel-wise MLP used in our GaPT, the performance declines
by −0.26 and −0.13 in Triplet A@50 when using Max and Average
Pooling, respectively. On the other hand, we further apply the vector
attention to gather the features from multiple local sets, which also
results in a performance decrease of −0.22 in Triplet A@50.

Method Efficiency: Subsequently, we investigate the efficiency of our
proposed Granular3D. As displayed in Table 9, our method showcases
a significant advantage, with a reduction of over 10 times in parameter
consumption compared to the advanced VL-SAT, which contains a
GCN network with over 20M parameters, illustrating the benefit of
allocating resources for the critical multi-granularity 3D point cloud
feature extraction. However, Granular3D (with GaPT as encoder) ex-
hibits diminished inference efficiency on the 3DSSG validation set. The
primary reason for this situation may be the complex encoder structure.
Therefore, we further present the time consumption when utilizing
the same PointNet encoder as VL-SAT. Notably, Granular3D+PointNet
then surpasses VL-SAT in both speed and accuracy. Overall, this study
demonstrates that the balance between accuracy and efficiency is also
worth further exploration in our future research endeavors.

Module Design: Finally, we summarize the influence of model per-
formance after introducing our proposed methods. As shown in the
experiments ①–④ of Table 10, the incorporation of each individual
component within Granular3D consistently yields positive effects on the
baseline model. Particularly noteworthy is the Hierarchical Dual-Stages
Network (HDSN), which contributes the most significant improvement
(+3.41 in Triplet A@50 compared to the baseline), highlighting the
benefits of multi-granularity feature extraction in the complex 3D in-
door environment. This trend continues in experiments ⑥ and ⑧, where
HDSN distinctly improves the prediction of instances and relationships
in their respective stages, posting a significant positive impact (+4.02
in Triplet A@50). Meanwhile, comparing experiments ⑤ and ⑧ allows
us to assess how our Adaptive Instance Enveloping Method (AIEM)
enhances instance prediction by +2.69 in Object A@1, demonstrating
its effectiveness in providing sufficient contextual environmental infor-
mation for multi-granularity learning. Lastly, the comparison between
experiments ⑦ and ⑧ indicates that the introduction of our Gather Point
Transformer (GaPT) further boosts overall performance by facilitat-
ing the combinatorial interaction between local sets during encoding,
resulting in a +0.69 improvement in Triplet A@50.

Remark. Table 10 demonstrates the effectiveness of the components
within the proposed Granular3D. Due to superior environment in-
formation construction, network architecture, and contextual feature
extraction, Granular3D achieves comprehensive multi-granularity anal-
ysis, thereby ultimately benefiting the overall 3DSSG prediction per-
formance. Among all the proposed components, the HDSN, which is
directly related to multi-granularity analysis, exhibits the most signifi-
cant improvement in the experimental results, further underscoring its
importance.

4.4. Discussion and limitation

While our proposed Granular3D achieves optimal performance in
the 3D Scene Graph Prediction task and significantly enhances instance
identification, it does not exhibit outstanding performance in predicting
inter-instance relationships.

Specifically, Granular3D provides detailed multi-granularity anal-
ysis, extracting potential relationships between instance pairs at a
targeted stage within the hierarchical network, resulting in competitive
predicate prediction performance compared to current state-of-the-art
methods. However, the complexity of indoor environments leads to the
coexistence of many similar relationships between instance pairs, such
as ‘‘standing on’’, ‘‘leaning against’’ and ‘‘attached to’’ in the 3DSSG
dataset. The discernment of these subtle differences may limit the
performance of our method, as shown in the visualization of Fig. 6. On
the other hand, as reported in Table 9, our Granular3D also has certain
deficiencies in the balance between accuracy and efficiency.

Therefore, after comprehensive multi-granularity point cloud fea-
ture extraction, achieving the distinction of approximate inter-instance
relationships may require additional effort. For instance, designing tar-
geted loss functions, employing extra attention mechanisms, or incor-
porating natural language prior features could be considered. Thus, ex-
ploring more effective methods for predicting relationships between ob-
ject pairs while maintaining efficiency should be a meaningful research
direction for our further work.

5. Conclusion

In this paper, we introduce the Granular3D as a novel approach to
overcome the limitations of existing 3D Semantic Scene Graph (3DSSG)
prediction methods, particularly in the multi-granularity point cloud
feature extraction. The Granular3D comprises an Adaptive Instance En-
veloping Method (AIEM) a Hierarchical Dual-Stages Network (HDSN),
and a Gather Point Transformer structure. These approaches cover the
sub-scene construction, network architecture, and local point cloud
feature extraction of the multi-granularity analysis, improving the 3D
environment perception and further boosting the overall 3DSSG predic-
tion performance by +2.8% in the top-50 triplet accuracy. Our compre-
hensive experimental analysis demonstrates that our proposed methods
achieve new state-of-the-art performance in the 3DSSG dataset. These
results not only validate the effectiveness of our Granular3D but also
underscore the critical role of multi-granularity point cloud feature
extraction in 3DSSG prediction.
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