
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2020

The impact of automated feature selection techniques on the The impact of automated feature selection techniques on the

interpretation of defect models interpretation of defect models

Jirayus JIARPAKDEE

Chakkrit TANTITHAMTHAVORN

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
JIARPAKDEE, Jirayus; TANTITHAMTHAVORN, Chakkrit; and TREUDE, Christoph. The impact of automated
feature selection techniques on the interpretation of defect models. (2020). Empirical Software
Engineering. 25, (5), 3590-3638.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8796

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8796&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Published online: 1 August 2020

Empirical Software Engineering (2020) 25:3590–3638
https://doi.org/10.1007/s10664-020-09848-1

The impact of automated feature selection techniques
on the interpretation of defect models

Jirayus Jiarpakdee1 ·Chakkrit Tantithamthavorn1 ·Christoph Treude2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The interpretation of defect models heavily relies on software metrics that are used to con-
struct them. Prior work often uses feature selection techniques to remove metrics that are
correlated and irrelevant in order to improve model performance. Yet, conclusions that are
derived from defect models may be inconsistent if the selected metrics are inconsistent
and correlated. In this paper, we systematically investigate 12 automated feature selection
techniques with respect to the consistency, correlation, performance, computational cost,
and the impact on the interpretation dimensions. Through an empirical investigation of 14
publicly-available defect datasets, we find that (1) 94–100% of the selected metrics are
inconsistent among the studied techniques; (2) 37–90% of the selected metrics are incon-
sistent among training samples; (3) 0–68% of the selected metrics are inconsistent when
the feature selection techniques are applied repeatedly; (4) 5–100% of the produced sub-
sets of metrics contain highly correlated metrics; and (5) while the most important metrics
are inconsistent among correlation threshold values, such inconsistent most important met-
rics are highly-correlated with the Spearman correlation of 0.85–1. Since we find that the
subsets of metrics produced by the commonly-used feature selection techniques (except for
AutoSpearman) are often inconsistent and correlated, these techniques should be avoided
when interpreting defect models. In addition to introducing AutoSpearman which mitigates
correlated metrics better than commonly-used feature selection techniques, this paper opens
up new research avenues in the automated selection of features for defect models to optimise
for interpretability as well as performance.

Keywords Software analytics · Defect prediction · Model interpretation · Feature selection

Communicated by: Tim Menzies

� Jirayus Jiarpakdee
jirayus.jiarpakdee@monash.edu

Chakkrit Tantithamthavorn
chakkrit@monash.edu

Christoph Treude
christoph.treude@adelaide.edu.au

1 Faculty of Information and Technology, Monash University, Melbourne, Australia
2 School of Computer Science, The University of Adelaide, Adelaide, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09848-1&domain=pdf
http://orcid.org/0000-0002-2907-915X
mailto: jirayus.jiarpakdee@monash.edu
mailto: chakkrit@monash.edu
mailto: christoph.treude@adelaide.edu.au

1 Introduction

Defect models are statistical or machine learning models that are used to investigate the
impact of software metrics (e.g., lines of code) on defect-proneness and to identify defect-
prone software modules. The interpretation of defect models is used to validate hypotheses
to develop empirical theories related to software quality, which are essential to chart quality
improvement plans (Jiarpakdee et al. 2018a, 2020).

The conclusions of defect models heavily rely on the studied software metrics. How-
ever, software metrics often have strong correlation among themselves (Gil and Lalouche
2017; Jiarpakdee et al. 2016; Tantithamthavorn et al. 2016b; Zhang et al. 2017) and some
metrics are irrelevant to defect models (Menzies 2018; Shepperd et al. 2013). For example,
(Jiarpakdee et al. 2016) find that many metrics in defect datasets are correlated (e.g., the
branch count metric is linearly proportional to the decision count metric in some
NASA datasets). Shepperd et al. (2013) find that many metrics in the NASA datasets are
irrelevant to defect models (e.g., constant metrics).

To address these concerns, feature selection techniques are often applied in the defect
prediction domain (Arisholm et al. 2010; D’Ambros et al. 2012; Elish and Elish 2008; Kaur
and Malhotra 2008; Menzies et al. 2007; Okutan and Yıldız 2014; Shivaji et al. 2013).
However, prior work (D’Ambros et al. 2012; Kaur and Malhotra 2008; Arisholm et al.
2010; Elish and Elish 2008; Menzies et al. 2007) often relies on one feature selection tech-
nique which may pose a threat to the construct validity, i.e., conclusions may not hold
true if another feature selection technique is applied. In practice, feature selection tech-
niques should be applied only on training samples to avoid producing optimistically biased
performance estimates and interpretation (Li et al. 2017). Yet, the conclusions (e.g., the
most important metric) that are derived from defect models may be unreliable (i.e., pro-
duce misleading importance rankings of metrics) if the produced subsets of metrics are (1)
inconsistent among feature selection techniques, (2) inconsistent among different training
samples, (3) inconsistent among repetitions, and (4) inconsistent among different model
specifications.

In this paper, we investigate 11 commonly-used feature selection techniques and our
contribution AutoSpearman along five dimensions: (1) the consistency of the produced sub-
sets of metrics; (2) the correlation of the produced subsets of metrics; (3) the performance;
(4) the computational cost; and (5) the impact on the interpretation. Through an empirical
investigation of 14 publicly-available defect datasets of systems that span both proprietary
and open source domains, we address the following eight research questions:

(RQ1) Do feature selection techniques consistently produce the same subset of
metrics when applied on the same training sample?

Given the same training samples from the same defect datasets, different stud-
ied feature selection techniques produce inconsistent subsets of metrics. As many
as 94-100% of the metrics are inconsistently selected among the studied feature
selection techniques, suggesting that the conclusions of prior work could be altered
when another feature selection technique is applied.

(RQ2) Do feature selection techniques consistently produce the same subset of
metrics when applied across different training samples?

Given different training samples from the same defect dataset, the studied
feature selection techniques produce inconsistent subsets of metrics. We find
that 37-90% of the selected metrics are inconsistent, indicating that models that
are trained on different training samples produce different ranking of the most

3591Empirical Software Engineering (2020) 25:3590–3638

important metrics. Such inconsistent subsets of metrics restrict an application of
post-hoc multiple comparison analyses (e.g., a Scott-Knott test) to identify the most
important metrics when interpreting defect models.

(RQ3) Do feature selection techniques which make use of random seeds consistently
produce the same subset of metrics when they are applied repeatedly?

Given the same training sample from the same dataset but different random
seeds, Recursive Feature Elimination produces inconsistent subsets of metrics.
Such inconsistency amounts to 68% and 11% of the subsets of metrics for logis-
tic regression and random forest, respectively. This finding indicates that even
if Recursive Feature Elimination is applied on the same training sample, simply
altering a random seed can lead the technique to produce a different subset of
metrics.

(RQ4) Do feature selection techniques which make use of model specifications con-
sistently produce the same subset of metrics when reordering the model
specification of a defect model (e.g., from y ∼ x1+x2 to y ∼ x2+x1)?

Given the same training sample from the same defect dataset but different model
specifications, regardless of the search directions, Stepwise Regression is the only
studied feature selection technique that produces inconsistent subsets of metrics,
suggesting that Stepwise Regression is sensitive to the model specifications of
defect models.

(RQ5) Do feature selection techniques mitigate correlated metrics?
Given the same training sample from the same defect datasets, the subsets of

metrics produced by all of the studied feature selection techniques (except for
AutoSpearman) contain correlated metrics, i.e., collinearity and multicollinear-
ity. In other words, AutoSpearman is the only studied feature selection technique
which was designed to mitigate both collinearity and multicollinearity, and as our
experiments show, none of the other techniques achieves these goals. These find-
ings suggest that the interpretation of defect models constructed using the subsets
of metrics that are produced by the studied feature selection techniques (except for
AutoSpearman) may be misleading.

(RQ6) What is the impact of feature selection techniques on the performance of
defect models?

The results of the Mann-Whitney U test show that most of the performance dif-
ferences are not statistically significant (i.e., p-values > 0.05). The results of the
Kruskal-Wallis H test indicate that all of the performance differences across fea-
ture selection techniques are not statistically significant with p-values above 0.05.
Finally, the results of the Cliff’s |δ| effect size test show that such performance
differences are negligible to small for the AUC, F-measure, and MCC measures
(except for Information Gain and Chi-Squared-based). These results from statisti-
cal and effect size tests suggest that none of the studied feature selection techniques
has a greater impact on the performance of defect models than the others.

(RQ7) What is the computational cost of applying feature selection techniques?
The computational cost of filter-based feature selection techniques and

AutoSpearman is cheap, while such cost is expensive for wrapper-based feature
selection techniques and the consistency-based feature selection technique. The
computational cost of wrapper-based feature selection techniques is as high as 7

3592 Empirical Software Engineering (2020) 25:3590–3638

hours and 15 minutes for RFE-RF to find the best subset of metrics from one train-
ing sample of the Eclipse Platform 3.0 defect dataset. Such expensive computation
cost makes the application of wrapper-based feature selection techniques undesir-
able, particularly, when validating with model validation techniques that require
several repetitions (e.g., bootstrap validation technique).

(RQ8) Do correlation threshold values have an impact on the interpretation of defect
models?

No. Although the most important metrics are inconsistent among correlation
threshold values, such inconsistent most important metrics are highly correlated
with the Spearman correlation of 0.85–1, suggesting that correlation threshold
values do not impact the interpretation of defect models.

Our results lead us to conclude that the subsets of metrics produced by the commonly-
used automated feature selection techniques are (1) inconsistent among automated feature
selection techniques; (2) inconsistent among training samples; (3) inconsistent among repe-
titions; and (4) highly-correlated. These findings suggest that software quality improvement
plans that are derived from defect models that are trained on subsets of metrics produced by
commonly-used automated feature selection techniques may be inconsistent and inaccurate,
leading to wasting time and resources when applying such QA plans in practice.

Since we find that the subsets of metrics produced by the commonly-used feature selec-
tion techniques (except for AutoSpearman) are often inconsistent and correlated, these
techniques should be avoided when interpreting defect models. In addition to introducing
AutoSpearman which mitigates correlated metrics better than commonly-used feature selec-
tion techniques, this paper opens up new research avenues in the automated selection of
features for defect models to optimise for interpretability as well as performance.

This paper is an extension to our recent work (Jiarpakdee et al. 2018b) (i.e., RQs 1, 2, 5,
and 6). This extension makes the following five contributions:

(1) An investigation of the consistency of subsets of metrics among repetitions (RQ3).
(2) An investigation of the consistency of subsets of metrics among model specifications

(RQ4).
(3) An investigation of the computational cost of feature selection techniques (RQ7).
(4) An investigation of the impact of the correlation threshold values when producing

subsets of metrics on the interpretation of defect models (RQ8).
(5) A series of illustrative examples to provide an in-depth demonstration of the results

of our research questions. We also provide R code snippets to reproduce all of
the illustrative examples in the online appendix (RQ1, RQ2, RQ3, RQ4, RQ5, and
RQ8) (Jiarpakdee et al. 2018c).

Paper Organisation Section 2 provides a background of the studied feature selection tech-
niques. Section 3 elaborates on how we situate and formulate each research question from
prior studies. Section 4 describes the experimental setup.Section 5 presents the approach,
results, and illustrative examples with respect to the eight research questions. Section 6 dis-
cusses the trends of the commonly-selected correlated metrics. Section 7 elaborates on the
threats to the validity of our study. Finally, Section 8 draws conclusions.

2 Background

Feature selection is a data preprocessing technique for selecting a subset of the best
software metrics prior to constructing a defect model. There is a plethora of feature selection

3593Empirical Software Engineering (2020) 25:3590–3638

techniques that can be applied (Guyon and Elisseeff 2003), e.g., filter-based, wrapper-based,
and embedded-based families. Since it is impractical to study all of these techniques, we
would like to select a manageable set of feature selection techniques for our study. Sim-
ilar to Ghotra et al. (2017), we select two commonly-used families of feature selection
techniques, i.e., filter-based feature selection techniques and wrapper-based feature selec-
tion techniques. Thus, embedded-based feature selection techniques are excluded from our
analysis, as they are rarely explored in software engineering.

In this study, we select 11 commonly-used feature selection techniques from three fami-
lies (i.e., 5 filter-based, 5 wrapper-based feature selection techniques, and one hybrid-based
feature selection techniques), and our own contribution AutoSpearman (Jiarpakdee et al.
2018b) for evaluation. For filter-based feature selection techniques, we select correlation-
based (CFS), information gain (IG), chi-squared-based (χ2), consistency-based (CON),
and findCorrelation. For wrapper-based feature selection techniques, we select Recursive
Feature Elimination with two classification techniques (i.e., logistic regression (RFE-LR)
and random forest (RFE-RF)), and three directions of Stepwise Regression (i.e., forward
(Step-FWD), backward (Step-BWD), and both (Step-BOTH)). For a hybrid-based feature
selection technique, we use a combination of chi-squared based filter-based and wrapper-
based using logistic regression as provided by the HybridFS R package (Pandari et al.
2019). We select these feature selection techniques since they are the most commonly used
ones in previous work on defect prediction (Arisholm et al. 2010; D’Ambros et al. 2012;
Elish and Elish 2008; Kaur and Malhotra 2008; Menzies et al. 2007; Okutan and Yıldız
2014; Shivaji et al. 2013). Table 1 provides a summary of the detailed implementation for
the twelve studied feature selection techniques. Below, we provide the description of each
studied feature selection technique.

2.1 Filter-Based Feature Selection Techniques

Filter-based feature selection techniques search for the best subset of metrics according to
an evaluation criterion regardless of model construction. Since constructing models is not
required, the use of filter-based feature selection techniques is considered low cost and
widely used in the defect prediction literature (Arisholm et al. 2010; Cahill et al. 2013; Elish
and Elish 2008; Kaur and Malhotra 2008; Menzies et al. 2007; Okutan and Yıldız 2014).
There are many variants of filter-based feature selection techniques, which we describe
below.

Correlation-based feature selection Hall (1999) is a deterministic feature selection tech-
nique that searches for the best subset of metrics that shares the strongest relationship with
the outcome, while having a low correlation among themselves.

Information gain feature selection Mitchell (1997) is a deterministic feature selection
technique that ranks metrics according to the information gain with respect to the outcome.
The information gain is measured by how much information of the outcome is provided by
a metric.

Chi-Squared-based feature selection McHugh (2013) is a deterministic feature selec-
tion technique that assesses the importance of metrics with the χ2 statistic which is a
non-parametric statistical test of independence.

3594 Empirical Software Engineering (2020) 25:3590–3638

Ta
bl
e
1

A
su

m
m

ar
y

of
th

e
de

ta
ile

d
im

pl
em

en
ta

tio
n

fo
r

th
e

tw
el

ve
st

ud
ie

d
fe

at
ur

e
se

le
ct

io
n

te
ch

ni
qu

es

Ty
pe

Te
ch

ni
qu

e
R

Pa
ck

ag
e

R
Fu

nc
tio

n
A

bb
re

vi
at

io
n

Fi
lte

r-
ba

se
d

C
or

re
la

tio
n-

ba
se

d
F
S
e
l
e
c
t
o
r

c
f
s
(
c
l
a
s
s
∼m

e
t
r
i
c
s
,

d
a
t
a
s
e
t
)

C
FS

Fe
at

ur
e

Se
le

ct
io

n
In

fo
rm

at
io

n
G

ai
n

R
om

an
sk

ia
nd

K
ot

th
of

f
(2

01
3)

i
n
f
o
r
m
a
t
i
o
n
.
g
a
i
n
(
c
l
a
s
s
∼m

e
t
r
i
c
s
,

d
a
t
a
s
e
t
)

IG

Te
ch

ni
qu

es
C

hi
-S

qu
ar

ed
-b

as
ed

(χ
2
)

c
h
i
.
s
q
u
a
r
e
d
(
c
l
a
s
s
∼m

e
t
r
i
c
s
,

d
a
t
a
s
e
t
)

C
hi

sq

C
on

si
st

en
cy

-b
as

ed
c
o
n
s
i
s
t
e
n
c
y
(
c
l
a
s
s
∼m

e
t
r
i
c
s
,

d
a
t
a
s
e
t
)

C
O

N

fi
nd

C
or

re
la

tio
n

H
m
i
s
c

H
ar

re
ll

(2
01

3)
c
o
r
r
e
l
a
t
i
o
n
.
m
a
t
r
i
x

=
r
c
o
r
r
(
a
s
.
m
a
t
r
i
x
(
d
a
t
a
s
e
t
[
,

m
e
t
r
i
c
s
]
)
,

t
y
p
e

=
‘
s
p
e
a
r
m
a
n
’
)
$
r

c
a
r
e
t

K
uh

n
et

al
.(

20
17

)
c
o
r
r
e
l
a
t
e
d
.
m
e
t
r
i
c
s

=
f
i
n
d
C
o
r
r
e
l
a
t
i
o
n
(
c
o
r
r
e
l
a
t
i
o
n
.
m
a
t
r
i
x
,

c
u
t
o
f
f

=
0
.
7
,

e
x
a
c
t

=
T
R
U
E
)

fi
nd

C
or

re
la

tio
n

m
e
t
r
i
c
s
[
-
c
o
r
r
e
l
a
t
e
d
.
m
e
t
r
i
c
s
]

W
ra

pp
er

-b
as

ed
R

ec
ur

si
ve

Fe
at

ur
e

E
lim

in
at

io
n

c
a
r
e
t

K
uh

n
et

al
.(

20
17

)
l
r
F
u
n
c
s
.
A
U
C

=
l
r
F
u
n
c
s

R
FE

-L
R

Fe
at

ur
e

Se
le

ct
io

n
(L

og
is

tic
R

eg
re

ss
io

n)
l
r
F
u
n
c
s
.
A
U
C
$
s
u
m
m
a
r
y

=
t
w
o
C
l
a
s
s
S
u
m
m
a
r
y

Te
ch

ni
qu

es
c
o
n
t
r
o
l

=
r
f
e
C
o
n
t
r
o
l
(
f
u
n
c
t
i
o
n
s

=
l
r
F
u
n
c
s
.
A
U
C
,

m
e
t
h
o
d

=
"
b
o
o
t
"
,

n
u
m
b
e
r

=
i
t
e
r
a
t
i
o
n
s
)

r
f
e
(
x

=
d
a
t
a
s
e
t
[
,

m
e
t
r
i
c
s
]
,

y
=

d
a
t
a
s
e
t
[
,

c
l
a
s
s
]
,

r
f
e
C
o
n
t
r
o
l

=
c
o
n
t
r
o
l
,

m
e
t
r
i
c

=
"
R
O
C
"
)

3595Empirical Software Engineering (2020) 25:3590–3638

Ta
bl
e
1

(c
on

tin
ue

d)

Ty
pe

Te
ch

ni
qu

e
R

Pa
ck

ag
e

R
Fu

nc
tio

n
A

bb
re

vi
at

io
n

R
ec

ur
si

ve
Fe

at
ur

e
E

lim
in

at
io

n

r
f
F
u
n
c
s
.
A
U
C

=
r
f
F
u
n
c
s

R
FE

-R
F

(R
an

do
m

Fo
re

st
)

r
f
F
u
n
c
s
.
A
U
C
$
s
u
m
m
a
r
y

=
t
w
o
C
l
a
s
s
S
u
m
m
a
r
y

c
o
n
t
r
o
l

=
r
f
e
C
o
n
t
r
o
l
(
f
u
n
c
t
i
o
n
s

=
r
f
F
u
n
c
s
.
A
U
C
,

m
e
t
h
o
d

=
"
b
o
o
t
"
,

n
u
m
b
e
r

=
i
t
e
r
a
t
i
o
n
s
)

r
f
e
(
x

=
d
a
t
a
s
e
t
[
,

m
e
t
r
i
c
s
]
,

y
=

d
a
t
a
s
e
t
[
,

c
l
a
s
s
]
,

r
f
e
C
o
n
t
r
o
l

=
c
o
n
t
r
o
l
,

m
e
t
r
i
c

=
"
R
O
C
"
)

St
ep

w
is

e
R

eg
re

ss
io

n
s
t
a
t
s

n
u
l
l
.
m
o
d
e
l

=
g
l
m
(
c
l
a
s
s
∼1

,
d
a
t
a

=
d
a
t
a
s
e
t
,

f
a
m
i
l
y

=
b
i
n
o
m
i
a
l
(
)
)

St
ep

-F
W

D

(F
or

w
ar

d
D

ir
ec

tio
n)

Te
am

(2
01

7)
f
u
l
l
.
m
o
d
e
l

=
g
l
m
(
c
l
a
s
s
∼m

e
t
r
i
c
s
,

d
a
t
a

=
d
a
t
a
s
e
t
,

f
a
m
i
l
y

=
b
i
n
o
m
i
a
l
(
)
)

s
t
e
p
(
n
u
l
l
.
m
o
d
e
l
,

s
c
o
p
e

=
l
i
s
t
(
u
p
p
e
r

=
f
u
l
l
.
m
o
d
e
l
)
,

d
a
t
a

=
d
a
t
a
s
e
t
,

d
i
r
e
c
t
i
o
n

=
"
f
w
d
"
)

St
ep

w
is

e
R

eg
re

ss
io

n
f
u
l
l
.
m
o
d
e
l

=
g
l
m
(
c
l
a
s
s
∼m

e
t
r
i
c
s
,

d
a
t
a

=
d
a
t
a
s
e
t
,

f
a
m
i
l
y

=
b
i
n
o
m
i
a
l
(
)
)

(B
ac

kw
ar

d
D

ir
ec

tio
n)

s
t
e
p
(
f
u
l
l
.
m
o
d
e
l
,

d
a
t
a

=
d
a
t
a
s
e
t
,

d
i
r
e
c
t
i
o
n

=
"
b
w
d
"
)

St
ep

-B
W

D

St
ep

w
is

e
R

eg
re

ss
io

n
n
u
l
l
.
m
o
d
e
l

=
g
l
m
(
c
l
a
s
s
∼1

,
d
a
t
a

=
d
a
t
a
s
e
t
,

f
a
m
i
l
y

=
b
i
n
o
m
i
a
l
(
)
)

St
ep

-B
O

T
H

(B
ot

h
D

ir
ec

tio
ns

)
f
u
l
l
.
m
o
d
e
l

=
g
l
m
(
c
l
a
s
s
∼m

e
t
r
i
c
s
,

d
a
t
a

=
d
a
t
a
s
e
t
,

f
a
m
i
l
y

=
b
i
n
o
m
i
a
l
(
)
)

s
t
e
p
(
n
u
l
l
.
m
o
d
e
l
,

s
c
o
p
e

=
l
i
s
t
(
u
p
p
e
r

=
f
u
l
l
.
m
o
d
e
l
)
,

d
a
t
a

=
d
a
t
a
s
e
t
,

d
i
r
e
c
t
i
o
n

=
"
b
o
t
h
"
)

H
yb

ri
d

H
yb

ri
dF

S
H
y
b
r
i
d
F
S

Pa
nd

ar
ie

ta
l.

(2
01

9)
H
y
b
r
i
d
F
S
(
d
a
t
a
s
e
t
,

c
l
a
s
s
)

H
yb

ri
d

(F
ilt

er
an

d
W

ra
pp

er
)

A
ut

oS
pe

ar
m

an
R
n
a
l
y
t
i
c
a

Ta
nt

ith
am

th
av

or
n

an
d

Ji
ar

pa
kd

ee
(2

01
8)

A
u
t
o
S
p
e
a
r
m
a
n
(
d
a
t
a
s
e
t
,

m
e
t
r
i
c
s
,

s
p
e
a
r
m
a
n
.
t
h
r
e
s
h
o
l
d

=
0
.
7
,

v
i
f
.
t
h
r
e
s
h
o
l
d

=
5
)

A
ut

oS
pe

ar
m

an

3596 Empirical Software Engineering (2020) 25:3590–3638

Consistency-based feature selection Dash et al. (2000) is a deterministic feature selec-
tion technique that uses the consistency measure (i.e., inconsistency rate) to evaluate a
subset of metrics. The technique finds the optimal subset of metrics whose inconsistency
rate approximates the inconsistency rate of all metrics.

findCorrelation is a deterministic feature selection technique that reduces pair-wise cor-
relations among metrics using a correlation matrix. The technique can be applied on any
correlation matrix (e.g., Pearson and Spearman). In our paper, we choose the Spearman rank
correlation test instead of other correlation tests (e.g., Pearson) since the test is resilient to
non-normal distributions as commonly present in defect datasets.

Table 1 summarises the detailed implementation of the studied filter-based feature
selection techniques.

2.2 Wrapper-Based Feature Selection Techniques

Wrapper-based feature selection techniques (John et al. 1994; Kohavi and John 1997) use
classification techniques to assess each subset of metrics and find the best subset of metrics
according to an evaluation criterion. Wrapper-based feature selection is made up of three
steps, which we described below.

(Step 1) Generate a subset of metrics. Since it is impossible to evaluate all possible
subsets of metrics, wrapper-based feature selection often uses search techniques (e.g., best
first, greedy hill climbing) to generate candidate subsets of metrics for evaluation.

(Step 2) Construct a classifier using a subset of metrics with a predetermined classifi-
cation technique. Wrapper-based feature selection constructs a classification model using a
candidate subset of metrics for a given classification technique (e.g., logistic regression and
random forest).

(Step 3) Evaluate the classifier according to a given evaluation criterion. Once the clas-
sifier is constructed, wrapper-based feature selection evaluates the classifier using a given
evaluation criterion (e.g., Akaike Information Criterion).

For each candidate subset of metrics, wrapper-based feature selection repeats Steps 2 and
3 in order to find the best subset of metrics according to the evaluation criterion. Finally,
it provides the best subset of metrics that yields the highest performance according to the
evaluation criterion.

In this study, we select two commonly-used variants of wrapper-based feature selection
techniques, which we describe below.

Recursive Feature Elimination (RFE) Guyon and Elisseeff (2003) searches for the best
subset of metrics by recursively eliminating the least important metric. First, RFE con-
structs a model using all metrics and ranks metrics according to their importance score
(e.g., Breiman’s Variable Importance for random forest). In each iteration, RFE excludes the
least important metric and reconstructs a model. Finally, RFE provides the subset of met-
rics which yields the best performance according to an evaluation criterion (e.g., AUC). In
our study, we select the AUC measure since it measures the discriminatory power of mod-
els, as suggested by recent research (Ghotra et al. 2015; Lessmann et al. 2008; Rahman and
Devanbu 2013; Tantithamthavorn et al. 2019a). We use the implementation of the recursive
feature elimination using the rfe function as provided by the caret R package (Kuhn
et al. 2017).

3597Empirical Software Engineering (2020) 25:3590–3638

Stepwise Regression Chambers (1992) finds the best subset of metrics by individually
assessing each metric and adding (or removing) a metric if it improves an evaluation
criterion (e.g., Akaike Information Criterion). The process is repeated until there is no
improvement from adding or removing a metric. In this paper, we study three directions
(i.e., forward, backward, and both directions) of Stepwise Regression. We use the imple-
mentation of Stepwise Regression using the step function as provided by the stats R
package (Team 2017).

2.3 Hybrid-Based Feature Selection Techniques

Hybrid-based feature selection techniques (Hsu et al. 2011) combines filter-based and
wrapper-based feature selection techniques to search for the best subset of metrics. First,
a subset of candidate metrics is selected according to the evaluation criteria of filter-based
feature selection techniques. Then, the subset of candidate metrics is further refined with
wrapper-based feature selection techniques to identify the best subset of metrics. Hybrid-
based feature selection techniques have been used in many fields of studies, e.g., medical
diagnosis (Alzubi et al. 2017).

3598 Empirical Software Engineering (2020) 25:3590–3638

AutoSpearman In our recent work (Jiarpakdee et al. 2018b), we introduce AutoSpearman,
an automated metric selection approach based on the Spearman rank correlation test and
the VIf (Variance Inflation Factor) analysis for statistical inference. Below, we describe
AutoSpearman using Algorithm 1, where S is a set of Spearman coefficients for each pair
of metrics, CS is a set of Spearman coefficients that are above a Spearman threshold value
(sp.t), V is a set of VIf scores of metrics, CV is a set of VIf scores of metrics that are
above a VIf threshold value (vif .t), and M ′ is a set of non-correlated metrics based on the
Spearman rank correlation test and the Variance Inflation Factor analysis. The high-level
concept of AutoSpearman can be summarised into 2 parts:

(Part 1) Automatically select non-correlated metrics based on a Spearman rank correla-
tion test.

We first measure the correlation of all metrics using the Spearman rank correlation test
(ρ) (cf. Line 2). We use the interpretation of correlation coefficients (|ρ|) as provided by
Kraemer et al. (2003)—i.e., a Spearman correlation coefficient of above or equal to 0.7
is considered a strong correlation. Thus, we only consider the pairs that have an absolute
Spearman correlation coefficient of above or equal to the threshold value (sp.t) of 0.7 (cf.
Line 3).

To automatically select non-correlated metrics based on the Spearman rank correlation
test, we start from the pair that has the highest Spearman correlation coefficient (cf. Line
4). Since the two correlated metrics under examination can be linearly predicted with each
other, one of these two metrics must be removed. Thus, we select the metric that has the
lowest average values of the absolute Spearman correlation coefficients of the other metrics
that are not included in the pair (cf. Line 6). That means the removed metric is another metric
in the pair that is not selected (cf. Line 7). Since the removed metric may be correlated with
the other metrics, we remove any pairs of metrics that are correlated with the removed metric
(cf. Line 8). Finally, we exclude the removed metric from the set of the remaining metrics
(M ′) (cf. Line 9). We repeat this process until all pairs of metrics have their Spearman
correlation coefficient below a threshold value of 0.7 (cf. Line 5).

(Part 2) Automatically select non-correlated metrics based on a Variance Inflation Factor
analysis. We first measure the magnitude of multicollinearity of the remaining metrics (M ′)
from Part 1 using the Variance Inflation Factor analysis (cf. Line 12). We use a VIf
threshold value (vif .t) of 5 to identify the presence of multicollinearity, as suggested by Fox
(2015) and prior work (Bettenburg and Hassan 2010 Jiarpakdee et al. 2016, 2018a McIntosh
et al. 2014) (cf. Line 13).

To automatically remove correlated metrics from the Variance Inflation Factor analy-
sis, we identify the removed metric as the metric that has the highest VIf score (cf. Line
14). We then exclude the removed metric from the set of the remaining metrics (M ′) (cf.
Line 15). We apply the VIf analysis on the remaining metrics until none of the remaining
metrics have their VIf scores above or equal to the threshold value (cf. Line 16). Finally,
AutoSpearman produces a subset of non-correlated metrics based on the Spearman rank
correlation test and the VIf analysis (M ′) (cf. Line 17).

Similar to filter-based feature selection techniques, Part 1 of AutoSpearman mea-
sures the correlation of all metrics using the Spearman rank correlation test regardless
of model construction. Similar to wrapper-based feature selection techniques, Part 2
of AutoSpearman constructs linear regression models to measure the magnitude of multi-
collinearity of metrics. Thus, we consider AutoSpearman as a hybrid-based feature selection
technique (both filter-based and wrapper-based).

We also include another hybrid-based feature selection technique for comparison. We
use the implementation as provided by the HybridFS R package (Pandari et al. 2019)

3599Empirical Software Engineering (2020) 25:3590–3638

which uses a combination of chi-squared based filter-based and wrapper-based using logis-
tic regression. Table 2 provides an overview comparison of the studied feature selection
techniques.

3 Research Questions and RelatedWork

Feature selection has been widely used in software engineering to remove irrelevant met-
rics (i.e., metrics that do not share a strong relationship with the outcome) (Menzies 2018;
Shepperd et al. 2013) and correlated metrics (i.e., metrics that share a strong correlation
with one or more metrics) (Gil and Lalouche 2017; Jiarpakdee et al. 2016; Tantithamtha-
vorn et al. 2016b; Zhang et al. 2017). While several feature selection techniques have been
proposed in literature, little is known about the best feature selection techniques for model
interpretation.

Many ML research efforts propose feature selection techniques and investigate the
impact of such techniques on the performance of prediction models (Dash et al. 2000; Hall
and Smith 1997; Kohavi and John 1997). For example, (Dash et al. 2000) introduce the
consistency-based feature selection technique and investigated the impact of 5 search strate-
gies of such technique on 10 benchmark datasets as provided by the UC Irwin Machine
Learning repository (Blake and Merz 1998) using C4.5 and backpropagation neural net-
work. Hall and Smith (1997) propose the correlation-based feature selection technique and
evaluate the proposed technique compared with a wrapper-based feature selection technique
on 15 benchmark datasets as provided by the UC Irwin Machine Learning repository (Blake
and Merz 1998) using 3 classification techniques (i.e., IB1, Naive Bayes, and C4.5). Kohavi
and John (1997) propose the wrapper-based feature selection and investigate the model
performance produced by the technique comparing with 4 other filter-based feature selec-
tion techniques on 14 benchmark datasets as provided by the UC Irwin Machine Learning
repository (Blake and Merz 1998) using 5 classification techniques (i.e., ID3, Naive Bayes,
and C4.5). Nevertheless, little is known whether these findings hold true for the context of
software engineering.

Prior studies investigate the impact of feature selection techniques on the performance
of defect models (Ghotra et al. 2017; Lu et al. 2014; Osman et al. 2018; Rodrı́guez et al.
2007; Xu et al. 2016) (see Table 3). For example, (Ghotra et al. 2017) investigate the impact
of 29 feature selection techniques (as provided by Weka (Garner and et al. 1995)) on 18
PROMISE (Menzies et al. 2012) and NASA (Shepperd et al. 2013) datasets using 21 classi-
fication techniques. Lu et al. (2014) investigate the impact of 4 feature selection techniques
(i.e., Information Gain, Correlation-based, Forward selection, and Backward selection) on 3
releases of Eclipse datasets as provided by Zimmermann et al. (2007) using random forests.
Osman et al. (2018) investigate the impact of correlation-based and wrapper-based feature
selection techniques on 5 defect datasets as provided by D’Ambros et al. (2012) using 5 clas-
sification techniques. Rodrı́guez et al. (2007) investigate the impact of 5 feature selection
techniques on 5 PROMISE datasets (Menzies et al. 2012) using naive bayes and C4.5. Xu
et al. (2016) investigate the impact of 19 feature selection techniques on 11 NASA (Shep-
perd et al. 2013) and 4 AEEEM (D’Ambros et al. 2012) datasets using random forests. Yet,
no prior work has investigated the impact of feature selection techniques when interpreting
defect models. Thus, in this paper, we investigate 11 commonly-used feature selection tech-
niques and our own contribution AutoSpearman along five dimensions: (1) the consistency
of the produced subsets of metrics; (2) the correlation of the produced subsets of metrics;
(3) the performance; (4) the computational cost; and (5) the impact on the interpretation.

3600 Empirical Software Engineering (2020) 25:3590–3638

Ta
bl
e
2

A
n

ov
er

vi
ew

co
m

pa
ri

so
n

of
th

e
st

ud
ie

d
fe

at
ur

e
se

le
ct

io
n

te
ch

ni
qu

es

Fe
at

ur
e

Se
le

ct
io

n
Te

ch
ni

qu
e

(S
te

p
1)

Se
le

ct
re

le
va

nt
m

et
ri

cs
(S

te
p

2)
C

on
st

ru
ct

m
od

el
s

an
d

se
le

ct
m

et
ri

cs
ba

se
d

on
a

se
le

ct
io

n
m

ea
su

re
A

na
ly

se
s

C
or

re
la

tio
n

am
on

g
m

et
ri

cs

C
or

re
la

tio
n

be
tw

ee
n

m
et

ri
cs

an
d

th
e

ou
tc

om
e

Se
le

ct
io

n
M

ea
su

re
U

ns
up

er
vi

se
d

Su
pe

rv
is

ed
C

la
ss

if
ic

at
io

n
Te

ch
ni

qu
e

V
al

id
at

io
n

Te
ch

-
ni

qu
e

Se
le

ct
io

n
M

ea
su

re
D

ir
ec

tio
n

St
ep

w
is

e

C
or

re
la

tio
n-

ba
se

d
FS

Pe
ar

so
n

co
rr

el
a-

tio
n

-
-

-
-

-
-

-
C

on
si

st
en

cy
(A

gr
ee

m
en

t
of

th
e

se
le

ct
ed

m
et

ri
cs

)
an

d
Pe

rf
or

m
an

ce
(A

cc
ur

ac
y)

(H
al

l1
99

9)

In
fo

rm
at

io
n

G
ai

n
In

fo
rm

at
io

n
G

ai
n

-
-

-
-

-
-

-
Pe

rf
or

m
an

ce
(P

re
ci

si
on

an
d

R
ec

al
l)

(L
ew

is
an

d
R

in
gu

et
te

19
94

)

C
hi

-
Sq

ua
re

d-
ba

se
d

FS

C
hi

-
sq

ua
re

d
st

at
is

tic
s

-
-

-
-

-
-

-
Pe

rf
or

m
an

ce
(A

cc
ur

ac
y)

(H
ua

n
an

d
Se

tio
no

R
19

95
)

C
on

si
st

en
cy

-b
as

ed
FS

C
on

si
st

en
cy

m
ea

su
re

-
-

-
-

-
-

-
C

om
pu

ta
tio

na
lC

os
t(

T
im

e)
an

d
Pe

rf
or

m
an

ce
(E

rr
or

ra
te

)
(D

as
h

et
al

.2
00

0)

3601Empirical Software Engineering (2020) 25:3590–3638

Ta
bl
e
2

(c
on

tin
ue

d)

Fe
at

ur
e

Se
le

ct
io

n
Te

ch
ni

qu
e

(S
te

p
1)

Se
le

ct
re

le
va

nt
m

et
ri

cs
(S

te
p

2)
C

on
st

ru
ct

m
od

el
s

an
d

se
le

ct
m

et
ri

cs
ba

se
d

on
a

se
le

ct
io

n
m

ea
su

re
A

na
ly

se
s

C
or

re
la

tio
n

am
on

g
m

et
ri

cs

C
or

re
la

tio
n

be
tw

ee
n

m
et

ri
cs

an
d

th
e

ou
tc

om
e

Se
le

ct
io

n
M

ea
su

re
U

ns
up

er
vi

se
d

Su
pe

rv
is

ed
C

la
ss

if
ic

at
io

n
Te

ch
ni

qu
e

V
al

id
at

io
n

Te
ch

-
ni

qu
e

Se
le

ct
io

n
M

ea
su

re
D

ir
ec

tio
n

St
ep

w
is

e

fi
nd

C
or

re
la

tio
n

Sp
ea

rm
an

co
rr

el
a-

tio
n

-
-

-
-

-
-

-
C

or
re

la
tio

n
(C

ol
lin

ea
r-

ity
),

Pe
rf

or
m

an
ce

(R
M

SE
,R

-s
qu

ar
ed

,
an

d
M

A
E

),
an

d
In

te
r-

pr
et

at
io

n
(C

or
re

la
tio

n
th

re
sh

ol
d

va
lu

es
th

e
ra

nk
in

g
of

th
e

m
os

t
im

po
rt

an
tm

et
ri

cs
)

(A
lc

km
in

et
al

.2
01

9)

R
ec

ur
si

ve
Fe

at
ur

e
E

lim
in

at
io

n
(L

og
is

tic
R

eg
re

ss
io

n)

-
-

-
L

og
is

tic
R

eg
re

s-
si

on

B
oo

ts
tr

ap
va

lid
a-

tio
n

A
re

a
U

nd
er

th
e

re
ce

iv
er

op
er

at
or

ch
ar

ac
te

ri
s-

tic
C

ur
ve

(A
U

C
)

B
ac

kw
ar

d
Pe

rf
or

m
an

ce
(A

cc
u-

ra
cy

,S
en

si
tiv

ity
,

Sp
ec

if
ic

ity
,a

nd
St

ab
ili

ty
)

(Y
an

an
d

Z
ha

ng
20

15
)

3602 Empirical Software Engineering (2020) 25:3590–3638

Ta
bl
e
2

(c
on

tin
ue

d)

Fe
at

ur
e

Se
le

ct
io

n
Te

ch
ni

qu
e

(S
te

p
1)

Se
le

ct
re

le
va

nt
m

et
ri

cs
(S

te
p

2)
C

on
st

ru
ct

m
od

el
s

an
d

se
le

ct
m

et
ri

cs
ba

se
d

on
a

se
le

ct
io

n
m

ea
su

re
A

na
ly

se
s

C
or

re
la

tio
n

am
on

g
m

et
ri

cs

C
or

re
la

tio
n

be
tw

ee
n

m
et

ri
cs

an
d

th
e

ou
tc

om
e

Se
le

ct
io

n
M

ea
su

re
U

ns
up

er
vi

se
d

Su
pe

rv
is

ed
C

la
ss

if
ic

at
io

n
Te

ch
ni

qu
e

V
al

id
at

io
n

Te
ch

-
ni

qu
e

Se
le

ct
io

n
M

ea
su

re
D

ir
ec

tio
n

St
ep

w
is

e

R
ec

ur
si

ve
Fe

at
ur

e
E

lim
in

at
io

n
(R

an
do

m
Fo

re
st

)

-
-

-
R

an
do

m
Fo

re
st

B
oo

ts
tr

ap
va

lid
a-

tio
n

A
re

a
U

nd
er

th
e

re
ce

iv
er

op
er

at
or

ch
ar

ac
te

ri
s-

tic
C

ur
ve

(A
U

C
)

B
ac

kw
ar

d

St
ep

w
is

e
R

eg
re

ss
io

n
(F

or
w

ar
d

D
ir

ec
tio

n)

-
-

-
L

og
is

tic
R

eg
re

s-
si

on
W

ho
le

da
ta

A
ka

ik
e

In
fo

rm
at

io
n

C
ri

te
ri

on
(A

IC
)

Fo
rw

ar
d

Pe
rf

or
m

an
ce

(A
cc

ur
ac

y)
C

ai
et

al
.(

20
10

)

St
ep

w
is

e
R

eg
re

ss
io

n
(B

ac
kw

ar
d

D
ir

ec
tio

n)

-
-

-
L

og
is

tic
R

eg
re

s-
si

on
W

ho
le

da
ta

A
ka

ik
e

In
fo

rm
at

io
n

C
ri

te
ri

on
(A

IC
)

B
ac

kw
ar

d

St
ep

w
is

e
R

eg
re

s-
si

on
(B

ot
h

D
ir

ec
-

tio
n)

-
-

-
L

og
is

tic
R

eg
re

s-
si

on
W

ho
le

da
ta

A
ka

ik
e

In
fo

rm
at

io
n

C
ri

te
ri

on
(A

IC
)

Fo
rw

ar
d

an
d

B
ac

kw
ar

d

H
yb

ri
dF

S
C

hi
-

sq
ua

re
d

st
at

is
tic

s

L
og

is
tic

R
eg

re
s-

si
on

C
ro

ss
va

lid
at

io
n

A
re

a
U

nd
er

th
e

re
ce

iv
er

op
er

at
or

ch
ar

ac
te

ri
st

ic
C

ur
ve

(A
U

C
)

B
ac

kw
ar

d
-

3603Empirical Software Engineering (2020) 25:3590–3638

Ta
bl
e
2

(c
on

tin
ue

d)

Fe
at

ur
e

Se
le

ct
io

n
Te

ch
ni

qu
e

(S
te

p
1)

Se
le

ct
re

le
va

nt
m

et
ri

cs
(S

te
p

2)
C

on
st

ru
ct

m
od

el
s

an
d

se
le

ct
m

et
ri

cs
ba

se
d

on
a

se
le

ct
io

n
m

ea
su

re
A

na
ly

se
s

C
or

re
la

tio
n

am
on

g
m

et
ri

cs

C
or

re
la

tio
n

be
tw

ee
n

m
et

ri
cs

an
d

th
e

ou
tc

om
e

Se
le

ct
io

n
M

ea
su

re
U

ns
up

er
vi

se
d

Su
pe

rv
is

ed
C

la
ss

if
ic

at
io

n
Te

ch
ni

qu
e

V
al

id
at

io
n

Te
ch

-
ni

qu
e

Se
le

ct
io

n
M

ea
su

re
D

ir
ec

tio
n

St
ep

w
is

e

A
ut

oS
pe

ar
m

an
Sp

ea
rm

an
co

rr
el

at
io

n
L

og
is

tic
R

eg
re

ss
io

n
W

ho
le

da
ta

V
ar

ia
nc

e
In

fl
at

io
n

Fa
ct

or
(V

If
)

B
ac

kw
ar

d
C

on
si

st
en

cy
(A

gr
ee

m
en

t
on th

e
se

le
ct

ed
m

et
ri

cs
),

C
or

re
la

tio
n

(C
ol

lin
ea

ri
ty

an
d

M
ul

ti-
co

lli
ne

ar
ity

),
Pe

rf
or

m
an

ce
(A

U
C

),
C

om
-

pu
ta

tio
na

l
C

os
t

(T
im

e)
,

In
te

rp
re

ta
tio

n
(C

on
si

st
en

cy
an

d
C

or
re

la
tio

n
of

th
e

m
os

t
im

po
rt

an
t

m
et

ri
cs

)

3604 Empirical Software Engineering (2020) 25:3590–3638

Table 3 An overview comparison of our study with respect to prior work

Study #Datasets #Feature
Selection
Techniques

#Classification
Techniques

Analyses

Ghotra et al. (2017) 18 29 21 Performance (AUC)

Lu et al. (2014) 3 5 1 Performance (Precision, Recall,
Accuracy, and AUC)

Osman et al. (2018) 5 2 5 Consistency (Agreement on the
selected metrics) Performance
(RMSE)

Rodrı́guez et al. (2007) 5 5 2 Performance (Accuracy and F-
measure)

Xu et al. (2016) 15 20 1 Performance (AUC)

Our study 14 12 2 Consistency (Agreement on the
selected metrics), Correlation
(Collinearity and Multicollinear-
ity), Performance (AUC),
Computational Cost (Time),
Interpretation (Consistency and
Correlation of the most important
metrics)

The conclusions of prior work often rely on one feature selection technique (Arisholm
et al. 2010; D’Ambros et al. 2012; Elish and Elish 2008; Kaur and Malhotra 2008; Men-
zies et al. 2007) which may pose a threat to the construct validity, i.e., conclusions may
not hold true if another feature selection technique is applied. Nevertheless, little is known
about whether feature selection techniques produce the same subset of metrics among train-
ing samples and among feature selection techniques. We therefore formulate the following
research question:

(RQ1) Do feature selection techniques consistently produce the same subset of metrics
when applied on the same training sample?

In practice, feature selection techniques should only be applied on training samples
because of the unavailability of defect labels in testing samples. Since training samples are
often randomly generated from model validation techniques (e.g., out-of-sample bootstrap
validation or 10-folds cross-validation), feature selection techniques may produce different
subsets of metrics for each training sample. Different subsets of metrics among training
samples may pose a critical threat to the validity when analysing and identifying the most
important metrics. For example, prior work often applies a post-hoc multiple comparison
test (e.g., a Scott-Knott test) on the distributions of importance scores to identify statistically
distinct ranks of the most important metrics (Jiarpakdee et al. 2018a; Tantithamthavorn et al.
2019a; Tian et al. 2015). Nevertheless, little is known about whether feature selection tech-
niques produce the same subset of metrics among training samples. We therefore formulate
the following research question:

(RQ2) Do feature selection techniques consistently produce the same subset of metrics
when applied across different training samples?

Some feature selection techniques involve randomisation in the process of sampling data
for validation to produce the best subset of metrics. Such randomisation may lead a feature

3605Empirical Software Engineering (2020) 25:3590–3638

selection technique to produce different subsets of metrics when the technique is applied
repeatedly. Nevertheless, little is known about whether feature selection techniques produce
the same subset of metrics when they are applied repeatedly. We therefore formulate the
following research question:

(RQ3) Do feature selection techniques which make use of random seeds consistently
produce the same subset of metrics when they are applied repeatedly?

In theory, feature selection techniques should produce the same subset of metrics regard-
less of the ordering of metrics in a model specification. For example, given a model
specification of y ∼ x1 + x2, which has an order of x1 and x2. When reordering the model
specification (e.g., change from y ∼ x1 + x2 to y ∼ x2 + x1), feature selection techniques
may produce the different subset of metrics. However, in practice, some feature selection
techniques consider whether to include (or exclude) a metric in the output subset of metrics
based on the ordering of metrics in a model specification. Such process may lead a feature
selection technique to produce different subsets of metrics, if different model specifications
are applied. Nevertheless, little is known about whether feature selection techniques produce
the same subset of metrics across different model specifications (when reordering the model
specification of a defect model). We therefore formulate the following research question:

The conclusions of prior defect studies rely on the usage of built-in interpretation tech-
niques of classification techniques (e.g., ANOVA for logistic regression, and Breiman’s
Variable Importance for random forest). However, recent work points out that such inter-
pretation techniques are sensitive to correlated metrics (Berry 1993; Jiarpakdee et al.
2018a; Strobl et al. 2008; Tantithamthavorn et al. 2016b; Zhang et al. 2017). For example,
Jiarpakdee et al. (2018a) show that the interpretation of ANOVA Type-I can be altered by
simply rearranging the model specification (e.g., from y ∼ m1 + m2 to y ∼ m2 + m1 if m1
and m2 are correlated).

Despite posing a threat to the validity of previous work’s conclusion, little is known about
whether feature selection techniques mitigate correlated metrics. We therefore formulate the
following research question:

(RQ5) Do feature selection techniques mitigate correlated metrics?

Prior research effort has shown the benefits of applying feature selection techniques to
defect prediction models (Ghotra et al. 2017; Lu et al. 2014; Xu et al. 2016). For example,
Ghotra et al. (2017), Lu et al. (2014), and Xu et al. (2016) investigate the impact of fea-
ture selection techniques on the performance of defect models. Nevertheless, their findings
on the best feature selection techniques (i.e., lead to the model with the highest model per-
formance) are not always consistent. Prior studies also often use different defect datasets.
While our goal is model interpretation, practitioners may question the interpretation of inac-
curate defect models. We set out to investigate the impact of feature selection techniques
on the performance of defect models, particularly, on defect datasets from which we can
accurately derive interpretations through the following research question:

(RQ6) What is the impact of feature selection techniques on the performance of defect
models?

3606 Empirical Software Engineering (2020) 25:3590–3638

Due to the variation in metric selection, feature selection techniques may incur different
computational costs. For example, filter-based feature selection techniques search for the
best subset of metrics regardless of model construction. Wrapper-based feature selection
techniques rely on classification techniques to assess each subset of metrics and find the best
subset of metrics. Thus, we set out to investigate the computational cost of feature selection
techniques through the following research question:

(RQ7) What is the computational cost of applying feature selection techniques?

Literature has suggested a variety of correlation threshold values to indicate strong cor-
relations among metrics. For example, Kraemer et al. (2003) suggested the use of Spearman
correlation of 0.7 to indicate strong correlations between metrics. Similarly, Hinkle et al.
(2003) suggested that the Spearman correlation of 0.7–0.9 indicates strong correlations
between metrics. Mason and Perreault (1991), Fox and Monette (1992), and Hair et al.
(2006) suggested the use of VIf threshold values of 3, 5, and 10 to indicate strong corre-
lations between metrics, respectively. Such contradictory suggestions about the correlation
threshold may produce different subsets of metrics and interpretation of defect models.
Particularly, a stricter correlation threshold value identifies a higher number of correlated
metrics and produces a smaller subset of metrics. On the other hand, a more relaxed corre-
lation threshold value identifies a less number of correlated metrics and produces a larger
subset of metrics. Thus, we set out to investigate the impact of correlation threshold values
on the interpretation of defect models through the following research question:

(RQ8) Do correlation threshold values have an impact on the interpretation of defect
models?

4 Experimental Setup

In this section, we describe our experimental setup with respect to the studied datasets.

Studied Datasets In selecting the studied datasets, we identify three important criteria that
need to be satisfied:

Criterion 1—Publicly-available defect datasets. Prior work raises concerns about the
replicability of software engineering studies (Robles 2010). In order to foster future
replication of our work, we focus on publicly-available defect datasets.

Criterion 2—Datasets that are reliable and of high quality. Defect models rely greatly
on the quality of the datasets that are used to construct them. Shepperd et al. (2013) raise
concerns related to data quality in the NASA datasets. Furthermore, Petrić et al. (2016)
show that problematic data remain in the cleaned NASA datasets. Thus, the quality of the
NASA datasets is questionable. To ensure that the studied datasets are reliable and of high
quality, we exclude the NASA datasets from our study.

Criterion 3—Datasets from which we can accurately derive interpretations. Analysts
would only consider models that fit the data well (i.e., AUC > 0.7) and are stable (i.e., EPV

3607Empirical Software Engineering (2020) 25:3590–3638

Fig. 1 The distributions of the
defective ratio of the 101
publicly-available defect datasets

101 publicly−available
defect datasets

0.00 0.25 0.50 0.75 1.00

> 10) (Tantithamthavorn et al. 2017). Hence, we only focus on datasets that produce such
accurate and stable models. To identify datasets that produce accurate models, we generate
100 sets of training and testing samples using the out-of-sample bootstrap validation tech-
nique. While we use training samples to construct defect models (i.e., logistic regression
and random forests), we use testing samples to evaluate such models using the AUC mea-
sure. However, classification techniques that are constructed on imbalanced data are often
in favour of the majority class (Tantithamthavorn et al. 2019a). For example, if defective
modules are the majority class, defect models are likely to produce overly optimistic perfor-
mance estimates. Thus, we investigate the defective ratio (i.e., the proportion of defective
modules in a dataset) of the 101 publicly-available defect datasets. Figure 1 shows the dis-
tribution of defective ratio of the 101 publicly-available defect datasets. We find that the
values of defective ratio range from 0.02 to 0.99 with a median value of 0.2, suggesting
that publicly-available defect datasets are often imbalanced. As suggested by Agrawal and
Menzies (2018), we apply the SMOTE imbalance technique (Chawla et al. 2002) to all of
the generated 100 sets of training samples prior to constructing defect models. We use the
implementation of the SMOTE function as provided by the DMwR R package (Torgo and
Torgo 2015). We compute the average AUC estimation of all models and exclude datasets
that produce models with the average AUC estimation of below 0.7. To identify datasets that
produce stable models, we compute the EPV measure for each dataset. EPV (Event-Per-
Variables) is a measure of the risk of overfitting. EPV is calculated as a ratio of the number
of occurrences of the least frequently occurring class of the dependent variable (i.e., the
number of defective modules) to the number of software metrics that are used to train the
model. We then exclude datasets that have the EPV values of below 10 since models that
are constructed using such datasets have a high risk of overfitting (Tantithamthavorn et al.
2017).

To satisfy criterion 1, similar to prior work (Tantithamthavorn et al. 2016a), we begin our
study using a collection of the 101 publicly-available defect datasets that are collected from
5 different corpora, i.e., 76 datasets from the Tera-PROMISE Repository (Menzies et al.
2012), 12 clean NASA datasets as provided by Shepperd et al. (2013), 5 datasets as provided
by Kim et al. (2011), 5 datasets as provided by D’Ambros et al. (2010, 2012), and 3 datasets
as provided by Zimmermann et al. (2007). To satisfy criterion 2, we exclude 12 datasets
for which their data quality is questionable. Finally, to satisfy criterion 3, we exclude 75
datasets which have an EPV value below 10 and produce models with an AUC value below
0.7 after applying the SMOTE technique. Hence, we focus on 14 defect datasets from 4
corpora. In particular, 6 datasets (i.e., Apache POI 2.5, Apache POI 3.0, Apache Xalan 2.6,
Apache Xerces 1.4, Proprietary 1, and Proprietary 4) as provided by Jureczko and Madeyski
(2010); 3 datasets (i.e., Apache Lucene 2.4, Eclipse JDT, and Eclipse Mylyn) as provided by
D’Ambros et al. (2010, 2012); 3 datasets (i.e., Eclipse Platform 2, Eclipse Platform 2.1, and
Eclipse Platform 3) as provided by Zimmermann et al. (2007); and 2 datasets (i.e., Eclipse
Debug and Eclipse SWT 3.4) as provided by Kim et al. (2011).

Table 4 shows a statistical summary of the 14 studied datasets.

3608 Empirical Software Engineering (2020) 25:3590–3638

Table 4 A statistical summary of the studied datasets

Project Dataset Modules Metrics Defective Ratio EPV AUCLR AUCRF

Apache Lucene 2.4 340 20 60 10 0.79 0.85

POI 2.5 385 20 64 12 0.79 0.85

POI 3.0 442 20 64 14 0.79 0.85

Xalan 2.6 885 20 46 21 0.79 0.85

Xerces 1.4 588 20 74 22 0.79 0.85

Eclipse Debug 3.4 1,065 17 25 15 0.72 0.81

JDT 997 15 21 14 0.81 0.82

Mylyn 1,862 15 13 16 0.78 0.74

Platform 2 6,729 32 14 30 0.82 0.84

Platform 2.1 7,888 32 11 27 0.77 0.78

Platform 3 10,593 32 15 49 0.79 0.81

SWT 3.4 1,485 17 44 38 0.87 0.97

Proprietary Prop 1 18,471 20 15 137 0.75 0.79

Prop 4 8,718 20 10 42 0.74 0.72

5 Experimental Results

In this section, we present the approach, results, and illustrative examples with respect to
the eight research questions.

(RQ1) Do feature selection techniques consistently produce the same subset of
metrics when applied on the same training sample?

Approach To address RQ1, we investigate the consistency of subsets of metrics that are
produced by feature selection techniques. We first generate training samples. Then, we
apply feature selection techniques on each training sample. Finally, we analyse the consis-
tency of subsets of metrics that are produced by the studied feature selection techniques. We
describe each step below.

(Step 1) Generate training samples. To generate training samples, we use the out-
of-sample bootstrap validation technique that (1) leverages aspects of statistical infer-
ence (Efron and Tibshirani 1993; Friedman et al. 2001; Harrell 2015); and (2) produces the
least bias and variance of performance estimates for defect prediction (Tantithamthavorn
et al. 2017). We randomly generate a bootstrap sample of size N with replacement from an
original dataset, where N is the size of the original dataset. On average, 36.8% of the origi-
nal dataset will not be selected, since a bootstrap sample is selected with replacement (Efron
and Tibshirani 1993). We repeat the out-of-sample bootstrap process 100 times.

(Step 2) Apply feature selection techniques. We only apply feature selection techniques
on a training sample, instead of the whole dataset in order to avoid producing optimistically
biased performance estimates and interpretation (Li et al. 2017). The subsets of metrics
that are produced by each studied feature selection technique for all studied datasets are
available in the online appendix (Jiarpakdee et al. 2018c).

(Step 3) Analyse the consistency of subsets of metrics among different feature selec-
tion techniques. Ideally, feature selection techniques should consistently produce the same
subset of metrics. We measure the consistency as a percentage of the unique metrics that

3609Empirical Software Engineering (2020) 25:3590–3638

consistently appeared among all of the studied feature selection techniques compared to all
of the unique metrics for all studied feature selection techniques. We write the following
equation to describe the consistency of subsets of metrics among different feature selection
techniques (CFS).

CFS = |SFS1TSj
∩ SFS2TSj

... ∩ SFS9TSj
|

|SFS1TSj
∪ SFS2TSj

... ∪ SFS9TSj
| (1)

where SFSiTSj
is a subset of metrics that is produced by a feature selection technique (FSi)

when applied on a training sample (TSj).
We present the consistency percentage using boxplots in Fig. 2.

Results When applying the studied feature selection techniques to the same training
sample, only 0-6% of the metrics are consistently selected. Figure 2 shows the percentage
of metrics that are consistently selected when applying feature selection techniques on each
training sample of each defect dataset. We observe that, at the median, only 0-6% of the
metrics are consistently selected among the studied feature selection techniques. In other
words, as many as 94-100% of the metrics are inconsistently selected among the studied
feature selection techniques, suggesting that feature selection techniques select different
metrics even if they are applied on the same training sample. We provide an illustrative
example below.

Illustrative Example We select the Eclipse Platform 2 dataset as the subject of this example,
since it is widely used in a large number of defect prediction studies (Bird et al. 2009;
Moser et al. 2008; Zimmermann et al. 2009). We first draw a bootstrap training sample
(cf. Step 1 of RQ1) and apply all studied feature selection techniques (cf. Step 2 of RQ1).
Unfortunately, we observe that none of the metrics is consistently selected across all studied
feature selection techniques. The most commonly-selected metric is pre, which is selected
by the 10 studied feature selection techniques except for information gain and chi-squared-
based. This observation raises concerns related to the external and the conclusion validity of
prior work that their conclusions could be altered when another feature selection technique
is applied. We report the produced subsets of metrics for this illustrative example in Table 5.

Fig. 2 The percentage of metrics
that are consistently selected
when applying feature selection
techniques to the same training
sample for all defect datasets

Proprietary 4
Proprietary 1

Eclipse SWT 3.4
Eclipse 3.0
Eclipse 2.1
Eclipse 2.0

Eclipse Mylyn
Eclipse JDT

Eclipse Debug 3.4
Apache Xerces 1.4
Apache Xalan 2.6

Apache POI 3.0
Apache POI 2.5

Apache Lucene 2.4

0 25 50 75 100
Percentage (%)

3610 Empirical Software Engineering (2020) 25:3590–3638

Ta
bl
e
5

T
he

su
bs

et
s

of
m

et
ri

cs
th

at
ar

e
pr

od
uc

ed
by

al
lo

f
th

e
tw

el
ve

st
ud

ie
d

fe
at

ur
e

se
le

ct
io

n
te

ch
ni

qu
es

on
a

tr
ai

ni
ng

sa
m

pl
e

fr
om

th
e

E
cl

ip
se

Pl
at

fo
rm

2
da

ta
se

t

3611Empirical Software Engineering (2020) 25:3590–3638

Ta
bl
e
5

(c
on

tin
ue

d)

C
FS

IG
C

hi
sq

C
O

N
fi

nd
C

or
re

la
tio

n
R

FE
-L

R
R

FE
-R

F
St

ep
-F

W
D

St
ep

-B
W

D
St

ep
-B

O
T

H
H

yb
ri

d
A

ut
oS

pe
ar

m
an

W
hi

le
a

m
ar

k
in

di
ca

te
s

th
at

a
m

et
ri

c
is

se
le

ct
ed

by
a

fe
at

ur
e

se
le

ct
io

n
te

ch
ni

qu
e,

a
m

ar
k

in
di

ca
te

s
th

at
a

m
et

ri
c

is
no

ts
el

ec
te

d
by

a
fe

at
ur

e
se

le
ct

io
n

te
ch

ni
qu

e

3612 Empirical Software Engineering (2020) 25:3590–3638

Given the same training samples from the same defect datasets, different studied feature
selection techniques produce inconsistent subsets of metrics.As many as 94-100% of
the metrics are inconsistently selected among the studied feature selection techniques,
suggesting that the conclusions of prior work could be altered when another feature
selection technique is applied.

(RQ1) Do feature selection techniques consistently produce the same subset of
metrics when applied across different training samples?

Approach To address RQ2, we investigate the consistency of subsets of metrics across
different training samples. Similar to RQ1, we start from the subsets of metrics that are
produced by all studied feature selection techniques for each training sample of each stud-
ied dataset from RQ1 (cf. Step 2 of RQ1). Ideally, each feature selection technique should
produce the same subset of metrics for all of the 100 training samples. We compute the
consistency as a percentage of the unique metrics that consistently appeared among all of
the 100 training samples compared to all of the unique metrics for all training samples.
We write the following equation to describe the consistency of subsets of metrics across
different training samples (CTS).

CTS = |SFSiTS1 ∩ SFSiTS2 ... ∩ SFSiTS100 |
|SFSiTS1 ∪ SFSiTS2 ... ∪ SFSiTS100 |

(2)

where SFSiTSj
is a subset of metrics that is produced by a feature selection technique (FSi)

when applied on a training sample (TSj). Finally, we present the consistency percentage
using boxplots in Fig. 3.

Results Surprisingly, when applying the studied feature selection techniques to differ-
ent training samples from the same dataset, 10-63% of the metrics are consistently
selected. Figure 3 shows the percentage of metrics that are consistently selected when
applying feature selection techniques to different training samples. We find that, at the
median, 12%, 33%, 33%, 29%, 63%, 10%, 45%, 16%, 21%, 15%, 18%, and 58% of the
metrics are consistently selected when applying CFS, IG, Chisq, CON, findCorrelation,
RFE-LR, RFE-RF, Step-FWD, Step-BWD, Step-BOTH, Hybrid, and AutoSpearman to
different training samples, respectively. In other words, the selected metrics are 37-90%

Fig. 3 The percentage of metrics
that are consistently selected
when applying feature selection
techniques to different training
samples from the same dataset

AutoSpearman
Hybrid

Step−Both
Step−BWD
Step−FWD

RFE−RF
RFE−LR

findCorrelation
CON

Chisq
IG

CFS

0 25 50 75 100
Percentage (%)

3613Empirical Software Engineering (2020) 25:3590–3638

Fig. 4 A Venn diagram of the
number of overlapping unique
instances between two bootstrap
samples

1580
(27%)

1576
(27%)

2693
(46%)

TS1 TS2

inconsistent when applying the studied feature selection techniques to different training
samples from the same dataset.

Although the training samples are drawn from the same original dataset, none of the
commonly-used feature selection techniques consistently produce the same subset of met-
rics. Figure 4 shows a Venn diagram of the number of overlapping unique instances between
two bootstrap samples. According to the figure, we find that the inconsistency of subsets of
metrics among training samples has to do with the differences in the characteristics of data
among such training samples. In this example, only 46% of the unique samples are overlap-
ping, while 54% of them are different. Thus, different training samples may have different
correlation among metrics, leading the correlation-based feature selection technique to pro-
duce different subsets of metrics that share the strongest relationship with the outcome while
having a low correlation among themselves for such different training samples.

The inconsistency of subsets of metrics among training samples suggests that the ran-
domisation of training samples could produce defect models that are constructed from
different subsets of metrics even if the training samples are drawn from the same dataset.
Below, we provide a detailed illustrative example to demonstrate such inconsistency of
subsets of metrics in practice.

Illustrative Example Similar to prior illustrative examples in RQ1, we use the Eclipse
Platform 2 dataset and the correlation-based feature selection technique (CFS) for this illus-
trative example. First, we draw two bootstrap training samples (cf. Step 1 of RQ1) and
apply CFS on these samples. Table 6 shows the subsets of metrics that are produced by the
correlation-based feature selection techniques when applied on the two bootstrap training
samples.

Table 6 The subsets of metrics that are produced by the correlation-based feature selection technique (CFS)
when applied on different training samples

While the green texts represent metrics that are consistently selected, the red texts represent inconsistently
selected metrics

3614 Empirical Software Engineering (2020) 25:3590–3638

We observe that only 5 of 12 metrics are consistently selected. This inconsistency in
subsets of metrics restricts an application of post-hoc multiple comparison analyses (e.g.,
a Scott-Knott test) to identify the most important metrics when interpreting defect models
since post-hoc multiple comparison analyses require balanced and completed data (i.e., all
of the studied metrics must have the same number of instances without any missing values).
Thus, when the importance score of a metric is not available due to the metric not being
selected by a feature selection technique, it is not feasible to apply multiple comparison
analyses.

Given different training samples from the same defect dataset, the studied feature selec-
tion techniques produce inconsistent subsets of metrics. We find that 37-90% of the
selected metrics are inconsistent, indicating that models that are trained on differ-
ent training samples produce different ranking of the most important metrics. Such
inconsistent subsets of metrics restrict an application of post-hoc multiple compar-
ison analyses (e.g., a Scott-Knott test) to identify the most important metrics when
interpreting defect models.

(RQ3) Do feature selection techniques which make use of random seeds consistently
produce the same subset of metrics when they are applied repeatedly?

Approach To address RQ3, we investigate the consistency of subsets of metrics when fea-
ture selection techniques are applied repeatedly. Unlike Step 1 of RQ1 and RQ2, for each
studied defect dataset, we use only one bootstrap training sample. To foster future repli-
cation studies, we set random seeds prior to applying feature selection techniques. Thus,
we apply feature selection techniques on one training sample for all studied defect datasets
with different random seeds. In RQ3, we focus on feature selection techniques which make
use of random seeds and thus perform the analysis only for Recursive Feature Elimina-
tion. Finally, we analyse the consistency of subsets of metrics that are produced by feature
selection techniques. We describe each step below.

(Step 1) Apply feature selection techniques on the training sample with different random
seeds. Since the goal of this research question is to measure the consistency across different
random seeds, we use 100 random seeds that range from 1 to 100 prior to applying feature
selection techniques. We then apply feature selection techniques on the training sample and
produce 100 subsets of metrics for each technique and each defect dataset.

(Step 2) Analyse the consistency of subsets of metrics across different random seeds. We
start from the 100 subsets of metrics that are produced in Step 1 for each technique and
each defect dataset. Ideally, each technique should produce the same subset of metrics for
all 100 random seeds. We compute the consistency as a percentage of the unique metrics
that consistently appeared among all of the 100 random seeds compared to all of the unique
metrics for all random seeds. We write the following equation to describe the consistency
of subsets of metrics when a feature selection technique is applied repeatedly (CRS).

CRS = |SFSiRS1TS ∩ SFSiRS2TS... ∩ SFSiRS100TS|
|SFSiRS1TS ∪ SFSiRS2TS... ∪ SFSiRS100TS| (3)

, where SFSiRSj TS is a subset of metrics that is produced by a feature selection technique
(FSi) when applied with a random seed (RSj) on a training sample (TS)). We present the
consistency percentage using boxplots in Fig. 5.

3615Empirical Software Engineering (2020) 25:3590–3638

Fig. 5 The percentage of metrics
that are consistently selected
when applying feature selection
techniques with different random
seeds

RFE−RF

RFE−LR

0 25 50 75 100
Percentage (%)

Results Recursive Feature Elimination produces inconsistent subsets of metrics when
applied repeatedly with different random seeds regardless of the studied classification
techniques.

Figure 5 shows the percentage of metrics that are consistently selected when repeatedly
applying feature selection techniques with different random seeds. We observe that, at the
median, 32% and 89% of the metrics are consistently selected when repeatedly applying
Recursive Feature Elimination with logistic regression and random forest (i.e., RFE-LR and
RFE-RF, respectively) with different random seeds. In other words, the selected metrics
are 68% and 11% inconsistent for RFE-LR and RFE-RF, respectively. Similar to RQ2, we
observe a higher consistency of subsets of metrics when applying Recursive Feature Elim-
ination with random forests compared to logistic regression. We suspect that such a higher
consistency of subsets of metrics has to do with the process of constructing and using multi-
ple trees for a random forests model. For example, unlike logistic regression that constructs
only one model, random forest constructs multiple trees using out-of-bag samples gener-
ated from training data and uses the aggregated results of these trees to generate predictions.
Thus, the construction of multiple trees and the use of aggregated results lead random forests
to produce a higher consistency of subsets of metrics than logistic regression when applied
repeatedly.

The inconsistency of subsets of metrics when applied repeatedly with different random
seeds suggests that although these variants of Recursive Feature Elimination are applied
on the same sample, simply altering a random seed can lead them to produce a differ-
ent subset of metrics. We suspect that the inconsistency in subsets of metrics has to do
with the randomisation in the process of sampling data for validation in Recursive Feature
Elimination.

We discuss and provide a detailed illustrative example below.

Illustrative Example Similar to prior illustrative examples in RQ1 and RQ2, we use the
Eclipse Platform 2 dataset as the subject of this example. First, we draw a bootstrap train-
ing sample (unlike Step 1 of RQ1, we use only one training sample) and apply RFE-LR
with two different random seeds, i.e., set.seed(1) and set.seed(2). We find that
RFE-LR selects 16 metrics when applied with one random seed, while selecting 20 metrics
when applied with another random seed. Across these subsets of metrics, 16 metrics are
consistently selected. Such inconsistency in subsets of metrics when repeatedly applying
Recursive Feature Elimination technique raises concerns related to the reliability and the
construct validity. We provide the subsets of metrics that are produced by RFE-LR when
applied with two different random seeds for this illustrative example in Table 7.

3616 Empirical Software Engineering (2020) 25:3590–3638

Table 7 The subsets of metrics that are produced by the Recursive Feature Elimination technique with
logistic regression (RFE-LR) when applied with different random seeds on the same training sample

While the green texts represent metrics that are consistently selected, the red texts represent inconsistently
selected metrics

Given the same training sample from the same dataset but different random seeds,
Recursive Feature Elimination produces inconsistent subsets of metrics. Such incon-
sistency amounts to 68% and 11% of the subsets of metrics for logistic regression and
random forest, respectively. This finding indicates that even if Recursive Feature Elim-
ination is applied on the same training sample, simply altering a random seed can lead
the technique to produce a different subset of metrics.

(RQ4) Do feature selection techniques which make use of model specifications con-
sistently produce the same subset of metrics when reordering the model
specification of a defect model (e.g., from y ∼ x1+x2 to y ∼ x2+x1)?

Approach To address RQ4, we investigate the consistency of subsets of metrics across
different model specifications. Similar to RQ3, for each studied defect dataset, we use only
one bootstrap training sample. Then, we apply feature selection techniques on the training
sample with different model specifications for all studied defect datasets. In RQ4, we focus
on feature selection techniques which make use of model specifications and thus perform the
analysis only for the 3 variants of Stepwise Regression. Finally, we analyse the consistency
of subsets of metrics that are produced by feature selection techniques. We describe each
step below.

(Step 1) Apply feature selection techniques on the training sample with different model
specifications. Since it is difficult to measure the consistency across all possible model
specifications (e.g., 10 metrics would lead to 10! different model specifications), in this
study, we generate 100 model specifications by randomly rearranging the ordering of met-
rics of each studied defect dataset differently for 100 times. For example, y ∼ x1 + x2 + ...,
y ∼ x2 + x1 + ..., and y ∼ x3 + x1 + We then apply feature selection techniques on the
training sample with 100 model specifications and produce 100 subsets of metrics for each
technique and each defect dataset.

(Step 2) Analyse the consistency of subsets of metrics across different model specifica-
tions. We start from the subsets of metrics in Step 1 that are produced with 100 variations
of model specification on the training sample for each feature selection technique of each
studied dataset. Ideally, each feature selection technique should produce the same subset of
metrics for all 100 variations of model specification regardless of the ordering of metrics,
e.g., FS(y ∼ x1 + x2) = FS(y ∼ x2 + x1). We compute the consistency as a percentage of

3617Empirical Software Engineering (2020) 25:3590–3638

Fig. 6 The percentage of metrics
that are consistently selected
when applying feature selection
techniques with different model
specifications

Step−Both

Step−BWD

Step−FWD

0 25 50 75 100
Percentage (%)

the unique metrics that consistently appeared among all of the 100 variations of the model
specification compared to all of the unique metrics for all model specifications. We write the
following equation to describe the consistency of subsets of metrics across different model
specifications (CMS).

CMS = |SFSiMS1TS ∩ SFSiMS2TS... ∩ SFSiMS100TS|
|SFSiMS1TS ∪ SFSiMS2TS... ∪ SFSiMS100TS| (4)

, where SFSiMSj TS is a subset of metrics that is produced by a feature selection technique
(FSi) when applied with a model specification (MSj) on a training sample (TS)). We present
the consistency percentage using boxplots in Fig. 6.

Results All of the 3 variants of Stepwise Regression produce inconsistent subsets
of metrics across model specifications. Figure 6 shows the percentage of metrics that
are consistently selected when applying feature selection techniques with different model
specifications.

We observe an inconsistency of subsets of metrics that are produced by Stepwise
Regression when reordering the model specification in the Eclipse SWT 3.4 dataset.

We discuss and provide a detailed illustrative example below.

Illustrative Example We select the Eclipse SWT 3.4 dataset, the problematic defect dataset,
as the subject of this example. Similar to the prior illustrative example in RQ3, we draw
only one bootstrap training sample and apply forward direction Stepwise Regression with
two different model specifications. Table 8 shows the subsets of metrics that are produced
by forward direction Stepwise Regression when applied with two different model specifica-
tions. We observe that, while 7 metrics are consistently selected, Stepwise Regression either
selects NIM or WMC depending on which metric appears first in the ordering of metrics in a
model specification. For example, given a model specification of defect ∼ NIM + WMC
+ ..., Stepwise Regression will select NIM rather than WMC since the metric appears first

Table 8 The subsets of metrics that are produced by the forward direction Stepwise Regression (Step-FWD)
when applied with different model specifications on the same training sample

While the green texts represent metrics that are consistently selected, the red texts represent inconsistently
selected metrics

3618 Empirical Software Engineering (2020) 25:3590–3638

in the model specification. The execution log of Stepwise Regression shows that including
either of these metrics equally improves the AIC value of a regression model. This find-
ing leads us to conclude that, when including (or excluding) either of the two metrics can
equally improve the AIC value of a regression model, Stepwise Regression includes (or
excludes) the first metric that appears in the model specification. We further investigate the
correlation of these problematic metrics and find that their Spearman correlation coefficient
is as high as 0.87, suggesting that they are highly-correlated metrics. This finding raises
concerns that correlated metrics may introduce the inconsistency of subsets of metrics when
applying Stepwise Regression with different model specifications. We provide the subset of
metrics for this illustrative example in Table 8 and the mentioned part of the execution log
of Stepwise Regression in Fig. 7.

Given the same training sample from the same defect dataset but different model spec-
ifications, regardless of the search directions, Stepwise Regression is the only studied
feature selection technique that produces inconsistent subsets of metrics, suggesting
that Stepwise Regression is sensitive to the model specifications of defect models.

(RQ5) Do feature selection techniques mitigate correlated metrics?

Approach To identify correlated metrics, we apply correlation analyses on subsets of met-
rics that are produced by feature selection techniques. Similar to RQ1 and RQ2, we start
from the subsets of metrics that are produced by all studied feature selection techniques for
each training sample of each studied dataset from RQ1 (cf. Step 2 of RQ1). Then, we anal-
yse the correlation among metrics for each subset of metrics that are produced by the studied
feature selection techniques. In this paper, we focus on two types of correlation among
metrics, i.e., collinearity and multicollinearity. Collinearity is a phenomenon in which one
metric can be linearly predicted by another metric. On the other hand, multicollinearity is
a phenomenon in which one metric can be linearly predicted by a combination of two or
more metrics. We describe each step below.

(Step 1) Analyse collinearity. To analyse collinearity, we use a Spearman rank correlation test
(ρ) to measure the correlation between metrics. We choose the Spearman test instead of
other correlation tests (e.g., Pearson) since the Spearman test is resilient to non-normal
distributions as commonly present in defect datasets. We use the interpretation of correla-
tion coefficients (|ρ|) as provided by Kraemer et al. (2003), i.e., a Spearman correlation

Fig. 7 The execution log of Stepwise Regression

3619Empirical Software Engineering (2020) 25:3590–3638

coefficient of above 0.7 is considered as a strong correlation. Thus, two metrics which
have their Spearman correlation coefficient of above 0.7 are considered correlated. We use
the implementation of the rcorr function as provided by the Hmisc R package (Harrell
2013).

(Step 2) Analyse multicollinearity. To analyse multicollinearity, we use the Variance
Inflation Factor analysis (VIf) (Fox and Monette 1992). VIf determines how well a met-
ric can be linearly predicted by a combination of other metrics through a construction of a
regression model. A VIf score of a metric under examination is an R2 goodness-of-fit of
the model that is constructed by the other metrics to predict the metric under examination
where a VIf score is 1

1−R2 . We use a VIf threshold value of 5 to identify the presence of
multicollinearity, as suggested by Fox (2015) and prior work (Bettenburg and Hassan 2010
Jiarpakdee et al. 2016 2018a McIntosh et al. 2014). Thus, metrics that have their VIf score
above 5 are considered correlated. We use the implementation of the Variance Inflation
Factor analysis using the vif function as provided by the rms R package (Harrell 2017).

Finally, we present the results using boxplots in Fig. 8.

Results All of the commonly-used feature selection techniques do not mitigate corre-
lated metrics except for AutoSpearman. Figure 8 presents the percentage of subsets of
metrics that contain correlated metrics for each studied feature selection technique. The
studied feature selection techniques produce, at the median, 100% of subsets of metrics with
collinearity except for findCorrelation (0%) and AutoSpearman (0%). Furthermore, except
for AutoSpearman, the studied feature selection techniques produce, at the median, 5-100%
of subsets of metrics with multicollinearity.

Surprisingly, although CFS searches for the best subset of metrics that share the highest
correlation with the outcome (e.g., defect-proneness) while having the lowest correlation
among each other, our results show that correlated metrics are prevalent in subsets of met-
rics that are produced by CFS. We observe that CFS tends to focus on the correlation of
each metric and the outcome more than the correlation between metrics. Thus, when CFS
is applied, correlated metrics are often selected if these correlated metrics share a strong
relationship with the outcome.

Subsets of metrics
with collinearity

Subsets of metrics
with multicollinearity

0 25 50 75 100 0 25 50 75 100
AutoSpearman

Hybrid
Step−Both
Step−BWD
Step−FWD

RFE−RF
RFE−LR

findCorrelation
CON

Chisq
IG

CFS

Percentage (%)

Type Filter−based Wrapper−based Hybrid AutoSpearman

Fig. 8 The percentage of subsets of metrics that contain correlated metrics for each studied feature selection
technique. The left boxplots present the percentage of subsets of metrics with collinearity, while the right
boxplots present the percentage of subsets of metrics with multicollinearity

3620 Empirical Software Engineering (2020) 25:3590–3638

Furthermore, while findCorrelation can often mitigate collinearity, the technique cannot
mitigate multicollinearity as its percentage of subsets of metrics with multicollinearity is
as high as 100% in some studied defect datasets. We observe that findCorrelation only
reduces pair-wise correlations among metrics using a correlation matrix (e.g., Spearman
correlation), leading to the mitigation of collinearity. Unfortunately, the usage of pair-wise
correlations among metrics of find Correlation fails to detect and mitigate multicollinearity
(i.e., a phenomenon in which one metric can be linearly predicted by two or more metrics),
suggesting that more advanced techniques (e.g., Variance Inflation Factor analysis) should
be applied. Below, we provide detailed illustrative examples.

Illustrative Example Similar to prior illustrative examples in RQ1, RQ2, and RQ3, we
select the Eclipse Platform 2 dataset as the subject of this example. We first draw a bootstrap
training sample (cf. Step 1 of RQ1) and analyse the correlation among all software metrics,
i.e., collinearity and multicollinearity. Then, we apply three feature selection techniques that
consider the correlation among metrics when selecting metrics, i.e., a correlation-based fea-
ture selection technique (CFS—one of the most commonly-used feature selection technique
in the defect prediction domain), findCorrelation, and AutoSpearman. Finally, we analyse
the correlation among the metrics in the subsets of metrics that are produced by CFS and
findCorrelation.

According to Fig. 9, among the 32 metrics in the Eclipse Platform 2 dataset, we find that
30 metrics are correlated with a Spearman correlation coefficient above 0.7. We find that
CFS selects 8 metrics that share the highest correlation with defect-proneness while hav-
ing the lowest correlation among each other; findCorrelation selects 9 metrics through the
reduction of pair-wise Spearman correlations among metrics; and AutoSpearman selects 8
metrics based on the results of correlation analyses. Unfortunately, the results of correlation
analyses show that CFS and findCorrelation cannot mitigate correlated metrics. According
to Fig. 10a, as many as 5 of the 8 metrics that are selected by CFS can be linearly predicted
by another metric and have their Spearman correlation coefficient above 0.7. Furthermore,
according to Table 9, 3 of the 8 metrics that are selected by CFS and 2 of 9 the metrics that
are selected by findCorrelation can be linearly predicted by a combination of other metrics
and have their VIf score above 5. These findings suggest that (1) CFS, while considering
the correlation among metrics, does not mitigate correlated metrics; and (2) findCorrelation
can mitigate collinearity but not multicollinearity.

On the other hand, accroding to Fig. 10c and Table 9, AutoSpearman mitigates corre-
lated metrics for both collinearity and multicollinearity. We observe that the collinearity
analysis of AutoSpearman selects one representative metric from each group of correlated
metrics. Furthermore, the multicollinearity analysis of AutoSpearman further mitigates cor-
related metrics that cannot be detected by collinearity analysis (i.e., the analysis of pair-wise
correlation among metrics).

Given the same training sample from the same defect datasets, the subsets of
metrics produced by all of the studied feature selection techniques (except for
AutoSpearman) contain correlated metrics, i.e., collinearity and multicollinearity. In
other words, AutoSpearman is the only studied feature selection technique which was
designed to mitigate both collinearity and multicollinearity, and as our experiments
show, none of the other techniques achieves these goals. These findings suggest that the
interpretation of defect models constructed using the subsets of metrics that are pro-
duced by the studied feature selection techniques (except for AutoSpearman) may be
misleading.

3621Empirical Software Engineering (2020) 25:3590–3638

Fig. 9 The hierarchical cluster
view of the correlation analysis of
all metrics in the Eclipse Platform
2 dataset. Correlated metrics that
can be linearly predicted by
another metric and have their
Spearman correlation coefficient
above 0.7 are highlighted in red,
while non-correlated metrics are
highlighted in green

NSM_avg
NSM_max
NSM_sum
NSF_avg
NSF_max
NSF_sum
PAR_avg
PAR_max
PAR_sum
pre
NOI
NOT
FOUT_sum
MLOC_sum
TLOC
NBD_sum
CC_sum
FOUT_avg
FOUT_max
NBD_avg
NBD_max
CC_avg
CC_max
MLOC_avg
MLOC_max
ACD
NOF_avg
NOF_max
NOF_sum
NOM_avg
NOM_max
NOM_sum

0.0 0.2 0.4 0.6 0.8 1.0

Spearman ρ

Non−correlated metrics
Correlated metrics

(RQ6) What is the impact of feature selection techniques on the performance of
defect models?

Approach To address RQ6, we analyse the performance of defect models that are con-
structed using the subsets of metrics that are produced by the twelve studied feature
selection techniques, and a baseline (i.e., all metrics of a defect dataset). Since Fig. 1 and
Table 4 show that the defective ratio of the studied defect datasets is imbalanced and may
lead to models that are often in favour of the majority class, we apply the SMOTE imbal-
ance technique to each training sample for all studied defect datasets. We then apply feature
selection techniques on all of the balanced training samples of the studied defect datasets to
generate the subsets of metrics (cf. Step 2 of RQ1). We construct defect models using these
subsets of metrics and evaluate their performance. Consequently, we analyse the impact
of each studied feature selection technique on model performance. We describe each step
below.

(Step 1) Generate training samples. Similar to Step 1 of RQ1, we use the out-of-sample
bootstrap validation technique to generate 100 sets of training and testing samples for each
studied defect dataset.

(Step 2) Apply the SMOTE imbalance technique. For each training sample, we apply the
SMOTE imbalance technique (Chawla et al. 2002) to mitigate the imbalanced nature of

3622 Empirical Software Engineering (2020) 25:3590–3638

Fig. 10 The Spearman rank
correlation test on the subsets of
metrics that are produced by
CFS, findCorrelation, and
AutoSpearman, respectively.
Correlated metrics that can be
linearly predicted by another
metric and have their Spearman
correlation coefficient above 0.7
are highlighted in red, while
non-correlated metrics are
highlighted in green.

3623Empirical Software Engineering (2020) 25:3590–3638

Table 9 The Variance Inflation Factor analysis of the subsets of metrics that are produced by the correlation-
based feature selection technique (CFS), findCorrelation, and AutoSpearman, respectively

CFS findCorrelation AutoSpearman

Metric VIf score Metric VIf score Metric VIf score

NBD avg 2.10

NOT 1.83

NBD avg 2.10 pre 1.29

CC max 3.24 NOT 1.84 ACD 1.26

NBD max 2.18 pre 1.29 PAR avg 1.13

PAR max 1.40 ACD 1.26 NOM avg 1.12

pre 1.32 PAR avg 1.15 NOF avg 1.11

NSM avg 1.17 NOM avg 1.12 NSF avg 1.02

NOF avg 1.11

Correlated metrics that can be linearly predicted by a combination of other metrics and have their VIf score
above 5 are highlighted in red

defect datasets. We use the implementation of the SMOTE function as provided by the DMwR
R package (Torgo and Torgo 2015).

(Step 3) Apply feature selection techniques. Similar to Step 2 of RQ1, we only apply
feature selection techniques on training samples to generate subsets of metrics of each
studied feature selection techniques. The subsets of metrics that are produced by each
studied feature selection technique for all studied datasets are available in the online
appendix (Jiarpakdee et al. 2018c).

(Step 4) Construct defect models. For each training sample, we construct logistic regres-
sion and random forest models using subsets of metrics that are produced by the twelve
studied feature selection techniques, and all metrics of a defect dataset. We use the
implementation of logistic regression as provided by the glm function of the stats R
package (Team 2017) with the default parameter setting. We use the implementation of
random forest as provided by the randomForest function of the randomForest R
package (Breiman et al. 2006) with the default ntree value of 100, since recent stud-
ies (Tantithamthavorn et al. 2016a; 2019b) show that the performance of random forest
models is insensitive to the parameter setting. To ensure that the training and testing corpora
share similar characteristics and avoid any potential impact on the interpretation of defect
models, we do not re-balance nor do we re-sample the training data (Tantithamthavorn et al.
2019a).

(Step 5) Evaluate defect models. In our study, we evaluate defect models using three
performance measures. First, we use the Area Under the receiver operator characteris-
tic Curve (AUC) to measure the discriminatory power of our models, as suggested by
recent research (Ghotra et al. 2015; Lessmann et al. 2008; Rahman and Devanbu 2013;
Tantithamthavorn and Hassan 2018). The AUC is a threshold-independent performance
measure that evaluates the ability of classifiers in discriminating between defective and
clean modules. The values of AUC range between 0 (worst performance), 0.5 (no better
than random guessing), and 1 (best performance) (Hanley and McNeil 1982). Second, we
use the F-measure, i.e., a threshold-dependent measure. F-measure is a harmonic mean (i.e.,
2·precision·recall
precision+recall) of precision (TP

TP+FP) and recall (TP
TP+FN). Similar to prior studies (Arisholm

et al. 2010; Zimmermann et al. 2009), we use the default probability value of 0.5 as a

3624 Empirical Software Engineering (2020) 25:3590–3638

threshold value for the confusion matrix, i.e., if a module has a predicted probability above
0.5, it is considered defective; otherwise, the module is considered clean. Third, we use the
Matthews Correlation Coefficient (MCC) measure, i.e, a threshold-dependent measure, as
suggested by prior studies (Matthews 1975; Shepperd et al. 2014). MCC is a balanced mea-
sure based on true and false positives and negatives that is computed using the following
equation: TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

(Step 6) Analyse the impact on the model performance. We analyse the performance
difference between defect models that are constructed using subsets of metrics that are pro-
duced by feature selection techniques (i.e., the twelve studied feature selection techniques)
and all metrics of a defect dataset (PFS − PAll).

We also set out to investigate whether such performance difference is statistically sig-
nificant using the Mann-Whitney U test and its extension, the Kruskal and Wallis H test. A
p-value of the Mann-Whitney U test of below 0.05 suggests that the difference between two
input distributions is statistically significant, while a p-value of the Kruskal and Wallis H
test of below 0.05 suggest that the differences across multiple input distributions are statis-
tically significant. Finally, in order to measure the effect size of the performance difference,
we use Cliff’s |δ| effect size to analyse the magnitude of the difference between these dis-
tributions. Cliff’s |δ| effect size ranges from 0 to +1, where a zero value indicates that two
distributions are identical. We use the interpretation of Cliff’s |δ| estimates by Romano et al.
(2006) which maps Cliff’s |δ| to Cohen’s significance levels as follows:

Negligible: |δ| < 0.147
Small: 0.147 ≤ |δ| < 0.33
Medium: 0.33 ≤ |δ| < 0.474
Large: 0.474 ≤ |δ|

We present the results using boxplots in Fig. 11.

Fig. 11 The distributions of the performance difference (%pts) between defect models that are constructed
using subsets of metrics that are produced by the twelve studied feature selection techniques and all metrics
of a defect dataset, i.e., PFS − PAll

3625Empirical Software Engineering (2020) 25:3590–3638

Results The studied feature selection techniques impact the performance of defect
models by up to 9%pts. Figure 11 shows the performance difference (%pts) between defect
models that are constructed using subsets of metrics that are produced by the twelve studied
feature selection techniques and all metrics of a defect dataset, i.e., PFS − PAll. We make
the three following observations: (1) filter-based feature selection techniques (except for
CON) have the highest impact on the performance of defect models by up to 9%pts (at the
median); (2) wrapper-based feature selection techniques have the least impact on the per-
formance of defect models by up to 1%pt (at the median); and (3) AutoSpearman impacts
the performance of defect models by up to 2%pts (at the median). The results of the Mann-
Whitney U test show that most of the performance differences are not statistically significant
with p-values above 0.05. The results of Kruskal-Wallis H test suggest that all of the per-
formance differences are not statistically significant with p-values above 0.05. Finally, the
results of the Cliff’s |δ| effect size test show that such performance differences are negligi-
ble to small for the AUC, F-measure, and MCC measures (except for Information Gain and
Chi-Squared-based). We suspect that the statistically insignificant impact on model perfor-
mance of most of the studied feature selection techniques has to do with the low number of
irrelevant metrics while most relevant metrics are highly correlated as shown in the results
of RQ5. Also, the high number of highly correlated (RQ5) and relevant metrics (RQ6) may
lead feature selection techniques to produce different optimal subsets of metrics as observed
in RQ1. Although the inconsistency of the optimal subsets of metrics among feature selec-
tion techniques may not impact the performance of defect models, such inconsistency has
a substantial impact on practitioners (e.g., developers, managers, and QA analysts) when
developing software quality improvement plans. For example, given two metrics CC max
(code complexity) and MLOC sum (method lines of code) that are highly correlated as
shown in the illustrative example of RQ5, the use of these two metrics for training defect
models may produce similar accuracy. On the other hand, the insights that are derived from
defect models that are trained on correlated metrics may be inaccurate and unstable. In par-
ticular, QA plans generated from one feature selection technique may suggest minimizing
the risks of having defects by reducing the code complexity, while QA plans generated by
another feature selection technique may suggest minimizing the file size (i.e., lines of code).
Such an inconsistency produced by widely-used automated feature selection techniques may
distort the software quality improvement plans that are derived from defect models, leading
to wasting time and QA resources.

(RQ7) What is the computational cost of applying feature selection techniques?

Approach To address RQ7, we analyse the computational cost of the twelve studied feature
selection techniques. For each defect dataset, we use only one bootstrap training sample.
Then, we measure the computational cost of applying the twelve studied feature selection

3626 Empirical Software Engineering (2020) 25:3590–3638

techniques on a training sample for each defect dataset. We measure the computational cost
using the microbenchmark function of the microbenchmark R package (Mersmann
et al. 2018). Finally, we present the results using boxplots in Fig. 12. Due to the enormous
difference in the computation cost across the studied feature selection techniques, we report
the computational cost (x-axis) using a log10 scale.

Results The computational cost of wrapper-based feature selection techniques and the
consistency-based feature selection technique is expensive. Figure 12 shows the compu-
tational cost analysis of the studied feature selection techniques using a log10 scale. We
observe that, at the median, the computational cost of the studied feature selection tech-
niques is 0.5s, 0.2s, 0.1s, 105s, 0.1s, 102s, 5021s (1 hour and 23 minutes), 4s, 3.8s, 6.8s,
3.4s, and 0.2s for CFS, IG, Chisq, CON, findCorrelation, RFE-LR, RFE-RF, Step-FWD,
Step-BWD, Step-BOTH, Hybrid, and AutoSpearman, respectively. In particular, wrapper-
based feature selection techniques and the consistency-based feature selection technique are
expensive to compute, and can cost up to 7 hours and 15 minutes for RFE-RF to find the
best subset of metrics from one training sample of the Eclipse Platform 3.0 defect dataset.
Such expensive computation cost makes the application of wrapper-based feature selection
techniques undesirable, particularly, when validating with model validation techniques that
require several repetitions (e.g., bootstrap validation technique).

The computational cost of filter-based feature selection techniques and
AutoSpearman is cheap, while such cost is expensive for wrapper-based feature
selection techniques and the consistency-based feature selection technique. The com-
putational cost of wrapper-based feature selection techniques is as high as 7 hours
and 15 minutes for RFE-RF to find the best subset of metrics from one training sample
of the Eclipse Platform 3.0 defect dataset. Such expensive computation cost makes the
application of wrapper-based feature selection techniques undesirable, particularly,
when validating with model validation techniques that require several repetitions (e.g.,
bootstrap validation technique).

(RQ8) Do correlation threshold values have an impact on the interpretation of defect
models?

Fig. 12 The computational cost
analysis of the twelve studied
feature selection techniques

AutoSpearman
Hybrid

Step−Both
Step−BWD
Step−FWD

RFE−RF
RFE−LR

findCorrelation
CON

Chisq
IG

CFS

0.1 10 1000
log10(Time) (s)

3627Empirical Software Engineering (2020) 25:3590–3638

Approach To address RQ8, we analyse the impact of correlation threshold values when
producing subsets of metrics with AutoSpearman on the interpretation of defect models
along 2 dimensions, i.e., consistency and correlation. AutoSpearman relies on two threshold
values, i.e., the Spearman correlation threshold and the VIf threshold. While we use the
Spearman correlation threshold value of 0.7 as a baseline as suggested by Kraemer et al.
(2003) and the VIf threshold value of 5 as a baseline as suggested by Fox and Monette
(1992) to indicate strong correlations between metrics, we perform sensitivity analyses for
both threshold values. For the sensitivity analysis of the Spearman correlation threshold, we
use the Spearman correlation threshold value of 0.7 and compare the interpretation produced
by the Spearman correlation threshold values of 0.8 and 0.9, as suggested by Hinkle et al.
(2003), with those produced by the baseline. Similarly, for the sensitivity analysis of the
VIf threshold, we use the VIf threshold value of 5 and compare the interpretation produced
by the VIf threshold values of 3 Mason and Perreault (1991) and 10 Hair et al. (2006)
with those produced by the baseline. Below, we explain how we generate the interpretation
of defect models and how we analyse the impact of correlation threshold values on such
interpretation.

To generate the interpretation of defect models, we adopted the defect modelling work-
flow used in prior studies (Jiarpakdee et al. 2018a). First, we mitigate correlated metrics
using our proposed feature selection technique, AutoSpearman. Second, we generate train-
ing and testing samples using the out-of-sample bootstrap validation technique. Third,
we use training samples to construct defect models (i.e., logistic regression and random
forests). Fourth, we generate the importance score of metrics using the ANOVA Type-II
analysis (Fox 2015) for logistic regression and the scaled permutation importance analy-
sis (Breiman 2001) for random forests. Finally, we identify the importance ranking of met-
rics using the improved Scott-Knott Effect Size Difference (ESD) test (Tantithamthavorn
2017).

We analyse the consistency and correlation of the most important metrics among cor-
relation threshold values. To do so, we compute the percentage of the studied datasets in
which their most important metrics are consistent among correlation threshold values. We
also compute the Spearman correlation of the most important metrics produced by different
correlation threshold values.

Results Different correlation threshold values may produce different most important
metrics. Table 10 shows the percentage of the studied defect datasets in which their most
important metrics are consistent among correlation threshold values. We find that 86%
and 46-69% of the studied defect datasets have their most important metrics produced by
the Spearman correlation threshold values of 0.8 and 0.9 consistent with the baseline (the
Spearman correlation threshold value of 0.7), respectively. We also find that 92-100% and

Table 10 The percentage of the studied defect datasets in which their most important metrics are consistent
among correlation threshold values

Classification
Techniques

Model Interpretation
Techniques

Spearman Correlation Threshold VIf Threshold

0.8 0.9 3 10

Logistic Regression ANOVA Type 2 86% 69% 100% 100%

Random Forests Scaled Permutation Importance 86% 46% 92% 100%

3628 Empirical Software Engineering (2020) 25:3590–3638

100% of the studied defect datasets have their most important metrics produced by the VIf
threshold values of 3 and 10 consistent with the baseline (the VIf threshold value of 5),
respectively. In other words, 14-54% of these studied datasets produce different most impor-
tant metrics among Spearman correlation threshold values, while such inconsistency among
VIf threshold values are 0-8%.

The most important metrics produced by different correlation threshold values are
highly correlated. Figure 13 shows the distributions of Spearman correlation coefficients
of the most important metrics produced by the baseline and correlation threshold values.
We find that, at the median, Spearman correlation coefficients of the most important metrics
produced by the baseline and the Spearman correlation threshold values of 0.8 and 0.9 are 1
and 0.85-1 for both logistic regression and random forests. Similarly, at the median, Spear-
man correlation coefficients of the most important metrics produced by the baseline and the
VIf threshold values of 3 and 10 are 1 for logistic regression and random forests, respec-
tively. These findings show that while the most important metrics are inconsistent among
different correlation threshold values, such inconsistent most important metrics are highly
correlated. The experimental results lead us to conclude that correlation threshold values do
not impact the interpretation of defect models.

Illustrative Example Similar to previous research questions, we use the Eclipse Platform
2 dataset as the subject of this example. Following the approach to generate the interpreta-
tion of defect models as explained above, we identify the importance rankings of metrics
produced by AutoSpearman with the correlation threshold values of 0.7 (baseline) and
0.9 as shown in Table 11. According to Fig. 14, we find that NOM avg (the most impor-
tant metric according to AutoSpearman(0.7)) and NBD sum (the most important metric
according to AutoSpearman(0.9)) are highly correlated with the Spearman correlation of
0.73. This example further illustrates the little impact of correlation threshold values on the
interpretation of defect models.

Fig. 13 The distributions of Spearman correlation coefficients of the most important metrics produced by
the baseline and correlation threshold values

3629Empirical Software Engineering (2020) 25:3590–3638

Table 11 The top-5 most
important metrics according to
the percentage of the studied
defect datasets in which their
most important metrics are
consistent among correlation
threshold values

Rank AutoSpearman(0.7) AutoSpearman(0.9)

1 NOM avg NBD sum

2 NBD avg NBD avg

3 pre NOM avg

4 PAR avg FOUT avg

5 NOF avg pre

No. Although the most important metrics are inconsistent among correlation threshold
values, such inconsistent most important metrics are highly correlated with the Spear-
man correlation of 0.85–1, suggesting that correlation threshold values do not impact
the interpretation of defect models.

6 Discussion

In this section, we discuss the trends of correlated metrics that are selected by feature
selection techniques.

0.83 0.71 0.34 0.39 0.3 0.37

0.83 0.74 0.31 0.34 0.34 0.32

0.71 0.74 0.53 0.74 0.23 0.37

0.34 0.31 0.53 0.49 −0.08 0.15

0.39 0.34 0.74 0.49 0.06 0.27

0.3 0.34 0.23 −0.08 0.06 0.1

0.37 0.32 0.37 0.15 0.27 0.1

FOUT_avg

NBD_avg

NBD_sum

NOF_avg

NOM_avg

PAR_avg

pre

FOUT_a
vg

NBD_a
vg

NBD_s
um

NOF_a
vg

NOM_a
vg

PA
R_a

vg pre

Non−correlated metrics Correlated metrics

Fig. 14 The Spearman rank correlation test on the top-5 important metrics according to AutoSpearman using
the correlation threshold values of 0.7 and 0.9. Correlated metrics that can be linearly predicted by another
metric and have their Spearman correlation coefficient above 0.7 are highlighted in red, while non-correlated
metrics are highlighted in green

3630 Empirical Software Engineering (2020) 25:3590–3638

AutoSpearman

Hybrid

Step−BOTH

Step−BWD

Step−FWD

RFE−RF

RFE−LR

findCorrelation

CON

Chisq

IG

CFS

 0 4 8 12 16 20 24 28 32
The number of correlated metrics

selected by feature selection techniques

Fig. 15 The number of correlated metrics selected by each studied feature selection technique for an
illustrative analysis of the Eclipse Platform 2 dataset

Approach To investigate the trends of correlated metrics that are selected by commonly-
used feature selection techniques, similar to the illustrative example in RQ1, we first select
the Eclipse Platform 2 dataset as the subject of this analysis. We draw a bootstrap training
sample and apply all studied feature selection techniques to generate subsets of metrics for
each studied technique. Then, we analyse the correlation among metrics for both collinearity
and multicollinearity to find correlated metrics in each subset of metrics produced by the
studied feature selection techniques (cf. Steps 1 and 2 of RQ5). Finally, we identify (1)
the number of correlated metrics selected by each feature selection technique and (2) the
number of feature selection techniques that select each correlated metric.

Results Most of the correlated metrics selected by commonly-used feature selection
techniques are aggregated metrics produced by metric aggregation schemes.

Figure 15 shows the number of correlated metrics selected by each feature selection
technique, while Figure 16 shows the number of studied feature selection techniques that
select each correlated metric for an illustrative analysis of the Eclipse Platform 2 dataset.

We find that 3-30 metrics selected studied feature selection techniques (except for find-
Correlation and AutoSpearman) are highly correlated. We also find that correlated metrics
are selected by 1–9 studied feature selection techniques. We observe that most of the cor-
related metrics are aggregated metrics—metrics that are extracted at the method level and
are summarised to the file level using metric aggregation schemes, e.g., minimum, average,
and maximum. This observation is consistent with that of Zhang et al. (2017) where metric
aggregation schemes often produce correlated metrics.

7 Threats to Validity

We now discuss threats to the validity of our study.

3631Empirical Software Engineering (2020) 25:3590–3638

MLOC_avg
NOF_max
NSM_sum
NOM_max

CC_avg
FOUT_max

NOF_avg
NOF_sum
NOM_sum
PAR_sum
NSF_max
NSF_sum
NSM_max
NOM_avg

TLOC
NSF_avg
NSM_avg

FOUT_sum
CC_sum

FOUT_avg
MLOC_max

NBD_avg
PAR_avg

PAR_max
NBD_max
NBD_sum

MLOC_sum
CC_max

 0 2 4 6 8 10 12
The number of feature selection techniques

Fig. 16 The number of studied feature selection techniques that select each correlated metric for an
illustrative analysis of the Eclipse Platform 2 dataset

Construct Validity Plenty of prior work shows that the parameters of classification tech-
niques have an impact on the performance of defect models (Fu et al. 2016; Koru and Liu
2005; Mende 2010; Mende and Koschke 2009; Tantithamthavorn et al. 2016a). While we
use a default ntree value of 100 for random forest models, recent studies (Jiang et al.
2008; Tantithamthavorn et al. 2016a; Tosun and Bener 2009) show that the performance
of random forest models is insensitive to this parameter setting. Thus, we believe that this
threat is not a major limitation of our work.

The concept of non-correlated metrics in our paper relies on threshold values of corre-
lation analyses (i.e., 0.7 for a Spearman rank correlation test and 5 for a Variance Inflation
Factor analysis). To mitigate this threat, we perform an in-depth sensitivity analysis in RQ8
and find that correlation threshold values do not impact the interpretation of defect models.

Internal Validity Prior studies raise concerns related to replicability (Robles 2010), data
quality (Petrić et al. 2016; Shepperd et al. 2013), mislabelling (Tantithamthavorn et al. 2015;
Yathish et al. 2019), and the risk of overfitting (Tantithamthavorn et al. 2017) in defect
datasets. We conduct a highly-controlled experiment where we apply 3 dataset selection
criteria to mitigate these concerns. Thus, our study focuses on 14 defect datasets from 4
corpora. In particular, 6 datasets (i.e., Apache POI 2.5, Apache POI 3.0, Apache Xalan 2.6,
Apache Xerces 1.4, Proprietary 1, and Proprietary 4) as provided by Jureczko and Madeyski
(2010); 3 datasets (i.e., Apache Lucene 2.4, Eclipse JDT, and Eclipse Mylyn) as provided by
D’Ambros et al. (2010, 2012); 3 datasets (i.e., Eclipse Platform 2, Eclipse Platform 2.1, and
Eclipse Platform 3) as provided by Zimmermann et al. (2007); and 2 datasets (i.e., Eclipse
Debug and Eclipse SWT 3.4) as provided by Kim et al. (2011).

External Validity We studied a limited number of feature selection techniques. Thus, our
results may not generalise to other feature selection techniques. Nonetheless, other feature

3632 Empirical Software Engineering (2020) 25:3590–3638

selection techniques can be explored in future work. We provide a detailed methodology
for others who would like to re-examine our findings using unexplored feature selection
techniques.

The studied defect datasets are part of several systems (e.g., Eclipse) that span both pro-
prietary and open source domains. However, we studied a limited number of defect datasets.
Thus, the results may not generalise to other datasets and domains. Replication studies are
needed.

The dimensions (i.e., the number of metrics) of the studied defect datasets are relatively
low when comparing to other domains. Thus, the findings may be altered in other con-
texts of high-dimensional datasets (e.g., bioinformatics or textual features). Future studies
could revisit our study with datasets from other domains which may vary in dimensions and
characteristics.

The conclusions of our case study rely on one defect prediction scenario (i.e., within-
project defect models). However, there are a variety of defect prediction scenarios in the
literature (e.g., cross-project defect prediction (Zimmermann et al. 2009; Canfora et al.
2013), just-in-time defect prediction (Kamei et al. 2013), heterogenous defect predic-
tion (Nam et al. 2017)). Therefore, the conclusions may differ for other scenarios. Future
research should revisit our study in other scenarios of defect models.

8 Conclusions

In this paper, we investigate 11 commonly-used feature selection techniques and our own
contribution AutoSpearman along five dimensions: (1) the consistency of the produced sub-
sets of metrics; (2) the correlation of the produced subsets of metrics; (3) the performance;
(4) the computational cost; and (5) the impact on the interpretation. Through a case study of
14 publicly-available defect datasets of systems that span both proprietary and open source
domains, we find that (1) 94-100% of the selected metrics are inconsistent among the stud-
ied techniques; (2) 37-90% of the selected metrics are inconsistent among training samples;
(3) 0-68% of the selected metrics are inconsistent when the application of the feature selec-
tion techniques is repeated; and (4) 5-100% of the produced subsets of metrics contain
correlated metrics—suggesting that the commonly-used automated feature selection tech-
niques are often unreliable. We also find that (5) although the most important metrics are
inconsistent among correlation threshold values, such inconsistent most important metrics
are highly-correlated with the Spearman correlation of 0.85–1.

This is the first paper to provide evidence that subsets of metrics produced by commonly-
used feature selection techniques in the defect prediction domain are inconsistent in nature.
Such inconsistent nature of these feature selection techniques (1) restricts an application
of post-hoc multiple comparison analyses (e.g., a Scott-Knott test) to identify the most
important metrics when interpreting defect models; and (2) has a negative impact on the
interpretation of defect models due to the presence of correlated metrics. Thus, to miti-
gate these concerns, the results of our empirical investigations suggest that AutoSpearman
should be used in future studies which aim at ensuring high consistency and the automated
mitigation of correlated metrics.

Finally, we would like to emphasise that the goal of this work is not to claim the gen-
eralisation of our results for every dataset and every model in software engineering. In
addition, the best subset of metrics that one should include in studies depends on the goal
of the studies. For example, if the goal of the study is prediction (i.e., aiming to achieve
the highest predictive performance), one might prioritise resources on improving the model

3633Empirical Software Engineering (2020) 25:3590–3638

performance regardless of the correlation among metrics. On the other hand, if the goal of
the study is model interpretation (i.e., aiming to examine the impact of various phenomena
on software quality), one should avoid using commonly-used feature selection techniques
when interpreting defect models. To mitigate the inconsistent nature of automated fea-
ture selection techniques, we recommend AutoSpearman be used in future studies when
interpreting defect models.

Acknowledgements C. Tantithamthavorn is supported by the Australian Research Council’s Discovery
Early Career Researcher Award (DECRA) funding scheme (DE200100941). C. Treude is supported by
the Australian Research Council’s Discovery Early Career Researcher Award (DECRA) funding scheme
(DE180100153).

References

Agrawal A, Menzies T (2018) Is better data better than better data miners? In: 2018 IEEE/ACM 40Th
international conference on software engineering (ICSE), IEEE, pp 1050-1061

Alckmin G, Kooistra L, Lucieer A, Rawnsley R (2019) Feature filtering and selection for dry matter
estimation on perrenial ryegrass: a case study of vegetation indices. International archives of the
photogrammetry. Remote Sensing and Spatial Information Sciences 42(2/W13)

Alzubi R, Ramzan N, Alzoubi H, Amira A (2017) A hybrid feature selection method for complex diseases
SNPs. IEEE Access 6:1292–1301. https://doi.org/10.1109/ACCESS.2017.2778268

Arisholm E, Briand LC, Johannessen EB (2010) A systematic and comprehensive investigation of methods
to build and evaluate fault prediction models. J Syst Softw 83(1):2–17

Berry WD (1993) Understanding regression assumptions, vol 92. Sage Publications
Bettenburg N, Hassan AE (2010) Studying the impact of social structures on software quality. In: Proceedings

of the International Conference on Program Comprehension (ICPC), pp 124–133
Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?: Bias in

bug-fix datasets. In: Proceedings of the European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering (ESEC/FSE), pp 121–130

Blake C, Merz C (1998) Uci repository of machine learning databases. University of California, Irvine, CA
55

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breiman L, Cutler A, Liaw A, Wiener M (2006) randomForest: Breiman and Cutler’s random forests for

classification and regression. R package version 4.6-12. Software available at https://cran.r-project.org/
package=randomForest

Cahill J, Hogan JM, Thomas R (2013) Predicting fault-prone software modules with rank sum classification.
In: Proceedings of the Australian Software Engineering Conference (ASWEC), pp 211–219

Cai Y, Chow M, Lu W, Li L (2010) Statistical feature selection from massive data in distribution fault
diagnosis. IEEE Trans Power Syst 25(2):642–648

Canfora G, De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2013) Multi-objective
cross-project defect prediction. In: Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST), pp 252–261

Chambers JM (1992) Statistical models in s wadsworth. Pacific Grove, California
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic minority over-sampling TE

chnique. J Artif Intell Res 16:321–357
D’Ambros M, Lanza M, Robbes R (2010) An Extensive Comparison of Bug Prediction Approaches. In:

Proceedings of the International Conference on Mining Software Repositories (MSR), pp 31–41
D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect prediction approaches: a benchmark and an

extensive comparison. Emp Softw Eng (EMSE) 17(4-5):531–577
Dash M, Liu H, Motoda H (2000) Consistency based Feature Selection. In: Proceedings of the Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), pp 98–109
Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Springer, Boston
Elish KO, Elish MO (2008) Predicting defect-prone software modules using support vector machines. J Syst

Softw 81(5):649–660
Fox J (2015) Applied regression analysis and generalized linear models. Sage Publications
Fox J, Monette G (1992) Generalized collinearity diagnostics. J Am Statis Assoc (JASA) 87(417):178–183

3634 Empirical Software Engineering (2020) 25:3590–3638

https://doi.org/10.1109/ACCESS.2017.2778268
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=randomForest

Friedman J, Hastie T, Tibshirani R (2001) The Elements of Statistical Learning, vol 1. Springer series in
statistics

Fu W, Menzies T, Shen X (2016) Tuning for Software analytics: Is it really necessary? Inf Softw Technol
76:135–146

Garner SR, et al. (1995) Weka: the waikato environment for knowledge analysis. In: Proceedings of the New
Zealand Computer Science Research Students Conference (NZCSRSC), pp 57–64

Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the impact of classification techniques on the per-
formance of defect prediction models. In: Proceedings of the International Conference on Software
Engineering (ICSE), pp 789–800

Ghotra B, McIntosh S, Hassan AE (2017) A large-scale study of the impact of feature selection techniques on
defect classification models. In: Proceedings of the 14th International Conference on Mining Software
Repositories, pp 146–157

Gil Y, Lalouche G (2017) On the correlation between size and metric validity. Emp Softw Eng (EMSE)
22(5):2585–2611

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL, et al. (2006) Multivariate data analysis vol. 6
Hall MA (1999) Correlation-based feature selection for machine learning. PhD thesis, University of Waikato

Hamilton
Hall MA, Smith LA (1997) Feature Subset Selection: A Correlation Based Filter Approach
Hanley J, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC)

curve. Radiology 143(4):29–36
Harrell FE Jr (2013) Hmisc: Harrell miscellaneous. R package version 3.12-2. Software available at http://

cran.r-project.org/web/packages/Hmisc
Harrell FE Jr (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal

regression, and survival analysis. Springer, New Tork
Harrell FE Jr (2017) rms: regression modeling strategies. R package version 5.1-1. Software available at

http://cran.r-project.org/web/packages/rms
Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, vol 663. Houghton

Mifflin College Division
Hsu HH, Hsieh CW, Lu MD (2011) Hybrid feature selection by combining filters and wrappers. Expert Syst

Appl 38(7):8144–8150. https://doi.org/10.1016/j.eswa.2010.12.156
Huan L, Setiono R (1995) Chi2: feature selection and discretization of numeric attributes. In: Proceedings of

the International Conference on Tools with Artificial Intelligence, pp 388–391
Jiang Y, Cukic B, Menzies T (2008) Can data transformation help in the detection of fault-prone mod-

ules? In: Proceedings of the International Workshop on Defects in Large Software Systems (DEFECTS),
pp 16–20

Jiarpakdee J, Tantithamthavorn C, Ihara A, Matsumoto K (2016) A study of redundant metrics in defect
prediction datasets. In: Proceedings of the International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp 51–52

Jiarpakdee J, Tantithamthavorn C, Hassan AE (2018a) The Impact of Correlated Metrics on Defect Models.
arXiv:180110271 p To Appear

Jiarpakdee J, Tantithamthavorn C, Treude C (2018b) AutoSpearman: automatically mitigating correlated
software metrics for interpreting defect models. In: Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME), pp 92–103

Jiarpakdee J, Tantithamthavorn C, Treude C (2018c) Online Appendix for Should Automated Feature Selec-
tion Techniques be Applied when Interpreting Defect Models?. https://github.com/software-analytics/
autospearman-extension-appendix

Jiarpakdee J, Tantithamthavorn C, Dam HK, Grundy J (2020) An empirical study of model-agnostic
techniques for defect prediction models. Trans Softw Eng (TSE) 1–1

John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem
Jureczko M, Madeyski L (2010) Towards identifying software project clusters with regard to defect pre-

diction. In: Proceedings of the International Conference on Predictive Models in Software Engineering
(PROMISE), p 9

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A Large-Scale empirical
study of Just-In-Time quality assurance. Trans Softw Eng (TSE) 39(6):757–773

Kaur A, Malhotra R (2008) Application of Random Forest in Predicting Fault-prone Classes. In: Proceedings
of International Conference on the Advanced Computer Theory and Engineering (ICACTE), pp 37–43

Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction. In: Proceedings of the
International Conference on Software Engineering (ICSE), pp 481–490

Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1-2):273–324

3635Empirical Software Engineering (2020) 25:3590–3638

http://cran.r-project.org/web/packages/Hmisc
http://cran.r-project.org/web/packages/Hmisc
http://cran.r-project.org/web/packages/rms
https://doi.org/10.1016/j.eswa.2010.12.156
http://arxiv.org/abs/180110271
https://github.com/software-analytics/autospearman-extension-appendix
https://github.com/software-analytics/autospearman-extension-appendix

Koru AG, Liu H (2005) An investigation of the effect of module size on defect prediction using static
measures. Softw Eng Notes (SEN) 30:1–5

Kraemer HC, Morgan GA, Leech NL, Gliner JA, Vaske JJ, Harmon RJ (2003) Measures of clinical
significance. J Am Academy Child Adolescent Psychiat(JAACAP) 42(12):1524–1529

Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B,
Team R, et al. (2017) Caret: Classification and regression training. R package version 6.0–78. Software
available at https://cran.r-project.org/package=caret

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification models for software defect
prediction: a proposed framework and novel findings. Trans Softw Eng (TSE) 34(4):485–496

Lewis DD, Ringuette M (1994) A comparison of two learning algorithms for text categorization. In: Annual
Sympos Document Anal Inform Retrieval, vol 33, pp 81–93

Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H (2017) Feature selection: a data perspective.
ACM Computing Surveys (CSUR) 50(6):94

Lu H, Kocaguneli E, Cukic B (2014) Defect Prediction between Software Versions with Active Learning
and Dimensionality Reduction. In: Proceedings of the International Symposium on Software Reliability
Engineering (ISSRE), pp 312–322

Mason CH, Perreault WD Jr (1991) Collinearity, power, and interpretation of multiple regression analysis. J
Market Res (JMR) 268–280

Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta (BBA)-Protein Structure 405(2):442–451

McHugh ML (2013) The Chi-square Test of Independence. Biochemia Medica 23(2):143–149
McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review

participation on software quality. In: Proceedings of the International Conference on Mining Software
Repositories (MSR), pp 192–201

Mende T (2010) Replication of defect prediction studies: problems, pitfalls and recommendations. In: Pro-
ceedings of the International Conference on Predictive Models in Software Engineering (PROMISE),
pp 1–10

Mende T, Koschke R (2009) Revisiting the evaluation of defect prediction models. In: Proceedings of the
International Conference on Predictive Models in Software Engineering (PROMISE), pp 7–16

Menzies T (2018) The unreasonable effectiveness of software analytics. IEEE Softw 35(2):96–98.
https://doi.org/10.1109/MS.2018.1661323

Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect predictors. Trans
Softw Eng (TSE) 33(1):2–13

Menzies T, Caglayan B, Kocaguneli E, Krall J, Peters f, Turhan B (2012) The Promise Repository of
Empirical Software Engineering Data

Mersmann O, Beleites C, Hurling R, Friedman A (2018) Microbenchmark: Accurate Timing Functions. R
package version 1.4-6. Software available at https://cran.r-project.org/package=microbenchmark

Mitchell TM (1997) Machine Learning. McGraw Hill
Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and

static code attributes for defect prediction. In: Proceedings of the International Conference on Software
Engineering (ICSE), pp 181–190

Nam J, Fu W, Kim S, Menzies T, Tan L (2017) Heterogeneous Defect Prediction. Transactions on Software
Engineering (TSE) p In Press

Okutan A, Yıldız OT (2014) Software defect prediction using bayesian networks. Empirical Softw Eng
(EMSE) 19(1):154–181

Osman H, Ghafari M, Nierstrasz O (2018) The impact of feature selection on predicting the number of bugs.
arXiv:180704486

Pandari Y, Thangavel P, Senthamaraikannan H, Jagadeeswaran S (2019) HybridFS: a hybrid filter-wrapper
feature selection method. R package version 0.1.3. Software available at https://cran.r-project.org/
package=HybridFS

Petrić J, Bowes D, Hall T, Christianson B, Baddoo N (2016) The jinx on the nasa software defect data sets.
In: Proceedings of the International Conference on Evaluation and Assessment in Software Engineering
(EASE), pp 13–17

Rahman F, Devanbu P (2013) How, and Why, process metrics are better. In: Proceedings of the International
Conference on Software Engineering (ICSE), pp 432–441

Robles G (2010) Replicating MSR: A Study of the Potential Replicability of Papers Published in the Mining
Software Repositories Proceedings. In: Proceedings of the International Conference on Mining Software
Repositories (MSR), pp 171–180

Rodrı́guez D, Ruiz R, Cuadrado-Gallego J, Aguilar-Ruiz J (2007) Detecting fault modules applying fea-
ture selection to classifiers. In: Proceedings of the International Conference on Information Reuse and
Integration (IRI), pp 667–672

3636 Empirical Software Engineering (2020) 25:3590–3638

https://cran.r-project.org/package=caret
https://doi.org/10.1109/MS.2018.1661323
https://cran.r-project.org/package=microbenchmark
http://arxiv.org/abs/180704486
https://cran.r-project.org/package=HybridFS
https://cran.r-project.org/package=HybridFS

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: should
we really be using t-test and Cohen’s d for evaluating group differences on the NSSE and other surveys.
In: Annual meeting of the Florida Association of Institutional Research (FAIR), pp 1–33

Romanski P, Kotthoff L (2013) FSelector: Selecting attributes. R package version 0.19. Software available
at https://cran.r-project.org/package=FSelector

Shepperd M, Song Q, Sun Z, Mair C (2013) Data quality: some comments on the NASA software defect
datasets. Trans Softw Eng (TSE) 39(9):1208–1215

Shepperd M, Bowes D, Hall T (2014) Researcher bias: the use of machine learning in software defect
prediction. Trans Softw Eng (TSE) 40(6):603–616

Shivaji S, Whitehead EJ, Akella R, Kim S (2013) Reducing features to improve code Change-Based bug
prediction. Trans Softw Eng (TSE) 39(4):552–569

Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random
forests. BMC Bioinforma 9(1):307

Tantithamthavorn C (2017) ScottKnottESD: The Scott-Knott Effect Size Difference (ESD) Test. R package
version 2.0. Software available at https://cran.r-project.org/web/packages/ScottKnottESD

Tantithamthavorn C, Hassan AE (2018) An experience report on defect modelling in practice: pitfalls and
challenges

Tantithamthavorn C, Jiarpakdee J (2018) Rnalytica: An R package of the Miscellaneous Functions for Data
Analytics Research. https://github.com/software-analytics/Rnalytica

Tantithamthavorn C, McIntosh S, Hassan AE, Ihara A, Matsumoto K (2015) The impact of mislabelling
on the performance and interpretation of defect prediction models. In: Proceeding of the International
Conference on Software Engineering (ICSE), pp 812–823

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016a) Automated parameter optimization of
classification techniques for defect prediction models. In: Proceedings of the International Conference
on Software Engineering (ICSE), pp 321–332

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016b) Comments on bias: the use of machine
learning in software defect prediction. Trans Softw Eng (TSE) 42(11):1092–1094

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model
validation techniques for defect prediction models. Trans Softw Eng (TSE) 43(1):1–18

Tantithamthavorn C, Hassan AE, Matsumoto K (2019a) The impact of class rebalancing techniques on the
performance and interpretation of defect prediction models. Trans Softw Eng (TSE) p Preprints

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2019b) The impact of automated parameter
optimization on defect prediction models. Trans Softw Eng (TSE) 45(7):683–711

Team RC (2017) contributors worldwide Stats: The R Stats Package. R Package. Version 3.4.0
Tian Y, Nagappan M, Lo D, Hassan AE (2015) What Are the Characteristics of High-Rated Apps? A

Case Study on Free Android Applications. In: Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), pp 301–310

Torgo L, Torgo ML (2015) DMwR: Functions and Data for Data Mining with R. R package version 0.4.1.
Software available at https://cran.r-project.org/package=DMwR

Tosun A, Bener A (2009) Reducing false alarms in software defect prediction by decision threshold opti-
mization. In: Proceedings of the International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp 477–480

Xu Z, Liu J, Yang Z, An G, Jia X (2016) The Impact of Feature Selection on Defect Prediction Performance:
An Empirical Comparison. In: Proceedings of the International Symposium on Software Reliability
Engineering (ISSRE), pp 309–320

Yan K, Zhang D (2015) Feature selection and analysis on correlated gas sensor data with recursive feature
elimination. Sensors Actuators B: Chemical 212:353–363

Yathish S, Jiarpakdee J, Thongtanunam P, Tantithamthavorn C (2019) Mining software defects should we
consider affected releases? In: In Proceedings of the International Conference on Software Engineering
(ICSE), p To Appear

Zhang F, Hassan AE, McIntosh S, Zou Y (2017) The use of summation to aggregate software metrics hinders
the performance of defect prediction models. Trans Softw Eng (TSE) 43(5):476–491

Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: Proceedings of the
International Workshop on Predictor Models in Software Engineering (PROMISE), pp 9–19

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project Defect Prediction. In: Pro-
ceedings of the European Software Engineering Conference and the Symposium on the Foundations of
Software Engineering (ESEC/FSE), pp 91–100

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

3637Empirical Software Engineering (2020) 25:3590–3638

https://cran.r-project.org/package=FSelector
https://cran.r-project.org/web/packages/ScottKnottESD
https://github.com/software-analytics/Rnalytica
https://cran.r-project.org/package=DMwR

Jirayus Jiarpakdee is a Ph.D. candidate at Monash University, Aus-
tralia. His research interests include empirical software engineering
and mining software repositories (MSR). The goal of his Ph.D. is
to apply the knowledge of statistical modelling, experimental design,
and software engineering to improve the explainability of defect
prediction models.

Chakkrit Tantithamthavorn is an ARC DECRA Fellow and a lec-
turer in the Faculty of Information Technology, Monash University,
Australia. His research interests focused on developing practical and
explainable analytics for preventing software defects. His work has
been published at several top-tier software engineering venues (e.g.,
TSE, ICSE, EMSE). He received the B.E. degree from Kasetsart Uni-
versity, Thailand, the M.E. and Ph.D. degrees from NAIST, Japan.
More about Chakkrit and his work is available online at http://
chakkrit.com.

Christoph Treude is an ARC DECRA Fellow and a Senior Lecturer
in the School of Computer Science at the University of Adelaide,
Australia. He received his Ph.D. in computer science from the Uni-
versity of Victoria, Canada. The goal of his research is to advance
collaborative software engineering through empirical studies and the
innovation of tools and processes that explicitly take the wide variety
of artefacts available in a software repository into account. He cur-
rently serves on the editorial board of the Empirical Software Engi-
neering journal and as general co-chair for the IEEE International
Conference on Software Maintenance and Evolution 2020.

3638 Empirical Software Engineering (2020) 25:3590–3638

http://chakkrit.com
http://chakkrit.com

	The impact of automated feature selection techniques on the interpretation of defect models
	Citation

	The impact of automated feature selection techniques on the interpretation of defect models
	Abstract
	Introduction
	Paper Organisation

	Background
	Filter-Based Feature Selection Techniques
	Correlation-based feature selection
	Information gain feature selection
	Chi-Squared-based feature selection
	Consistency-based feature selection
	findCorrelation

	Wrapper-Based Feature Selection Techniques
	Recursive Feature Elimination
	Stepwise Regression

	Hybrid-Based Feature Selection Techniques
	AutoSpearman

	Research Questions and Related Work
	Experimental Setup
	Studied Datasets
	Criterion 1—Publicly-available defect datasets.
	Criterion 2—Datasets that are reliable and of high quality.
	Criterion 3—Datasets from which we can accurately derive interpretations.

	Experimental Results
	Approach
	Results
	Illustrative Example
	Approach
	Results
	Illustrative Example
	Approach
	Results
	Illustrative Example
	Approach
	Results
	Illustrative Example
	Approach
	Results
	Illustrative Example
	Approach
	Results
	Approach
	Results
	Approach
	Results
	The most important metrics produced by different correlation threshold values are highly correlated.
	Illustrative Example

	Discussion
	Approach
	Results

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions
	References

