
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2023

NCQ: Code reuse support for Node.js developers NCQ: Code reuse support for Node.js developers

Brittany REID

Marcelo D'AMORIM

Markus WAGNER

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
REID, Brittany; D'AMORIM, Marcelo; WAGNER, Markus; and TREUDE, Christoph. NCQ: Code reuse support
for Node.js developers. (2023). IEEE Transactions on Software Engineering. 49, (5), 3205-3225.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8794

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8794&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

NCQ: Code reuse support for node.js developers
Brittany Reid, Marcelo d’Amorim, Markus Wagner and Christoph Treude

Abstract—Code reuse is an important part of software development. The adoption of code reuse practices is especially common
among Node.js developers. The Node.js package manager, NPM, indexes over 1 Million packages and developers often seek out
packages to solve programming tasks. Due to the vast number of packages, selecting the right package is difficult and time consuming.
With the goal of improving productivity of developers that heavily reuse code through third-party packages, we present Node Code
Query (NCQ), a Read-Eval-Print-Loop environment that allows developers to 1) search for NPM packages using natural language
queries, 2) search for code snippets related to those packages, 3) automatically correct errors in these code snippets, 4) quickly setup
new environments for testing those snippets, and 5) transition between search and editing modes. In two user studies with a total of 20
participants, we find that participants begin programming faster and conclude tasks faster with NCQ than with baseline approaches,
and that they like, among other features, the search for code snippets and packages. Our results suggest that NCQ makes Node.js
developers more efficient in reusing code.

Index Terms—Library selection, Code reuse, code search.

F

1 INTRODUCTION

NODE.JS is a popular JavaScript runtime [1] often used
to develop server-side applications. The Node.js pack-

age manager, NPM,1 hosts over 1 million packages [2],
with a typical package recursively depending on several
others; on average each package directly depends on 5.9
other packages [3]. Despite such a rich package ecosystem,
finding the right package and figuring out how to use it
can be time-consuming. The vast number of options means
that developers are unable to gain detailed understanding
of all potential selections and thus make decisions based on
limited data. The typical package search process involves
developers searching online (e.g. using a general purpose
search engine or the NPM website), then evaluating relevant
packages by 1) installing the selected package and 2) test-
ing the functionality of that package (i.e., running code
snippets) to decide if the package is fit for purpose. If a
developer needs to try multiple packages (for example, due
to a lack of features), this process can become time intensive.

We conducted a preliminary study to understand the
challenges of developers in finding packages. Our survey of
55 Node.js developers revealed that package use is indeed a
common part of Node.js development, yet most developers
encountered challenges in finding packages, with the most
common challenge being insufficient documentation and
code examples. To sum up, developers have challenges
determining how to use the packages they find.

To address the challenges of package search in the
Node.js ecosystem, we propose Node Code Query (NCQ), a
custom Read-Eval-Print-Loop (REPL) [4] which integrates
1) NPM package search using natural language queries,

• Brittany Reid and Markus Wagner are with the University of Adelaide,
Australia.
E-mail: {brittany.reid, markus.wagner}@adelaide.edu.au

• Marcelo d’Amorim is with the North Carolina State University, USA,
and with the Universidade Federal de Pernambuco, Brazil
E-mail: mdamori@ncsu.edu

• Christoph Treude is with the University of Melbourne, Australia
E-mail: christoph.treude@unimelb.edu.au

1. https://www.npmjs.com/

2) code snippet search, 3) automatic code snippet error
correction, 4) automated setup of environments for testing
those snippets, and 5) the ability to transition between
search and editing modes. We conjecture that NCQ is a
useful development aid in an environment where much of
coding is related to connecting snippets of code as opposed
to developing code from scratch. To reduce the effect of
context switching on performance, NCQ integrates all of the
above steps of code reuse into one tool; package and code
search, a code editor and a shell to execute code and install
packages.

Existing ideas from the literature in code and library
search [5]–[11] inspired NCQ. The novelty of NCQ is
grounded on the application of these ideas in a different
context. We conjecture that NCQ’s interactive REPL can
better assist developers in the common scenarios where they
wish to try out new software libraries quickly in an isolated
environment. Developers can avoid making changes in their
local programming environment when they want to borrow
functionality from existing libraries. The combination of
REPL, package and code search and code correction is non-
trivial; they have been adapted for this new context to be
intuitive within a command-line interface, and to reduce
friction and context-switching. Our user studies aim to
validate these assumptions.

To validate the usefulness of NCQ, we evaluated the
tool with Node.js developers. Participants’ activities were
compared against a baseline comprising of internet access
and Visual Studio Code, which we identified as the most
popular editor for Node.js developers. We asked partici-
pants to complete two basic programming tasks, first using
the baseline, then using only the tool. Our evaluation shows
that participants were able to complete all tasks using NCQ
without context switching, at least as quickly as when they
used a well-established editor and had access to online
search. Participant feedback for the tool was generally pos-
itive in regards to helpfulness, confidence in solutions and
tool features. These results suggest that NCQ is a promising
direction to fill an existing gap in tool support for Node.js

ar
X

iv
:2

10
1.

00
75

6v
3

 [
cs

.S
E

]
 2

 J
an

 2
02

3

https://www.npmjs.com/

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

code reuse, reducing the burden of context switching be-
tween searching and editing tools.

This paper makes the following contributions:
? Approach. A command line tool, NCQ that integrates

documentation from the NPM database, within a REPL
with the ability to create temporary environments, search
for packages, install those packages, search for and run
related code snippets and edit submitted code like a
traditional code editor, along with an evaluation in two
user studies with a total of 20 participants.

? Artifacts. NCQ is publicly available on GitHub at https:
//github.com/Brittany-Reid/node code query.

2 ILLUSTRATIVE EXAMPLE

Let us consider a scenario where a developer would like to
create a CSV file in Node.js. The developer would like to
use a package to solve this task; this can be a simple task to
manually code, but a package would save time and avoid
mistakes. The following sections describe the workflow two
developers followed when solving Task 3 of our user study.
In the following, we describe the problem-solving process
followed by two participants. One participant was asked
to use the internet to find packages and to code in Visual
Studio Code, while the other participant used only NCQ.
Section 7.1.1 describes this task in more detail.

2.1 Typical problem solving in Node.js
This section describes the workflow of one participant us-
ing the internet and a traditional editor. We consider this
workflow to be a good example of typical problem solving
in Node.js.

Figure 1: NPM website search results for “csv file”.

The developer starts by using a general purpose search
engine (all participants in our user study started with a
general purpose search engine). In this case, they enter
the query “!npm csv file” into search engine DuckDuckGo,
which redirects them immediately to NPM’s search for the
query “csv file”. Figure 1 shows the first three results for
this query, however, none pertain to creating CSV files.
After reading the names and descriptions of these packages,
the developer refines their search, using the query “csv
file create”. The developer looks through the results for
this query, finding the package node-create-csv which
mentions converting an array into a CSV file, and selects
this package.

After being taken to the README file for this package,
the developer can see that it has some usage examples,

including the example shown in Figure 2 which writes some
data to a file.

1 const ObjectsToCsv = require(’objects-to-csv’);
2 const data = [{code: ’CA’, name: ’California’},
3 {code: ’TX’, name: ’Texas’},
4 {code: ’NY’, name: ’New York’},];
5 (async () => {const csv = new ObjectsToCsv(data);
6 await csv.toDisk(’./test.csv’);
7 console.log(await csv.toString());})();

Figure 2: Usage example from the README for
node-create-csv. Note the incorrect package name.

The developer decides to try to use this package, so
they create a new Node.js project. First, they make a new
directory for the project, then in that directory, they use
the command npm init -y to initialise the project, which
creates a special package.json file that stores metadata
including a list of dependencies. With the project config-
ured, the developer now installs the package with the npm
install node-create-csv command.

With the package installed, the developer copies and
pastes the example into their editor. They modify the
data being written to match the task’s requirements, how-
ever, when they attempt to run the code, Node.js re-
ports the MODULE_NOT_FOUND error despite the package
being installed. After some investigation, the developer
realises that the example imports a different package,
objects-to-csv, and the error refers to this package not
being installed. The developer looks over the rest of the
examples and sees the same issue, so considers this package
to be buggy and moves on.

However, during our post-session investigation, we
found that node-create-csv is a copy of an existing pack-
age with its documentation unchanged. Had the developer
known, they could have changed the import or installed
the named package instead to bug-solve, but developers
often consider package documentation and examples im-
portant in evaluating package quality. The developer unin-
stalls the package using the command npm uninstall
node-create-csv and decides to look at the other pack-
ages NPM returned, which may have working examples.

1 let converter = require(’json-2-csv’);
2 + const fs = require(’fs’);
3 - let documents = [{Make: ’Nissan’, ... },
4 + let documents = [{Name: ’Alice’,
5 + Institution: ’Foo’, Job: ’IT Manager’ },
6 - {Make: ’BMW’, ...}];
7 + {Name: ’Bob’, Institution: ’Bar’,
8 + Job: ’Developer’}];
9 let json2csvCallback = function (err, csv) {

10 if (err) throw err;
11 console.log(csv);
12 + fs.writeFile(’./people.csv’,csv,function(err) {
13 + if(err) return console.log(err) })
14 };
15 converter.json2csv(documents, json2csvCallback);

Figure 3: The modifications the developer made to complete
the task, with new lines marked in green with “+” and
removed lines in red with “-”.

The developer evaluates another three packages from
their search results, reading their documentation, however
none have any examples in their README files. Finally,
the developer checks the json-2-csv package. In the

https://github.com/Brittany-Reid/node_code_query
https://github.com/Brittany-Reid/node_code_query

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

README for this package, there are no usage examples,
but a link to some examples on GitHub, where they find
one example for writing a CSV file. They install the package
and paste the example in their editor.

Figure 3 shows how the example code for this package
was adapted to solve the assigned task. The original code
snippet takes an array of data, documents, and defines a
callback function where the argument csv is printed to the
console. The developer modifies it so the array contains their
data, and in the callback, the string is written to a file called
“people.csv”. They run this code and the file is created
successfully. In total, this participant took 18 minutes to
complete this task.

To sum up, this approach can be time-consuming for the
following reasons:
• Developers need to search different sources to locate

potentially useful packages. When finding those package,
developers need to read documentation and check exam-
ples, when available;

• Not all packages have examples, making evaluating pack-
age quality more difficult.

• The package of interest may not work as expected. Run-
ning code snippets is important to make a decision on
the package to use. For that, the user needs to create
temporary environments and (un)install packages on top
of those environments to test different packages.

2.2 Problem solving in NCQ
This section illustrates how developers solve tasks using
NCQ, a tool to help developers search for Node.js pack-
ages and experiment with related examples. We describe
the workflow of another developer in our user study. The
developer was asked to solve the same task from Section 2.1.

First, the developer starts the tool and uses the repl
command to create a new Read-Eval-Print-Loop (REPL)
instance, where they can install packages and execute
code. The developer then uses the .packages <search
string> command from within the REPL to search for
packages using the search string. This command takes the
developer to a list of packages and their descriptions, which
they can scroll through. Figure 4 shows the output the REPL
produces for the command .packages csv.

Figure 4: Results for the query ‘.packages csv’.

The list of packages allows for skimming many descrip-
tions to quickly disregard irrelevant packages, for example,
csv2influx, which appears to import CSV files into a

database. NCQ sorts packages based on their runnability,
and excludes packages with no stars or no example code in
their READMEs. The first entry, csv-it, looks promising
so they select it with the enter key. Upon selection, the tool
asks if they would like to install the package, to which they
respond “yes”.

Figure 5: Cycling through code snippets for the package
csv-it using the command .samples.

To evaluate a package, developers can use the .samples
<package name> command to retrieve code snippets for
a given package, extracted from NPM by scrapping the
README file associated with a package. The developer uses
the command .samples to see examples for the installed
packages. Figure 5 shows the code snippet for csv-it.
The code snippet autofills the command prompt; from here
the developer can execute the code snippet like any other
code in the REPL by pressing enter, or cycle through other
code snippets by using the function keys F2 and F3. Each
code snippet is evaluated using ESLint to correct errors and
run through NCQ’s error correction process. This process
fixes errors, enforces consistent style rules on snippets and
comments out error-causing lines, before being sorted by
final error count to show error-free snippets first.

1 const CsvIt = require("csv-it");
2 - const testStream = CsvIt.writeAsync(‘first.csv‘);
3 + const testStream = CsvIt.writeAsync(‘people.csv‘);
4 - testStream.write({ A: 42 , B: 33 });
5 + testStream.write({ Name: "Alice",
6 + Institution: "Foo", Job: "IT Manager"});
7 - testStream.write({ A: 7 , B: -1 });
8 + testStream.write({ Name: "Bob",
9 + Institution: "Bar", Job: "Developer"});

10 testStream.end();
11 - const SECOND_PATH = ‘second.csv‘;
12 - CsvIt.write(SECOND_PATH, [{ A: 42 , B: 33 } ,
13 - { A: 7 , B: -1 }]).then(() => {
14 - console.log("Done");
15 - return CsvIt.read(SECOND_PATH);
16 - }).then(res => {console.log(res);});

Figure 6: How the code snippet in Figure 5 was adapted.

In this case, there is only one code snippet, which
demonstrates how to write some data to a CSV file in two
different ways. NCQ’s automated fixes have added semi-
colons where they are missing; Figure 6 shows the changes
the developer makes to the code snippet to complete their
task. First, the developer removes the second example. Next,
they decide to run the code snippet by pressing enter and
see that it works as expected; a file named “first.csv” is
created with the columns “A” and “B” and two rows of

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

values. After executing, the developer uses the .editor
command, which allows them to edit their previously run
code in a traditional editor, where they change the file name
and data before saving. On save, the REPL re-runs the code
successfully. In total, this participant took 15 minutes to
complete the task.

In summary, NCQ combines ideas from existing work in
code and package search to aid code reuse by:
• Automatically setting up temporary environments that

developers can use to experiment with packages;
• Allowing developers to search for packages without leav-

ing their programming environment [10]; developers only
see packages with example code, making the package to
code process faster;

• Sorting packages by runnability to prioritise functioning
packages; the majority of developers in our user study
were able to solve their task with the first package they
found;

• Embedding code snippets within the editor [5] and en-
abling developers to quickly try out different packages
without leaving the tool, while providing immediate error
feedback when code is submitted, via the use of the
REPL design. Developers are easily able to check if code
snippets work before making changes;

• The addition of a traditional editor mode so changes can
be made to the REPL’s state, which makes the REPL more
intuitive for users;

• Automatically fixing errors and sorting snippets by num-
ber of errors to reduce the amount of work developers do
to reuse code [11].

3 DATASET

NCQ uses a database of packages, package data and code
snippets to enable its search. Like previous work [11], we
implement this database offline to avoid internet bandwidth
issues. The following sections describe how package data
and code snippets were mined. Table 1 shows the package
data breakdown; our final dataset consists of 620,221 pack-
ages with 2,161,911 code snippets.

Packages as of May 2021 1,607,057
Packages with READMEs 1,298,170
Packages with non-empty READMEs 1,297,678

Packages with Node.js code snippets 620,221

Node.js code snippets 2,161,911

Table 1: Summary of dataset statistics.

3.1 Package Data

To enable the package and code search, we mined the NPM
registry for NPM package data. We chose to restrict our
focus to a single package manager to simplify automation.
Many packages are also hosted across multiple package
managers, so focusing on a single one limits data duplica-
tion and the size of our database. We selected NPM due
to it being one of the most popular package managers
for Node.js. The registry maintains a list of all package
names at the URL https://replicate.npmjs.com/ all docs.
For each package, a JSON file containing package data

(e.g., README, description, author and link to the repos-
itory) can be found at the URL https://registry.npmjs.org/
〈package〉.

There were 1,607,057 packages on the NPM registry as
of May 2021. We were able to mine the name, descriptions,
keywords, README, last modification date and repository
URL for 1,298,170 packages. As NPM has a 64KB limit on
README length on the registry, we also downloaded the
full README from corresponding GitHub project, when
linked. For 308,887 packages (19.2% of all packages), there
was no README available on either site. Next, we excluded
empty README files, leaving us with 1,297,678 non-empty
READMEs. Finally, we limited our dataset to the 620,221
packages with at least one code snippet, following the
process in Section 3.2.

As the NPM registry does not contain repository data
relating to package popularity, we mined GitHub for addi-
tional package data, such as the number of stars and if there
was a license. We then processed the README to count
number of lines, markdown code blocks of any language
and if there were install or run examples. We determined
if there was a run or install example by looking for the
headings “install” or “usage”, or the use of the commands
npm run or npm install.

3.2 Code Snippet Extraction

Code snippets for the code search were extracted from
README files. We limited our focus to README files over
other documentation as this was the easiest to systematically
mine. It is worth mentioning that NPM recommends all
packages include a README (and consequently 80.8% of
packages on the registry have a README). Other forms of
software documentation do exist, but differ across projects,
making it harder to mine. We also chose not to mine repos-
itory code for snippets as downloading the source of every
NPM package would be very time intensive.

To extract code snippets, we looked for code blocks in
the README markdown. These code blocks often include
language information for syntax highlighting, which we
used to discard code snippets marked as a non-JavaScript
language (e.g., bash commands used to demonstrate pack-
age installation or JSON for results of execution). How-
ever, as not all code snippets use syntax highlighting, we
also analysed the remaining dataset to further filter non-
JavaScript snippets. We excluded snippets starting with
common commands (npm install for example), and used
a regular expression to look for JSON objects.

As code snippet extraction is an automated process
based on heuristics, we manually verified the results using a
statistically representative random sample of 384 READMEs
(confidence level of 95% and a confidence interval of 5). Two
authors manually compared each README and the result-
ing code snippets from our extraction process, checking for
any missing or non-JavaScript snippets. The authors had a
Cohen’s Kappa agreement of 0.72. Then, the authors met to
discuss results and determine a final categorisations. Using
this data, we refined the extraction process to handle any
erroneous cases and reviewed again to verify. Ultimately,
we were able to extract 2,161,911 code snippets from the
620,221 READMEs.

https://replicate.npmjs.com/_all_docs
https://registry.npmjs.org/<package>
https://registry.npmjs.org/<package>

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

4 SURVEY

As a preliminary step in the design NCQ, we conducted a
survey to understand how developers find NPM packages
and what challenges they experience. The following sections
describe our survey design and the results.

4.1 Survey Design

To find Node.js programmers, we recruited participants
from Prolific2 –a platform to recruit research participants–
and employed a screening survey using a series of pro-
gramming knowledge questions adapted from Danilova et
al. [12]. Questions were designed to have a single ‘correct’
answer, so that they could easily be used to verify if the
participant had basic programming knowledge. The full
details of our screening, including questions and answers,
are available in a workshop paper [13].

Table 2: Survey Questions (Q)

Q1 How often do you Search for NPM packages?
Q2 What site do you use the most when searching for

NPM packages?
Q3 What kind of challenges do you have searching for

NPM packages?
Q4 What code editor do you use the most to program in

Node.js?

Table 2 shows the set of questions we asked participants.
Questions were selected to give insights into the frequency
of NPM package use, websites used to find packages and
the challenges developers experience. In addition, to under-
stand the way developers program in Node.js in general, we
asked about code editor usage (Q4).

We evaluated the credibility of participants using the
framework proposed by Rainer and Wohlin [14]. We aimed
to recruit ‘performers’, in this case, software developers
with real, relevant and recent experience according to the R3

model. We used the programming skill questions to verify
real and relevant Node.js programming skill, and partici-
pants were asked how often they programmed in Node.js
to assess that the experience was recent. Furthermore, we
used Q1 to again assess relevancy of experience in regards
to package search; participants that answered ‘Never’ were
not shown Q2 and Q3.

We received 680 responses, out of which 55 answered
all questions correctly and were determined to be Node.js
programmers.

4.2 Survey Results

Figure 7 shows the results of our survey. We found that
out of 55 developers, 45 searched for NPM packages (Q1)
once every few months or more often (81.8%). Consider-
ing these developers, the most popular websites to search
for packages were Google (44.4%) and the NPM website
(35.6%), with most developers (73.3%) reporting that they
experienced challenges. The most common challenges men-
tioned were insufficient documentation and example code

2. https://www.prolific.co/

Figure 7: Responses to survey questions for 55 developers.
Q2 and Q3 record no response for developers who do not
search for NPM packages.

(22.2%), followed by maintenance (15.6%) and security is-
sues (13.3%). Developers highlighted issues finding pack-
ages outside the most popular, with one developer saying
“Maybe the biggest grip[e] is trying to find packages outside
of what’s popular that are well documented”. In general,
most developers had issues finding high quality packages
with so many options on the NPM registry; as stated by
one developer “I also have a hard time finding out what all
the alternatives are to see what my options are”. The results
for Q4 show that VSCode was the most popular editor for
Node.js within our sample. 65.5% of developers answered
VSCode, followed by IntelliJ at 14.5%. Therefore, we use it
as a baseline for the study described in Section 10.

In summary, package use was a common part of pro-
gramming in Node.js, but most developers had challenges
finding high quality NPM packages.

5 OVERVIEW

Tool Baseline

NCQRetrieval NCQBasic + Web
NCQ VSCode + Web

Table 3: Comparison of baselines used in each evaluation.

To address the problem described in Section 2.1, we
developed Node Code Query (NCQ). NCQ is a command
line tool for Node.js that integrates code and package search
into a REPL development environment. The tool extends the
existing Node.js REPL and, along with the ability to execute
code, adds the ability to search for NPM packages using
natural language queries, find and run example code snip-
pets and install and uninstall packages, all without leaving
the environment. We first developed an initial version of
NCQ, NCQRetrieval, which focuses on retrieving packages
and code snippets, then, using feedback from a user study of
10 developers, we refined the tool further, adding additional
features such as better package search and code correction.

Table 3 shows each version of the tool and the baseline
used to evaluate against. For the first user study, we evaluate
NCQRetrieval against a baseline version of the tool with no
search features and web access; we justify this decision as
evaluating the impact of NCQRetrieval’s search features. For
the second evaluation, we then compare NCQ against a
more realistic baseline of VSCode and web access, to see

https://www.prolific.co/

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

how the tool performs against ‘typical’ processes. We do not
evaluate the two variants of NCQ against each other as this
research focuses on the comparison between automated and
manual code reuse techniques. The variants are not funda-
mentally different besides the additional features, described
in Section 9.

6 NCQRetrieval

NCQBasic

Node.js REPL (1) Environment Setup

(2) Code Execution

Commands

(4) Package Search

.packages <query>

.packages connect to sql

Process into keywords

[“connect”,“sql”]

Search database by keywords

[set of retrieved packages]

Sort by stars

[sorted set]

Print table

(5) Code Snippet Search

.samples <package>

.packages mysql

Search code snippet
database

[set of retrieved code snippets]

Sort by order in README

[sorted set]

Autofill input
with code snippet

(3) Editor Mode

Figure 8: Overview of NCQRetrieval’s features. Features
shared with NCQBasic are highlighted in orange.

The initial version of NCQ, NCQRetrieval, focuses on
the problem of finding packages and code snippets. As
finding and testing packages is often a process with many
small tasks where developers may want to quickly try
out different packages, we implement NCQRetrieval as a
Read-Eval-Print-Loop (REPL). The REPL model is highly
suited to this type of programming; developers receive
immediate feedback on execution of each line, and writing
and executing code are tied together. Figure 8 gives an
overview of the features in NCQRetrieval; 1) the ability to
setup environments, 2) code execution, 3) the editor mode,
4) package search and 5) code snippet search.

6.1 REPL
Starting the REPL creates a new environment to execute
Node.js code and install packages. The tool creates a new
directory and the necessary project files that allow a user to
install packages: (1) the package.json file, which stores
project details and directly installed packages, and (2) the
package-lock.json, which lists the entire dependency
tree. These files are automatically updated by the package
manager when installing/uninstalling packages.

6.2 Editor Mode
To make programming in a REPL easier, NCQRetrieval in-
cludes an additional editor mode that allows users to edit
the state of the REPL in a traditional editor. The default

Node.js REPL maintains a context of executed code as users
submit code, but this cannot be modified besides overwrit-
ing previously defined functions and variables. This often
means that users need to rewrite entire functions to fix
errors. NCQRetrieval’s editor mode provides a simple text
editor that presents a user with their previously run code,
where they can edit or remove lines. On saving the file, the
REPL state will be reset and the new code will be run.

6.3 Package Search
NCQ’s package search replies on a database of NPM pack-
age information, as described in Section 3. Packages are pre-
processed to create a set of keywords they are indexed by.
First, package descriptions are separated into unique words,
then combined with the package’s keyword field, processed
to remove stop words (common, individually meaningless
words like “the” and “to”). Then, the remaining set of words
are stemmed using the Porter Stemmer algorithm.3

Figure 9: Output of the .packages command.

A similar process is taken for queries using the
.packages command, which Figure 8 illustrates. For ex-
ample, the query “connecting to sql” is first separated into
the words “connecting”, “to”, and “sql”, then stop words
are removed, leaving only “connecting” and “sql”. After
stemming, the set of words is “connect” and “sql”. For each
of these words, a set of associated packages can be retrieved;
the final result is the subset of packages present in all sets,
which is sorted by stars then tabulated with information
such as package stars and descriptions to help users make a
choice (Figure 9).

6.4 Code Snippet Search
NCQRetrieval includes a code snippet search that allows
developers to look for example code snippets for a package.
Each snippet in our dataset has an associated package it
originates from and an index based on the order of appear-
ance in the original README.

As shown in Figure 8, using the .samples command,
code snippets belonging to the given package are returned
in order of their occurrence in the original README. Snip-
pets autofill the command line and can be modified or run
without needing to copy and paste. We preserve the original
order of code snippets to enable developers to more easily
understand the logical order some snippets are intended to

3. https://tartarus.org/martin/PorterStemmer/

https://tartarus.org/martin/PorterStemmer/

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

be executed in; not all code snippets run on their own and
they often leave out steps shown in previous snippets, for
example, importing the package. Related code snippets also
remain grouped together due to this order.

7 NCQRetrieval EVALUATION

To evaluate NCQRetrieval we conducted a user study with
10 Node.js developers, where participants completed pro-
gramming tasks using the tool. We pose the following
related research questions:

RQ1. What is the influence of NCQRetrieval’s search features
on the performance of participants?
RQ2. What are the perceptions of participants about
NCQRetrieval?

The purpose of RQ1 is to understand if the tool’s search
features are helpful, using the comparison baseline of a
version of NCQ that lacks search features. Instead, partic-
ipants used the internet to find packages and examples.
We used the following metrics to measure the impact of
NCQRetrieval’s search: 1) time to completion, 2) how quickly
developers found and installed packages and 3) the number
of packages developers tried. The purpose of RQ2 is to
understand developer perceptions of the tool. We analysed
participant responses to a set of questions we asked about
their experiences after each task.

7.1 Experimental Design
This section describes the design of the user study, including
how we selected the tasks, what baseline we used, how
we recruited participants, how we assigned tasks to partici-
pants, how the sessions were run and what questions were
asked to participants.

7.1.1 Programming Tasks
As the user study focuses on solving tasks, task selection
was important. To represent real programming tasks, we
looked at a list4 of mined Stack Overflow questions from
previous work on the NLP2TestableCode project [11]. We
looked for examples that could be solved in 20 minutes
or less by a developer with basic experience in Node.js. It
is important to note that, to facilitate the checking of the
solutions provided by participants, we modified the original
tasks to specify example inputs. For example, to complete
task 4, we provide as input to the participant the SQL
database to be used so that we could validate the output.

We used the following five tasks:
1) Read a text file (any) from the file system to memory,

using a package other than ‘fs’. (Sources: Line 9893 of the
task list and Stack Overflow question 20186458.)

2) Create an array with ten randomly-chosen numbers and
sort the array with “merge sort”. (Sources: Line 585 and
99292 and SO questions 42033229 and 2571049.)

3) Use a package to create the CSV file people.csv with
the contents:

Name, Institution, Job
Alice, Foo, IT Manager
Bob, Bar, Developer

4. https://bit.ly/2HK5tLq

(Sources: Line 3073 and SO question 59600762.)
4) Connect to a MySQL database that we provide and

retrieve customers using the SQL command "SELECT
customerName FROM customers WHERE country =
‘Australia’;". (Sources: Line 221 and SO question
6597493.)

5) Create a directed graph in memory with the following
edges {(a,b), (a,c), (b,c), (c,d)}. The vertex “a” is the root
of the graph. Print the vertices on the console as they are
visited in depth-first order. Print each vertex only once.
(Sources: Line 13232 and SO question 14483473.)
Participants were said to have successfully completed

a task if they produced a JavaScript file that, when run,
satisfied the task description. Tasks were designed so that
it would be straightforward to determine completion.

7.1.2 Baseline
We designed the baseline of this evaluation as NCQBasic,
a version of NCQRetrieval with package and code search
suppressed. NCQBasic’s features are highlighted in orange
in Figure 8. With NCQBasic, participants must search for
packages online, using the browser. We put no limits on
what sites could be used for search, instead of restricting
them to just the NPM website, as the results of our survey
indicate that developers prefer to use generic search engines
like Google to find packages. Participants first solve a task
using the baseline, then using NCQRetrieval, in order to
compare the effect of search on results while reducing the
impact of tool familiarity. We expect that developers would
be more familiar programming in a traditional editor and
that this could have an impact on results.

7.1.3 Participants
We hired 10 developers from online, for example, using
social media sites such as Twitter and Telegram. We offered
participants $40USD and required fluency in English and
basic knowledge in Node.js. We estimated the total time of
a user session as follows: 10 minutes for presentation/train-
ing, 20 minutes to run a task with NCQBasic, 20 minutes
to run a task with NCQRetrieval and 10 minutes to answer
questions after tasks (1hr total). Participants had an average
of 2 years experience with Node.js.

7.1.4 Assignment

Table 4: Fragment of task assignments.

participant task
a b c d e

1 N Y - - -
2 - N Y - -
3 - - N Y -
4 - - - N Y
5 Y - - - N

We used a typical combinatorial design to uniformly
assign tasks to participants. For space reasons, Table 4
shows a fragment of the design including only 5 participants
(rows) and 5 tasks (columns). A cell with the label “Y”
(respectively, “N”) indicates that a participant will be as-
signed to solve a given task with NCQRetrieval (respectively,

https://stackoverflow.com/questions/20186458
https://stackoverflow.com/questions/42033229
https://stackoverflow.com/questions/2571049
https://bit.ly/2HK5tLq
https://stackoverflow.com/questions/59600762
https://stackoverflow.com/questions/6597493
https://stackoverflow.com/questions/14483473

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

NCQBasic). Note that every participant executes one task
with NCQRetrieval and one task with the baseline and, in
this design with 5 participants, every task is executed by
two participants. The design of this table is a Latin Square
as the number of participants and tasks are the same, but
the actual design we used included 10 participants to obtain
a larger sample. Intuitively, that design can be obtained
by repeating the rows associated to participants 1-5 two
times. With 10 participants, each task is executed by 4
different participants: 2 participants using NCQRetrieval and
2 participants using NCQBasic.

7.1.5 User Session
The user study was undertaken remotely using AnyDesk5,
with participants connecting at an agreed upon time with
the instructor (first author of this paper). Before the session,
participants were asked to watch a video demonstration of
the tool6. At the beginning of the session, the instructor
demonstrated the features of each tool and then the par-
ticipant attempted each task. After the participant turned in
each task, the instructor asked the participant to complete a
section of the questionnaire (see Section 7.1.6).

Tool documentation (e.g., keys and commands) was
made available to participants on the right side of the screen,
with the tool itself on the left. Experiments were run within
a virtual machine with the necessary infrastructure to run
each task provided; for example, for task 4, the database was
already set up and a file was provided with the connection
details. Snapshots were used to restore the environment to
the same initial state for each participant.

Audio and video (screen capture) were recorded for each
session. The tool was configured to record timestamped
input (use of commands and submitted code) into log files.
At the end of each task the user’s REPL code was saved into
a file. An additional log of visited websites was transcribed
from the session recordings.

7.1.6 Questions

Table 5: Questions part A, B and C.

A1 How many years of experience do you have with Node.js?
B1/C1 Overall, did you consider the tool helpful to accomplish

the assigned task?
B2/C2 Grade your confidence, in a 1-7 scale, that your solution

is correct according to the problem specification?
C3 Did you consider the command “packages” useful?
C4 Did you consider the command “samples” useful?
C5 What features did you like about the tool?
C6 What you did not like about the tool?

Participants were asked to complete sections of a ques-
tionnaire via a Google Form at the start of their session
(Questions A), after the first task (Questions B) and after the
second task (Questions C). Table 5 shows the set of questions
labeled by stage; for questions B1-2 and C1-4 participants
were asked to rank agreement on a seven-level Likert scale.

For each task we asked participants about their con-
fidence in their solutions (B1 & C1) and the helpfulness
of the tool they used (B2 & C2). Additionally, in Section

5. https://anydesk.com/en
6. https://youtu.be/C1PZ2g96eVo

Table 6: Features provided to users as answers (F) for C5.

F1 Ability to execute code through REPL
F2 Ability to search for packages
F3 Ability to search for code snippets
F4 Ability of using an editor to modify snippets (without leaving

the REPL)
F5 The combination of code search and execution (virtualization)

in a single tool
F6 Ability to install and uninstall packages in an environment
F7 Ability to save work and resume from outside the tool (.save)
F8 Ability to access main functionalities through function keys

C participants were asked about NCQRetrieval’s features,
for example, if they found certain commands useful (C3
& C4), what features they liked (C5) and what they didn’t
like (C6). For Question C5, participants were given the list
of features seen in Table 6 and allowed to select multiple
options. The questionnaire concluded with an option to
provide suggestions.

Table 7: TAM (Technology Acceptance Model) questions (D).

D1 Using the tool would improve my performance in my job.
D2 Using the tool in my job would increase my productivity.
D3 Using the tool would enhance my effectiveness in my job.
D4 I would find the tool to be useful in my job.
D5 My interaction with the tool is clear and understandable.
D6 Interacting with the tool does not require a lot of my mental

effort.
D7 I find the tool to be easy to use.
D8 I find it easy to get the tool to do what I want it to do.
D9 The quality of the output I get from the tool is high.
D10 I have no problem with the quality of the tool’s output.
D11 I would have no difficulty telling others about the results of

using the tool.
D12 I believe I could communicate to others the consequences of

using the tool.
D13 The results of using the system are apparent to me.
D14 I would have difficulty explaining why using the system

may or may not be beneficial.

At the end of the session participants answered
questions based on the Technology Acceptance Model
(TAM) [15], a model for measuring, predicting, and explain-
ing use of technology, including software. Our questions
were adapted from TAM2 [16], which also incorporates job
relevance and output quality. These questions can be seen
in Table 7.

7.2 Answering RQ1: What is the influence of
NCQRetrieval’s search features on the performance
of participants?
Prior research has found that context switching (e.g., switch-
ing from a programming environment to a web browser)
can disrupt productivity [17]. In Section 7.1.2 we describe a
version of NCQRetrieval with no search features; instead,
participants search resources online. We compare this to
NCQRetrieval, with the hypothesis that the integrated search
features will impact participant performance. The following
sections elaborate on the research questions (associated with
RQ1) that we posed.

7.2.1 Was there impact on time to complete each task?
Figure 11 shows duration to solve tasks (in seconds),
by participant and by task, using NCQBasic (left) and

https://anydesk.com/en
https://youtu.be/C1PZ2g96eVo

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

Figure 10: Timeline of all participants across both user studies, grouped by task and treatment. The x-axis shows time in
seconds, markers show features used over time, with the first usage enlarged. Each bar is labeled by participant ID.

Figure 11: Duration of tasks by participant and by task. Bars
are labelled by task ID in the first figure, and by participant
ID in the second figure.

NCQRetrieval (right). All participants solved their tasks.
We compare the difference in durations for each partic-
ipant, and find that 7 out of 10 participants completed
tasks faster when using NCQRetrieval instead of NCQBasic.
Participants 4, 6, and 10 were exceptions. Note that each
participant solved different tasks. The median time to solve
for the baseline was 936 seconds, while the median time for
NCQRetrieval was 748 seconds.

Figure 10 shows a timeline of each participant’s session,
grouped by task and treatment. The figure also shows

what features of each tool each participant used to solve
their tasks over time. Looking at the timeline for the three
cases of lower NCQRetrieval performance shows that these
participants tried multiple packages, searched for examples
multiple times and had large amounts of time between
executions. In addition, two of these participants (4 and 10)
were assigned the same task (task 5).

Participants solving Task 2 and 3 in NCQRetrieval were
faster than their baseline counterparts, which can be seen
in Figure 11. Combined with participants 5 (Task 1) and
9 (Task 4), six participants solved their tasks faster using
the tool than all participants using NCQBasic for that task.
The reverse was only true for two participants, 5 and 9,
who completed task 5 faster using the baseline than both
participants using the tool.

To explain the performance difference for Task 5, we
can look at the task and how participants tackled it. Task
5 has two associated parts, the creation of a graph and
the traversal of nodes in the graph. By looking at the
commands participants used to search and their transcribed
web searches, we can see that three of the four participants
who completed this task focused on the graph creation
aspect first, neglecting the traversal of the graph. Only par-
ticipant 9 using NCQBasic immediately searched for graph
algorithms, focusing on the depth-first search aspect of the
task. Naturally, traversing a graph requires the creation of
a graph, leading this participant to find a correct package
faster than others. Other participants needed to install and
experiment with other packages to come to the conclusion
that those packages would not help solve the task as not
all packages contain depth-first search functionality. Note
that the same participant also performed well when using

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

NCQRetrieval in task 4, where they only needed a single
package install per task.

In summary, participants completed tasks in
NCQRetrieval in most cases faster than they did in
NCQBasic.

7.2.2 How long did participants take to install the first and
last package?
The purpose of comparing the first and last install is to
evaluate how long participants spent evaluating packages.
The first use of the .install commands marks when
participants stop search to try a package, and the last install
tells us how long it takes to find a suitable package to
complete the task. Where these are the same, it indicates that
participants found a suitable package on their first attempt.

Figure 12: Time taken to find the first package (darker), and
final package (lighter), by participant and by task.

As described in Section 7.1.5, we record the use of the
.install command along with a timestamp. Figure 12
shows the time to find first and last package, by participant
and by task. Bars of a single colour represent when the
first package was also the last package; this is the case
for 60% of participants using NCQRetrieval in contrast to
50% of participants in NCQBasic. We can also see that
in 60% of cases, participants installed the first package
earlier using NCQRetrieval as opposed to NCQBasic. Again,
in 60% of cases participants installed the final package
earlier in NCQRetrieval than they did using NCQBasic.
The median times to find the final package for NCQBasic

and NCQRetrieval were 250 seconds and 133 seconds re-
spectively. To sum up, results suggest that, compared to
NCQBasic, NCQRetrieval enables participants to begin pro-
gramming faster and to conclude tasks faster.

Summary: Participants that used NCQRetrieval

completed tasks without ever leaving the com-
mand line interface of the tool. Furthermore, par-
ticipants using NCQRetrieval completed tasks at
least as quickly and correctly as they did in the
baseline setting where participants had access to
web resources such as Google and Stack Overflow.

7.3 Answering RQ2: What are the perceptions of par-
ticipants about NCQRetrieval?

The aim of RQ2 is to identify developer perceptions about
NCQRetrieval and its features, such as perceived usefulness
which can be important for determining developers’ accep-
tance of new tools [15]. The following sections elaborate on
the research questions (associated with RQ2) that we posed.

7.3.1 What was the participant perception of
NCQRetrieval’s features?

For this question we investigate what features of
NCQRetrieval developers found most useful, and respec-
tively, less useful. To measure this, we asked developers a
series of questions about NCQRetrieval’s features after their
session, described in Section 7.1.6.

Figure 13: Usage of NCQRetrieval and NCQBasic’s features

First, we observed how developers used the features of
NCQRetrieval. Figure 13 shows how many times developers
used each feature while solving tasks in both the tool
and baseline. Recall that the commands .samples and
.packages are available only in NCQRetrieval. Overall, the
most used feature was the editor mode, used to write code,
followed by the feature to retrieve samples. In NCQRetrieval,
developers looked for packages 25 times, installed a package
19 times and looked for samples 41 times.

For question C5, participants were presented with a list
of features shown in Table 6, and asked to select what
they liked, where multiple selection was allowed. Figure 14
shows how many participants selected each feature. All
participants found the code snippet search (F3) to be useful,
with the package search (F2) and editor mode (F3) also
being well liked. These results show that the search features of
NCQRetrieval were the highest rated out of all features, and
suggest that almost all participants liked the core features of
NCQRetrieval.

Figure 14: What features (Table 6) participants liked.

Similarly, we asked participants to rate the usefulness of
specific commands. Figure 15 shows how participants rated

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

the .packages and .samples commands using a seven-
rank Likert scale. Overall, participants found both features
to be useful.

Figure 15: Participant ranking of the usefulness of the com-
mands “packages” (Question C3) and “samples” (C4).

We did not ask participants to explain their answers,
however, during the session participants indicated issues
accessing the function keys from Mac systems, which may
explain results for F8 (see Figure 14). During the feedback
question, the participant who did not like the packages
command indicated that the tool should “focus on sam-
ples”. When asked for feedback at the end of the ques-
tionnaire, participants provided suggestions for extending
NCQRetrieval’s features, such as better package ranking,
more interactive UI, and implementing the tool as a plug-in
for an existing editor such as Visual Studio Code.

While the editor mode was highly used and well rated,
multiple participants indicated that it was limited, lacking
familiar controls, and that they would prefer the tool open
an external editor instead, with one participant suggesting
“this tool could have a vim mode”.

7.3.2 What was the general participant perception of
NCQRetrieval?
This question investigates the general perceptions of NCQ.
We answered the question in two parts. First, we asked
general questions about participant confidence and the help-
fulness of NCQRetrieval and NCQBasic. Then, we used a
popular procedure [15], [16] used to evaluate acceptance of
technology to guide our questions to participants.

Figure 16: Helpfulness ranking of tool and baseline.

General questions: We asked participants to rank how
helpful each version of the tool was on a seven-rank Likert
scale (B1 & C1). We also used the same method to measure
how confident participants were in their solutions in each

tool (B2 & C2). Figures 16 & 17 show the responses to these
questions. Participants found NCQRetrieval considerably
more helpful than the baseline; all participants agreed that
NCQRetrieval was helpful, compared to only 60% for the
baseline.

Figure 17: Confidence in task solutions.

Considering confidence of solutions, results were similar
between tools, with most participants confident in their
solutions, except for 2 participants answering “neutral” for
NCQRetrieval. There are many factors that may have influ-
enced these results. We expected developers to be less confi-
dent doing something unfamiliar, in this case, searching for
packages and examples using NCQRetrieval. Additionally,
all participants completed their tasks successfully in both
treatments suggesting that we may have overestimated the
time budget. There is also the fact that the design of both
tools allows participants to execute code before turn in.
These impacts may have leveled the confidence observed
within the usage of each tool.

Figure 18: Participant response to TAM questions.7

TAM: In addition to assessing developer perception of fea-
tures, we also surveyed participants using 14 questions
adapted from TAM2 [16] (Technology Acceptance Model),
detailed in Section 7.1.6. Figure 18 shows the responses for
each of these questions.

Overall, developers found NCQRetrieval to be useful,
and their experiences with the tool were positive. For ques-
tion D14, most participants agreed they would be able to
explain how the tool could be beneficial, One participant
responded to all TAM questions negatively; this participant
also indicated for question C6 that they found the tool “a
little difficult to navigate”.

7. Scale reversed for D14.

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Summary: Participants’ perceptions about
NCQRetrieval were positive across all
evaluated aspects. All 10 participants agreed
that NCQRetrieval was helpful to them in
accomplishing the assigned task (compared to
60% for NCQBasic). Searching for code snippets
and packages were reported as most popular
features, and ratings for perceived usefulness,
ease of use, and likely future use (measured
by the Technology Acceptance Model) were
comprehensively positive.

8 NCQRetrieval LIMITATIONS

This section discusses the limitations of NCQRetrieval, and
how a revised version of the tool, NCQ, addresses those
limitations.

The findings from our user study provides evidence that
NCQRetrieval enables developers to search for and experi-
ment with different packages with reduced context switch-
ing. We observed that developers that use NCQRetrieval are
at least as quick and successful in their coding tasks as
developers that followed a “traditional” setup with access
to search engines, the NPM website, and software docu-
mentation from any web resource. We also observed that
participants’ perceptions are positive across all evaluated
aspects, with all participants finding NCQRetrieval helpful
in accomplishing their tasks.

However, the user studies we conducted revealed that
NCQRetrieval can be improved in important ways. The
following list shows how we addressed user feedback.
• Participants expressed that packages highlighted by the

existing package search were often not the best choice,
as NCQRetrieval only uses GitHub stars to rank pack-
ages. The results of our user study suggest that when
participants cannot find good packages immediately, and
instead have to try multiple packages, they spend more
time on their tasks. Action: We address this in NCQ
by improving the package search ranking algorithm by
incorporating a measure of runnability, (see Section 9.1).

• Multiple participants expressed that the UI could be im-
proved, especially the package search UI. Participants
mentioned that the table of 25 packages was visually
noisy, with too many packages, and that NCQRetrieval

could be improved by becoming more interactive. In the
user study, we observed that most uses of the .packages
command were followed by the .install immediately
after, i.e., participants installed packages immediately af-
ter the search. Participants either copy and pasted the
package name as part of the .install command, or
referred back to the table. Action: To address these issues,
we replaced the table UI with an interactive, scrollable list
of packages that takes up less space, and where users can
select a package from the list to install (see Section 9.1).

• We observed that most code snippets participants used
in both techniques did not run (Section 10.4) and partici-
pants spent a lot of time making code snippets runnable.
Action: To address this, we implement automated code
corrections to reduce the need for developers to make
these changes. We also use the error information to rank
code snippets (see Section 9.2).

NCQBasic

Node.js REPL (1) Environment Setup

(2) Code Execution

Commands

(4) Package Search

.packages <query>

.packages connect to sql

Process into keywords

[“connect”,“sql”]

Search database by keywords

[set of retrieved packages]

(N1) Improved Package Search

Sort by ability to build

[sorted set]

Sort by has stars

[sorted set]

(N2) Interactive Package List

(5) Code Snippet Search

.samples <package>

.packages mysql

Search code snippet
database

[set of retrieved code snippets]

(N3) Code Correction

Run ESLint

errors, snippet

Parsing
Errors?

yes Line deletion

Get final error countno

Sort by errors

[sorted set]

Autofill input
with code snippet

(3) Editor Mode

Figure 19: NCQ’s features. The new features of NCQ, in
comparison to NCQRetrieval, appear in blue.

• NCQ also adds other, smaller features based on user
feedback and real developers’ usage patterns, to make the
UI more intuitive. We detail these features in Section 9.3.

9 NCQ
This section presents NCQ, a new version of our tool incor-
porating some of the features requested by the participants
from the previous user study. We focus on two important
observations: 1) package search is an important part of pro-
gramming in Node.js and 2) much of the code reuse process
depends on modifying and bug-fixing code snippets. From
those observations, we (1) improve the package ranking
in our search to focus on runnability, not just popularity,
(2) improve the package search with a more interactive UI,
(3) implement measures of code quality and error correction
and (4) make common ways developers use the tool more
intuitive. Figure 19 provides an overview of the additional
features of NCQ; blue rectangles highlight the new features.
NCQ retains all the features of NCQRetrieval, accessible in
the exact same manner, and the additional features do not
add any significant performance overhead.

9.1 Improved Package Search
In Section 8 we discuss the limitations of NCQRetrieval’s
package search. We improve upon the star only ranking by
implementing a measure of runnability for each package;
we used an approach described in previous work [18] to
predict the ability to build each package (i.e., install depen-
dencies and prepare working environment) as a proxy for
its usability. This approach uses a random forest machine
learning model and eight package features from our dataset

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

to predict whether the package is able to build: if the pack-
age has a license, if there was a README file, the number
of lines and markdown code blocks in that README, the
number of Node.js code snippets, if there was a run and
install example in the README, and the last update. As
Figure 19 shows (box “Sort by ability to build”), the random
forest’s prediction probability of the ability to build is then
used to rank packages in search results. It is worth noting
that all packages with no stars are moved to the end of
results. We found that 53.7% of packages in our dataset had
no stars, thus this feature enables us to maintain an aspect
of (un)popularity in our search.

To address the limitations of the previous package search
UI, NCQ implements an interactive package search. The
.packages command returns a set of packages; printing
a list with all packages on the terminal would make it
hard for users to navigate. Our previous solution was to
show a subset of packages in a table. NCQ now uses a
scrollable list, with terminal height, to show more packages
in a smaller space. This interactive design also enables the
user to “select” a package for installation upon pressing the
enter key.

9.2 Code Correction

In Section 8 we identified that most code snippets
needed fixes to run. To address this, we implement
automated code corrections based on similar work in
NLP2TestableCode [11]. While our previous work focused
on Stack Overflow snippets and Java, code correction for
JavaScript is a unique problem.

Unlike Java, JavaScript is not a compiled language, so
existing approaches to identify errors like compiler usage
cannot be re-implemented here. Instead, existing work in
JavaScript error analysis has used the popular linter ES-
Lint [19]. As a linter, ESLint has code style rules, however,
what errors are reported can be customised and it has an
automated fix API. We configure ESLint to report three
categories of rules: errors for rules that could indicate un-
runnable code (for example, the no-dupe-args rule), warn-
ings for other erroneous code that does not stop execution
but has fixes (e.g. the rule requiring === use, which auto-
matically replaces == where necessary) and finally a select
number of style rules as warnings to enforce a consistent
style to all code snippets in NCQ (indents and semi-colons).
We use the warning severity to trigger ESLint’s fix API
without counting minor issues as errors. We find that with
this configuration, 45.2% of code snippets in our dataset
have linting errors, of which 77.2% are parsing errors which
ESLint cannot automatically fix.

In addition to existing ESLint rules, we implement our
own. One common error was the use of import/export state-
ments, which the REPL does not support. When running
the parser using the sourceType “script”, to match the
REPL functionality, this code triggers a parsing error which
cannot be fixed using ESLint. However, if we enable the
“module” mode, this no longer causes an error. Instead,
we implement a custom ESLint rule for this code. We also
implement a custom fix that replaces imports with require
statements, which most packages also support. With this fix,
the error rate reduces to 35.1% of code snippets. Finally, as

most errors were parsing errors with no fixes, we implement
a line deletion algorithm similar to NLP2TestableCode. We
comment out lines where parsing errors occur until no more
changes can be made or the code snippet has no errors. The
result is that 94% of code snippets have no errors, however
54.2% of snippets fixed by the line deletion algorithm have
all lines commented out. To address this, we add an addi-
tional sorting mechanism that places these ’comment-only’
code snippets at the end of the search results.

Figure 19 demonstrates how the error analysis and cor-
rection work together. When users search for snippets, each
one is run through ESLint’s automatic fixes and given an
error count. If any of these errors are parsing errors, the
line deletion algorithm is run, before a final error count is
determined. Finally, the snippets are sorted by error count
to prefer error-free snippets.

9.3 Additional Features
We add some additional features based on common use
cases we saw in the user study. We observed that partici-
pants used the editor mode often, and some even pasted
snippets directly into the editor. To automate this, opening
the editor with empty REPL state now asks the user if they
would like to load the previously seen snippet. We also
observed that some code snippets with constant variables,
often used when importing a package, caused issues for
participants when trying to rerun snippets. This would
cause cases where code ran once but not again. To help with
this, we renamed the default .clear command to .reset
(to differentiate it from “clearing the input”) and included
an additional error message for this case reminding them
they could reset the state of the REPL.

10 NCQ EVALUATION

To evaluate NCQ, we conducted a user study involving 10
Node.js developers. This time, we compared use of NCQ
to the current state of practice, a traditional editor (Visual
Studio Code) and online search, instead of an artificial base-
line. Section 5 describes the baselines for each evaluation.
Similar to the previous evaluation, participants were asked
to complete two coding tasks with and without NCQ and,
after each task, they were asked to answer questions about
their experience.

We ask the following research questions about partici-
pant performance and perceptions, similar to RQ1 and RQ2,
as well as an additional question to analyse NCQ’s new code
correction feature:

RQ3. What is the influence of NCQ’s search features on the
performance of participants?
RQ4. What are the participants’ perceptions about NCQ?

RQ5. How effective is NCQ’s code correction?

10.1 Experimental Design
We maintain the same design as the first study, except
where necessary changes were made due to the use of a
traditional editor. Participants were given the same tasks,
with the same assignment and most post-task questions
remain unchanged. This section describes the differences:

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

10.1.1 Baseline
We compare NCQ to the baseline of a traditional editor and
internet access. The aim is to measure how NCQ compares
to a more realistic baseline consisting of developers pro-
gramming in a real editor and using online search to find
packages and examples. We selected Visual Studio Code,
the most popular editor among Node.js Developers, consid-
ering the responses we obtained in our survey (Section 4).
We setup VSCode as a clean installation with no extensions,
open to a new Node.js project and empty “index.js”, with
the integrated terminal open for executing Node.js code.

10.1.2 Participants
Due to difficulties finding participants for the first user
study, we decided on a more rigorous recruitment process,
using the Prolific platform to recruit 10 participants. We
verified that participants had basic Node.js skills using a
screening survey where participants were asked program-
ming questions, which we describe more in-depth in a
workshop paper [13]. Participants had an average of 3
years experience. The recruited participants are a subset of
the same 55 developers who answered our initial survey
questions in Section 4.

10.1.3 Questions
Participants were asked to answer questions after each task.
This time, we already had their demographic details from
recruitment, so omitted section A. We also omitted question
B1 (helpfulness of the baseline tool) as participants now use
VSCode for their first task. Questions can be seen in Table 8.

Table 8: Questions asked (B) after task 1, and (C) task 2.

C1 Overall, did you consider the tool helpful to accomplish
the assigned task? (1 (Strongly Disagree) - 7 (Strongly
Agree))

B1/C2 Grade your confidence, in a 1-7 scale, that your solution
is correct according to the problem specification?

C3 Did you consider the command “packages” useful?
C4 Did you consider the command “samples” useful?
C5 What features did you like about the tool?
C6 What you did not like about the tool?

At the end of the session participants were asked to
answer the same TAM questions as in the first evaluation.

10.2 Answering RQ3: What is the influence of NCQ’s
search features on the performance of participants?
The goal of RQ3 is to identify the helpfulness of NCQ’s
features and how those features are used by developers.
As in RQ1, we hypothesise that integrating package search
within a programming environment reduces context switch-
ing, improving developer’s performance. To answer this
question, we compare how participants performed search-
ing for packages using NCQ and using the internet when
programming in VSCode.

10.2.1 Was there an impact on time to complete each task?
Figure 20 shows the task durations for both NCQ and the
baseline. Again, all participants solved their tasks. Partici-
pants completed tasks in NCQ faster than in a traditional
editor in 6 out of 10 cases. The median time to solve for the

Figure 20: Duration of tasks by participant and by task. Bars
are labelled by task ID in the first figure, and by participant
ID in the second figure.

baseline was 849 seconds, while the median time for NCQ
was 847 seconds.

The timeline in Figure 10 details each session, with
participants 1-10 belonging to the first user study and par-
ticipants 11-20 belonging to this study. The icons remain the
same as in the first study. Participants using VSCode + Web
(note the ‘search’ marker in the timeline figure) follow links
to evaluate the results of their search as opposed to cycling
through snippets. In NCQ versions participants can press
enter to execute code or use the editor mode, which we label
as ‘submit’ or ‘editor’ in the timeline. In VSCode, we instead
transcribed when participants used the terminal to ‘execute’
their code, and when they pasted code snippets from online
into their open file. However, not all participants pasted
code snippets, instead some manually rewrote code while
making changes (e.g. 13, 15, 16 and 20).

The three fastest sessions using NCQ (11, 16, 17) involve
only one install and snippet search, conversely, the longest
sessions (13, 18, 20) have many uses of the snippet search.
Again, as in the previous user study, we observe that the
number of times participants search may negatively impact
their task duration.

10.2.2 How long did participants take to install the first and
last package?

Figure 21 shows the times the first and last packages were
installed. This information reveals how long participants
take in the “package search” phase of their tasks. We ob-
served that the final installed package was the package
used to complete the task in all cases. Participants’ first and
last packages were the same (only 1 package installed) in 8
cases for NCQ and 6 using VSCode. In 7 cases participants
found their last package faster using NCQ than VSCode.
The median times to find the final package for the baseline
and NCQ were 380 seconds and 57 seconds respectively.
These results highlight the efficiency of finding packages in
NCQ.

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

Figure 21: Time taken to install the first package (darker),
and final package (lighter), by participant and by task.

Summary: Participants completing tasks using
NCQ performed better than when using VSCode.
They were able to solve tasks and find packages
faster, in most cases finding a suitable package
immediately.

10.3 Answering RQ4: What are the participants’ per-
ceptions about NCQ?

The goal of RQ4 is to identify developer perceptions of the
tools, such as helpfulness, and confidence in their solutions.
We ask the following questions:

10.3.1 What was the participant perception about the fea-
tures that NCQ offers?

The goal of this question is to understand participant per-
ceptions of each of NCQ’s features and to identify which
features were useful or not.

Figure 22: How many times NCQ’s features were used.

Figure 22 shows the features that participants used the
most. As in the first study, the editor mode and the search
for samples remained the most popular features. Relative to
the first study, there was an increase in the total number
of uses of the editor mode, but a reduction in the use of
the commands .packages and .samples. In the first case,
the reduction may be attributed to the changes to the editor
mode whereas, in the second case, the reduction may be
justified by the fact that more participants solved tasks faster

Figure 23: Number of participants that liked each feature of
NCQ. Features (F) are listed in Table 6.

and with the first package, reducing the need to look at more
packages and their examples.

Recall that Table 6 shows the list of NCQ’s features.
According to question C5 (see Table 8), the features that
participants liked the most were the “ability to execute code
in the REPL” (F1) and “the combination of code search and
execution in a single tool” (F2). The feature participants
liked the least was F7, “the ability to save and resume”. This
is a shift from the first study, where snippet, package and
editor mode were the most highly rated. In fact, the editor
mode was only selected by three participants despite being
used frequently. In general, most participants liked the core
features of NCQ: the package (F2) and code snippet search
(F3), REPL execution (F1) and combination of search and
execution environment (F5).

Figure 24: Participant ranking of the usefulness of the com-
mands “packages” (question C3) and “samples” (C4).

Figure 24 shows how participants ranked the usefulness
of commands .packages and .samples using the same
seven rank Likert scale from the previous user study. Eight
participants agreed that both features were useful, with
only one strongly disagreeing with the samples feature
(this participant then answered for question C6 that they
thought showing only code snippets and not their sur-
rounding documentation which “exists to guide the user”
was limiting). Despite this feedback, all participants were
able to successfully complete their tasks in NCQ, and the
results of our user study suggests they performed similarly
or better than when they had access to this documentation
in the baseline. While we cannot conclude that a lack of
documentation has a positive impact on performance, in
fact, pairing documentation and code snippets may have
improved performance further, we can argue that partici-
pants were not limited greatly because of it. In general, there

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

was a slight decrease in agreement between studies, but the
result is still very positive.

10.3.2 What was the general participant perception of
NCQ?

Figure 25: Participant rankings for helpfulness of NCQ (C1)

We asked participants to rank the helpfulness of NCQ;
Figure 25 shows the responses. Six out of ten participants
agreed that NCQ was helpful in solving their tasks, and
only two participants disagreed. Agreement fell compared
to the previous study, however. We did not ask participants
to rank the helpfulness of the baseline, VSCode, in this task,
but we conjecture that the comparison to a traditional editor
impacted participant perception of NCQ.

Figure 26: Participant confidence ratings (B1 & C2).

Figure 26 shows the confidence (1-7 scale) of partici-
pants in their solutions for each technique. We observe that
confidence is similar between techniques; nine participants
scored their confidence highly for the baseline (score of 5
or above), compared to eight for NCQ. Individually, four
participants had their confidence increase or stay the same,
with the largest increase from a score of 1 to 7. For four other
participants their confidence only fell by one point. This
decrease in confidence is also consistent with the first study.
Overall, participant confidence in solutions did not suffer
considerably despite the use of a new tool when compared
to a more familiar baseline.

Participants were asked the same TAM questions as the
first study. Results were not as overwhelmingly positive as
the first study, however, responses were still more positive
than negative, as can be seen in Figure 27. All participants
agreed with D11 (no difficulty telling others about the
results of using the tool), and most participants agreed
with D7 (easy to use), D10 (high quality of output), D12
(could communicate to others the consequences of using
the tool) and D13 (results of using the system are apparent).
However, most participants disagreed with D3 (using the

8. Scale reversed for D14.

Figure 27: Participant response to TAM questions.8

tool would enhance my effectiveness in my job), and six par-
ticipants agreed with D14, that they would have difficulty
explaining why the system may or may not be beneficial.

Summary: Participant perception of NCQ was gen-
erally positive; most participants were confident
in their solutions and found the tool helpful, de-
spite the comparison to a more familiar baseline,
VSCode. Using the Technology Acceptance Model
to measure, most participants found NCQ easy to
use, with a high quality of output.

10.4 Answering RQ5: How effective is NCQ’s code cor-
rection?
The goal of this research question is to evaluate the impact
of NCQ’s code correction features on code snippet quality.
First, we observe that 33% (27/81) of code snippets retrieved
by participants using NCQ had errors fixed. To measure
the effect of this, we compare the quality of code snippets
participants interacted with across all sessions, including the
previous user study. We reason that NCQ should improve
the quality of code snippets through its code correction
features.

For the purpose of this analysis, we define:
• “seen” as the set of all code snippets participants encoun-

tered during their task solving, which they evaluate to
select snippets to use. For NCQ, we counted all code snip-
pets that participants saw using the .samples command,
which were automatically logged. However, for online
search, we manually logged from video all snippets that
were visible in the web browser. Partial snippets (those
that the participant did not scroll down far enough on a
web page to see entirely) are excluded as we do not have
the entire snippet to evaluate. Likewise, we argue that
participants could not have evaluated these snippets for
use without seeing them in full.

• “attempted use” as the subset of “seen” that participants
attempted the code reuse process with; that is, partici-
pants copied these snippets into their editor, before mak-
ing changes and/or running them.

• “successful use” as a subset of “attempted use”, where
any part of a code snippet was successfully used by a
participant to complete their assigned task.

To evaluate the quality of code snippets, we look at both
linting and runtime errors. We use the same ESLint config-
uration used in NCQ to detect linting errors. To measure

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

the presence of runtime errors, for each code snippet, we
created a Node.js project, installed any needed packages
and ran the code snippet in a file. While existing work has
shown that most code snippets in documentation do not
execute [18], instead many are missing parts and may not be
intended to be fully working examples, we still consider this
measure to be useful for comparison purposes. Developers
reusing example code must still transform unrunnable code
into runnable code, and runtime errors may represent work
needed. The goal of automated error correction is to reduce
this work, making runtime errors a useful measure.

Figure 28: Code snippet breakdown for each technique.

Figure 28 compares the two baselines and two NCQ
variations from both evaluations. We found that in the first
user study, 60% of seen and 55% of used code snippets did
not run, and that 22% of seen snippets and 24% of used
snippets have linting errors. For the NCQ user study, the
runtime error rate remains similar for seen and used at 66%
and 64% each, however, we see a large reduction in linting
errors with the code correction features of NCQ. While the
number of seen snippet linting errors in the baseline remains
similar at 12%, code snippets found using NCQ had an error
rate of 8%. Even more, none of the snippets participants
used had any linting errors. We also see a 5% increase in
the proportion of used snippets that were used successfully,
which is not seen in the first user study.

Additional observations from this analysis can be made.
In the first study, using NCQRetrieval’s search features, par-
ticipants were able to see more code snippets more quickly
than in the baseline, despite attempted use rate remaining
the same. However, in NCQ, we see that participants saw
less snippets, and also attempted to use less snippets, than in
the baseline, following the trend of participants being more
efficient while using NCQ.

For all techniques, we see that there are more code
snippets with runtime errors than there are with linting
errors. This is a strong indication that there is room for
improving the error detection in NCQ, and in improving
static analysis in JavaScript in general.

Summary: NCQ’s code correction features were
employed on 33% of code snippets, and reduced
the number of snippets with errors seen and used
by developers; all code snippets participants used
in NCQ had no linting errors. However, we saw
no reduction in runtime errors, indicating there is
room for better static analysis of JavaScript code
for error detection and thus error correction.

11 DISCUSSION

Developers increasingly rely on gluing existing code to-
gether as opposed to developing new code [20]. Node.js
developers in particular have access to a rich ecosystem of
1M+ software packages through NPM. However, navigat-
ing this wealth of potential code solutions is a challenge.
One user study participant summed up their experience
with: “Sometimes there isn’t enough information on each
package, and it is very tiring to install/uninstall everything
before having a good idea of what it does”. Searching and
installing packages is a time sink, as described by another
participant: “It’s not unusual to spend more than a [sic] hour
looking for a package for simple job”. Yet, installing pack-
ages and running corresponding code snippets are crucial
activities in deciding whether to use a package. Alleviating
these challenges is the goal of NCQ, as summarised by
a participant: “Finding a suitable package can be difficult
given the volume of packages available. It can become
tiresome installing packages and trying out code, constantly
referring back to documentation or the dedicated package
page on npmjs.com. The .samples feature of NCQ looks
to reduce the time taken to test packages, to determine if
the package provides benefit, and is suitable for a given
project.” When using NCQ, developers do not need to
context switch between editor and search engine; instead
they can explore packages, install and uninstall them, and
run code snippets from within the same command line
interface.

NCQ supports developers’ desire to try out code snip-
pets quickly and experiment with different potential solu-
tions when embarking on a new task. Even for trivial tasks,
developers commonly use third-party packages [20], and
NCQ supports this workflow. We observed that the typical
usage pattern participants followed in NCQ was to search
for packages, then search for samples within those packages.
The example in Section 2.2 describes such a workflow based
on a real user study session, and we observed similar
workflow for online search; most participants started by
looking for packages and package documentation on NPM
or GitHub, with only a few accessing tutorial sites. This
reveals the need for Node.js specific development tools to
fit the workflow of Node.js developers.

For NCQ, we improved upon NCQRetrieval based on
the feedback obtained from users of the tool. The results
of NCQ’s evaluation indicate that the tool enables de-
velopers to be more efficient finding packages than both
NCQRetrieval and a traditional editor combined with inter-
net access. For example, the average task completion dura-
tion reduced from 1,045 seconds for NCQRetrieval, to 774
for NCQ. However, despite this performance improvement,
we see that developer perceptions of NCQ were harsher.

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

There are multiple factors that may explain this. For the
first study, most participants were students and we did
not verify Node.js skill; in contrast, for the second study,
we made the additional effort to recruit participants with
a minimum level of Node.js skill while trying to recruit
non-student programmers. This difference in experience
between the two groups may impact perceptions of the
tools. Also, the different baselines may have impacted how
developers perceived each tool. In the NCQ evaluation we
directly contrast the tool to a more familiar baseline; par-
ticipants use NCQ directly after using VSCode. However,
in the NCQRetrieval evaluation participants use a baseline
that is simply NCQRetrieval with reduced features; there
may be a perceived ‘improvement’ between the two tasks,
and participants were not faced with a direct comparison
between NCQRetrieval and tools they use regularly to pro-
gram. Despite all of this, results did remain similar, and in
most cases still positive.

Our findings provide evidence that NCQ still performs
well even when directly compared to a familiar, profession-
ally developed baseline such as VSCode. Our evaluation
confirms that NCQ was well received by developers because
it reduces the need for context switching typically associated
with reusing third-party code.

12 RELATED WORK

This section discusses related work in the areas of code
reuse, code search, library selection and code executability,
as NCQ makes contributions to all of these aspects com-
bined into a single tool.

12.1 Empirical Studies on Code Reuse
Various studies have been conducted to understand devel-
opers’ perceptions on the advantages and disadvantages of
code reuse [21]–[26]. For example, Sojer and Henkel [25] sur-
veyed 686 open source developers on their reuse practices.
They found that experienced developers adopt reuse prac-
tices more regularly than non-experience developers and
30% of the functionality of open source software projects
are based on components from different projects. Overall,
developers perceive code reuse as an important practice,
especially when starting new projects. NCQ builds on the
observation made in previous studies that there is a vast
amount of code examples on the web today and developers
do try using them [11]. NCQ provides a platform for code
reuse in Node.js where developers can experiment with
different examples. It is worth noting that, although NCQ
uses README files from NPM to obtain code snippets,
additional sources would be easy to integrate in future
work. For example, other work has focused on mining usage
examples from Q&A forums like Stack Overflow [11], or
where examples in documentation are insufficient, mining
API usage examples from source code [27]–[29].

12.2 Code Search
Code search has been extensively investigated recently [5]–
[9], [11], [30], [31]. Brandt et al. [8] proposed Blueprint, an
in-editor tool that looks for code examples on the web. Ex-
periments found that it enabled developers to write higher

quality code and that search with Blueprint was signifi-
cantly faster compared to regular web search. Similar to
Blueprint, Seahawk [9] finds Stack Overflow code snippets
in the editor, using the existing code context to automati-
cally formulate search queries. Prompter [6] automatically
notifies the developer when it finds snippets on Stack Over-
flow that are similar to parts of the code under develop-
ment. Campbell and Treude proposed NLP2Code [5], an
approach where developers use natural language queries
to find code snippets. NLP2Code is integrated in the devel-
opment environment to reduce context-switching, provides
task suggestions and works entirely in the editor, with no
additional views or windows. Reid et al. [11] proposed
NLP2TestableCode, an improvement over NLP2Code that
checks whether code snippets contain errors (e.g., type
errors and basic integration errors) and, if so, attempts error
repair before recommending the snippets to users. Results
indicate that the tool can find compilable code snippets
in 82.9% of cases and it can find “testable” code snippets
(able to be converted into a function with input/output
for testing) in 42.9% of cases. NCQ implements a similar
code correction functionality, however, our code correction
is limited by the lack of comprehensive error reporting in
Node.js.

Some recent approaches also utilise machine learning;
Gu et al. [30] proposed DeepCS, an approach that uses
deep neural networks for code search. DeepCS uses a
neural network model, dubbed CODEnn, embedding code
snippets and natural language descriptions into a high-
dimensional vector space. The intuition is that CODEnn
incorporates semantic information to the search in contrast
to typical Information Retrieval approaches, which only use
text similarity for search. Preliminary results showed that
DeepCS outperforms alternative code search techniques.
Kanade et al. [32] proposed and evaluated CuBERT, a code-
understanding BERT model, trained with a deduplicated
corpus of 7.4M Python files from GitHub. CuBERT was
compared against state-of-the-art alternatives to solve five
classification tasks and one code repair task, showing supe-
rior performance, even with shorter training and with fewer
labeled examples. It remains to evaluate CuBERT’s perfor-
mance for code search. Xu et al. [31] proposed NL2Code,
an in-editor tool that combines code retrieval and code
generation. Their tree-based semantic parsing model was
trained on pairs of natural language and code mined from
Stack Overflow and API documentation, and evaluation
found that developer perception of the tool was positive.

In summary, source code search has been gaining trac-
tion in academia as researchers realise its ability to improve
development productivity, specifically in cases involving
the reuse of existing functionality over the creation of new
functionality. There is room to improve NCQ’s code search,
for example, we remain to evaluate how NCQ can benefit
from different data sources and semantic search.

12.3 Alternative Library Selection

El-Hajj and Nadi proposed LibComp [10], an IntelliJ plugin
that assists the developer in selecting alternative libraries
based on quality metrics associated with the libraries. Lib-
Comp does not perform code search. It requires humans to

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

provide the association of libraries to its knowledge base.
We are eager to evaluate the impact of using different
metrics to sort the libraries reported by NCQ. Also, the
possibility of enabling NCQ to search for alternatives (e.g.,
alternatives of a library function) seems promising.

Additionally, there has been work on what factors in-
fluence the selection of packages [33]. Package features
identified include documentation, performance, test cover-
age, security, maintenance, updates and size of community.
Incorporating additional measures of package quality in
NCQ may improve the tool’s ability to connect developers
with suitable packages.

12.4 Code Executability

Prior work identified different sources of problems when
attempting to reproduce code available on the Web (e.g.,
tutorials [34]) and proposed tools to improve code exe-
cutability. For example, Mirhosseini and Parnin [34] pro-
posed a system to annotate documents and encouraged
the use of notebooks (e.g., Jupyter Notebooks [35]) to im-
prove executability of tutorials. Similarly, Melo et al. [36]
proposed Frisk, a system that enables QA forum users to
describe problems (e.g., configuration problems) and share
these problems with the community (e.g., Stack Overflow
users), who could help fix the problems. Frisk uses Docker
to enable developers consistently reproduce problems and
collaboratively propose fixes. However, unlike NCQ, Frisk
does not try to automatically improve executability.

13 THREATS TO VALIDITY

Similar to other empirical studies, there are threats which
may affect the validity of our evaluation of NCQ.

Threats to the construct validity correspond to the appro-
priateness of the evaluation metrics. We evaluated NCQ in
terms of participant performance and participant percep-
tions. Our evaluation approaches, such as the Technology
Acceptance Model, have been used before in similar studies
(e.g., [37]), and our evaluation methodology reflects our
goals behind developing NCQ.

Threats to the internal validity compromise our con-
fidence in establishing a relationship between the inde-
pendent and dependent variables. Participants were not
informed exactly how versions of NCQ (NCQRetrieval,
NCQBasic and NCQ) were implemented to ensure that their
behaviour and responses would not be biased towards any
of the tools. In both evaluations, participants worked on
different tasks using both the tool and a baseline, which
may have affected their experience and responses to our
questions. The demonstration of how to use the tools at
the beginning of each session may have influenced how
participants used them; we mitigated this by having all par-
ticipants watch the same demo video before their sessions.
Because the study was conducted remotely, we cannot guar-
antee that participants did not search for solutions outside
of the study setup. Participants were asked to use the web to
find packages in task 1, however, were free to choose what
websites to use; in this case, the choice of search engine, and
thus knowledge of what options exist, may have influenced
results. The design of our survey and participant screening

was intended to minimise the number of non-programmer
responses in our data, however, these measures may have
had additional impacts on the participant pool.

Threats to external validity correspond to the ability to
generalise our results. We cannot claim generalisability be-
yond Node.js or the particular implementations of NCQ and
NCQBasic used in our study. Recruiting more or different
developers to participate in the study and asking them to
work on different tasks may have led to different results.
We cannot conclude that improvements in performance be-
tween baseline and tool were due to any specific techniques
or the automation of the process itself.

14 CONCLUSION AND FUTURE WORK

The results of our evaluation indicate that Node.js develop-
ers have distinct expectations for a code reuse tool, stem-
ming from Node.js’s package-based ecosystem. In general,
we found that performance of participants in solving tasks
did not reduce when using NCQ compared to a more famil-
iar baseline of VSCode and web access, despite the use of an
unfamiliar tool with new commands and controls. We found
that the perceptions participants had about NCQ were
generally positive, with most participants finding NCQ
helpful in accomplishing their assigned tasks. Participants’
responses to questions about usefulness, easy of use and
likely feature use using the TAM (Technology Acceptance
Model) were also mostly positive. We also observed that
NCQ’s code correction features successfully improved the
quality of snippets that participants interacted with.

However, our results also indicate that there is more that
can still be done to aid developers in streamlining the code
reuse process. Better measures of package quality could be
investigated other than popularity and runnability. Future
work may also involve implementing NCQ in a different
context, for example, many participants mentioned they
would like an extension to their existing editor over a new
tool. To enable package and code snippet search in an editor,
we could implement NCQ as a plug-in for VSCode.

As the Node.js ecosystem is always growing, the ability
to update the tool’s database would be useful (we use an
offline database for efficiency). Currently, to update the
database, the mining process must be re-run, but it may be
possible to use the NPM registry API to keep the database
up-to-date. As existing code search tools include online
search, we did not investigate this aspect in this paper.

Future work could also expand on code snippet sources;
the current version of the tool only uses examples from
README, however, we found that just 38.6% of NPM pack-
ages had code snippets in their READMEs. In these cases,
mining API usage examples from NPM package source code
may be useful.

We observed that when participants tried multiple pack-
ages, such as in the examples in Section 2, they were looking
for similar packages; the package search thus could incorpo-
rate a ‘similar’ package suggestion system, using package
data to determine package ‘similarity’.

ACKNOWLEDGEMENT

This research was partially funded by INES 2.0,
FACEPE grants PRONEX APQ 0388-1.03/14 and APQ-

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

0399-1.03/17, CAPES grant 88887.136410/2017-00, CNPq
grant 465614/2014-0, and by ARC grants DP200102364 and
DP210102670. Brittany’s research was supported by an Aus-
tralian Government Research Training Program (RTP) Schol-
arship. The work of Christoph and Markus was supported
by gifts from Facebook and Google.

REFERENCES

[1] W3Techs, “Usage Statistics of Node.js,” 2020. [Online]. Available:
https://w3techs.com/technologies/details/ws-nodejs

[2] L. Tal and S. Maple, “npm passes the 1 mil-
lionth package milestone! What can we learn?” 2020.
[Online]. Available: https://snyk.io/blog/npm-passes-the-1-
millionth-package-milestone-what-can-we-learn/

[3] R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “On the impact
of micro-packages: An empirical study of the npm javascript
ecosystem,” arXiv:1709.04638, 2017.

[4] E. Sandewall, “Programming in an interactive environment:
the“lisp”experience,” ACM Computing Surveys (CSUR), vol. 10,
no. 1, pp. 35–71, 1978.

[5] B. A. Campbell and C. Treude, “NLP2Code: Code snippet content
assist via natural language tasks,” in ICSME, 2017, pp. 628–632.

[6] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Prompter: A self-confident recommender system,” in ICSME,
2014, pp. 577–580.

[7] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu,
“Bing developer assistant: improving developer productivity by
recommending sample code,” in FSE, 2016, pp. 956–961.

[8] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer,
“Example-centric programming: integrating web search into the
development environment,” in Conference on Human Factors in
Computing Systems (CHI), 2010, pp. 513–522.

[9] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack over-
flow in the ide,” in ICSE. IEEE, 2013, pp. 1295–1298.

[10] R. El-Hajj and S. Nadi, “LibComp: An IntelliJ Plugin for Com-
paring Java Libraries,” in ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2020, p. 1591–1595.

[11] B. Reid, C. Treude, and M. Wagner, “Optimising the fit of stack
overflow code snippets into existing code,” in GECCO, 2020, p.
1945–1953.

[12] A. Danilova, A. Naiakshina, S. Horstmann, and M. Smith, “Do
you really code? designing and evaluating screening questions for
online surveys with programmers,” in ICSE, 2021, pp. 537–548.

[13] B. Reid, M. Wagner, M. d’Amorim, and C. Treude, “Software
engineering user study recruitment on prolific: An experience
report,” 2022.

[14] A. Rainer and C. Wohlin, “Recruiting credible participants for
field studies in software engineering research,” 2021. [Online].
Available: https://arxiv.org/abs/2112.14186

[15] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” Management Information
Systems (MIS) Quarterly, pp. 319–340, 1989.

[16] V. Venkatesh and F. D. Davis, “A theoretical extension of the
technology acceptance model: Four longitudinal field studies,”
Management Science, vol. 46, no. 2, pp. 186–204, 2000.

[17] S. Proksch, V. Bauer, and G. C. Murphy, How to Build a Recommen-
dation System for Software Engineering. Springer, 2015, pp. 1–42.

[18] B. Chinthanet, B. Reid, C. Treude, M. Wagner, R. G. Kula, T. Ishio,
and K. Matsumoto, “What makes a good node.js package? inves-
tigating users, contributors, and runnability,” 2021.

[19] U. F. Campos, G. Smethurst, J. P. Moraes, R. Bonifácio, and
G. Pinto, “Mining rule violations in javascript code snippets,” in
MSR. IEEE, 2019, pp. 195–199.

[20] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study
on npm,” in ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ES-
EC/FSE), 2017, p. 385–395.

[21] V. R. Basili, L. C. Briand, and W. L. Melo, “How reuse influences
productivity in object-oriented systems,” Communications of the
ACM (CACM), vol. 39, no. 10, pp. 104–116, 1996.

[22] A. Mockus, “Large-scale code reuse in open source software,” in
International Workshop on Emerging Trends in FLOSS Research and
Development. IEEE, 2007, pp. 7–7.

[23] W. C. Lim, “Effects of reuse on quality, productivity, and eco-
nomics,” IEEE Software, vol. 11, no. 5, pp. 23–30, 1994.

[24] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz, “An
empirical study of software reuse vs. defect-density and stability,”
in ICSE, 2004, pp. 282–291.

[25] M. Sojer and J. Henkel, “Code reuse in open source software
development: Quantitative evidence, drivers, and impediments,”
Journal of the Association for Information Systems (JAIS), vol. 11,
no. 12, pp. 868–901, 2010.

[26] X. Li, Z. Wang, Q. Wang, S. Yan, T. Xie, and H. Mei, “Relationship-
aware code search for javascript frameworks,” in FSE, 2016, pp.
690–701.

[27] C. McMillan, D. Poshyvanyk, and M. Grechanik, “Recommending
source code examples via api call usages and documentation,”
in International Workshop on Recommendation Systems for Software
Engineering, 2010, pp. 21–25.

[28] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,
“How can i use this method?” in ICSE, vol. 1. IEEE, 2015, pp.
880–890.

[29] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue, and D. Lo,
“Improving reusability of software libraries through usage pattern
mining,” Journal of Systems and Software, vol. 145, pp. 164–179, 2018.

[30] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in ICSE. IEEE,
2018, pp. 933–944.

[31] F. F. Xu, B. Vasilescu, and G. Neubig, “In-ide code generation from
natural language: Promise and challenges,” TOSEM, vol. 31, no. 2,
mar 2022. [Online]. Available: https://doi.org/10.1145/3487569

[32] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” in International
Conference on Machine Learning (ICML), vol. 119, 2020, pp. 5110–
5121.

[33] E. Larios Vargas, M. Aniche, C. Treude, M. Bruntink, and
G. Gousios, “Selecting third-party libraries: The practitioners’ per-
spective,” in Proceedings of the 28th ACM joint meeting on european
software engineering conference and symposium on the foundations of
software engineering, 2020, pp. 245–256.

[34] S. Mirhosseini and C. Parnin, “Docable: Evaluating the executabil-
ity of software tutorials,” in ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2020, p. 375–385.

[35] “Jupyter,” 2020. [Online]. Available: https://jupyter.org/
[36] L. Melo, I. S. Wiese, and M. d’Amorim, “Using Docker to Assist Q

A Forum Users,” TSE, 2019.
[37] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Over-

coming open source project entry barriers with a portal for new-
comers,” in ICSE, 2016, pp. 273–284.

https://w3techs.com/technologies/details/ws-nodejs
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://arxiv.org/abs/2112.14186
https://doi.org/10.1145/3487569
https://jupyter.org/

	NCQ: Code reuse support for Node.js developers
	Citation

	1 Introduction
	2 Illustrative Example
	2.1 Typical problem solving in Node.js
	2.2 Problem solving in NCQ

	3 Dataset
	3.1 Package Data
	3.2 Code Snippet Extraction

	4 Survey
	4.1 Survey Design
	4.2 Survey Results

	5 hlOverview
	6 NCQRetrieval
	6.1 REPL
	6.2 Editor Mode
	6.3 Package Search
	6.4 Code Snippet Search

	7 NCQRetrieval Evaluation
	7.1 Experimental Design
	7.1.1 Programming Tasks
	7.1.2 Baseline
	7.1.3 Participants
	7.1.4 Assignment
	7.1.5 User Session
	7.1.6 Questions

	7.2 Answering RQ1: What is the influence of NCQRetrieval's search features on the performance of participants?
	7.2.1 Was there impact on time to complete each task?
	7.2.2 How long did participants take to install the first and last package?

	7.3 Answering RQ2: What are the perceptions of participants about NCQRetrieval?
	7.3.1 What was the participant perception of NCQRetrieval's features?
	7.3.2 What was the general participant perception of NCQRetrieval?

	8 NCQRetrieval Limitations
	9 NCQ
	9.1 Improved Package Search
	9.2 Code Correction
	9.3 Additional Features

	10 NCQ Evaluation
	10.1 Experimental Design
	10.1.1 Baseline
	10.1.2 Participants
	10.1.3 Questions

	10.2 Answering RQ3: What is the influence of NCQ's search features on the performance of participants?
	10.2.1 Was there an impact on time to complete each task?
	10.2.2 How long did participants take to install the first and last package?

	10.3 Answering RQ4: What are the participants' perceptions about NCQ?
	10.3.1 What was the participant perception about the features that NCQ offers?
	10.3.2 What was the general participant perception of NCQ?

	10.4 Answering RQ5: How effective is NCQ's code correction?

	11 Discussion
	12 Related Work
	12.1 Empirical Studies on Code Reuse
	12.2 Code Search
	12.3 Alternative Library Selection
	12.4 Code Executability

	13 Threats to Validity
	14 Conclusion and Future Work
	References

