
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

4-2023 

Giving back: Contributions congruent to library dependency Giving back: Contributions congruent to library dependency 

changes in a software ecosystem changes in a software ecosystem 

Supatsara WATTANAKRIENGKRAI 

Dong WANG 

Raula Gaikovina KULA 

Christoph TREUDE 
Singapore Management University, ctreude@smu.edu.sg 

Patanamon THONGTANUNAM 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
WATTANAKRIENGKRAI, Supatsara; WANG, Dong; KULA, Raula Gaikovina; TREUDE, Christoph; 
THONGTANUNAM, Patanamon; ISHIO, Takashi; and MATSUMOTO, Kenichi. Giving back: Contributions 
congruent to library dependency changes in a software ecosystem. (2023). IEEE Transactions on 
Software Engineering. 49, (4), 2566-2579. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8790 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8790&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8790&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Supatsara WATTANAKRIENGKRAI, Dong WANG, Raula Gaikovina KULA, Christoph TREUDE, Patanamon 
THONGTANUNAM, Takashi ISHIO, and Kenichi MATSUMOTO 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/8790 

https://ink.library.smu.edu.sg/sis_research/8790


Giving Back: Contributions Congruent to Library
Dependency Changes in a Software Ecosystem

Supatsara Wattanakriengkrai , Dong Wang , Raula Gaikovina Kula , Christoph Treude ,

Patanamon Thongtanunam , Takashi Ishio ,Member, IEEE, and

Kenichi Matsumoto , Senior Member, IEEE

Abstract—The widespread adoption of third-party libraries for contemporary software development has led to the creation of large

inter-dependency networks, where sustainability issues of a single library can have widespread network effects. Maintainers of these

libraries are often overworked, relying on the contributions of volunteers to sustain these libraries. To understand these contributions, in

this work, we leverage socio-technical techniques to introduce and formalise dependency-contribution congruence (DC congruence) at

both ecosystem and library level, i.e., to understand the degree and origins of contributions congruent to dependency changes, analyze

whether they contribute to library dormancy (i.e., a lack of activity), and investigate similarities between these congruent contributions

compared to typical contributions. We conduct a large-scale empirical study to measure the DC congruence for the npm ecosystem

using 1.7 million issues, 970 thousand pull requests (PRs), and over 5.3 million commits belonging to 107,242 npm libraries. We find

that the most congruent contributions originate from contributors who can only submit (not commit) to both a client and a library. At the

project level, we find that DC congruence shares an inverse relationship with the likelihood that a library becomes dormant. Specifically,

a library is less likely to become dormant if the contributions are congruent with upgrading dependencies. Finally, by comparing the

source code of contributions, we find statistical differences in the file path and added lines in the source code of congruent contributions

when compared to typical contributions. Our work has implications to encourage dependency contributions, especially to support

library maintainers in sustaining their projects.

Index Terms—Software ecosystem, dependency changes, npm ecosystem

Ç

1 INTRODUCTION

THE adoption of third-party libraries for contemporary
software development has led to the emergence of mas-

sive library platforms (i.e., library ecosystems) such as npm
for JavaScript1 which is reported to be relied upon by more
than 11 million developers worldwide, and contains more
than one million libraries [3]. Other examples include the
427,286Maven libraries for Java VirtualMachine languages,2

and the 324,779 PyPI libraries for the Python community,3 to

name a few. These library ecosystems are comprised of a
complex inter-connected network of dependencies, where
developers adopt many other libraries for their work. As an
example, npm libraries directly depend on between 5 to 6
other libraries in the ecosystem on average [2], [40].

Due to their open source nature, the key risk of using
these libraries is that contributors (including maintainers)
may become demotivated at any time [25], [50] thus interfer-
ing with their ability to continue contributions to that
library. For instance, recently the maintainers of a vulnera-
ble library expressed their frustration when maintaining a
library in a tweet, ‘... maintainers have been working sleeplessly
on mitigation measures; fixes, docs, CVE, replies to inquiries, etc.
Yet nothing is stopping people to bash us, for work we aren’t paid
for, for a feature we all dislike yet needed to keep due to backward
compatibility concerns...’ .4

Especially for highly dependent libraries, sustained con-
tributions are crucial. This is because these libraries need to
constantly change (add, remove, upgrade, and downgrade)
to their dependencies, in response to breaking changes or
applying critical security patches from elsewhere in the eco-
system [67]. In response to recent attacks on open source
libraries [1], Google has deployed an “Open Source Mainte-
nance Crew,” tasked to assist upstream maintainers of criti-
cal open-source libraries that are used by major technology
vendors, including Microsoft, Google, IBM and Amazon
Web Services.
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Our idea in this paper is to explore the match between
contributions that are congruent with dependency changes
among these libraries.We borrow the ideas of socio-technical
congruence of Cataldo et al. [11], which is the congruency
between task dependencies among people and coordination
activities. Cataldo et al. find that the social structure of an
organisation reflects how tasks are completed. Using the
same intuition, we can explore the origins of contributions
(i.e., whether they are able to commit to the library or not)
that are congruent with dependency changes to a library.
Hence, we can reveal insights into the social structure of who
is updating these dependencies. More precisely, we intro-
duce and formalise our new concept of dependency-contri-
bution (DC) congruence as the degree to which contributions
are congruent with dependency changes.

Through the case of the npm ecosystem,we conduct a large
scale empirical study to examine the DC congruence and the
library dormancy using over 5.3 million commits, 1.7 million
issues, and 970 thousand pull requests (PRs5) belonging
to 107,242 libraries. We formulate the following research
questions.

� (RQ1) What contributions are congruent with dependency
changes of libraries that they depend on?

Motivation: Inspired by Cataldo et al. [11] and to better
understand the contributors behind these contributions, we
define contribution types based on four different types of
contributions which are: (1) contributions from a contribu-
tor who commits to both client and library, (2) contributions
from a contributor who commits to a client and submits to a
library, (3) contributions from a contributor who submits to
a client and commits to a library, and (4) contributions from
a contributor who submits to both client and library. In
terms of the dependency changes, we consider four types of
different dependency changes which are (1) adding a
dependency, (2) removing a dependency, (3) upgrading a
dependency, and (4) downgrading a dependency. To
answer RQ1, we break down the question into the following
sub-questions:

RQ1a. To what extent do contributors contribute to the librar-
ies they depend on? and

RQ1b. How do different contribution types and dependency
changes contribute to DC congruence?

Results: Using our DC congruence metrics, we find that
contributions most congruent to dependency changes are
contributions from contributors that can only submit to
both client and library (s-s). Higher congruence is observed
with a dependency downgrade over time.

� (RQ2) What is the relationship between the DC
congruence and the likelihood of libraries becoming dormant?
Motivation:Since library sustainability heavily relies on con-
tributions [52], we would like to investigate the association
between the DC congruence and the library dormancy.

Results: Our survival analysis shows that the different
types of DC congruence share an inverse association with
the likelihood of a library becoming dormant. For instance,
the higher the number of issues from specific types (i.e., s-s,
c-s) that are congruent with a dependency upgrade, the
lower the likelihood that a library becomes dormant.

� (RQ3) Do the contributions differ depending on their congru-
ence with dependency changes?Motivation:In addition to mea-
suring DC congruence (RQ1 and RQ2), since contributors
may be motivated to submit congruent contributions based
on changes in their dependencies, for RQ3, our motivation is
to test the hypothesis that congruent contributions are simi-
lar based on their congruence (i.e., c-s, s-s, and c-c and s-c).
Results:Comparing contribution similarity in terms of
source code and file paths, we find statistical differences in
file path and added lines in source code of contributions
that are congruent with dependency changes when com-
pared to those that are not congruent. In other words, con-
gruent contributions are not typical contributions by that
contributor.

We provide an online appendix, available online , con-
taining datasets and source code related to (a) the ecosys-
tem-level and library-level DC congruence results, (b) the
metric data for our survival model analysis, and (c) the
file path and source code similarities between contribu-
tion types, which is available at https://doi.org/10.5281/
zenodo.5677371.

2 BACKGROUND AND RELATED WORK

In this section we discuss the background and related work.
Socio-Technical Congruence (STC). Cataldo et al. [12] pio-

neered the concept of socio-technical congruence (STC), the
match between task dependencies among people and coordi-
nation activities performed by individuals. Their follow-up
studies (Cataldo et al. [11], Cataldo and Herbsleb [10]) then
investigated software quality and development productiv-
ity. Further studies also presented STCmeasures fromdiffer-
ent perspectives. For instance, Valetto et al. [57] proposed a
measure of STC in the view of network analysis, while Kwan
et al. [41] measured weight STC and the impact of STC on
software build success (Kwan et al. [42]). Additionally, Wag-
strom et al. [59] measured individualized STC. Other studies
then measured STC from other perspectives such as depen-
dencies, knowledge, and resources [33], global software
development [47], and for file-level analysis [69] and [44].

Different from these studies, we introduce and formalise
metrics that measure the degree of contributions congruent
to dependency changes. By borrowing the STC measure
proposed by Cataldo et al. [12], we are able to reflect the ori-
gins of the contributions (i.e., characterized by whether the
contributor has the ability to commit to the library reposi-
tory aka, a maintainer). Likewise, we formalise the library-
level DC congruence, making an adjustment on the STC
measure proposed by Wagstrom et al. [59]. We propose that
library-level DC congruence can also provide more insights:
for example, it can be used to detect certain libraries in
which contributions congruent to dependency changes
have ceased or are on the decline.

Library Dependency Changes. The research community has
carried out a large body of research on understanding the
large networks of software library dependencies. Some stud-
ies focused on a single ecosystem, focusing on the updating
and lags within that ecosystem. For instance, Wittern et al.
[2] analyzed a subset of npm libraries, focusing on the evolu-
tion of characteristics such as their dependencies and update
frequency. Abdalkareem et al. [5] also empirically analyzed5. PR(s) stands for the pull request(s) throughout the entire paper.
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“trivial” npm libraries, to suggest that depending on trivial
libraries can be useful and risk-free if they are well imple-
mented and tested. Zerouali et al. [68] analyzed the library
update practices and technical lag to show a strong presence
of technical lag caused by the specific use of dependency
constraints. Recent studies include understanding the lag
when updating security vulnerabilities [13] and dependency
downgrades [16] for the npm ecosystem. There are works
that studied other ecosystems. Robbes et al. [49] showed that
a number of API changes caused by deprecation can have a
large impact on the Pharo ecosystem. Blincoe et al. [8] pro-
posed a new method for detecting technical dependencies
between projects on GitHub and IBM. Bavota et al. [7] stud-
ied Apache projects to discover that a client project tends to
upgrade a dependency only when substantial changes (e.g.,
new features) are available. Kula et al. [39] revealed that
affected developers are not likely to respond to a security
advisory forMaven libraries, whileWang et al. [63] revealed
that developers need convincing and fine-grained informa-
tion for the migration decision. Most recently, He et al. [30]
proposed a framework for quantifying dependency changes
and library migrations based on version control data using
Java projects.

Other studies focused on analyzing multiple ecosystems
and comparing the different attributes between them. Decan
et al. [21] showed the comparison of dependency evolution
from seven different ecosystems. Similarily, Kikas et al. [35],
studied the dependency network structure and evolution of
the JavaScript, Ruby, and Rust ecosystems. Dietrich et al. [23]
studied how developers declare dependencies across 17 dif-
ferent librarymanagers. Stringer et al. [54] analyzed technical
lag across 14 library managers and discovered that technical
lag is prevalent across library managers but preventable by
using semantic versioning based declaration ranges.

Differently, in our work,we focus on how contributions are
congruent with dependency changes at the ecosystem level,
our motivation is different, as we explore how dependency
changes correlate with a library becoming dormant.

Sustainability of Software Ecosystem. As with prior
work [18], we view software ecosystems as socio-technical
networks consisting of technical components (software
libraries) and social components (communities of develop-
ers) that maintain the technical components. Sustainability
is particularly visible in the complex and often brittle
dependency chains in OSS library ecosystems like npm,
PyPi, and CRAN [21]. Other studies have studied sustain-
ability for R [24], Ruby [4], Python [58], and npm [22].
Through a longitudinal empirical study of Cargo’s depen-
dency network, Golzadeh [27] revealed that dependencies
to a project lead to active involvement in that project. How-
ever, the effect of DC congruence from different types of
contributions on ecosystem sustainability is still unknown.

Different from these studies, we take a quantitative
approach to investigate the relationship between the DC
congruence and the likelihood of libraries becoming
dormant.

3 A CONGRUENCE OF TWO GRAPHS

In this section, we describe how we measure the DC congru-
ence, i.e., the degree to which contributions are congruent

with dependency changes as a graph. This is described as
the overlap between two separate graphs of dependencies
and contributions. Both graph edges have a temporal attri-
bute which provides information when the dependency (or
contribution) event occurs. Since the contribution and
dependency relationships are dynamic (i.e., changing over
time), we capture and analyze these relationships based on
a specific period of time.

Dependency Graph (GD) - Let GD ¼ ðNlib; EdepÞ be a
directed graph where Nlib refers to the set of software librar-
ies in the ecosystem and Edep � Nlib �Nlib refers to library
dependencies. A library l 2 Nlib has attributes <name,
time> where name is the unique name of the library and
time is when the library was first created.

Dependency-Projected Contribution Graph (GDC) - It is a
projection of two different node types, i.e., developer node
(Cx and Cy) and library node (li) in Fig. 2a. This is defined
as a Contribution Graph (GC), where GC ¼ ðNlib [Ncon; EcÞ
is a directed graph where Nlib refers to the set of software
libraries in the ecosystem, Ncon refers to the set of contribu-
tors in the ecosystem. An edge ðc; lÞ 2 Ec indicates that a
contributor c contributes to a library l. A contributor c 2
Ncon has an attribute <userid> that is the unique identifier
of a contributor. To calculate the congruence as an intersec-
tion between the contribution and dependency graph, we
need to transform GC from a two-node network (the graph
consists of two different types of nodes, i.e., developer and
library nodes) to match the dependency graph (single-node
network consisting of one node type). Hence, we use a pro-
jection technique [29], where the edges still retain the
dependency information in GC . The result is a new graph
we define as GDC . Let GDC ¼ ðNlib; EconÞ be a directed graph
where Nlib represents the set of libraries, while Econ �
Nlib �Nlib represents their relationships with respect to
contributors.

3.1 Graph Properties

In this section, we discuss three properties of both graphs.
Temporal Properties. We define a temporal graph G½t1;t2�
where t1 and t2 are two time points between which we cap-
ture the contribution and dependency relationships.

Definition 3.1.1. The temporal graph G½t1;t2� is formally defined
as: G½t1;t2� ¼ ðN½t1;t2�; E½t1;t2�Þ where N½t1;t2� is a set nodes that
have relationships with others within a period of t1 until t2,
and E½t1;t2� is a set of edges between the nodes in N½t1;t2� that
occur during the period of t1 until t2.

It is important to note that for any time period (i.e., t1 to
t2), a library node must have been created before t1. This
means that any library created in one time period will only
be considered in the next time period. Temporal operations
can be applied to both GD and GDC .

Dependency Changes. Each dependency change is repre-
sented in our dependency graph. The dependency edge has
the attributes < change, time> which is the current change
of the dependency relationship.

Definition 3.1.2. The dependency edges Edep of a graph GD rep-
resent any dependency changes between two libraries. An edge
(li; ljÞ 2 Edep means that a library li changed its dependency on
library lj, where li is a client to the lj library.
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We categorize dependency changes into four types: (i)
added (Ead

dep), i.e., a dependency has been added to a library,
(ii) removed (Erm

dep), i.e., the dependency has been removed
from a library, (iii) upgraded (Eup

dep), i.e., a dependency ver-
sion has been changed to a more recent version of a library,
and (iv) downgraded (Edn

dep), i.e., a dependency version has
been changed to an older version of a library. It is important
to note that the edge of a dependency change that occurs in
a time period will be kept in the subsequent time periods
until a new dependency event occurs.

Contribution Types . Each contribution is represented in
our contribution graph. We identify two contributor roles
based on the ability to merge changes: a committer, who
has the ability to merge any submitted contributions, and a
submitter, who can only submit contributions to a library
but does not have the permission to merge the contribu-
tions, i.e., they do not have the right to commit changes
directly to the main branch of the library repository.

Definition 3.1.3. The contribution edges Ec of a graph GC have
two types: Ec ¼ Ecomm [ Esub. An edge (c; lÞ 2 Ecomm means
that a contributor c contributes to the library l as a committer.
An edge ðc; lÞ 2 Esub means that a contributor c contributes to
a library l as a submitter.

We project the graph GC into a one-node graph GDC ¼
ðNlib; EconÞ as follows.

Definition 3.1.4. The contribution edges Econ of a projected
graph GDC have four types: Econ = Ec�c

con [Es�c
con [Ec�s

con [
Es�s

con . An edge ðl1; l2Þ 2 Econ is extracted if and only if there
exists a contributor (c) who contributes to both libraries l1 and
l2; i.e., ðc; l1Þ 2 EC ^ ðc; l2Þ 2 EC holds.

Through projection, edges combine dependency infor-
mation with committer and submitter information, resulting
in four edge combination (see Table 1) as follows: (i) Ec�c

con ,
i.e., a committer to both client and library, (ii) Ec�s

con , i.e., a
committer to a client, submitter to library, (iii) Es�c

con , i.e., a
submitter to client, committer to library, (iv) Es�s

con , i.e., sub-
mitter to both client and library.

In Fig. 2a, the two node graph is shown to be
GC½Jan2016;Mar2016�, contributor cx contributed to libraries li
and lk, and another contributor cy contributed to li and lj.
Fig. 2a is projected in Fig. 2b, where cy commits to li and cy
submits to lj, making these contributions a c-s type.

3.2 Congruence Calculation

Ecosystem-level DC Congruence is the ratio of dependency
changes that receive contributions divided by the total num-
ber of dependency changes in the ecosystem. Although
prior work has represented the congruence using adjacency
matrices, we exploit graph theory to define this intersection.

Definition 3.2.1 (Ecosystem-level DC Congruence). This
can be described as the generalized equation

DCðdtype; ctype;GD½t1;t2�; GDC½t1;t2�Þ ¼
jEdtype

dep½t1;t2� \ Ectype
con½t1;t2�j

jEdtype
dep½t1;t2�j

: (1)

For a time period [t1, t2], dtype is a dependency change
(added, removed, upgraded, or downgraded) and ctype is
the type of contribution (c-c, c-s, s-c, c-c). For example, given
GD½Jan2016;Mar2016� in Fig. 1 and all the dependency relation-
ships in the graph having a type of “added,” we want to
calculate the DC congruence between dependencies of
added and c-s contributions (demonstrated in Fig. 2b). The
DC congruence at the ecosystem level of the graph
GD½Jan2016;Mar2016� and GDC½Jan2016;Mar2016� is DCðadded; c�
s;GD½Jan2016;Mar2016�; GDC½Jan2016;Mar2016�Þ ¼ 1

3 ¼ 0:333.

Definition 3.2.2 (Library-level DC Congruence). To quan-
tify how the congruence related to a library contributed to the
congruence value of the whole ecosystem, we also measure con-
gruence of each library (i.e., the congruence at the library level)

DCðdtype; ctype; l; GD½t1;t2�; GDC½t1;t2�Þ ¼
jnðl; Edtype

dep½t1;t2�Þ \ nðl; Ectype
con½t1;t2�jÞ

jnðl; Edtype
dep½t1;t2�Þj

nðl; EÞ ¼ fl0 2 Nlib j ðl; l0Þ 2 E _ ðl;0 lÞ 2 Eg: (2)

The function nðl;EÞ represents the set of neighbors of a
library l. The congruence related to a library l becomes higher
if similar libraries are connected to l in the two graphs. Similar
to the ecosystem congruence, we define the parameters as a
time period [t1, t2], where dtype is a dependency change
(added, removed, upgraded, or downgraded) and ctype is the
type of contribution (c-c, c-s, s-c, c-c). For example, given
GD½Jan2016;Mar2016� in Fig. 1 and all the dependency relationships
in the graph having a type of “added,” we want to calculate
the library-level DC congruence of the library lk between

TABLE 1
Classification of Contributions by Maintainer Role to Both Client and Library

Contribution Type Description Notation

committer-committer (c-c) Contributions from a contributor who commits to both client and library. Ec�c
con

committer-submitter (c-s) Contributions from a contributor who commits to a client and submits to a library. Ec�s
con

submitter-committer (s-c) Contributions from a contributor who submits to a client and commits to a library. Es�c
con

submitter-submitter (s-s) Contributions from a contributor who submits to both client and library. Es�s
con

Fig. 1. Dependency graph from time period Jan 1 to Mar 31, 2016.

WATTANAKRIENGKRAI ETAL.: GIVING BACK: CONTRIBUTIONS CONGRUENT TO LIBRARY DEPENDENCYCHANGES IN A SOFTWARE ECOSYSTEM 2569



dependencies of added and c-c contributions (demonstrated
in Fig. 2b). Finally, the library-level congruence of the
library lk is calculated as follows. DCðadded; c� c; lk;
GD½Jan2016;Mar2016�; GDC½Jan2016;Mar2016�Þ ¼ 1

2 ¼ 0:5
Implementation. Following prior work, we translate our

graph definitions into adjacency matrices (cf. replication
package for details). Hence, for each time period [t1, t2], we
calculate all parameter instances of dependency changes
(dtype) and contribution types (ctype) to result in 16 combi-
nations of DC congruence.

Intuitively, we can interpret the congruence values (rang-
ing from 0 to 1) as the extent to which contributions are con-
gruent with dependency changes. A congruence value close
to 1 at the ecosystem level would indicate that a large num-
ber of dependency relationships receive congruent contri-
butions, while a congruence value close to 0 would indicate
that there is a small number of congruent contributions in
the ecosystem. Similarly, at the individual level, a congru-
ence value close to 1 would indicate that a large number of
contributions is congruent with the dependency relation-
ships of that library.

4 DATA PREPARATION

To evaluate our congruence models and answer our RQs, we
perform an empirical study on the npm library ecosystem.
We select the npm JavaScript ecosystem as it is one of the
largest library collections on GitHub, and also has been the
focus of recent studies [5], [20], [35]. In this work, we focus
on the npm libraries linked to their GitHub repositories,
since we will analyze contributions (i.e., PRs and issues).
Similar to ‘all-the-package-repos’ [26] and Chinthanet et al.
[13], we use a listing of npm libraries from the npm registry
and then match them to repositories available on GitHub.
The listing of npm libraries was acquired in Nov. 2020. To
collect the required information, we use the GitHub REST

API to collect PRs, issues, commits, and other metadata (e.g.,
license type) of the library repositories included in the latest
data snapshot. The issues are used to answer RQ1 and RQ2,
while the commits are used to answer RQ2 and the PRs are
used to answer all RQs. We do not consider commits when
measuring the DC congruence since we cannot identify the
direction of commits (i.e., which library they are from) and
commits can be only created by maintainers of a library
which exclude other contribution types. As part of our data
collection, we accessed the API using five GitHub tokens
(each belonging to the first five authors) that were generated
by the first five authors during the collection process. To
comply with the GitHub terms of usage, we only used the
API rate limit at 25,000 (5,000 * 5) requests per hour, taking
into account periodic rests between requests. In total, the
data collection period took one month, lasting from Novem-
ber 1 to November 30, 2020.

Table 2 provides an overview of the number of npm
libraries that have repositories available on GitHub for each
year. Overall, the number of npm libraries starts from small
(i.e., 17,859 libraries), but then reaches over a hundred thou-
sand libraries (i.e., 107,242) as of Nov. 2020. Similar to previ-
ous work which considered the temporal dimension [9],
[45], [46], we split the data of each year into quarters: (Q1)
January 1 to March 31, (Q2) April 1 to June 30, (Q3) July 1 to
September 30, and (Q4) October 1 to December 31 to estab-
lish the temporal intervals of our graphs (i.e., G½t1;t2�).

Extracting Contributions and Dependency Changes. Once the
time-intervals are established, we then extract the contribu-
tions and dependency changes within each quarter. For the
contribution activities, we generate the graph nodes by
identifying PRs and issues that occurred during the quarter.
To classify the role of the contributor, we use the GitHub
REST API to identify whether or not the contributor who
submitted a contribution (i.e., a PR or an issue) had commit-
ted any prior commits into the main branch of the reposi-
tory. For the dependencies and their changes, similar to
prior work [16], we parse the package.json file to extract
both development and runtime dependencies for each
library during that time period. To identify the dependency
changes during the time period, we use the PyDriller pack-
age6 to mine the dependency changes of package.json in
the Git history. More specifically, we focus on the Modifica-
tion object provided by the PyDriller to investigate commits
to package.json.

Fig. 2. Example graph representation of the relationships between con-
tributions and dependencies.

TABLE 2
Dataset Snapshot Statistics

# Npkg # PRs # issues # commits # dev

2014 17,859 22,239 55,081 473,591 11,031
2015 57,534 98,975 222,146 1,255,065 46,029
2016 92,748 242,424 427,001 1,415,015 82,991
2017 105,058 186,257 352,411 886,796 96,916
2018 106,815 139,016 267,318 527,252 86,978
2019 107,146 166,588 259,560 428,191 69,285
2020 107,242 115,186 171,435 339,219 43,815

Total 970,685 1,754,952 5,325,129 437,045

6. https://github.com/ishepard/pydriller
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Calculating Ecosystem-Level DC Congruence (RQ1). Answer-
ing RQ1 involves computing the DC congruence at the eco-
system level. Hence, for all time periods, we construct the
adjacency matrices of the graphs (see Section 3) for PRs and
issues separately. To ease computational power, we filter out
all rows and columns of the adjacency matrices that have
only zeros. Since we analyze PRs and issues separately, we
generate a total of 32 instances for each quarter, resulting in
864 combinations of DC congruence. It took around 21 days
of execution based on two mainframe servers. The first server
is comprised of an Intel Core 2.60 GHz, with 10 cores and
252 GB of RAM, and the second server is comprised of AMD
Core 3.70 GHz, with 32 cores and 252 GB of RAM.

Calculating Library-Level DC Congruence (RQ2). Answer-
ing RQ2 involves computing the library-level DC congru-
ence. Using the constructed matrices (before filtering the
rows and columns with zeros) from RQ1, we calculate the
library-level DC congruences for each time period. Similar
to RQ1, we generate a total of 32 DC congruence values for
each library in each quarter. Since the experiment are con-
ducted in parallel with RQ1, the computational time and
resources are the same.

Sampling Contributions (RQ3). Answering RQ3 involves a
quantitative analysis of contributions. Hence, we draw a sta-
tistically representative random sample of 1,841 contributors.
Our sample size allows us to generalize conclusions about
the ratio of contributors to all contributors with a confidence
level of 99% and a confidence interval of 3%, as suggested by
prior work [6] based on the Sample Size Calculator.7 To col-
lect the most recent contributions of the sampled contribu-
tors, we extract contributions belonging to the most recent
quarter. To do so, we first identify the last contribution, i.e.,
the last submitted PRs in our dataset, and then we extract all
their PRs submitted within that time period. In the end, we
collect 27,554 PRs. Since our approach involves similarity

analysis of the source code (at least one. js file) and file path
components, we obtain 11,405 (41%) PRs from the 1,841 con-
tributors with the four contribution types (see Section 3.1).

5 RESULTS

In this section, we present the results to answer our RQs.

5.1 Assistance From the Ecosystem (RQ1)

Approach. To answer RQ1, we analyze the DC congruence in
terms of contributions and dependency changes. In particu-
lar, we address each of the sub-questions as follows: To
answer RQ1a: To what extent do contributors contribute to the
libraries they depend on?, we summarize the DC congruence at
the ecosystem level and library level in terms of the distribu-
tion by contribution type. To statistically confirm the differ-
ences in the four contribution types, we use the Kruskal-
Wallis H test [38]. This is a non-parametric statistical test to
use when comparing two or more types. We test the null
hypothesis that ‘DC congruence values of two different contribu-
tion types are the same.’ We also measure the effect size using
Cliff’s d, a non-parametric effect size measure [14]. Effect size
is analyzed as follows: (1) jdj < 0:147 as Negligible, (2)
0:147 � jdj < 0:33 as Small, (3) 0:33 � jdj < 0:474 as
Medium, or (4) 0:474 � jdj as Large [51].

To answer RQ1b: How do different contribution types and
dependency changes contribute to DC congruence, we analyze
trends of DC congruence related to different contribution
types and dependency changes. We use the Spearman rank-
order correlation coefficient to analyze the correlations
between the different dependency changes for each kind of
contribution. A correlation between 0 – 0.09 is considered as
negligible, 0.1 – 0.39 as weak, 0.4 – 0.69 as moderate, 0.7 –
0.89 as strong, and 0.9 – 1 as very strong [53].

Congruent Contributions (RQ1a). Figs. 3a and 3b show the
relative congruence score between contributions at both the
ecosystem level and the library level. It is important to note
that the box-plot of each contribution type presents the

Fig. 3. DC congruence of contribution types (ns: no significance, **: p-value < 0.01, ***: p-value < 0.001, ****: p-value < 0.0001).

7. https://www.surveysystem.com/sscalc.htm
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congruence scores between the contributions and depen-
dency changes of the different time periods (see Section 4).
In the Figure, we can see that s-s has the highest congruence
at the ecosystem level, however at the library level both s-s
and and c-c have a higher relative DC congruence. As
shown in Table 3, the effect sizes range from Small to Large,
confirming statistical significance for both the ecosystem
and library level congruence metrics.

From a temporal perspective, as shown in Fig. 4, we find
that the highest congruence values occur generally in the
second quarter of 2014, followed by the first quarter of 2015.
The congruence values may be correlated with the ecosys-
tem size.

Attributes That Correlate With the DC congruence (RQ1b).
From Fig. 4, we are able to make two observations. First, we
find that there is higher congruence with contributions
when a dependency is downgraded (see the purple lines in
Fig. 4). This finding is consistent between all contribution
types and between issues and PRs, except for the congru-
ence between PRs of s-c and dependency upgrades. The sec-
ond observation is that the s-s contributions are most
congruent with dependency changes. This is consistent
from both the issues and PRs. This provides evidence that
library dependency changes are satisfied by contributors
that do not have the ability to commit to these libraries.

Table 4 shows evidence that all dependency changes are
correlated with each other. Statistically, we tested to find

that any dependency changes are moderately to strongly
correlated to each other for all contribution types, except for
the s-c contributions (added to downgraded, and removed
to downgraded). We now return to answer RQ1, which we
summarize below:

RQ1 Summary
Using our DC congruence metrics, we find that contri-

butions most congruent to dependency changes are con-
tributions from contributors that can only submit to both
client and library (s-s). Higher congruence is observed
with a dependency downgrade over time.

5.2 Contribution Congruence and Library’s
Dormancy (RQ2)

Approach. To address RQ2, we analyze the relationship
between the DC congruence and the likelihood of libraries
becoming dormant. In particular, we leverage survival anal-
ysis techniques which allow us to model the relationship
across different time periods. We use a Cox proportional-
hazard model (i.e., a commonly-used survival analysis
model) [19] to capture the risk of an event (i.e., a library
becomes dormant) in relation to factors of interest (e.g., the
DC congruence) in the elapsed time.

To do so, we extract the event and the factors for each
library in each time period (i.e., a quarter). In our Cox
model, the dependent variable is the event that a library
becomes dormant at a particular time point. In line with
prior work [15], [58], [62], a project is regarded as dormant
if it is no longer being maintained or does not have develop-
ment activity. Specifically, similar to the work of [58], we
consider a library as dormant in the quarter q if it had less
than one commit on average for four consecutive quarters
(i.e., from the quarter q until the quarter ðq þ 3Þ). For exam-
ple, in the first, second, third, and fourth quarters in 2018, a
library that has 1, 0, 0, and 1 commits, respectively is consid-
ered as dormant since the first quarter in 2018. This is
because the average number of commits for four consecu-
tive quarters is 0.5 (24). Note that we exclude libraries that

Fig. 4. Ecosystem-level DC congruence over time. The red text indicates quarters in which congruence values are highest.

TABLE 3
Statistical Comparisons of Ecosystem-Level and Library-Level

DC congruence of Contribution Types

Contribution Type Ecosystem Level Library Level

s-s >c-c Medium -
s-s >c-s Large Small
s-s >s-c Large Small
c-c >c-s Medium Medium
c-c >s-c Large Medium
c-s >s-c Small -

Effect size: Negligible jdj < 0:147, Small 0:147 � jdj < 0:33, Medium
0:33 � jdj < 0:474, Large 0:474 � jdj.
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have the first commit after October 2019, since their histori-
cal data is not sufficient to identify whether the library is
dormant or not (i.e., less than four consecutive quarters). As
our RQ1 shows that the correlations between different
dependency changes for all contribution types vary, it is
also possible that these DC congruence may provide
various signals to the library dormancy given different
dependency changes and contribution types. Thus, for inde-
pendent variables in our Cox model, we use 32 metrics
which measure the library-level DC congruence (see Sec-
tion 4). Since prior work has shown that project characteris-
tics can be associated with the chance of libraries becoming
dormant [58], we also include six project characteristics (see
Table 5) as control variables in our Cox model.

To construct the Cox model, we use a similar approach as
Valiev et al. [58], which has the following three steps. First,
we perform log-transform on the independent variables
with skewed distribution to stabilize the variance and reduce
heteroscedasticity, which will improve the model fit. We
manually observe the skewness of the distribution using his-
togram plots. Second, we check for the multicolinearity
between independent variables using the variance inflation
factor (VIF) test and the Spearman rank correlation (r). We
remove the variables that have VIF scores above the recom-
mended maximum of 5 [17] and we also remove the pairs of
variables that have an absolute Spearman correlation coeffi-
cient of above or equal to 0.7 [37]. To improve the fit of the
model, we apply the non-linear relationships between the
dependent variable and independent variables, using
restricted cubic splines. To avoid over-fitting, we use the
Spearman multiple r2 to determine the appropriate degrees
of freedom (i.e., the number of regression parameters) to the

variables that have more potential for sharing a nonlinear
relationship with the dependent variable. Third, we test the
assumption of constant hazard ratios overtime. To do so, we
employ graphical diagnostics of Schoenfeld residuals [28].
We observe that Schoenfeld residuals of the remaining varia-
bles have a random pattern against time, which implies that
the Coxmodel assumptions are not violated.

To analyze the association between each independent
variable and the likelihood of a library becoming dormant,
we examine the coefficient values and effect sizes of the
independent variables. The coefficient values in the Cox
model are hazard ratios, where a hazard ratio above 1
implies that a variable is positively associated with the
event probability, while a hazard ratio below 1 indicates an
inverse association. For the effect size, we perform ANOVA
type-II to obtain Log-likelihood Ratio x2 (LR x2). The larger
the LR x2 of the variable is, the stronger the relation of the
variable to the likelihood of a library becoming dormant.

Table 6 shows that our Cox proportional-hazard model
achieves an adjusted R2 of 42.2%. Based on the prior quanti-
tative empirical studies in open source projects [36], [58],
[61], this score is considered as acceptable since our model
is supposed to be explanatory not predictive. In addition,
the concordance index (another popular metric that quanti-
fies the correlation between risk predictions and event
times [29]) of our model is 0.672, suggesting that our model
performs equally well.

Association Between the Contribution Congruence and the
Chance of Libraries Becoming Dormant. Our results highlight
nine congruence-related variables that associate with the
likelihood of a library becoming dormant, i.e., two variables
concerning issue (s-s upgraded and c-s upgraded) and seven

TABLE 4
Correlations Between Different Dependency Changes for Each Type of Contribution

s-s c-c c-s s-c

Dependency change to
Dependency change

PR corr.
strength

issue corr.
strength

PR corr.
strength

issue corr.
strength

PR corr.
strength

issue corr.
strength

PR corr.
strength

issue corr.
strength

added to removed Strong Strong Moderate Strong Strong Very strong Moderate Strong
added to upgraded Strong Strong Moderate Strong Very

strong
Very Strong Strong Very strong

added to downgraded Moderate Moderate Moderate Strong Strong Strong Weak Weak
removed to upgraded Strong Strong Strong Strong Strong Very strong Moderate Strong
removed to downgraded Moderate Moderate Strong Strong Moderate Strong Weak Moderate
upgraded to downgraded Strong Strong Strong Moderate Very

Strong
Strong Moderate Moderate

Correlation: Negligible is 0 to 0.09, Weak is 0.1 to 0.39, Moderate is 0.4 to 0.69, Strong is 0.7 to 0.89, Very strong is 0.9 to 1.

TABLE 5
Project Characteristics [58] That are Used as Control Variables in Our Cox Model

Metric Description

#Commits The number of commits occurring in the observed quarter.
#Contributors The number of GitHub users who have authored commits in the observed quarter.
Core Team Size The number of GitHub users responsible for 90% of contributions in the observed quarter.
#Issues The number of issues created in the observed quarter.
#Non-Developer
Issue Reporters

The number of GitHub users who did not author any commits but created an issue in the observed
quarter.

License Type The license type that the studied library used in the observed quarter: Strong copy-left (e.g., GPL,
Affero), Weak-copy-left (e.g., LGPL, MPL, OPL), or non-copy-left (e.g., Apache, BSD)
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variables concerning PR (s-s added, s-s downgraded, c-c added,
c-c removed, c-c downgraded, c-c upgraded, and s-c upgraded).

As shown in Table 6, we observe that congruence regard-
ing a dependency upgrade or downgrade has a relatively
great effect. For instance, s-s upgraded (issue) and s-
s downgraded (PR) have the largest LR x2 values (see Table 6),
being 214 and 23, respectively. Coefficient values indicate an
inverse association with the likelihood of a library becoming
dormant. For example, the coefficient value of s-s upgraded
(issue) indicates that the higher the number of issues of s-
s that are congruent with a dependency upgrade, the lower
the likelihood that a library becomes dormant. Similarly, the
coefficient value of c-s upgraded (issue) indicates that the
higher the number of issues of c-s that are congruent with a
dependency upgrade, the lower the likelihood that a library
becomes dormant. While for the congruence regarding a
dependency removal, the coefficient of one variable (c-
c removed) indicates a positive association with the likelihood
of a library being dormant, but showing little effect.

These results suggest that a library is less likely to
become dormant if the contributions are congruent with
upgrading dependencies. A possible reason for upgrading a
dependency is to mitigate security vulnerabilities [39].

It is important to note that dormant projects do not mean
that these projects have been abandoned. These projects
might be referred to as being dormant as their features are
completed. In the case of libraries, a dormant library might
be still heavily used by other libraries. However, prior
work [15] suggests that only 2% of open source projects
reach this maturity.

RQ2 Summary
Our survival analysis shows that the different types of

DC congruence share an inverse association with the
likelihood of a library becoming dormant. For instance,
the higher the number of issues from specific types (i.e.,
s-s, c-s) that are congruent with a dependency upgrade,
the lower the likelihood that a library becomes dormant.

5.3 Similarities Between Contributions (RQ3)

Approach. To answer RQ3, we investigate whether the
type of contributions that are congruent with depen-
dency changes are the same as other contributions by
analyzing the source code similarity and file location
similarity. Hence, we focus on contributions that are con-
gruent with dependency changes of libraries that they
depend on (i.e., c-s), comparing against contributions
from the ecosystem (i.e., s-s), and then the rest of main-
tainer contributions (i.e., c-c and s-c). We compute simi-
larity based on two common methods to compare the
content of PRs, which are (i) source code and (ii) file
path similarity [32], [43], [60]. More specifically, we use
the source code similarity to measure whether the two
contributions share similar source code; and use the file
path similarity to measure whether the two contributions
modify similar components. From our sample, we com-
pare the similarities between PRs of the same contribu-
tion type of a contributor. As a PR may modify multiple
files, we compare all components (i.e., source code lines
and file paths).

Our source code similarity measure is based on the Jac-
card index of tokens which approximates the edit distance
between two PRs [56]. Following the analysis of repeated
bug fixes [66], to compare a pair of PRs, we take only added
lines by the PRs into account. Formally, for any PR (p), the
source code similarity is defined as follows:

SourceCodeSimðp1; p2Þ ¼ jtrigramsðp1Þ \ trigramsðp2Þj
jtrigramsðp1Þ [ trigramsðp2Þj ; (3)

where trigramsðpÞ is a multiset of trigrams (3-grams) of
source code tokens extracted from all source code lines
added by a PR (p). A higher similarity indicates that a
larger amount of source code is shared. The similarity is
an extension of file similarity defined by Ishio et al. [31]
for PRs. This measure has been widely adapted in various
software engineering studies [31], [34], [64] and is less
affected by moved code in a PR, compared with other
measures. On that same note, we apply the file location-
based model that is used in typical code review recom-
mendations [55], [60], [65] to compute file path similarity
that is defined as follows:

StringSimLCxðf1; f2Þ ¼ LCxðf1; f2Þ
maxðLengthðf1Þ; Lengthðf2ÞÞ ;

where the LCxðf1; f2Þ function has a parameter to specify
how to compare file path components f1 and f2. Four differ-
ent comparison techniques, i.e., Longest Common Prefix
(LCP), Longest Common Suffix (LCS), Longest Common
Substring (LCSubstr), and Longest Common Subsequence
(LCSubseq) are used in the LCx function. The comparison
function value is normalized by the maximum length of

TABLE 6
Survival Analysis Statistics

2574 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023



each file path in f1 and f2, i.e., the number of file path com-
ponents. To calculate the file path similarity between two
PRs, we do a pairwise comparison of all file paths in the
two PRs and then summarize these by taking the average
score. Since we use four different comparison techniques,
four similarity scores between two PRs are retrieved and we
also summarize these by taking the average score. A higher
similarity indicates that a larger amount of components are
shared in the PRs.

Once we compute the similarity between PRs in each
contribution type (i.e., c-s, s-s, and c-c and s-c), we now ana-
lyze whether the similarity of the c-s contributions is differ-
ent from the similarity of the other contributions. To
visualize this, we use a box-plot to show the distributions of
similarities between PRs in each of the contribution types.
Similar to RQ1a, we use the Kruskal-Wallis H test to statisti-
cally confirm the differences in the three contribution types
with the null hypothesis that ‘two different types have similar
contributions.’, and measure the effect size using the Cliff’s d.

Similarities/Differences Between Congruent Contributions
and Other Contributions. Fig. 5 shows the comparisons of
source code and file path similarities between the three
types of contributions (“c-c and s-c,” “c-s,” and “s-s”). We
find that overall the similarities of contents of PRs in terms
of the source code and file paths are relatively low (i.e.,
scores of 0.01 to 0.19). This could be explained by our
method to aggregate all source code and file paths for com-
parison, which is different to typical file-level similarity
comparison techniques [48]. Relatively, we see that the file
path similarity is higher than the source code similarity.

In terms of statistical significance, from Fig. 5, we make
two key observations. First, we find significant differences
in the file path and added lines in source code between c-s
and other contributions. This suggests that the content of
contributions that are congruent with dependency changes
may differ from the other contributions made to either their
own libraries or other libraries. On the same note, we find
that there are significant differences in the file path and
added lines of source code between c-c, compared to s-c
and s-s contributions, which suggests that contributors may
be submitting different contributions to libraries that they
are maintaining, compared to contributions to other librar-
ies. Confirming statistical significance, we show that the

effect size ranges from small to medium strength as shown
in Table 7.

RQ3 Summary
Comparing contribution similarity in terms of source

code and file paths, we find statistical differences in file
path and added lines in source code of contributions that
are congruent with dependency changes when com-
pared to those that are not congruent. In other words,
congruent contributions are not typical contributions by
that contributor.

6 DISCUSSION

We now discuss our results, implications, and threats to
validity.

6.1 Peaks of DC Congruence and Global Events

The results in RQ1 (i.e., Fig. 4) show that DC congruence is
changing over time. Interestingly, we find that the official
npm blog8 showed two dependency events that may corre-
late with the observed peaks. It is also important to note
that we do not aim to draw a causal relationship, but only
observe correlations.

� June, 2015 - npm 3 is released. According the npm blog,9

the release has a notable breaking change when migrating to
npm version 3. According to our DC congruence values in
Fig. 4, we see the peak changes in the congruence between s-
s contribution and dependency remove (i.e., 0.019 for issues
and 0.013 for PRs), and c-s contribution and dependency
downgrade (i.e., 0.031 for issues and 0.027 for PRs).

�March 2016 - Left-pad incident. npm attracted press atten-
tion after a library called left-pad, which many popular
JavaScript libraries depended on, was unpublished. It
caused widespread disruption, leading npm to change its
policies regarding unpublishing libraries. According to our
DC congruence values in Fig. 4, we see peak changes in the
congruence between s-s contribution and dependency
downgrade (i.e., 0.103 for issues and 0.086 for PRs), and s-
s contribution and dependency upgrade (i.e., 0.051 for
issues and 0.037 for PRs).

6.2 Implications

1. Finding contributors for dependency maintenance: To help
project teams avoid dormancy, we suggest project teams to

TABLE 7
Statistical Comparisons of Contribution Types

Source Code File Path

c-s > (c-c and s-c) Medium Small
s-s > (c-c and s-c) - -
c-s > s-s Medium Medium

Effect size: Negligible jdj < 0:147, Small 0:147 � jdj < 0:33, Medium
0:33 � jdj < 0:474, Large 0:474 � jdj.

Fig. 5. Comparisons of contribution types (ns: no significance, **: p-value
< 0.01, ***: p-value < 0.001, ****: p-value < 0.0001).

8. Available at https://blog.npmjs.org/
9. https://blog.npmjs.org/post/122450408965/npm-weekly-20-

npm-3-is-here-ish.html
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build on our findings from RQ1 which show that there is
more potential for contributions from the ecosystem. As
highlighted by RQ1, the most congruent contributions when
dependency changes originate from the ecosystem itself (i.e.,
s-s contributions that do not have the ability to commit to
either the library or a client library). Furthermore, RQ2
results show that associations indeed exist between levels of
congruence and dormancy (e.g., significant congruency with
a dependency upgrade from all studied contribution types).
These results also raise another question, as towhy these con-
tributors would have the motivation to contribute an
upgrade. Speculation is that these contributions are from a
user of both the library and the client who would like to miti-
gate the security vulnerabilities and further ensure their sus-
tainability. Our work shows that these kinds of contributions
are needed and highlights the importance of the ecosystem to
both library and the client in terms ofmaintenance.

Another interesting avenue is in terms of helping new-
comers make their first contribution to open source projects.
Several approaches have been proposed to help newcomers
find good first issues, e.g., Tan et al. [52]. Our results show
that contributions congruent to dependency changes might
be a potential type of contribution that newcomers might
consider.

2. Libraries with low-dependency-congruent contributions
are more likely to be dormant: Using our congruence met-
rics, we find a correlations between congruent contribu-
tions and libraries becoming dormant. In our RQ2, we
found that a large number of libraries become dormant in
the early stages, with more than 90% of libraries becom-
ing inactive until the end-time of our study. Interestingly,
this is the case for both upgrading or downgrading a
dependency.

3. Awareness of automated dependency maintenance is evi-
dent: Another implication is that awareness and depen-
dency maintenance tooling have become part of the
ecosystem. From the results of RQ1, we find that congruent
contributions may originate from automated sources like
automated tooling. Currently there are numerous tools to
assist with awareness of when a new version of an existing
dependency is available (bots like dependabot).

4. Ecosystem-level governance for dependency maintenance:
Since library survival has a relationship with contributions
congruent to dependency maintenance, we believe that this
has implications that affect ecosystem health, resilience, and
governance. This points to implications such as implement-
ing collective support into existing policies and governance.
Individual libraries may suffer from dependency manage-
ment issues, especially when security is involved. For
instance, Log4J maintainers state how they became over-
whelmed (as mentioned in Introduction).

The DC congruence metrics could be a potential indi-
cator for such suffering libraries, with potential guide-
lines to keep libraries alive with healthy congruent
contributions to dependency maintenance. For example,
the ecosystem governors should put in place some kind
of community-maintained libraries, i.e., libraries that are
overlooked by npm, and that are maintained by a small
group of well-defined community volunteers, in order to
avoid those important libraries becoming dormant. One
example is the faker library: when the maintainer self-

sabotaged the library, the community had to step in to
assist with its maintenance.10

6.3 Threats to Validity

Internal Validity - We discuss five threats to internal validity.
The first threat is the correctness of techniques used in our
mining task. We use the listed dependencies and version
numbers as defined in the package.json meta-file. Since we
based our mining techniques on prior work, we are confi-
dent that our results are replicable. The second threat is
related to the constructed matrices for measuring the DC
congruence. Since we pioneer the investigation of DC con-
gruence, we constructed binary matrices in this study. We
will calculate weight matrices, e.g., a matrix captures the
number of contributions (issues and PRs) to investigate the
impact of contributions on the DC congruence, in future
work. Also our work only considers the first change during
the time period, hence, other changes during this period
may not be counted, resulting in a threat in our results. We
consider this as future work. Additionally, since we focus
on issues and PRs for the relationships between contribu-
tors, we are unable to claim causation. There might be other
factors (e.g., contributor-contributor relations through mes-
saging and commenting) that explain the correlations that
should be considered by future studies. The third threat is
related to the results derived from the survival model.
Although we observe association between explanatory and
dependent variables, we cannot infer causal effect of
explanatory variables. The fourth threat is related to the fac-
tors used in our survival model. Other factors might also
influence the chance of libraries becoming dormant. We
acknowledge that our factors are based on those proposed
by Valiev et al. [58] as a baseline. Tool selection has its
threats, as different tools and techniques may lead to differ-
ent results (e.g., Jaccard index for the source code similarity
calculation). We are confident in our results, since all
employed tools and techniques are those that have been
used in prior work and are well-known in the software engi-
neering community. For instance, we use Pydriller and
GitHub REST API and our technique for distinguishing the
type of dependency changes relies on related work [16].

External Validity - The main threat to external validity is
the generalizability of our results to other library ecosys-
tems. Since the npm ecosystem is the largest library ecosys-
tem, we believe that our model and measurements could
easily be applied to other ecosystems that have similar
library management systems, such as PyPI for Python and
Maven for Java. Our metrics is robust enough to be applied
to different ecosystems, however, we do acknowledge that
we have no evidence that the results will be the same. We
will explore this in future work.

Construct Validity - The main threat to construct validity
is the identification of dependency changes. It is possible
that some dependency changes that were not reflected in
the commits are not identified when we construct the data-
set. Furthermore, there might be corner cases when using
version ranges might affect the “upgraded” classification.
We collect the dependency changes from commits, i.e., an

10. https://fakerjs.dev/about/announcements/2022-01-14.html
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approach suggested by prior work, which is the state of the
art [16]. We do rely on the SOTA, however, acknowledge
this threat.

Conclusion Validity - We discuss two threats to conclusion
validity. The first threat is the correctness of statistical tests.
We apply non-parametric tests in our analyses. Since we
verify normality assumptions, we are confident that proper
statistical tests are selected in this work. The choice of sur-
vival analysis technique is another threat to conclusion
validity. We use the Cox proportional-hazard model to
answer the second research question. We are confident in
our model as it achieves an adjusted R2 of 42.2%, suggesting
the goodness-of-fit of the model is acceptable.

7 CONCLUSION AND FUTURE DIRECTIONS

This work investigates how contributors whose code
depends on other libraries in the npm ecosystem, submit
contributions to assist these libraries. Borrowing socio-tech-
nical techniques, we were able to measure the congruence
between these congruent contributions, and changes in
dependencies for the ecosystem. Results indicate that librar-
ies indeed rely on the ecosystem for contributions, and that
these congruent contributions share a relationship with the
likelihood of a library becoming dormant, suggesting that
the congruency between contributions and dependency
changes could be used as an indicator of library dormancy.
Moreover, congruent contributions differ from typical con-
tributions. Our results show that contributors do depend on
the ecosystem, and should be encouraged to support librar-
ies that they depend on.

Insights that are revealed from the study open many ave-
nues for future work, such as investigating whether main-
tainers of a library wish to contribute to some of the
libraries that depend on their libraries and their reasons to
contribute to these libraries, introducing contributor-con-
tributor relations (messaging or commenting among con-
tributors) into the analysis of DC congruence, exploring
more precise measures of the DC congruence such as
weighting metrics and empirical studies into causal effects
for DC congruence changes (i.e., using measures such as
causal inference), and developing approaches that make it
easier for contributors to understand where in the ecosys-
tem their contributions can have the most impact.
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