
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2022

GitHub repositories with links to academic papers: Public access, GitHub repositories with links to academic papers: Public access,

traceability, and evolution traceability, and evolution

Supatsara WATTANAKRIENGKRAI

Bodin CHINTHANET

Hideaki HATA

Raula KULA

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WATTANAKRIENGKRAI, Supatsara; CHINTHANET, Bodin; HATA, Hideaki; KULA, Raula; TREUDE, Christoph;
GUO, Jin; and MATSUMOTO, Kenichi. GitHub repositories with links to academic papers: Public access,
traceability, and evolution. (2022). Journal of Systems and Software. 183, 1-13.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8789

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8789&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8789&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Supatsara WATTANAKRIENGKRAI, Bodin CHINTHANET, Hideaki HATA, Raula KULA, Christoph TREUDE,
Jin GUO, and Kenichi MATSUMOTO

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8789

https://ink.library.smu.edu.sg/sis_research/8789

The Journal of Systems & Software 183 (2022) 111117

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

GitHub repositories with links to academic papers: Public access,
traceability, and evolution✩

Supatsara Wattanakriengkrai a,∗, Bodin Chinthanet a, Hideaki Hata b,
Raula Gaikovina Kula a, Christoph Treude c, Jin Guo d, Kenichi Matsumoto a

a Nara Institute of Science and Technology, Japan
b Shinshu University, Japan
c University of Melbourne, Australia
d McGill University, Canada

a r t i c l e i n f o

Article history:
Received 31 March 2020
Received in revised form 4 June 2021
Accepted 30 September 2021
Available online 12 October 2021

Keywords:
Software documentation
Open science
Open access
Traceability

a b s t r a c t

Traceability between published scientific breakthroughs and their implementation is essential, espe-
cially in the case of open-source scientific software which implements bleeding-edge science in its
code. However, aligning the link between GitHub repositories and academic papers can prove difficult,
and the current practice of establishing and maintaining such links remains unknown. This paper
investigates the role of academic paper references contained in these repositories. We conduct a
large-scale study of 20 thousand GitHub repositories that make references to academic papers. We
use a mixed-methods approach to identify public access, traceability and evolutionary aspects of the
links. Although referencing a paper is not typical, we find that a vast majority of referenced academic
papers are public access. These repositories tend to be affiliated with academic communities. More
than half of the papers do not link back to any repository. We find that academic papers from top-tier
SE venues are not likely to reference a repository, but when they do, they usually link to a GitHub
software repository. In a network of arXiv papers and referenced repositories, we find that the most
referenced papers are (i) highly-cited in academia and (ii) are referenced by repositories written in
different programming languages.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction and motivation

Public access is one of the key concepts in open science, aiming
to distribute research outputs (e.g., scientific academic papers) to
the public to accelerate research (Woelfle et al., 2011), free of
cost or other access barriers (Anon, 2015). It has been adopted
by increasingly more researchers and agencies across different
domains. Meanwhile, software that is developed during the sci-
entific research process is often released as open source software
(OSS) to promote reproducible research and increase the chances
of having a stronger impact. OSS can be copied and distributed
at essentially no cost, potentially opening the door to unprece-
dented levels of sharing and collaborative innovation (Howison
and Herbsleb, 2011).

✩ Editor: Bram Adams.
∗ Corresponding author.

E-mail addresses: wattanakri.supatsara.ws3@is.naist.jp
(S. Wattanakriengkrai), bodin.ch@is.naist.jp (B. Chinthanet),
hata@shinshu-u.ac.jp (H. Hata), raula-k@is.naist.jp (R.G. Kula),
christoph.treude@unimelb.edu.au (C. Treude), jguo@cs.mcgill.ca (J. Guo),
matumoto@is.naist.jp (K. Matsumoto).

Reproducibility challenges and artifact tracks that have been
hosted at international conferences have strengthened the con-
nections between software and scientific papers. For example,
consider the papers submitted to the Conference and Work-
shop on Neural Information Processing Systems (NeurIPS), one of
the leading conferences for machine learning (ML) research. The
number of papers containing the link to their source code have
increased from 50% to 75% within one year (since 2018) (Anon,
2019a). It can be argued that a paper has a better chance for real
impact if its code is accessible; the readers are able to examine
the code, run the code, and assess the contributions considering
full details of the work (which are often omitted in the paper).

Keeping up with the state of the art (SOTA) between software
repositories and papers is always a challenge, especially due
to the differences in cultures between scientists and software
engineers (Segal et al., 2008). Initiatives such as Papers With
Code (Anon, 2018) and RedditSOTA,RedditSo59:online are
examples of maintaining traceability between two of the most
prominent artifacts. More than advancing SOTA, traceability also
increases the accountability of the scientific results. For example,
it was found that over 100 published studies may have incorrect
results due to a glitchy piece of Python code that was later

https://doi.org/10.1016/j.jss.2021.111117
0164-1212/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.111117
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111117&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:wattanakri.supatsara.ws3@is.naist.jp
mailto:bodin.ch@is.naist.jp
mailto:hata@shinshu-u.ac.jp
mailto:raula-k@is.naist.jp
mailto:christoph.treude@unimelb.edu.au
mailto:jguo@cs.mcgill.ca
mailto:matumoto@is.naist.jp
https://doi.org/10.1016/j.jss.2021.111117
http://creativecommons.org/licenses/by/4.0/

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

discovered by researchers (Anon, 2019c). In this example, the
original authors were grateful that this error was successfully
traced.

While the role of traceability between scientific artifacts can
be important for the above reasons, there is no existing work
investigating the current practice of creating and maintaining
such trace links. In a related study of seven scientific reposito-
ries, Milewicz et al. (2019) found that the academic community
(i.e., professors and students) was the main contributor to sci-
entific repositories. Braiek et al. (2018) studied ML research in
open source development. They found that academics and large
corporations such as Google and Microsoft release ML frame-
works under an open source license. Their study also revealed
that companies are the main drivers, with hybrid teams com-
prising both engineers and professional scientists. Although these
papers are complementary, to the best of our knowledge, the link
between repositories and papers has not been studied compre-
hensively. We would like to understand how managing the public
access, traceability and evolution of these links leads to potential
opportunities and problems. We follow the definition of traceabil-
ity defined by CoEST as ‘‘the ability to interrelate any uniquely
identifiable software engineering artifact to any other maintain
required links over time and use the resulting network to answer
questions of both the software product and its development
process’’ (Anon, 2002). In our context, it also extends to using
the resulting network between academic papers and software to
advance scientific progress and to support knowledge transfer.
Evolution is defined as ‘‘a paper update if a new version of the
paper was published on arxiv.org or the paper was extended to
a journal at a later point in time compared to when the paper is
being referenced’’ in our context.

In this paper, we lay the foundation for understanding the
role of links to academic papers in GitHub repositories by col-
lecting 20,278 GitHub repositories created between 2014 and
2018. Our preliminary analysis shows that links come from the
README.md, a significant documentation resource for scientific
software. It is important to understand developers’ typical knowl-
edge sharing activities by referencing external sources to improve
software documentation in practice. Results show that referenc-
ing academic papers in README.mds is not frequent in GitHub
repositories and that the vast majority of academic papers that
are referenced from GitHub repositories are public access. In
terms of relationship and traceability between GitHub repository
and academic paper, machine learning is the most frequent topic
while individuals that are affiliated with academic communities
(i.e., universities) tend to own these repositories. More than half
of the referenced papers do not link back to any repository. In a
deeper look at repositories that reference arXiv papers, we find
that most referenced papers are high-impact, influential, and do
align with academia, being referenced by repositories written in
different programming languages. Finally, the evolution is slow,
with little change to academic papers that are referenced in
GitHub README.mds. These changes are likely not reflected in
the GitHub repositories which reference them since updates to
paper links are rare.

This paper’s contributions are three-fold: (i) a large-scale and
comprehensive study of 20 thousand links to establish the fre-
quency of links from GitHub repositories to academic papers, (ii)
a mixed-methods study to identify public access, traceability, and
evolutionary aspects of such links and (iii) availability of an online
appendix, which contains our qualitative coding results in this
study.

2. Research method

In this section, we present our research questions, data col-
lection methodology, and we introduce the data contained in our
online appendix.

2.1. Research questions

The main goal of our study is to gain insights into the links
between software repositories on GitHub and academic papers,
and to uncover potential issues related to public access, traceabil-
ity, and evolution. Based on this goal, we formulated three main
research questions to guide our study. We now present each of
these questions, along with their motivation.

RQ1. How many GitHub repositories link to academic papers?

The motivation of RQ1 is to understand how often GitHub repos-
itories contain salient references to academic papers (i.e., in their
documentation files). We then breakdown this question into two
sub-questions, based on our preliminary analysis of the file types
in GitHub repositories that contain such references. Complemen-
tary to Hata et al. (2019) and initiatives such as Papers With
Code,PapersWi17:online and RedditSOTA (Anon, 2019b),
we would like to perform a deeper analysis to evaluate whether
or not links from GitHub README.md to academic papers are
common. This leads to the first sub-question, RQ1.1 How many
GitHub README.mds reference an academic paper?

Our second sub-question (RQ1.2) is related to how often these
links are public access. Answering this research question will
provide us with insights on the current state of public access with
regard to academic papers referenced from GitHub repositories —
if they are hidden behind paywalls, researchers and practitioners
will find it difficult to access them. Thus, our second sub-question
is as follows: RQ1.2 How publicly available are the academic papers
referenced in GitHub README.mds?

RQ2 What is the relationship between a GitHub repository and
its referenced academic paper?

The motivation of RQ2 is to take a closer look at the charac-
teristics of GitHub repositories and the papers they reference.
We analyze this relationship from six different aspects. First, we
would like to understand the domain of those GitHub repositories
that reference academic papers. Answering this research question
will provide us with the characteristic of GitHub repositories,
especially the type of scientific artifact that references these
academic papers. This leads us to the first sub-question, RQ2.1
What kind of GitHub repository references an academic paper?

The motivation of our second sub-question (RQ2.2) is to ex-
amine the affiliation of the main contributors, to see whether
they are from industry or academia. This is an expansion from
Milewicz et al. (2019), which only studied seven GitHub repos-
itories. This leads us to the second sub-question, RQ2.2 What is
the affiliation of the owners of GitHub repositories that reference
academic papers?

Extending from the second sub-question, the third sub-
question (RQ2.3) explores whether or not the repository contribu-
tors and the paper authors are the same. Answering this question
should allow us to identify the extent to which the paper is being
implemented by developers that are not co-authors of the paper.
This leads us to the third sub-question, RQ2.3 Is there a direct
relationship between the GitHub repository’s contributors and its
referenced academic paper?

In regards to the fourth sub-question, (RQ2.4) we explore
whether the academic papers link back to the repository in which
we originally found them. We assume that papers that link back
to the repository acknowledge the existence of the repository.
This leads us to the fourth sub-question, RQ2.4 How do academic
papers referenced in GitHub README.mds link back to the GitHub
repository?

Finally, our motivation for the fifth and sixth sub-questions,
(RQ2.5 and RQ2.6) is to look into the impact of the papers that are
being referenced. As highlighted by Anon (2019a), answering this

2

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

Table 1
Targeted GitHub repositories.

candidate # obtained # pattern matched
C 501,226 222,614 876 (0.4%)
C++ 700,786 329,201 3,263 (1.0%)
Java 2,627,220 935,738 1,213 (0.1%)
JavaScript 3,182,589 1,689,126 687 (0.04%)
Python 1,587,765 818,079 14,073 (1.7%)
PHP 951,202 415,039 57 (0.01%)
Ruby 792,523 395,669 109 (0.03%)

Sum 10,343,311 4,805,466 20,278 (0.4%)

research question can shed light on whether referenced papers
have high impact in terms of citations and also the programming
languages of the implementations of the paper. This leads us to
the fifth and the sixth sub-question, RQ2.5 How influential are
academic papers that are referenced in GitHub repositories? and
RQ2.6 How diverse is programming languages of the repositories that
reference the academic paper?

RQ3 How does evolution affect the relationship between
GitHub repository and academic paper?

Our aim for RQ3 is to investigate the relationship between GitHub
software repositories and the referenced academic papers from
an evolutionary standpoint. Following the report regarding the
error discovered by researchers (Anon, 2019c) that affected over
100 published studies, it is important that both the owners of
the repositories and the paper co-authors are aware of changes
in the links. We breakdown this question into two sub-questions.
In response to our first sub-question, (RQ3.1) we would like to un-
derstand whether the academic papers referenced from software
repositories get updated. This leads us to the first sub-question,
RQ3.1 Do academic papers get updated after being referenced in
GitHub README.mds?

In response to our second sub-question, (RQ3.2) we would
like to understand whether the repository owner is aware of
when there is a new version of the referenced academic paper.
This could be the case when links to academic papers or their
metadata are evolved on GitHub. This leads us to the second sub-
question, RQ3.2 How do references to academic papers evolve in
GitHub README.mds?

2.2. Data preparation

We now describe our method for the preparation of our target
GitHub repositories and identification of referencing academic
papers in software documentation files.

Candidate repositories. To cover a wider range of software repos-
itories, similar to previous work (Hata et al., 2019), we chose tar-
get repositories that are being hosted on GitHub written in pop-
ular programming languages (i.e., C, C++, Java, JavaScript, Python,
PHP, and Ruby). To ensure that we covered mature projects that
were active for at least 2 years, i.e., having at least 100 commits
in the most active two years, we mined repositories created from
2014 to 2018. Using GHTorrent (Anon, 2019d; Gousios, 2013), we
extracted more than ten million candidate repositories.

Preliminary analysis: Which file in a GitHub repository is the place
where a developer is most likely to reference an academic paper?
Our initial explorations showed that reference extraction is not
trivial and can be prone to many false positives. As a preliminary
study, we conducted an exploration of (i) different search string
matching patterns and (ii) the most feasible location for the
reference of an academic paper.

For the first goal, we sampled 500 repositories from each
languages and then experimented with different search string

Table 2
The motivation for choosing search string matching patterns is that they are
more likely to be links to academic papers, with the low false positive rate.
There are 20,278 README.mds that match the search strings.
Match pattern Search string
explicit DOI ‘doi\s*=\s*[{"]’, ‘//doi\.’, ‘dx\.doi\.’
explicit BibTEX ‘@article{’, ‘@inproceedings{’, ‘@misc{’
explicit ArXiv ‘arxiv.org’

Table 3
Analysis of README.mds with expanded search string patterns.
Expand pattern # expand only # match ∩ expand % not papers (FP)
PDF extension 9,880 866 76% (38/50)
All BibTEX 154 161 16% (8/50)
other patterns 3,734 1,041 8% (4/50)

patterns. After multiple iterations, we ended up with seven search
strings using grep -riIG, covering the explicit arXiv, DOI, and
BibTEX formats. Since our search strings exactly match references
in explicit BibTEX formats, and explicit links pointing to DOI for
academic papers and arXiv.org as shown in Table 2, we are con-
fident that the search strings are able to detect links to academic
papers, with the lowest change for a false positive.

We characterize the bias of our matching patterns to compare
the coverage of our patterns against a more expanded pattern and
report false positives. To do so, we relaxed our matching pattern
rules to expand the search space (i.e., (PDF extension) included all
links that had a PDF extension, (All BibTEX) all BibTEX formatting,
(other patterns) other publishing sources such as IEEE, ACM, and
PeerJ). To validate whether the result is a link to an academic
paper, the first author manually checked 50 random samples of
each expanded pattern. Table 3 shows our results. First, we see
that although the PDF extension returns a high number of results
(9,880), it also has a high false-positive rate (76%). Second, using
all BibTEX does not return as many results (154). The preliminary
results also suggest that future work should investigate the use of
the other patterns which achieved better performance but which
also contain a number of hard-coded URLs and might therefore
not generalize well.

For the second goal, we used the same 500 repositories and
applied our search string over all files in the repositories. We
were able to extract 47 repositories and 196 different files that
returned at least one result. From these 196 files, a co-author
manually excluded links that matched the following criteria: (a)
is a link from a cloned/duplicated file, (b) is a link to a dataset,
(c) is a link which is part of a dataset.

After applying this criteria, we end up with 72 valid references
to an academic paper. The 72 files comprised of the following
file types: (1) .py: 14, (2) .md: 11, (3) .h: 10, (4) .c: 7, and (5)
.bib: 6. Although references in Python (.py: 14) source code are
the most frequent, Python repositories would only cover 17%
(i.e., only 800K out of 4.8M repositories) of our collected reposito-
ries. Furthermore, related work (Hata et al., 2019; Inokuchi et al.,
2019) shows that only up to 3% of source code links are references
to academic papers. As a result of these considerations, we only
consider documentation files (i.e., .md files) as the next highest.
A closer investigation of the .md files showed that README.md
is the most common file, i.e., covering 9 out of 11 files. Another
reason to choose README.mds for our study is the fact that these
files build the facade for a repository, i.e., they are the first thing
a user would see when looking at a repository. Information in
README.mds also likely covers the entire repository, not just a
specific aspect of the source code (as might be the case in .py
files).

3

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

Fig. 1. Answering RQ1.1, we show that up to 344 of the 377 READMEs reference
academic papers.

Summary: Preliminary analysis shows papers are being
referenced in both source code and documentation files,
with .py files being the most frequent. However, the
README.md is the next most frequent location where
developers make references to an academic paper across
software repositories of difference languages.

2.3. Sample data creation

As shown in Table 1, we proceeded to collect 20,278
README.mds from 4.8 million README.mds from our candidate
repositories. Then by applying our search string from the pre-
liminary study, we obtained more than 20 thousand files in this
step as shown in Table 1. Some of our research questions require
a representative sample for a deeper analysis. From the 20,278
README.mds, we then drew a statistically representative random
sample. It is important to note that the qualitative results are
not mutually exclusive. The required sample size was 377, which
was calculated so that our conclusions about the ratio of files
with a specific characteristic would generalize to all files with
a confidence level of 95% and a confidence interval of 5% (Anon,
2012). To answer all qualitative research questions, we use the
following coding approach, which includes four authors to first
independently code a subset of 30 files. Then to check agreement
for qualitative analyses, a kappa agreement score (or Cohen’s
Kappa) is calculated, comparing the coding between all four
authors. The kappa agreement varies from 0 to 1 where 0 is no
agreement and 1 is perfect agreement. This process is iterated
until there is a kappa agreement of more than 0.8 or ‘‘almost
perfect’’ (Viera and Garrett, 2005). Once this is achieved, the
remaining data is coded by a single author. The appendix of all
our qualitative coding results, also with all disagreement cases
from our qualitative investigation is available at https://github.
com/NAIST-SE/GH2Papers.

3. Findings

3.1. Frequency and public access (RQ1)

To understand the frequency and public access of academic
papers that are referenced in repositories (RQ1), we examined
the existence of references to academic papers in the sample of
377 README.mds (RQ1.1) and report the result of our qualitative
analysis with 344 academic papers referenced in README.mds for
public access (RQ1.2).

(RQ1.1) README.md referencing academic papers. With more than
20,000 README.md references to academic papers, there is
enough evidence to suggest that references in README.mds is a
phenomenon worthy of further exploration. As mentioned in our
approach for the qualitative study, we then analyze a representa-
tive sample of the dataset to understand the kinds of references
to academic papers. In cases where multiple academic papers are
referenced, we only select one representative academic paper per

Fig. 2. Answering RQ1.2, we show that the majority of academic papers
referenced in GitHub repositories are public access.

README.md. This is based on whether the repository and paper
topics align with each other. In rare cases, if there are multiple
related references that all appear to be close, the first paper was
selected. The kappa agreement among the four authors was 0.96
(interpreted as ‘‘almost perfect’’ (Viera and Garrett, 2005)). We
used the following three codes to annotate referencing in the
README.mds.

• reference to paper: the README.md is referencing an aca-
demic paper.

• reference to data: the README.md is referencing a data
repository.

• no reference: the README.md has no reference to an aca-
demic paper or a data repository.

As shown in Fig. 1, the majority of the README.mds (91%,
344/377) contain a link to an academic paper. We observed that
5% (18/377) of the files have links to data repositories instead of
academic papers, mainly with the patterns related to DOI (e.g., be-
cause of a redirect to Figshare). Our search string detected the
remaining 15 repositories as having no reference, mainly because
they listed a BibTEX format for anyone to cite that repository. In
the end, from all 344 README.mds actually referencing academic
papers, we observed that the majority of representative academic
papers are available on arXiv.org (Anon, 1991) (66%, 226/344),
followed by ieeexplore.ieee.org (3%, 11/344), researchgate.net
(3%, 11/344), sciencedirect.com (2.9%, 10/344), academic.oup.com
(2.3%, 8/344), link.springer.com (1.7%, 6/344), biorxiv.org (1.5%,
5/344), and nature.com (1.5%, 5/344). The appendix of the results
is available online (see Section 2.3). To answer RQ1.1, our findings
confirm the types of academic papers get referenced in README.mds.

(RQ1.2) Public access. Since our main goal is to better understand
the links between GitHub repositories and academic papers, we
particularly investigate 344 files with actual academic paper ref-
erences for the subsequent qualitative analyses. For our coding
method, four authors individually investigated the aforemen-
tioned 30 README.mds, and listed the URL links to representative
papers. If there is no URL reference (e.g., BibTEX entry without
URLs) in the README.mds, we manually searched for an ac-
cessible version of the referenced papers. We obtained a kappa
agreement of 0.92 or ‘‘almost perfect’’ (Viera and Garrett, 2005),
and the remaining cases were investigated by a single author.

To investigate whether the referenced academic papers are
accessible without any subscription or payment, we manually in-
vestigated each of the academic papers referenced in the
README.mds in our sample. The kappa agreement was 1.0 or
‘‘perfect’’ agreement (Viera and Garrett, 2005). We use the fol-
lowing two codes to indicate whether the papers referenced in
the README.md are publicly available:

• public access: the referenced academic paper is available
online including authors’ preprint.

• not public access: the referenced academic paper is not pub-
lic access, and authors do not provide their preprint.

Our result is very encouraging as seen in Fig. 2. For the aca-
demic papers that are referenced from GitHub repositories, the

4

https://github.com/NAIST-SE/GH2Papers
https://github.com/NAIST-SE/GH2Papers
https://github.com/NAIST-SE/GH2Papers

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

Fig. 3. Answering RQ2.1, we show that the references to papers are frequently
made in machine learning-related GitHub repositories.

vast majority are publicly available, and only five (1.5%) of the
academic papers are not public access yet (i.e., readers need
to pay for the papers). To answer RQ1.2, our findings indicate
that more than 98% of academic papers referenced in the GitHub
repositories are available to the public.

Summary: With more than 20,000 GitHub repositories
that reference an academic paper, the phenomenon is
worthy of further exploration. We manually validate that
the vast majority of academic papers referenced from
GitHub repositories are public access.

3.2. Relationship and traceability (RQ2)

To understand the relationship between GitHub repositories
and the referenced academic papers, and the traceability of the
referenced papers, we conducted qualitative analyses on 339
repositories that reference public access academic papers (RQ2.1
- RQ2.4), a case study of 20,278 repositories whose README.mds
matched our patterns (RQ2.1, RQ2.5, and RQ2.6), and a case study
of a sample of 2,032 academic papers from the top 7 software
engineering venues (RQ2.4).

(RQ2.1) Characteristics of GitHub repositories. First, we investi-
gated software domains of GitHub repositories with a qualitative
analysis. The same 30 cases were independently coded by the
four authors, similar to Section 2.3. We discussed our free-form
codes and derived the following nine codes. Using the new cod-
ing guide, all four authors then independently re-coded the 30
GitHub repositories. In case a repository can be tagged with mul-
tiple codes (e.g., a computer vision repository uses deep learning),
we consider the main purpose of the repository described in
the README.md to determine the code. The kappa agreement
was 0.83 or ‘‘almost perfect’’ (Viera and Garrett, 2005). Based on
this encouraging agreement value, the remaining cases were then
coded by a single author.

• deep learning: the repository is specifically focused on the
deep neural network architecture.

• computer vision: the repository implements algorithms that
solve computer vision tasks such as analyzing images or
videos for object recognition and tracking.

• natural language processing: the repository is concerned
with the processing and/or understanding of human natural
languages (e.g., English).

• other machine learning: the repository is related to machine
learning, but does not fit any of the previous three codes.

• quantum: the repository is related to quantum computing.
• robotics: the repository is related to robotics, but not from a

machine learning or computer vision aspect.
• networks: the repository is related to analyzing the proper-

ties of network structures and their applications.
• sensors: the repository is related to sensor technologies.
• other: anything that does not fit any of the previous codes.

As shown in Fig. 3, we found that the most common software
domain of the GitHub repositories that reference academic papers
is ‘‘deep learning’’, followed by ‘‘computer vision’’ and ‘‘other
machine learning’’. In other words, machine learning is the most
common, covering three quarters of the repositories in our sam-
ple. Also, more than 20% of the GitHub repositories referencing
academic papers belong to the ‘‘other’’ code, for instance, web API,
biology, or chemistry. This indicates the diversity of these GitHub
repositories.

To complement the result of the above qualitative analysis,
we also investigated the characteristics of GitHub repositories in
terms of development activity (through number of commits) and
personnel (through number of contributors). To do so, we first
obtained a list of GitHub repositories and their corresponding
information, e.g., programming language, from GHTorrent. Then,
we downloaded README.mds of the repositories using a GitHub
API.1 Finally, we attempted to clone 20,278 GitHub reposito-
ries whose README.mds match the patterns. To compare with
these repositories, we also attempted to clone 20,000 GitHub
repositories which did not match the patterns (a random sample
of the 4,805,466 repositories excluding the matching reposito-
ries). Unfortunately, some repositories could not be cloned be-
cause of several technical errors. As a result, we obtained 20,254
GitHub repositories matching the patterns and 19,932 GitHub
repositories that did not match the patterns. Fig. 4 shows the
comparison between research-related software repositories and
other software repositories, i.e., GitHub repositories that matched
our patterns and other GitHub repositories having README.mds
which did not match the patterns. As shown in Fig. 4(a), we found
that research-related software repositories have the number of
commits higher than other software repositories (x̄ = 32, µ =

237.11 for research-related repositories and x̄ = 9, µ = 63.05
for other repositories). According to Kalliamvakou et al. (2014),
we suspect that some possible reasons for the lower number
of commits of the non-research-related software repositories are
that most GitHub repositories are inactive, personal, not a project,
or not for software development, and many active projects do not
conduct all their software development in GitHub. Fig. 4(b) also
shows that research-related repositories have more contributors
(x̄ = 2, µ = 7.26 for research-related repositories and x̄ =

2, µ = 3.06 for other software repositories). To confirm that the
differences between the two types of repositories are statistically
significant, we use a Wilcoxon Rank-Sum test (Mann and Whit-
ney, 1947). The result shows that the differences between both
types of repositories are statistically significant in both commits
and contributors aspects, i.e., p-value < 0.001.

To answer RQ2.1, our findings indicate that machine learning-
related repositories, especially deep learning, are the most frequent
among GitHub repositories with links to academic papers. These
GitHub repositories have the number of commits and contributors
significantly higher than general software repositories in GitHub.

(RQ2.2) Affiliation. The following list shows four codes that
emerged from our analysis regarding repository affiliation, along
with a short description. In all cases, we attempted to determine
the affiliation of the repository owner through their GitHub

1 https://docs.github.com/en/rest

5

https://docs.github.com/en/rest

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

Fig. 4. Comparison between research-related software repositories linked from GitHub README.mds and other software repositories.

Fig. 5. Answering RQ2.2, we show that the GitHub repositories which reference
academic papers are commonly affiliated with universities.

Fig. 6. Answering RQ2.3, we show that the large number of referenced academic
papers (40%) in GitHub repositories are referenced by the paper authors.

profile page, either by reading information directly on the profile
page or by following links. The kappa agreement was 0.84 or
‘‘almost perfect’’ (Viera and Garrett, 2005).

• university: the owners are affiliated with universities.
• industry: the owners are affiliated with companies.
• both: the owners are affiliated with universities and compa-

nies at the time the academic paper is being referenced in
the GitHub README.md.

• unknown: we cannot determine the affiliation from the pro-
file of the owner of the GitHub repository.

Fig. 5 shows the frequency of the different types of affiliations
of GitHub repository owners from our statistically representative
sample. Unsurprisingly, the most common type of affiliation is
‘‘university’’, accounting for more than half of the representative
repositories, followed by ‘‘industry’’ (e.g., companies and research
centers), which is accounting for 21% of the repositories from our
sample. To answer RQ2.2, our findings indicate that the majority
of the GitHub repositories which reference academic papers are
affiliated with universities.

(RQ2.3) Relationship between repositories and papers. To answer
this question, we explored the context of the references, and
considered any information in the repositories and corresponding
papers if it was necessary. The following list shows four codes
that emerged from our analysis of the relationship between the

Fig. 7. Answering RQ2.4, we show that more than half of academic papers do
not reference back to the GitHub repositories.

GitHub repositories and the academic papers that these reposi-
tories are referencing. The kappa agreement was 0.89 or ‘‘almost
perfect’’ (Viera and Garrett, 2005).

• official: the owner of the software repository is one of the
authors of the referenced academic paper.

• fork of official: the owner of the software repository is not
one of the authors of the referenced academic paper, and
the target repository is forked from the official repository
that belongs to one of the authors of the referenced paper.

• independent unofficial: the owner of the software repository
is not one of the authors of the referenced academic paper,
and there is no obvious relationship between the target
repository and the official repository of the paper, if it exists.

• miscellaneous: the owner of the non-software repository is
not one of the authors of the referenced academic paper.

Fig. 6 shows the results of our qualitative analysis. We found
that in more than 50% cases, the relationship is not an official
one, i.e., the owners of the repositories had implemented their
software based on academic papers that do not belong to the
owners. In contrast, 40% of the repository owners in our sample
are referencing their own academic work. To answer RQ2.3, our
findings indicate that most of the references to academic papers in
GitHub repositories are referenced by repository owners other than
paper authors.

Summary: GitHub repositories tend to be closely related
to the academic paper that they are referencing. Results
indicate that GitHub repositories that discuss machine
learning topics in their README.md tend to reference an
academic paper, with individuals that are affiliated with
academic communities (i.e., universities) owning these
repositories.

(RQ2.4) Paper references back to the repository. The following list
shows four codes that emerged from our analysis of potential
bi-directional links, i.e., links back from the referenced paper to

6

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

Fig. 8. Analysis of links from papers for RQ2.4.

the GitHub repository. The kappa agreement was 0.91 or ‘‘almost
perfect’’ (Viera and Garrett, 2005).

• link to official: the referenced paper has a link to the official
repository, which is different from the GitHub repository
that contains a reference to that paper.

• link to the same repository: the referenced paper has a link
back to the GitHub repository that contains a reference to
that paper.

• 404: the referenced paper has a link to a software repository,
but the repository cannot be accessed.

• no link: the referenced paper does not have a link to a
software repository.

Fig. 7 shows the results of our qualitative analysis for the 339
public access academic papers. The results show that more than
half of the academic papers referenced in the GitHub README.mds
do not trace back to the GitHub repositories. 29% of the referenced
academic papers publish a link to their official repositories, and
only 0.9% of the referenced academic papers provide links that
cannot be accessed (404 Not Found). Considering ‘‘official’’ rela-
tionships only, 62 of the 136 academic papers cited by official
repositories reference back to them, while 57 (42%) papers do not
trace back to the repositories.

We complement our results by also tracing papers that have
not been collected through GitHub and reference a repository.
As such, we collect a sample of papers from the top 7 software
engineering (SE) venues2 (with a confidence level of 95% and a
confidence interval of 5% per venue), published between when
GitHub was founded (2008) and 2020. From the sample of 2,032
papers, we find that ‘‘github.com’’ (1,641 link URLs) is the most
referenced software repository domains, followed by ‘‘source-
forge.net’’ (106 link URLs), ‘‘code.google.com’’ (101 link URLs),
‘‘cran-r-project.org’’ (42 link URLs), and ‘‘bitbucket.org’’ (41 link
URLs). The number of papers and corresponding sample sizes for
each venue is shown in Fig. 8(a).

Fig. 8(b) shows that for the top-5 most referenced software
repository domains, more than half (55%) of the ICSE papers
in our representative sample contain links to those software
repository domains, followed by FSE (39%) and EMSE (38%). Fur-
thermore, ‘‘github.com’’ is the most referenced domains across
the top venues, especially in ICSE where GitHub accounts for
89% of link URLs reference to the 5 most referenced software
repository domains.

2 ICSE, FSE, ASE, TSE, EMSE, JSS, and IST which is based on Google Scholar’s
ranking (Anon, 2004).

7

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

Table 4
Top 10 most referenced papers (i.e., In-degree) derived from our network of 20,278 GitHub repositories (as of September 2020). Interestingly, these papers turn out
to be highly-cited.
Rank In-degree # repo type Identifier Paper # referenced

by academia
1 207 Py:201, JS:4, C++:2 1512.03385 He et al. (2016): Deep Residual Learning for Image

Recognition (2016)
55,095

2 189 Py:181, JS:5, Java:2,
C++:1

1409.1556 Simonyan and Zisserman (2014): Very Deep Convolutional
Networks for Large-Scale Image Recognition (2014)

43,848

3 170 Py:160, C++:9, C:1 1511.06434 Radford et al. (2016): Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks
(2015)

7,112

4 159 Py:152, C++:4, JS:2,
Java:1

1508.06576 Gatys et al. (2015): A Neural Algorithm of Artistic Style
(2015)

1,395

5 139 Py:135, C++:3, Java:1 1602.01783 Mnih et al. (2016): Asynchronous Methods for Deep
Reinforcement Learning (2016)

3,683

6 136 Py:135, JS:1 1408.5882 Kim (2014): Convolutional Neural Networks for Sentence
Classification (2014)

8,386

7 135 Py:133, C:1, JS:1 1706.03762 Vaswani et al. (2017): Attention Is All You Need (2017) 11,727
8 114 Py:113, C++:1 1509.06461 van Hasselt et al. (2015): Deep Reinforcement Learning with

Double Q-learning (2015)
2,405

9 110 Py:107, C++:2, JS:1 1608.06993 Huang et al. (2016): Densely Connected Convolutional
Networks (2016)

10,967

9 110 Py:104, C++:3, C:1,
Java:1, JS:1

1703.0687 Kokot et al. (2017): Even faster sorting of (not only) integers
(2017)

7

Table 5
Count of papers that are referenced by a single repository (in-degree = 1).
Programming language #repositories
Python 4,111 72%
C++ 747 13%
JavaScript 351 6%
C 266 4.6%
Java 232 4%
Ruby 17 0.3%
PHP 6 0.1%

Sum 5,730 100%

Fig. 8(c) shows the diversity of target types of links to
‘‘github.com’’. Using regular expressions on the link URL and
cross-checking the GitHub API, we were able to use a semi-
automatic method to identify the type of GitHub link. From
the collected 1641 link, we find that only 60% (990) of the
links actually reference software repositories (top-5 most popu-
lar programming languages: Java (389), Python(174), JavaScript
(73), C++ (63), and C (63)). Aside from the links to software
repositories, 193 links reference issues, 100 links reference data
repositories, 66 links reference pull requests, among others.

To answer RQ2.4, our findings indicate that a large number
of academic papers do not reference back to the software reposi-
tories even though being referenced by the official repositories. By
analyzing papers from the top-tier SE venues, we find that many
academic papers do not reference (i.e., hyperlinks) back to software
repositories, but when they do, they usually link back to a GitHub
domain. This leads to an undesirable gap between the academic
papers and the OSS community.

(RQ2.5) Most referenced arXiv papers. To answer RQ2.5 and RQ2.6,
we identify which papers are referenced the most from GitHub
repositories. We conducted a case study with the subset of links
pointing to arXiv.org, one of the largest public access platforms
with around 1.6 million e-prints of academic papers. To identify
arXiv papers, similar to the pattern matching used in the data
collection phase (see Section 2.2), we identified all arxiv.org links
that include a unique identifier (i.e., https://arxiv.org/*/xxx.xxx).
We then use network analysis to answer RQ2.5. Particularly, we
generated a bipartite network using the repositories and the
papers as two different types of nodes, and the links between
them as directed edges (from repositories to papers). The network

constructed from the 20,278 repositories contains 20,373 nodes
(i.e., repository: 58.8% and paper: 41.2%). Using this network, we
located the most referenced papers by using the in-degree mea-
sure of the paper nodes (representing the number of repositories
in which one paper is referenced).

Table 4 shows the 10 most referenced academic paper from
GitHub README.mds. All the top academic papers are from the
fields of deep learning and computer vision, and were published
between 2014–2016, which is arguably SOTA. The table also
shows these most referenced papers are highly-cited papers in
academia and later published in distinguished AI conferences.
Although the paper #10 has only 7 citations, the paper has more
than 800 downloads as demonstrated in the SpringerLink3 web-
site. This is a rare case for papers that have more practical impact
than in academia. To answer RQ2.5, our findings indicate that
the most referenced papers in GitHub repositories are highly-cited
in academia as well.

(RQ2.6) Programming language diversity of repositories that refer-
ence arXiv papers. Our approach for answering RQ2.6 involves
analysis of the connectivity of the nodes from the same bipartite
network that was constructed for answering RQ2.5. We analyze
the number of incoming edges from a repository to a paper
(i.e., in-degree).

Tables 4 and 5 describe the diversity of programming lan-
guages in our network. The results are broken into two analy-
ses: (i) the diversity of repositories that only reference a single
paper and (ii) the diversity of repositories that reference the
top-10 most influential papers in our network. Our finding first
show that in both cases, most of the repositories are written in
the Python language. This is not surprising, as Table 1 clearly
shows a significant number of repositories are Python reposito-
ries (i.e., 14,073 out of 20,278). Our network has a long tail, with
almost 50% of the papers being referenced by a single repository.
It is interesting to note that C++ is clearly the second most
popular programming language, with 747 repositories. Taking a
look at the top-10 most referenced papers, Python also dominates
the repositories which link to these papers, with C, C++, Java,
and JavaScript repositories containing less references. To answer
RQ2.6, our findings indicate that although almost 50% of papers are
only referenced by a single repository, the most referenced papers

3 https://link.springer.com/chapter/10.1007/978-3-319-67792-7_47

8

https://arxiv.org/*/xxx.xxx
https://link.springer.com/chapter/10.1007/978-3-319-67792-7_47

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

Fig. 9. Answering RQ3.1, our findings indicate that the majority of referenced
academic papers (84%) do not get any update after being referenced.

can be referenced in software repositories that implement software
written in different programming languages.

Summary: In terms of traceability, there is a gap between
software repositories and papers. We find that more
than half of these referenced papers do not link back to
any repository. By analyzing papers from the top-tier SE
venues, we find that a large number of academic papers
do not reference (i.e., hyperlinks) software repositories,
but when they do, they usually link back to a GitHub
software repository. Taking a look at arXiv papers, we
find that the most referenced papers are also highly-cited
in academia, and are referenced by software repositories
written in different programming languages.

3.3. Evolution (RQ3)

To understand how the links evolve (RQ3), we investigated the
revision histories of repositories in the sample of 339 repositories
that have links to public access academic papers. Our evolu-
tionary analysis is summarized from the two perspective of the
papers (RQ3.1) and README.mds (RQ3.2). We again conducted a
qualitative analysis of our statistically representative sample, this
time focusing on the evolution of the papers and README.mds.
We utilized the same approach as in RQ2 to design and validate
the coding guides by asking four authors to independently code
30 cases.

(RQ3.1) Paper evolution. We used the timestamp of the papers
and commits of the README.mds to investigate whether the
papers were updated after being referenced, e.g., we consider a
paper has an update if a new version of the paper was published
on arxiv.org or the paper was extended to a journal at a later point
in time compared to when the paper is being referenced. Since
paper content cannot be changed after publication, we did not
consider the changes in the contents of the referenced papers for
this analysis. The following list shows two codes that we used
to annotate paper evolution. The kappa agreement was 0.87 or
‘‘almost perfect’’ (Viera and Garrett, 2005).

• no update: the referenced academic paper did not get up-
dated after being referenced.

• update: the referenced academic paper was updated after
being referenced.

Fig. 9 summarizes the results of this analysis. We found that
286 (84%) of the referenced academic papers in our representa-
tive sample had not been updated at all. A significant minority
of 16% of the referenced papers were revised. To answer RQ3.1,
our findings indicate that most academic papers that are being ref-
erenced in GitHub README.mds did not undergo any changes after
they were referenced. However, a significant minority of papers were
updated after the corresponding reference in the GitHub README.md
was added.

Fig. 10. Answering RQ3.2, we show that up to 92% of references to academic
papers do not evolve in the README.mds.

(RQ3.2) README.md evolution. To answer this sub-question, we
also focused on the timestamp of README.md commits to in-
vestigate changes in the links to academic papers in GitHub
README.mds. We did not focus on actual source code changes for
this analysis. The following list shows codes that emerged from
our analysis of the evolution of the links to academic papers in
GitHub README.mds, along with a short description. The kappa
agreement was 0.91 or ‘‘almost perfect’’ (Viera and Garrett, 2005).

• different paper: the README.md referenced a different aca-
demic paper before.

• changes to metadata: the meta data of the paper was changed,
e.g., from ‘‘to appear’’ to the publication information.

• link changes: a link to the referenced academic paper was
updated, e.g., from a pdf stored on GitHub to an arXiv or
DOI link.

• no update: the reference had not evolved.

Fig. 10 shows the number of changes to the references after
they were first added to a GitHub README.md. The result shows
that 92% of the references have not been updated. Only 8% of the
links in the 339 README.mds had at least one change, with ‘‘link
changes’’ being the most frequent (e.g., the link to a pre-print
version of the paper superseded by a newer link to an official
website). The majority (11 of 14) of README.mds for which
links to academic papers were updated are in GitHub official
repositories, i.e., authors’ ones. While not all changes to a paper
require updates to README.md linking to it, especially if the link
does not change, we expect that some changes to a paper will
trigger corresponding changes in a repository. To answer RQ3.2,
our findings indicate that a large number of references to academic
papers in GitHub README.mds do not attract any changes, but a
small number of links are updated.

Summary: Evolution is rare. We find that while some
academic papers that were referenced in GitHub
README.mds change, most of the papers do not.
Furthermore, these changes are likely not reflected in
repositories.

4. Limitations and implications

Based on our findings, we identified the following limitations
and highlight the implications of the study.

4.1. Limitations

The first challenge is related to improving our search match-
ing pattern. The downside of our search string is the bias to-
wards arXiv and DOI links, which does not extend to other aca-
demic public access (i.e., PeerJ4) and closed access paper portals

4 https://peerj.com/

9

https://peerj.com/

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

(i.e., IEEE Xplore,5 ACM digital libraries6). Our results show that
the ML community has a strong presence in GitHub. Immediate
future work would be to extend the pattern for generalization of
our findings.

The second challenge raised by this study is to understand
the indirect impact of an academia paper on the repository.
Although not provided in this study, potential future work could
be exploration of what kinds of software changes are made after
a paper is super-seeded as SOTA and vice-versa. Furthermore,
in RQ2.5, we show the direct impact of a paper in academia
(i.e., citations), however, we did not explore the impact of the
GitHub repository in terms of forks and stars. This could also
quantify how much impact the software implementation has in
practice (e.g., an open-source library implements and references
an algorithm proposed in a paper while other libraries build on
this library without referencing the initial paper). In this work,
we only select one paper per repository, however, we find that
a repository may reference many papers. Based on the code
changes, a potential future avenue is to explore the relationship
between the papers and the different locations in the source code.
Finally, feedback from developers could also bring insights into
how to bridge the gap between academic papers and the software
implementations.

4.2. Implications

We now discuss the implications for software engineering re-
searchers, academic authors, and GitHub users in both academic
and industrial fields. Based on our findings, we are able to provide
practical and actionable implications:

For SE researchers. Our results indicate that while referencing
from GitHub repositories to academic papers is not that common,
the references that do exist pre-dominantly go to public access
papers. One of the main reasons is that arXiv is able to create
a permanent link which guarantees that a publication is consid-
ered a permanent part of the scientific record and may not be
removed by user intervention (Anon, 1991). There are also other
services like Zenodo and PeerJ as locations for storing a paper.
We encourage software engineering researchers to continue to
make their work public access for practitioners, ideally in public
access portals like arXiv, which is better than papers stored on
private websites since a private website address does not guar-
antee that a publication is available at a particular URL, especially
there is a possibility that authors remove their work from the
website (Smith et al., 2016). Top software engineering venues,
i.e., the 43rd International Conference on Software Engineering
(ICSE 2021) and Empirical Software Engineering journal (EMSE),
also encourage contributing researchers to disclose their research
materials and self-archive the pre- and post-prints, especially in
open and preserved repositories, for making their work more
transparent (Méndez Fernández et al., 2019; Heumüller et al.,
2020).

For academic authors. We find that many academic papers do
not link back to any repository while a few academic papers
publish a link to authors’ repositories in GitHub. We encourage
academic authors to include bi-directional links wherever possi-
ble, but also envision automated tool support to help achieve this.
This is especially important for accountability of the scientific
results (Miyakawa, 2020), and increasing impact and innovation
as researchers see the fruits of their scientific findings. We be-
lieve that tool support for augmenting academic papers with the

5 https://ieeexplore.ieee.org/
6 https://dl.acm.org/

corresponding references to GitHub repositories is needed. Im-
plementing this could be fairly straight-forward, either through
a browser plugin or through a bot which leaves comments on
the arXiv homepage of a paper (or another platform) whenever a
relevant repository is found.

For GitHub developers. We show that GitHub is being used as
a platform for sharing research outputs, even though there are
other more suitable platforms (i.e., kaggle,7 zenodo8). Further-
more, our results indicate that while both the repositories and
the papers are rarely updated, some papers get superseded as
the SOTA after being referenced. We believe that tool support
could notify developers when the SOTA in related research gets
updated. This could be a pull request that notifies when there
is the cutting edge research that supersedes the existing work or
when switching over to an official version from a preprint version.

5. Threats to validity

Regarding threats to internal validity, it is possible to introduce
bias through our qualitative analysis. We mitigate these threats
by reporting the agreement amongst four authors using the Co-
hen’s kappa. An example was the resolution of all disagreements
from the initial coding guide in RQ2.1. In this case, all four
authors discussed to refine the coding guide and re-coded until
the question achieved high kappa agreement (more than 0.8).

Threats to the construct validity exist in our approach to link
identification, since we identified links in README.mds based on
pattern matching. Our search string matching patterns does not
extend to (1) PDF extension, (2) All BibTEX, and (3) other pat-
terns: (1) ‘+\.pdf$’, (2) texttt‘@book{’, ‘@booklet{’, ‘@con-
ference{’, ‘@inbook{’, ‘@incollection{’, ‘@manual{’,
‘@mastersthesis{’, ‘@phdthesis{’, ‘@proceedings{’,
‘@techreport{’, ‘@unpublished{’, (3) ‘peerj.com’,
‘dl.acm.org’, ‘ieeexplore.ieee.org’, ‘springer.com’,
‘elsevier.com’, ‘computer.org’, ‘researchgate.net’,
‘semanticscholar.org’, with the key reasons of introducing
more noise (i.e., links to other documents or html pages) as
shown in Table 3, while the patterns may be biased towards
machine learning repositories caused by including arXiv in our
matching pattern. We are confident that our search string match-
ing patterns achieve low false positives since they exactly match
references in explicit BibTEX formats and explicit links pointing
to DOI for academic papers and arXiv.org. With the findings on
the additional analysis on expanded patterns, we ensure that our
matching patterns are still able to cover other patterns.

Threats to the external validity exist in our repository prepa-
ration and sampling. Although we analyzed a large amount of
repositories on GitHub, we cannot generalize our findings to
industry nor open source repositories in general since some open
source repositories are hosted outside of GitHub, e.g., on GitLab
or private servers. To mitigate the threats related to sampling
selection, we focused on those containing code written in at least
one of seven popular programming languages. We selected 500
repositories from each language for our preliminary analysis, and
drew a statistically representative sample across the seven lan-
guages for the qualitative parts of our work. Focusing on different
languages or not using programming languages as filter at all
might have led to different results. We implemented these filters
to ensure that the repositories considered in this work contained
source code and that the repositories were not used exclusively
for academic paper writing, for example.

7 https://www.kaggle.com/
8 https://zenodo.org/

10

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.kaggle.com/
https://zenodo.org/

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

6. Related work

Our work is situated in the literature on (1) traceability among
different scientific artifacts and (2) the references in open source
software documentation.

Traceability among scientific artifacts. How to increase the in-
centives and integration for scientific software development has
attracted the attention of researchers who are studying software
engineering, informatics, and many fields that rely on scientific
computing (Hannay et al., 2009; Howison and Herbsleb, 2013).
Open source has been considered as one of the most common
solutions (Prlić and Procter, 2012). The rapid progress in machine
learning research recently has accelerated the progress of open
scientific software development. To promote bench-marking or
adoption, there is a pressing needs to encourage the practice
of releasing multiple scientific research artifacts (e.g. papers,
source code, and datasets) and making explicit trace links among
them (Drummond, 2009; Gibney, 2020). Community-driven ini-
tiatives such as Papers With Code,PapersWi17:online and
RedditSOTA (Anon, 2019b) are examples of direct responses
to addressing such need. While those third-party platforms can
serve as centralized places to find SOTA results on popular ma-
chine learning problems, they require additional submission and
maintenance not necessarily from the original authors of the
work.

As far as the authors are aware, there is no existing work that
systematically examines the characteristics of trace links to aca-
demic papers directly embedded in the open-source repositories,
especially how they are created and maintained. The most rel-
evant work from the software engineering research community
is the one conducted by Milewicz et al. (2019) in which the role
of the contributors in open-source scientific software repositories
was investigated. Their empirical analysis on seven open-source
scientific software repositories and the complementary survey
study revealed that the tenure of the contributors is the decisive
factor to determine their role in the repository. While part of their
target repositories were selected from GitHub, they used the tags
of the repository to identify scientific software repositories. They
did not inspect any links to the other scientific artifacts such as
papers to validate their repositories.

Recently, the impact of open scientific software has been gone
beyond the scope of scientific computing in academia. Braiek
et al. investigated the ecosystem of popular open-source ma-
chine learning frameworks (Braiek et al., 2018). They found that
many such frameworks were initially created by the academic
communities but were then taken over by the support from
companies. Their analysis of the composition of the development
team for those repositories revealed the tendency that profes-
sional researchers normally contribute equally with engineers
for company-driven ML repositories, while professional and aca-
demic researchers contribute mostly for the community-driven
repositories. Their work, however, did not consider if any aca-
demic papers were accompanied by the development of those
repositories, nor if any trace links exist in those repositories.

References in OSS documentation. GitHub README.mds were
studied systematically by Prana et al. as one specific type of
software documentation in their recent work (Prana et al., 2019).
Their qualitative study revealed that the content in the
README.mds can be categorized into eight groups among which
the second most frequent categorize was particularly about links
to other resources. This result indicates that project contributors
consider links as an important instrument to provide further
details about their projects. Ikeda et al. (2019) performed a
similar study to evaluate README.md contents. Inspired by these

works, we initiated our investigation on the relationship be-
tween academic papers and the scientific projects hosted on
GitHub through the reference links embedded in their project
README.mds.

Hata et al. investigated the characteristics of the reference
links written in source code comments for open source projects,
in particular, the purpose of those links and how they are evolved
and decayed (Hata et al., 2019). 19 different kinds of links have
emerged from their analysis, one of which was the links to
academic papers. They also divided the target of the links based
on the domain name of the link URL and found that the links
to academic papers normally belong to the sometimes or rarely
linked domains. They have also found dead links for research
papers indicating the problem with maintaining those links in
source code. Otherwise, we found some dead links in papers
(see Section 3.2). In this work, we zoom in on the maintenance
and evolution practice of the links to academic papers in the
README.mds using the version control system. Furthermore, we
also looked at the evolution of scientific work after the link was
created. These analyses gave us a comprehensive understand-
ing of the practices and challenges for synchronizing scientific
artifacts.

7. Conclusion

To understand public access, traceability, and evolution of
links to academic papers in GitHub repositories, we conducted
(i) a quantitative study of around 20 thousand links from GitHub
README.mds in 10,343,311 GitHub repositories to establish the
frequency of these links; (ii) a qualitative and quantitative study
of a sample of 344 README.mds to determine public access;
(iii) a qualitative study to trace and analyze the relationships
between the academic papers and the repositories that reference
them; and (iv) a quantitative study to determine the evolution of
academic papers and updates to the repository.

Our work has shown that referenced academic papers are
indeed public access, with most referenced papers being regarded
just as influential for the academic community. Based on this
work in documentation files, insights that are revealed from the
study open many avenues for future work: investigate strategies
to promote public access and reproducibility, further study to un-
derstand how research accelerates through the alignment of SOTA
between research and practice, tool support for recommendation
of related academic papers and repositories, study the nature
of repositories that link to academic papers, investigate the in-
direct impact of academic papers (e.g., an open-source library
implements and references an algorithm proposed in a paper
while other libraries build on this library without referencing the
initial paper), survey repository owners whether they are aware
of changes in paper updates, and further understand impacts of
the paper updates on repositories, to name a few.

CRediT authorship contribution statement

Supatsara Wattanakriengkrai: Data curation, Investigation,
Writing – original draft, Validation. Bodin Chinthanet: Data cu-
ration, Investigation, Writing – original draft. Hideaki Hata: Val-
idation, Conceptualization, Writing – review & editing. Raula
Gaikovina Kula: Validation, Writing – review & editing. Christoph
Treude: Conceptualization, Methodology, Writing – review &
editing. Jin Guo: Conceptualization, Methodology, Writing – re-
view & editing. Kenichi Matsumoto: Supervision, Funding acqui-
sition.

11

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by JSPS KAKENHI Grant Number
16H05857, 18H04094, 20K19774, and 20H05706 as well as by the
Australian Research Council’s Discovery Early Career Researcher
Award (DECRA) funding scheme (DE180100153).

References

Anon, 1991. Arxiv.org e-Print archive. https://arxiv.org/. (Accessed 17 January
2020).

Anon, 2002. Center of excellence for software and systems traceability (CoEST).
http://www.coest.org/. (Accessed 28 May 2021).

Anon, 2004. Software systems - google scholar metrics. https://scholar.
google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems.
(Accessed 26 August 2020).

Anon, 2012. Sample size calculator - confidence level, confidence interval, sample
size, population size, relevant population - creative research systems. https:
//www.surveysystem.com/sscalc.htm. (Accessed 17 January 2020).

Anon, 2015. Peter suber, open access overview (definition, introduction). http:
//legacy.earlham.edu/~peters/fos/overview.htm. (Accessed 17 January 2020).

Anon, 2018. Papers with Code: the latest in machine learning. https://
paperswithcode.com/. (Accessed 17 January 2020).

Anon, 2019a. This AI researcher is trying to ward off a reproducibility crisis.
https://www.nature.com/articles/d41586-019-03895-5. (Accessed 17 January
2020).

Anon, 2019b. RedditSota/state-of-the-art-result-for-machine-learning-problems.
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-
problems. (Accessed 17 January 2020).

Anon, 2019c. Python code glitch may have caused errors in over 100 published
studies - slashdot. https://science.slashdot.org/story/19/10/12/1926252/
python-code-glitch-may-have-caused-errors-in-over-100-published-
studies. (Accessed 17 January 2020).

Anon, 2019d. GHTorrent. http://ghtorrent.org/downloads.html. (Accessed 17
January 2020).

Braiek, H.B., Khomh, F., Adams, B., 2018. The open-closed principle of mod-
ern machine learning frameworks. In: 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories. MSR. pp. 353–363.

Drummond, C., 2009. Replicability is not reproducibility: nor is it good science.
In: Proceedings of the Evaluation Methods for Machine Learning Workshop at
the 26th ICML, Montreal, Canada, 2009. In: Evaluation Methods for Machine
Learning Workshop, the 26th ICML, June 14–18, 2009, Montreal, Canada.

Gatys, L.A., Ecker, A.S., Bethge, M., 2015. A neural algorithm of artistic style.
CoRR abs/1508.06576.

Gibney, E., 2020. This AI researcher is trying to ward off a reproducibility crisis.
Nature 577 (7788), 14.

Gousios, G., 2013. The GHTorent dataset and tool suite. In: Proceedings of the
10th Working Conference on Mining Software Repositories. MSR ’13, IEEE
Press, pp. 233–236.

Hannay, J.E., MacLeod, C., Singer, J., Langtangen, H.P., Pfahl, D., Wilson, G., 2009.
How do scientists develop and use scientific software? In: Proceedings of the
2009 ICSE Workshop on Software Engineering for Computational Science and
Engineering. IEEE Computer Society, pp. 1–8.

van Hasselt, H., Guez, A., Silver, D., 2015. Deep reinforcement learning with
double Q-learning.

Hata, H., Treude, C., Kula, R.G., Ishio, T., 2019. 9.6 million links in source
code comments: Purpose, evolution, and decay. In: Proceedings of the 41st
International Conference on Software Engineering. pp. 1211–1221.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition. CVPR.

Heumüller, R., Nielebock, S., Krüger, J., Ortmeier, F., 2020. Publish or perish, but
do not forget your software artifacts. Empir. Softw. Eng. 25, 4585–4616.

Howison, J., Herbsleb, J., 2011. Scientific software production: Incentives and
collaboration. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work. CSCW. pp. 513–522.

Howison, J., Herbsleb, J.D., 2013. Incentives and integration in scientific software
production. In: Proceedings of the 2013 Conference on Computer Supported
Cooperative Work. pp. 459–470.

Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q., 2016. Densely connected
convolutional networks.

Ikeda, S., Ihara, A., Kula, R.G., Matsumoto, K., 2019. An empirical study of
README contents for JavaScript packages. IEICE Trans. 102-D (2), 280–288.

Inokuchi, A., Sulistyo Nugroho, Y., Konishi, F., Hata, H., Monden, A., Mat-
sumoto, K., 2019. From academia to software development: Publication
citations in source code comments. arXiv e-prints.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.,
2014. The promises and perils of mining GitHub. In: Proceedings of the 11th
Working Conference on Mining Software Repositories. MSR 2014, Association
for Computing Machinery, New York, NY, USA, pp. 92–101. http://dx.doi.org/
10.1145/2597073.2597074.

Kim, Y., 2014. Convolutional neural networks for sentence classification. CoRR
abs/1408.5882.

Kokot, M., Deorowicz, S., Dlugosz, M., 2017. Even faster sorting of (not only)
integers.

Mann, H.B., Whitney, D.R., 1947. On a test of whether one of two random
variables is stochastically larger than the other. Ann. Math. Stat. 18 (1),
50–60.

Méndez Fernández, D., Monperrus, M., Feldt, R., Zimmermann, T., 2019. The open
science initiative of the empirical software engineering journal. Empir. Softw.
Eng. 24 (3), 1057–1060. http://dx.doi.org/10.1007/s10664-019-09712-x.

Milewicz, R., Pinto, G., Rodeghero, P., 2019. Characterizing the roles of contribu-
tors in open-source scientific software projects. In: Proceedings of the 16th
International Conference on Mining Software Repositories. pp. 421–432.

Miyakawa, T., 2020. No raw data, no science: another possible source of the
reproducibility crisis. Mol. Brain 13, 24.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D.,
Kavukcuoglu, K., 2016. Asynchronous methods for deep reinforcement
learning.

Prana, G.A.A., Treude, C., Thung, F., Atapattu, T., Lo, D., 2019. Categorizing the
content of GitHub README files. Empir. Softw. Eng. 24 (3), 1296–1327.

Prlić, A., Procter, J., 2012. Ten simple rules for the open development of scientific
software. PLoS Comput. Biol. 8, e1002802.

Radford, A., Metz, L., Chintala, S., 2016. Unsupervised representation learning
with deep convolutional generative adversarial networks. In: 4th Interna-
tional Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2–4, 2016, Conference Track Proceedings.

Segal, J., Pop-i, K., Ill-defined, C., ii A End-users, P., ii C Working Practices, P.,
v B, P., 2008. Scientists and software engineers: a tale of two cultures.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for
large-scale image recognition.

Smith, A., Katz, D.S., Niemeyer, K., Group, S., 2016. Software citation principles.
http://dx.doi.org/10.7287/PEERJ.PREPRINTS.2169V2.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I., 2017. Attention is all you need. CoRR abs/1706.03762.

Viera, A.J., Garrett, J.M., 2005. Understanding interobserver agreement: the kappa
statistic. Family Med. 37, 360–363.

Woelfle, M., Olliaro, P., Todd, M.H., 2011. Open science is a research accelerator.
Nature Chem. 3, 745–748.

Supatsara Wattanakriengkrai is a Ph.D. student in the Software Engineering
Laboratory at the Department of Information Science, Nara Institute of Science
and Technology (NAIST), Japan. She received a Master’s degree from NAIST
in 2021. Her main research interests include Empirical Software Engineer-
ing, Mining Software Repositories, and Software Ecosystems. Contact her at
wattanakri.supatsara.ws3@is.naist.jp

Bodin Chinthanet is a specially appointed assistant professor at Nara Institute
of Science and Technology, Japan. He received a Ph.D. from Nara Institute
of Science and Technology in 2021. His research interests include empirical
software engineering and mining software repositories. In detail, his research is
focusing on the security vulnerabilities in software ecosystems, how developers
react to vulnerabilities in their software projects. His ultimate goal is to mitigate
the risk of security vulnerabilities in software ecosystems. More information at
https://bchinthanet.com/

Hideaki Hata is an associate professor at the Shinshu University. His research
interests include software ecosystems, human capital in software engineering,
and software economics. He received a Ph.D. in information science from Osaka
University. More about Hideaki and his work is available online at https:
//hideakihata.github.io/

Raula Gaikovina Kula is an assistant professor at the Nara Institute of Science
and Technology (NAIST), Japan. He received his Ph.D. degree from NAIST in 2013
and was a Research Assistant Professor at Osaka University. He is active in the
Software Engineering community, serving the community as a PC member for
premium SE venues, some as organising committee, and reviewer for journals.
His current research interests include library dependencies and security in the
software ecosystem, program analysis such as code clones, and human aspects

12

https://arxiv.org/
http://www.coest.org/
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://www.surveysystem.com/sscalc.htm
https://www.surveysystem.com/sscalc.htm
https://www.surveysystem.com/sscalc.htm
http://legacy.earlham.edu/~peters/fos/overview.htm
http://legacy.earlham.edu/~peters/fos/overview.htm
http://legacy.earlham.edu/~peters/fos/overview.htm
https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/
https://www.nature.com/articles/d41586-019-03895-5
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems
https://science.slashdot.org/story/19/10/12/1926252/python-code-glitch-may-have-caused-errors-in-over-100-published-studies
https://science.slashdot.org/story/19/10/12/1926252/python-code-glitch-may-have-caused-errors-in-over-100-published-studies
https://science.slashdot.org/story/19/10/12/1926252/python-code-glitch-may-have-caused-errors-in-over-100-published-studies
https://science.slashdot.org/story/19/10/12/1926252/python-code-glitch-may-have-caused-errors-in-over-100-published-studies
https://science.slashdot.org/story/19/10/12/1926252/python-code-glitch-may-have-caused-errors-in-over-100-published-studies
http://ghtorrent.org/downloads.html
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb14
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb14
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb14
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb15
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb15
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb15
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb15
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb15
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb17
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb17
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb17
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb23
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb23
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb23
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb24
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb24
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb24
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb25
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb25
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb25
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb25
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb25
http://dx.doi.org/10.1145/2597073.2597074
http://dx.doi.org/10.1145/2597073.2597074
http://dx.doi.org/10.1145/2597073.2597074
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb27
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb27
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb27
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb28
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb28
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb28
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb29
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb29
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb29
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb29
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb29
http://dx.doi.org/10.1007/s10664-019-09712-x
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb32
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb32
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb32
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb33
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb33
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb33
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb33
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb33
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb34
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb34
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb34
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb35
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb35
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb35
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb37
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb37
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb37
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb38
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb38
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb38
http://dx.doi.org/10.7287/PEERJ.PREPRINTS.2169V2
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb40
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb40
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb40
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb41
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb41
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb41
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb42
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb42
http://refhub.elsevier.com/S0164-1212(21)00214-4/sb42
mailto:wattanakri.supatsara.ws3@is.naist.jp
https://bchinthanet.com/
https://hideakihata.github.io/
https://hideakihata.github.io/
https://hideakihata.github.io/

S. Wattanakriengkrai, B. Chinthanet, H. Hata et al. The Journal of Systems & Software 183 (2022) 111117

such as code reviews and coding proficiency. Find him at https://raux.github.io/
and @augaiko on Twitter. Contact him at raula-k@is.naist.jp

Christoph Treude is a Senior Lecturer in Software Engineering in the School of
Computing and Information Systems at the University of Melbourne. The goal
of his research is to improve the quality of software and the productivity of
those producing it, with a particular focus on getting information to software
developers when and where they need it. He has authored more than 100
scientific articles with more than 200 co-authors, and his work has received
an ARC Discovery Early Career Research Award (2018-2020), industry funding
from Google, Facebook, and DST, as well as four best paper awards including
two ACM SIGSOFT Distinguished Paper Awards. He currently serves as a board
member on the Editorial Board of the Empirical Software Engineering journal
and was general co-chair for the 36th IEEE International Conference on Software
Maintenance and Evolution.

Jin L.C. Guo received the Ph.D. degree in computer science and engineering
from the University of Notre Dame. She is an assistant professor with the
School of Computer Science, McGill University. Her research interests include
software traceability, software maintenance and evolution, and human aspects of
software engineering. Her current research focuses on utilizing Natural Language
Processing techniques to construct connections within and across heterogeneous
software engineering data.

Kenichi Matsumoto is a professor in the Graduate School of Science and
Technology at the Nara Institute of Science and Technology. His research
interests include software measurement and software processes. He received
a Ph.D. in information and computer sciences from Osaka University. He is a
Senior Member of the IEEE and a member of the IEICE and the IPSJ. Contact
him at matumoto@is.naist.jp

13

https://raux.github.io/
mailto:raula-k@is.naist.jp
mailto:matumoto@is.naist.jp

	GitHub repositories with links to academic papers: Public access, traceability, and evolution
	Citation
	Author

	GitHub repositories with links to academic papers: Public access, traceability, and evolution
	Introduction and motivation
	Research method
	Research questions
	Data preparation
	Sample data creation

	Findings
	Frequency and public access (RQ1)
	Relationship and traceability (RQ2)
	Evolution (RQ3)

	Limitations and implications
	Limitations
	Implications

	Threats to validity
	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

