
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2022

GitHub Discussions: An exploratory study of early adoption GitHub Discussions: An exploratory study of early adoption

Hideaki HATA

Nicole NOVIELLI

Sebastian BALTES

Raula KULA

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
HATA, Hideaki; NOVIELLI, Nicole; BALTES, Sebastian; KULA, Raula; and TREUDE, Christoph. GitHub
Discussions: An exploratory study of early adoption. (2022). Empirical Software Engineering. 27, (1), 1-37.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8788

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8788&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Noname manuscript No.
(will be inserted by the editor)

GitHub Discussions:
An Exploratory Study of Early Adoption

Hideaki Hata ⋅ Nicole Novielli ⋅
Sebastian Baltes ⋅ Raula Gaikovina
Kula ⋅ Christoph Treude

Received: date / Accepted: date

Abstract Discussions is a new feature of GitHub for asking questions or dis-
cussing topics outside of specific Issues or Pull Requests. Before being available
to all projects in December 2020, it had been tested on selected open source
software projects. To understand how developers use this novel feature, how
they perceive it, and how it impacts the development processes, we conducted
a mixed-methods study based on early adopters of GitHub discussions from
January until July 2020. We found that: (1) errors, unexpected behavior, and
code reviews are prevalent discussion categories; (2) there is a positive rela-
tionship between project member involvement and discussion frequency; (3)
developers consider GitHub Discussions useful but face the problem of topic
duplication between Discussions and Issues; (4) Discussions play a crucial role
in advancing the development of projects; and (5) positive sentiment in Dis-
cussions is more frequent than in Stack Overflow posts. Our findings are a first
step towards data-informed guidance for using GitHub Discussions, opening
up avenues for future work on this novel communication channel.

Hideaki Hata
Shinshu University
E-mail: hata@shinshu-u.ac.jp

Nicole Novielli
University of Bari
E-mail: nicole.novielli@uniba.it

Sebastian Baltes
QAware GmbH, University of Adelaide
E-mail: research@sbaltes.com

Raula Gaikovina Kula
Nara Institute of Science and Technology
E-mail: raula-k@is.naist.jp

Christoph Treude
University of Melbourne
E-mail: christoph.treude@unimelb.edu.au

ar
X

iv
:2

10
2.

05
23

0v
3

 [
cs

.S
E

]
 3

0
Se

p
20

21

2 Hideaki Hata et al.

Keywords GitHub Discussions ⋅ communications ⋅ sentiment ⋅ empirical
study ⋅ exploratory study

1 Introduction

As part of the 2020 edition of GitHub’s Satellite conference in early May, the
platform announced a number of new features, including Codespaces, GitHub
Private Instances, and GitHub Discussions. The latter were touted as an alter-
native to GitHub Issues and Pull Requests, stating that “software communities
don’t just write code together. They brainstorm feature ideas, help new users
get their bearings, and collaborate on best ways to use the software”.1 In
their announcement, GitHub argued that the linear format of Issues and Pull
Requests—while well suited for merging code—is not suitable for creating a
community knowledge base. With the goal of filling this gap, GitHub Dis-
cussions was released in May 2020 in a closed beta phase for selected public
repositories. In December 2020 during the GitHub Universe conference, the
platform announced that GitHub Discussions was released as a public beta
feature.2

Originally, this feature was requested by software developers back in 2016.3

As such requests show, there are questions about the effectiveness of the com-
munication channels that developers currently have at their disposal, in par-
ticular for open-ended tasks such as brainstorming. Discussions is one of the
first attempts at addressing this on the GitHub platform. As previous work
reported, innovative services could attract contributors (Hata et al, 2015).
GitHub’s announcement drew the attention of the software developer commu-
nity which questioned the role of the new feature in the existing landscape of
question-and-answer (Q&A) forums, mailing lists, issue trackers, and others.
For example, in a popular Hacker News thread4 debating the announcement,
opinions ranged from “GitHub is slowly eating the surrounding cities [...] now
Discussions aims for a piece of Stack Overflow pie” to “This should make
Github much more pleasant once it spreads across most projects”. In particu-
lar the relationship between the new Discussions feature and the Q&A forum
Stack Overflow garnered interest, with some users expecting a “reduction”
in Stack Overflow and others arguing that Stack Overflow “is literally anti-
discussion, the whole point is it is about questions and answers, not discussion
[...] That isn’t to say discussion isn’t useful or valuable, it absolutely is, it is
just a completely different thing”.

The collaborative and participatory nature of software development is
shaped by the communication channels that are used by software developer

1 https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-

github-discussions-securing-code-in-private-repositories-and-more/#discussions
2 https://github.blog/2020-12-08-new-from-universe-2020-dark-mode-github-

sponsors-for-companies-and-more/#discussions
3 https://github.com/dear-github/dear-github/issues/44
4 https://news.ycombinator.com/item?id=22388639

https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-github-discussions-securing-code-in-private-repositories-and-more/#discussions
https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-github-discussions-securing-code-in-private-repositories-and-more/#discussions
https://github.blog/2020-12-08-new-from-universe-2020-dark-mode-github-sponsors-for-companies-and-more/#discussions
https://github.blog/2020-12-08-new-from-universe-2020-dark-mode-github-sponsors-for-companies-and-more/#discussions
https://github.com/dear-github/dear-github/issues/44
https://news.ycombinator.com/item?id=22388639

GitHub Discussions: An Exploratory Study of Early Adoption 3

communities of practice (Storey et al, 2016). At the same time, these com-
munities will design their own social protocols of how to use tools and adapt
and repurpose them over time (Giuffrida and Dittrich, 2013). Our work fol-
lows in a long line of work on how software developers use and appropriate
communication channels, ranging from discussions during code review (Tsay
et al, 2014) and on Stack Overflow (Beyer et al, 2020) to mailing lists (Guzzi
et al, 2013). Here we aim at understanding whether it is worth adding yet
another communication channel. Our focus is not on “the feature” but about
how it is used for collaborative knowledge-building and how its usage differs
from existing channels.

As the software engineering research community is often criticized for being
slow in responding to trends, we monitored the closed beta phase to provide
data-driven feedback for early adopters who decide to use the feature now
that it is publicly available. In this paper, we report the results of the first
comprehensive mixed-methods study on how software developers utilize the
GitHub Discussions feature during the closed beta period, what they are us-
ing it for and who uses it, using qualitative and quantitative analysis, online
surveys, and sentiment analysis. We also investigate how these early adopters
were initially planning to use it and how they now perceive its usefulness and
its place in the complex landscape of existing communication channels and
artefacts. We further study the feature’s impact on the development process
by analysing Discussions’ interplay with GitHub Issues and Pull Requests, and
we investigate how GitHub Discussions compares to Stack Overflow threads
in terms of their sentiment and toxicity.

Based on analysing 7,116 discussions with 29,136 posts from 92 GitHub
projects, we find that software developers use the new feature to discuss
errors, discrepancies and reviews, and that most discussions were started
by project users. Developers initially envisioned using the new feature for
question-answering, idea sharing, and community engagement, and appreci-
ate the integration of discussions into the rest of GitHub while highlighting
potential issues related to redundancy. Discussions can drive development by
triggering the creation of new Issues and Pull Requests. Compared to Stack
Overflow threads, positive sentiment is more frequent in GitHub Discussions.

As GitHub Discussions is now available to all projects hosted on the plat-
form, our findings can guide development teams in their decision on whether
and how to adopt the feature by establishing how it is being used by early
adopters and reporting the experiences of those using it. Our insights further
aim to improve the practices developers follow when contributing to GitHub
Discussions and guide GitHub and other platforms on how the feature can be
improved, in particular in terms of reducing redundancy. Our work also intro-
duces a novel communication channel to the software engineering literature,
opening up venues for future work on GitHub Discussions and their inter-
play with other channels and artefacts in the complex software development
landscape.

The remainder of the paper is organized as follows. In the next section,
we introduce the GitHub Discussions feature in detail, before we present our

4 Hideaki Hata et al.

Fig. 1 The GitHub Discussions feature: categories, participants, relations, notifications,
and events.

research questions and data collection approach in Sections 3 and 4. In Sec-
tion 5, we describe the methodology used to address our research questions.
Then we present our results in Section 6 and discuss limitations in Section 8.
Finally, we position our work in the context of related work (Section 9) and
conclude by envisioning possible challenges for future research based on our
findings (Section 10).

2 GitHub Discussions

GitHub Discussions is a new feature for GitHub specifically designed to sup-
port communication for the members of an open source project community.
The forum is designed to host conversations that, unlike issues, are not directly
related to code development and, thus, are not supposed to be included in the
project boards. Nevertheless, the official GitHub guidelines5 recommend to
clearly define a code of conduct for each project to guide contributors towards
effective communication.

The GitHub Discussion interface is structured in a Question-Answering
fashion (see Figure 1). However, there are several differences with respect to
popular QA-technical forums, such as Stack Overflow, which we highlight in
the following. Differently from Stack Overflow, a GitHub Discussion can serve

5 https://docs.github.com/en/discussions/quickstart

https://docs.github.com/en/discussions/quickstart

GitHub Discussions: An Exploratory Study of Early Adoption 5

different communicative intentions, beyond question-answering. For example
a Discussion can be started to share information or make announcements,
report errors or discuss about potential evolution of a software project. For
example, Figure 1 depicts a thread starting from a conceptual question aimed
at understanding the code behavior.

Discussion are organized according to categories (highlighted as item num-
ber 1 in the figure), such as ‘General’, ‘Q&A’, ‘Ideas’, and so on. Differently
from what happens in Stack Overflow tags, where the information seeker can
either reuse or create a new tag at the moment of question writing, in GitHub
Discussions categories are created by either repository owners and contribu-
tors with write access. Participants (2) of discussions can use the most relevant
categories among the existing ones in order to group and organize threads.

Discussion can either starts from scratch or from a previously existing issue.
The web interface includes this information (3) together with the number of
participants in the discussion. Similarly to other communication in GitHub,
one can subscribe to receive notifications (4). Similarly to Stack Overflow,
it is possible to flag an answer as answering the original question. However,
differently from Stack Overflow where the question author is the only one
allowed to flag an answer as accepted, in GitHub Discussion this can be done
by other people as well, as shown in Figure 1 (5).

3 Research Questions

The main goal of the study is to gain insights into the use of GitHub Dis-
cussions. Based on this goal, we constructed three main research questions to
guide our study. We present these main questions and sub-questions, along
with their motivation.

RQ1 How have GitHub Discussions been adopted?
RQ1.1 What are GitHub Discussions about?
RQ1.2 Who contributes to GitHub Discussions?
RQ1.3 What is the relationship between project characteristics and

GitHub Discussion adoption?

The motivation of our first main research question (RQ1) is to understand
the kind of discussions that occur in GitHub Discussions. We use a qualitative
method to categorize the discussions by the content and the individuals that
contribute to the discussions.

RQ2 What reasons do developers have to adopt GitHub Discussions?
RQ2.1 Why do projects adopt GitHub Discussions?
RQ2.2 How do developers perceive GitHub Discussions?

Our second main research question (RQ2) requires an analysis of the different
perceptions of why GitHub Discussions is being used and how developers feel
about the feature.

6 Hideaki Hata et al.

RQ3 How do GitHub Discussions relate and compare to other communication
channels?
RQ3.1 What is the impact of GitHub Discussions on other channels?
RQ3.2 How does the sentiment differ compared to Stack Overflow posts?

GitHub Discussions does not exist in isolation, but are part of a network of a
myriad of other artefacts. Our third main research question (RQ3) explores
the impact of GitHub Discussions on other artefacts and compares emotional
styles with an existing communication channel. The key motivation is that
we would like to understand the potential roles of GitHub Discussions for a
software project.

4 Data Collection

In this section we describe our data collection methodology, and present our
replication package. When we initiated this research project, the GitHub
REST API6 did not support the new Discussions feature yet. In addition,
when we asked the GitHub support for projects that have access to the beta
feature, they replied that they could not disclose that information. Thus, to
determine which projects already use the feature and to collect metadata and
posts for analysis, we had to rely on a custom web scraper we built (avail-
able on GitHub7). In a first step, we utilized the API to retrieve the most
popular projects according to their number of stargazers. Previous work has
shown that this approach has a high precision in retrieving engineered soft-
ware projects (Munaiah et al, 2017). We assumed that more popular projects
have a larger user base and are more likely to adopt Discussions early on. Our
goal was to retrieve at least 10,000 projects. Due to API limitations, we had
to execute multiple queries and then merge the data, yielding the 10,899 most
popular GitHub projects as of June 26, 2020. Next, we used our web scraper
to determine which GitHub features, including Discussions, Issues, and Pull
Requests, are activated in those projects. Many projects used Pull Requests
(10,896), Actions (10,744), and Issues (10,432). The Projects feature was less
common (8,997), followed by Wikis (4,071) and the new Discussions feature
(99). After manually checking the projects using Discussions, we excluded one
not being used for software development.

For the remaining 98 projects, we scraped all discussions, including meta-
data such as title, state (answered or unanswered), author, timestamp, and
whether the discussion thread was converted from an existing Issue. For in-
dividual posts, we stored author, timestamp, whether a post was part of the
selected answer (posts can be nested in discussions), and the HTML content.

We executed several data collection runs. The dataset we used to answer
RQ1 and RQ2 was collected on July 22 and contains 7,116 discussions with
29,136 posts from 92 projects; the dataset used to answer RQ3 was collected

6 https://docs.github.com/en/rest
7 https://github.com/sbaltes/github-retriever/

https://docs.github.com/en/rest
https://github.com/sbaltes/github-retriever/

GitHub Discussions: An Exploratory Study of Early Adoption 7

on August 1 and contains 9,234 discussions with 32,714 posts from 92 projects.
The earliest discussion thread in our dataset had started in January 2020. Note
that some projects had the Discussions feature activated, but no discussion
threads yet. Further, some projects converted existing Issues into Discussion
threads: In the August 1 dataset, 1,104 discussions (12%) with 5,885 posts
(18%) were converted from Issues, as opposed to 1,007 (14%) discussions with
5,401 posts (19%) in the older one.

4.1 Online Appendix

Our appendix containing results of our qualitative analyses is available on
GitHub8 and Zenodo (Hata et al, 2021). The appendix includes files with
links to the full Discussions on GitHub. We further published the scripts we
used to collect the data not available via the GitHub API.9

5 Methods

This section describes our mixed-methods procedure including a qualitative
analysis, a quantitative analysis, a survey, and a semantic analysis.

5.1 Qualitative Analysis

To understand what kind of discussions occurred in GitHub Discussions
(RQ1.1), investigate the relationship between project characteristics and
GitHub Discussion adoption (RQ1.3), get an initial view of developer per-
ceptions of the GitHub Discussions feature and to understand why projects
adopt GitHub Discussions (RQ2.1), and investigate how GitHub Discussions
affects the projects that they belong to and in particular understand their im-
pact on other channels and artefacts (RQ3.1), we manually annotate target
instances, with multiple coders, in multiple iterations.

Discussion Categories (RQ1.1) We conduct a qualitative analysis of statisti-
cally representative samples of two groups of discussions, namely, discussions
converted from Issues and not from Issues (started originally at GitHub Dis-
cussions). We have 1,007 and 6,109 discussions for the two groups, respectively.
We randomly sampled a statistically representative number of discussions from
each discussion group, ensuring that our findings regarding percentages within
each sample would generalize to the entire groups with a confidence level of
95% and a confidence interval of 5. We obtained 278 (from Issues) and 361 Dis-
cussions (not from Issues) for our samples, for a total of 639 discussions overall.
Our codes for discussion categories were informed by a taxonomy of question

8 https://github.com/sbaltes/GHDiscussions
9 https://github.com/sbaltes/github-retriever

https://github.com/sbaltes/GHDiscussions
https://github.com/sbaltes/github-retriever

8 Hideaki Hata et al.

categories to understand kinds of questions on Stack Overflow (Beyer et al,
2020). Since we found that their codes did not cover all types of discussions
on GitHub Discussions, we developed our coding schema by modifying certain
codes. The following list shows the 13 categories along with their descriptions.
The top seven categories are based on the existing taxonomy (Beyer et al,
2020): some are exactly the same and the others are slightly modified. Four
categories emerged from our analysis, in addition to Other and 404. These four
categories are unique discussion categories in GitHub Discussions compared
to questions on Stack Overflow.

– Errors: This is said to be equivalent to the categories Error (Treude et al,
2011) and Exception handling (Beyer and Pinzger, 2016). Discussions of
this category contain exceptions and stack traces and ask for help in fixing
errors or understanding what the exceptions mean.

– Discrepancy : This contains the categories Discrepancy (Treude et al, 2011),
Do not work (Allamanis and Sutton, 2013), and What is the problem? (Beyer
and Pinzger, 2016). Such discussions contain questions about problems or
unexpected behavior where the questioners have no clue how to solve them.

– Review : This category merged Decision help and Review (Treude et al,
2011), How/why something works (Allamanis and Sutton, 2013), Better so-
lution (Beyer and Pinzger, 2016), and What (Rosen and Shihab, 2016).
Discussions of this category contain code snippets and ask for better solu-
tions, help to make decisions, or to review their code snippets.

– Conceptual : This is equivalent to the category Conceptual (Treude et al,
2011) and related to the categories Why and Is it possible? (Beyer and
Pinzger, 2016), What (Rosen and Shihab, 2016), and How/why something
works (Allamanis and Sutton, 2013). These discussions mainly ask high-
level questions, such as the limitations of functionalities, underlying con-
cepts (design patterns, architectural styles, etc.), and background informa-
tion.

– Usage: The taxonomy contains the category API usage (Beyer et al, 2020),
which is related to the categories How to implement something and Way
of using something (Allamanis and Sutton, 2013) and How-to (Beyer and
Pinzger, 2016; Treude et al, 2011). Since we observed questions of usages
not limited to APIs, we extended this category to general usages. Discus-
sions of this category contain questions asking for concrete instructions of
specific functionalities, which is different from questions in Discrepancy.

– Learning : This is related to the category Learning a lan-
guage/technology (Allamanis and Sutton, 2013). In these discussions,
the questioners ask for documentation or tutorials to learn the software of
the projects. Instead of asking for solutions or instructions on how to do
something, they aim at asking for resources of documentation, tutorials,
or examples, to learn on their own.

– Versions: The taxonomy contains the category API change (Beyer et al,
2020), which is equivalent to the category Version (Beyer and Pinzger,
2016). Discussions in this category are not limited to API changes but

GitHub Discussions: An Exploratory Study of Early Adoption 9

are related to any questions that arise because of different versions of the
software or environmental settings.

– Plans: Discussions of this category ask for future plans of software releases
or development processes.

– Announcement : These discussions are used for announcements about spe-
cific events of the software (e.g., future updates, releases).

– Information: Discussions in this category provide general information,
which is not related to events of the software.

– Recruitment : These discussions indicate offers of job vacancies or recruiting
contributors to the teams.

– Other : Discussions that do not fit the above categories.
– 404 : Discussions which had been removed when we accessed them.

Our annotation guidelines do not allow for multiple categories. We annotate
the categories based on the initial posts of the threads. The annotation was
conducted by three of the authors of this paper. We conducted an initial pilot
annotation on two subsets of 30 discussions from the two groups (from Issues
and not from Issues). The three coders read and discussed the annotation
taxonomy in order to reach a shared understanding of the codes. The three
coders labeled individually all items in the two pilot sets of 30 discussions.
After this first iteration, we computed the inter-rater agreement to assess
the reliability of the annotation approach. Specifically, we computed Fleiss’ k
index, which extends Cohen’s k for evaluating the inter-rater level of agreement
between two or more raters, in presence of a categorical variable (Fleiss and
Cohen, 1973). It expresses the degree to which the observed proportion of
agreement among raters exceeds what would be expected if all raters made
their ratings completely randomly. We obtained an observed agreement of
50% and k = .46, denoting moderate agreement (Viera and Garrett, 2005). In
order to consolidate the annotation guidelines, the three raters discussed and
resolved the disagreement cases. We then incorporated the insights derived
from the discussion phase into the annotation guidelines and repeated the
pilot annotation. After this second round, we observed substantial agreement,
with k = .63 and observed agreement = 66%. Given the reliability of the
annotation guidelines, two of the raters individually completed the annotation
for the remaining cases in the two samples.

Project Characteristics (RQ1.3) For software domains, we adopt the follow-
ing five domains presented in a previous study of GitHub repositories (Borges
et al, 2016). While there were six domains in the previous study, since this
study focuses on repositories for software development, we excluded “Docu-
mentation,” which represents repositories with documentation, tutorials, and
source code examples. In this analysis, all repositories could be classified into
the five domains.

– Web libraries and frameworks: Software for web development.
– Software tools: Systems that support software development tasks, like

IDEs, package managers, and compilers.

10 Hideaki Hata et al.

– Application software: Systems that provide functionalities to end-users, like
browsers and text editors.

– Non-web libraries and frameworks: Frameworks not intended for web de-
velopment.

– System software: Systems that provide services and infrastructure to other
systems, like operating systems, middleware, servers, and databases.

Three authors independently coded 98 projects. We conducted a pilot analysis
in order to assess the reliability of our annotation schema. The three raters
independently labeled 28 projects from our sample, achieving a substantial
inter-rater agreement (k = .61, observed agreement = 69%). Thus, the three
raters completed the annotation of the software domains for the remaining
projects, obtaining again a substantial agreement (k = .64, observed agreement
= 71%). Overall, we observed a k = .63 and observed agreement = 71%.
We assign the final domain label to all repositories in our sample based on
the majority agreement among the three raters. On four projects, a majority
agreement was not reached. Thus, the three raters assigned the domain labels
to these cases after a discussion.

Initial Discussions (RQ2.1) We conduct a qualitative analysis of the first dis-
cussion thread of each project in our data set since we had anecdotally observed
that the first thread was often used for meta-discussions, i.e., discussions about
the Discussion feature and social negotiation of how it should be used (Giuf-
frida and Dittrich, 2013). One author developed a coding schema based on
the inspection of 30 randomly selected first threads, and another author an-
notated the same threads to establish the reliability of the coding schema via
inter-rater agreement. We allowed multiple codes per discussion thread. Both
annotators achieved perfect agreement in 23/30 cases (77%) and partial agree-
ment in another 4/30 cases (13%), and they disagreed in the remaining 3/30
cases (10%). Based on this satisfactory agreement, one author then annotated
the remaining threads. The coding schema we established consisted of the
following codes:

– Question-answering : Several projects indicated that the Discussion feature
could be used for asking and answering questions, e.g., “I’m trying out
GitHub Discussions in the hopes that folks will be encouraged to both ask
questions and give answers. Remember, there are no stupid questions!”10

– Idea sharing : Sharing of ideas was also mentioned by several projects, al-
though few projects provided details of how such sharing could be struc-
tured.

– Community engagement : Projects also mentioned using GitHub Discus-
sions to engage with their broader community, e.g., “We want to try using
GitHub’s new discussion feature to structure conversations that may not
quite be an Issue, but would benefit from community involvement and
searchability.”11

10 https://github.com/BurntSushi/ripgrep/discussions/1552
11 https://github.com/linkerd/linkerd2/discussions/4347

https://github.com/BurntSushi/ripgrep/discussions/1552
https://github.com/linkerd/linkerd2/discussions/4347

GitHub Discussions: An Exploratory Study of Early Adoption 11

– Decluttering issue tracker : A few projects explicitly mentioned the rela-
tionship between GitHub Discussions and GitHub Issues, suggesting that
Discussions could help declutter the issue tracker, e.g., “Unsure whether
what you’re experiencing is a bug or not? Post it here first! if it is indeed
a bug, moving it to Issues once it’s confirmed is an easy task.”12

– Information resource building : Projects also mentioned using Discussions
as a way of building an information resource, which is in line with GitHub’s
original intent behind the Discussions feature.

– Feature requests: Discussing new features was also mentioned as a use case
of GitHub Discussions.

– Thank-you: In one case, the first discussion thread was used to say thank-
you to everyone involved in the project.

– Testing the feature: Several development teams used their first GitHub
Discussion to test the new functionality, in particular threaded replies.

– Not meta: We used the code “not meta” to indicate cases where the first
Discussion thread had not been used to discuss the feature itself.

Impact on Channels (RQ3.1) To study the impact of GitHub Discussions on
other channels, we collect all links from GitHub Discussions to Issues and Pull
Requests in the same repository. To focus on those artefacts that could actu-
ally have been affected by a Discussion, we limit our analysis to Issues and
Pull Requests which had been opened or closed after the Discussion started.
We found 577 such links in our dataset. To investigate whether these links are
indicators of GitHub Discussions affecting other artefacts, we manually anal-
ysed a statistically representative and random sample of 231 links to determine
the relationship between the Discussion and the Issue or Pull Request. Two
authors annotated 20 links separately (Cohen’s k = 0.93), and based on the
near perfect agreement, one author annotated the remaining links. We used
the following codes:

– Newly open: An Issue or Pull Request was opened as a result of a GitHub
Discussion. For example, Pull Request #49813 was opened as a result of
Discussion #48914 in the alpinejs/alpine repository. The discussion started
with a question around potential library use, and after ten discussion mes-
sages, a contributor announced the corresponding Pull Request which has
since been merged.

– Deepen discussion: In some cases, GitHub Discussions was used to deepen
the discussions related to an Issue or Pull Request, in many cases exploring
the broader implications of these artefacts.

– Reference: In other cases, the Discussion thread did not directly affect
an Issue or Pull Request, but referenced it for traceability purposes. For
example, Discussion #438315 in the linkerd/linkerd2 repository provides

12 https://github.com/containrrr/watchtower/discussions/567
13 https://github.com/alpinejs/alpine/pull/498
14 https://github.com/alpinejs/alpine/discussions/489
15 https://github.com/linkerd/linkerd2/discussions/4383

https://github.com/containrrr/watchtower/discussions/567
https://github.com/alpinejs/alpine/pull/498
https://github.com/alpinejs/alpine/discussions/489
https://github.com/linkerd/linkerd2/discussions/4383

12 Hideaki Hata et al.

an update on the project roadmap, referencing five Issues or Pull Requests
as part of the update.

5.2 Quantitative Analysis (RQ1.2)

To identify the types of participants who contribute to GitHub Discussions
(RQ1.2), we investigated the roles of all discussion participants in our dataset
using the GitHub REST API. Although there are some specific roles in
GitHub, such as maintainers (promoted organization members who have a
subset of privileges available to organization owners) and collaborators (out-
side contributors who have Read, Write, or Admin permissions), they are not
always available via the API. To conduct a consistent analysis of all the tar-
geted projects, we distinguish all the discussion participants based on GitHub
terminology, as follows.

– Member : A participant belonging to an organization. After retrieving the
list of organization members with the GitHub REST API v3, we investigate
whether the participant is a member or not. If a project is owned by a
personal developer, we consider the personal developer to be a member.

– Contributor : A participant that is listed in the repository contributors of
a project. We investigate whether the participant is not a member, but
belongs to the repository contributors, which can also be obtained with
the GitHub REST API v3.

– User : Any participant who does not fit the above types.

5.3 Survey (RQ2.2)

To answer RQ2.2, we carry out a survey to get developer feedback on GitHub
Discussions. Following recent work (Robillard and Treude, 2020), we struc-
tured our analysis of the survey answers based on the thematic analysis frame-
work proposed by Braun and Clarke (2006). We process the results in two
ways. For the quantitative results, we show the distribution statistics for each
answer. However, for the qualitative responses, we first identify whether or
not the response is positive or negative against GitHub Discussions. Then in
the results, we present representative quotes to support the themes that arise
from the thematic analysis. We ask developers the following three questions:

1. What is your motivation to use GitHub Discussions for your project?
2. Do you find GitHub Discussions useful or redundant?
3. How does GitHub Discussions differ from the existing communication chan-

nels such as GitHub Issues, Pull Requests, or Stack Overflow?

As a follow-up to our early adopters survey, we sent a similar survey to the
rest of GitHub users. At this point the GitHub Discussion function was open
to all hosted projects. We ask developers the following four questions:

1. What do you think of GitHub Discussions?

GitHub Discussions: An Exploratory Study of Early Adoption 13

Table 1 Demographics of survey participants

first survey (n=19) follow-up survey (n=52)

role core contributor 10 -
regular contributor 8 -
newcomer 1 -

gender male 16 48
prefer not to 3 4
say/non-binary
female - -

programming less than 5 2 -
years 5-9 6 10

10-19 6 14
20-29 3 13
30 and above 2 8

2. Do you currently use an existing communication channel similar to GitHub
Discussions in your software projects?

3. Do you have plans to use GitHub Discussions? Please, kindly add some
reasons to support your decision

4. In your opinion, how does GitHub Discussions differ from submitting a
GitHub Issue or Pull Request? Also, how does it compare to using external
forums such as Stack Overflow?

Table 1 presents an overview of the demographics of our survey participants.
The main survey was distributed to all 98 projects we identified as having
GitHub Discussions activated. On August 11 and 12, 2020, we posted our sur-
vey directly to the discussion channel in each project, yielding 19 responses.
Similar to the first survey, the follow-up survey was distributed to 2,000 ran-
domly selected npm developers that hosted their projects on GitHub. By May
2021, the survey had yielded 52 responses. More than half of respondents are
core contributors, such as maintainers or lead developers. Programming expe-
rience varies from less than 5 years to 30 and above.

5.4 Sentiment Analysis (RQ3.2)

To answer RQ3.2, we analyse and compare the sentiment polarity of posts in
GitHub Discussions and in Stack Overflow. Our focus on sentiment is mo-
tivated by repeated mentions to Stack Overflow being ‘anti-discussion’ on
Hacker News16 and related work which has identified unfriendly comments
on Stack Overflow (Cleary et al, 2013). Being explicitly ‘pro-discussion’, we
speculate that GitHub Discussions could be a forum with comparatively pos-
itive sentiment. To this end, we use the collected 32,714 Discussion posts. In
parallel, we collect questions and answers from Stack Overflow threads related
to the targeted projects. We manually searched Stack Overflow tags for repos-
itory and owner names, resulting in a set of 79 tags (82% of project coverage)

16 https://news.ycombinator.com/item?id=22388639

https://news.ycombinator.com/item?id=22388639

14 Hideaki Hata et al.

as some projects did not have specific tags on Stack Overflow. The list of tags
is included in our replication package in Zenodo.

Using the Stack Exchange Data Explorer,17 we collected 99,918 posts
(questions with the tags and their answers) created between January and July,
2020. We preprocessed all the posts to remove HTML tags and code snippets
using the Beautiful Soup library.18 To extract the sentiment conveyed by the
posts in the GitHub Discussions and in Stack Overflow questions and answers,
we use two sentiment analysis tools specifically tuned for the software engi-
neering domain, namely SentiStrength-SE and Senti4SD, as they have been
demonstrated to be robust enough in either within- or cross-platform set-
tings (Novielli et al, 2018).

Senti4SD (Calefato et al, 2018a) is trained by leveraging supervised ma-
chine learning on a manally annotated gold standard of ∼4K questions, an-
swers, and comments from Stack Overflow. It exploits a suite of features includ-
ing bag of words, sentiment lexicons, and semantic features based on word em-
bedding. For this analysis, we used the Python version of Senti4SD (Calefato
et al, 2019). Since our goal is to label data from Stack Overflow and GitHub,
we use Senti4SD in two different conditions: as off-the-shelf tool, leveraging
the classification model originally trained on Stack Overflow, and by retraining
it on the GitHub gold standard dataset provided by Novielli et al. (Novielli
et al, 2018), in line with their recommendations to retrain supervised tools
with data from the target platform. Senti4SD outputs a polarity label in
{positive, negative, neutral}, consistently with the gold labels in the train-
ing sets used for training.

SentiStrength-SE (Islam and Zibran, 2017) implements a set of heuris-
tics leveraging sentiment lexicons, that is, large collections of words annotated
with their prior polarity, i.e., the positive or negative orientation of the word.
The overall sentiment of a text is computed based on the prior polarity of
the words composing it, under the assumption that words with negative prior
polarity convey negative sentiment, and vice versa. SentiStrength-SE is built
upon the API of the general-purpose tool SentiStrength (Thelwall et al, 2010).
It leverages a manually adjusted version of the SentiStrength lexicon and im-
plements ad hoc heuristics to correct the misclassifications due to domain-
specific semantics of terms in the lexicon. SentiStrength-SE assigns an integer
value between 1 and 5 for the positivity of a text, p and, analogously, between
−1 and −5 for the negativity n. We map these scores to polarity values in
{positive, negative, neutral,mixed}. Specifically, a text is considered positive
when p+n > 0, negative when p+n < 0, and neutral if p = 1 and n = −1. Texts
with a score of p = −n are considered mixed.

We assign the final polarity label for each text in our datasets based on
majority agreement between the output of SentiStrength-SE and the two clas-
sification models of Senti4SD. Specifically, positive, neutral, and negative la-
bels are assigned based on majority voting, that is when at least two tools

17 https://data.stackexchange.com/stackoverflow/query/new
18 https://pypi.org/project/beautifulsoup4/

https://data.stackexchange.com/stackoverflow/query/new
https://pypi.org/project/beautifulsoup4/

GitHub Discussions: An Exploratory Study of Early Adoption 15

Table 2 Majority voting criterion for polarity label assignment using the polarity labels
from SentiStrength-SE and the two versions of Senti4SD.

SentiStrength-SE Senti4SD
Input text Positive

score
Negative

Score
Polarity

label
Trained
on SO

Trained
on GH

Final label

“Which version of AdonisJS?” 1 -1 neutral neutral neutral neutral
“Closing discussion is low quality” 1 -1 neutral negative negative negative
“Glad, you found it :)” 2 -1 positive positive positive positive
“You can also force the <CODE>in your configuration <CODE>.
Thanks! You shouldn’t pass an anonymous class.
Yes, this is a very bad example! Only for demo, no one use it :D”

2 -3 mixed negative negative mixed

Table 3 Frequency of discussion categories in our samples

category from issues not from issues

Errors 102 (37%) 77 (21%)
Discrepancy 25 (9%) 134 (37%)
Review 40 (14%) 80 (22%)
Conceptual 45 (16%) 25 (7%)
Usage 27 (10%) 12 (3%)
Learning 12 (4%) 11 (3%)
Versions 11 (4%) 4 (1%)
Plans 8 (3%) 5 (1%)
Announcement 2 (1%) 0 (0%)
Information 1 (0%) 2 (1%)
Recruitment 0 (0%) 2 (1%)
Other 5 (2%) 5 (1%)
404 0 (0%) 4 (1%)

sum 278 (100%) 361 (100%)

agree on a given polarity class (see the first three examples in Table 2). Mixed
cases are those classified as such by Sentistrength-SE, which issues to separate
predictions for positive and negative polarity (see last example in the table).

6 Results

In the following, we answer our research questions with the data collected
according to the research methodology described above. Each sub-question is
presented in a dedicated section, ending with a summary of the corresponding
results.

6.1 Discussion Categories (RQ1.1)

To answer our first research question (What are GitHub Discussions about?),
we manually annotated a representative sample of discussion threads.

Table 3 shows the result of our annotation. A prevalence of Errors (37%)
is observed in the discussions originating from previous Issues (‘from issues’ in
the table), which denotes the goal of asking for support in fixing errors or un-
derstanding exceptions. As these discussions had been converted from Issues,
it is revealed that developers prefer to manage errors on GitHub Discussions

16 Hideaki Hata et al.

until the underlying bugs have been identified. Errors are reported only in 21%
of posts originally started as discussion (‘not from issues’ in the table). Con-
ceptual and Usage questions are also more frequent in the ‘from issues’ group.
Conversely, we observe a prevalence of Discrepancy (37%) in the ‘not from is-
sues’ sample, compared to 9% observed for the ‘from issues’ group. This might
be an indication of the more open nature of the Discussions, with respect to
Issues or other Q&A platforms, such as Stack Overflow. In fact, Discrepancy
refers to the kind of questions that are not well-suited for Issues due to their
high-level of abstraction and due to the fact that the authors of such posts
have no clue how to solve the problems they describe. Indeed, this is the kind
of questions that would not be appreciated on Stack Overflow, whose guide-
lines explicitly recommend information seekers to provide evidence of previous
attempts to solve the problem.19 For example, Conceptual is considered to be
a category related to such evidence, and is less common in ‘not from issue’
(7%) than in ‘from issue’ (16%). Conversely, Review is more frequent in ‘not
from issue’ (22%) than in previous Issues (14%).

We compare the distribution of categories for GitHub Discussions with the
distribution reported by Beyer et al (2020) for Stack Overflow. In their study,
they performed automated categorization of Stack Overflow questions with the
above-mentioned taxonomy and obtained the following distribution of question
categories: Errors (19%), Discrepancy (26%), Review (7%), Conceptual (22%),
API Usage (36%), Learning (2%), and API change (2%). Compared to such
distribution, there are less Conceptual and Usage, and more Discrepancy and
Review discussions in GitHub Discussions ‘not from issues’. We conjecture that
this is because there is no strict requirement for providing evidence (leading to
more Discrepancy) and because of the increased connectivity to source code
(leading to more Review) for GitHub Discussions. Although the percentages
are small, there are some discussion categories that do not appear in Stack
Overflow, such as Plans, Announcement, Information, and Recruitment in
GitHub Discussions, which indicate that GitHub Discussions is more open
channels for communication and a community knowledge base.

Summary: Errors, Discrepancy, and Review are prevalent discussion
categories in GitHub Discussions, whereas various other categories,
such as Announcement, Information, and Recruitment also exist.

6.2 Discussion Participants (RQ1.2)

To investigate our second research question (Who contributes to GitHub Dis-
cussions?), we distinguish between the roles of Member, Contributor, and User.

19 ‘Writing the perfect question’ by Jon Skeet at https://codeblog.jonskeet.uk/2010/

08/29/writing-the-perfect-question/ linked in the official Stack Overflow guidelines at
https://stackoverflow.com/help/how-to-ask

https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/
https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/
https://stackoverflow.com/help/how-to-ask

GitHub Discussions: An Exploratory Study of Early Adoption 17

Table 4 Discussion patterns by questioners

user contributor member

has selected answer 2,550 (39%) 183 (44%) 33 (23%)
no selected answer 2,464 (39%) 165 (40%) 79 (55%)
no response 1,542 (24%) 68 (16%) 32 (22%)

sum 6,556(100%) 416 (100%) 144(100%)

Table 5 Respondents of selected answers by questioners

user contributor member

answered by member 1,162 (46%) 106 (58%) 19 (58%)
answered by contributor 578 (23%) 72 (39%) 9 (27%)
answered by user 810 (32%) 5 (1%) 5 (15%)

sum 2,550(100%) 183 (100%) 33(100%)

Table 6 Respondents for discussions without answers by questioners

user contributor member

member responded 1,029 (42%) 82 (50%) 69 (87%)
contributor responded 554 (22%) 72 (44%) 4 (5%)
only user responded 881 (36%) 11 (7%) 6 (8%)

sum 2,464(100%) 165 (100%) 79(100%)

Table 4 shows the discussion patterns divided by questioners who started
discussions. From all 7,116 discussions, the majority have been started by
Users, followed by Contributors and Members. For discussions started by all
three types, more than three quarters have responses. Similar to Stack Over-
flow, GitHub Discussions allows users to select answers in discussions. How-
ever, as seen in Section 6.1, not all discussion categories require to select single
answers, which could be seen in the large percentages of discussions without
selected answers (39-55%).

For discussions that have selected answers, Table 5 presents the distribu-
tions of answerers by questioners. For all questioners, answers by Members
are most frequently selected. Table 6 shows the participation patterns in dis-
cussions by questioners, for discussions without selected answers. We divide
discussions into three types, that is, discussions in which at least one Member
responded, discussions for which no Member was involved but Contributors
responded, or discussions in which only Users responded. Similar to Table 5,
Member-responded discussions are most frequent. These results indicate that
Members actively participated in GitHub Discussions.

In addition, we investigated the response time of each Member, Contribu-
tor, and User. The response time was measured from the time a question was
posted until a different person than the one who initially asked the question
commented on it. The median response time was 4.4 hours for Members, 4.1
hours for Contributors, and 8.5 hours for Users. When the Mann-Whitney U

18 Hideaki Hata et al.

Table 7 Domains of Target Projects

domain # projects %

Web libraries and frameworks 37 38%
Software tools 32 33%
Application software 13 13%
Non-web libraries and frameworks 8 8%
System software 8 8%

sum 98 100%

●●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●●

● ●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

System software Web libraries and frameworks

Application software Non−web libraries and frameworks Software tools

0 50 100 150 200 0 50 100 150 200

0 50 100 150 200
1

10

100

1000

1

10

100

1000

Period of using GitHub Discussions (dates)

of

 d
is

cu
ss

io
ns

Language
●

●

●

●

●

●

●

●

●

●

●

●

●

●

C
C#
C++

CSS
Erlang
Go

Java
JavaScript
None

PHP
Python
Ruby

Rust
TypeScript

Fig. 2 The number of discussions (log scale) by the period of using GitHub Discussions.

test was used to compare the differences in response times, there was no sta-
tistically significant difference between Members and Contributors, but there
were statistically significant differences between Members and Users, and be-
tween Contributors and Users. We can see that comments from Members and
Contributors were obtained earlier than comments from other Users.

Summary: Most of the discussions are initiated by Users, and Mem-
bers were actively responding to them on GitHub Discussions. Also,
Members and Contributors responded earlier than other Users.

6.3 Project Characteristics (RQ1.3)

To answer our next research question (What is the relationship between project
characteristics and GitHub Discussion adoption?), we employed a qualitative
analysis to reveal software domains of the targeted projects and analyzed the
relationship of core developer involvement and discussion activities.

The result of the annotation of the software domain is reported in Ta-
ble 7 and indicates a prevalence of Web libraries and framework, immediately

GitHub Discussions: An Exploratory Study of Early Adoption 19

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

0.1 1.0 10.0
Average number of discussions per day

M
em

be
r

in
vo

lv
em

en
t r

at
io

Member
size

●

●

●

●
●

0
25
50
75
100

Fig. 3 Membership involvement ratio by average number of discussions per day (log scale).
Point size represents the number of Members in a project.

followed by Software tools and Application software. A previous study that
investigated the top 2,500 repositories by number of stargazers on GitHub re-
ported that there were many Non-web libraries and frameworks, followed by
Web libraries and frameworks. In comparison, there were not many Non-web
libraries and frameworks in early adopters of GitHub Discussions. Figure 2
presents the distributions of the targeted projects based on the periods using
GitHub Discussions and the total number of discussions. The periods were
derived by identifying the initial discussions that were not converted from ex-
isting Issues. Seven projects are not shown since they had no discussions or had
only discussions converted from issues. Programming languages of the projects
retrieved using the GitHub REST API are shown with different colors, reveal-
ing that the studied projects use various different programming languages. As
expected, there is a correlation between the number of discussions and the
period of using GitHub Discussions. However, some projects have relatively
few discussions considering their discussion periods.

To understand the characteristic of discussion participation and discussion
activities, Figure 3 illustrates the relations of the average number of discussions
per day and the ratio of Member involvement, which is the ratio of discussions
that contain at least one post added by a Member to the total number of
discussions. This is measured based on the posts that were included in the
discussion at the time of collection. A regression line is plotted using LOESS
smoothing, which fits multiple regressions in a local neighborhood (Cleveland
and Loader, 1996). The shaded area indicates the confidence intervals. We ob-
serve that the Member involvement ratio is increasing until 0.5 in the average
number of discussions per day, which could be considered as less active, and

20 Hideaki Hata et al.

Table 8 Reasons for using GitHub Discussions mentioned in initial discussions. Multiple
reasons per project possible.

reason # projects

question-answering 16
idea sharing 12
community engagement 12
decluttering issue tracker 3
information resource building 2
feature requests 2
thank-you 1
testing the feature 16
not meta 51

decreases and disperses for more than 0.5 average discussions per day. This
suggests that high Member involvement encouraged active use of GitHub Dis-
cussions, and, for projects with many discussions per day, Contributors and
Users also contributed to answering questions.

Summary: The early adopters of GitHub Discussions include projects
developed in a variety of programming languages, especially in the do-
mains of “Web libraries and frameworks” and “Software tools”. Among
the projects using GitHub Discussions, there is a positive relationship
between Member involvement and discussion frequency for projects
with less active discussions.

6.4 Initial Discussions (RQ2.1)

To investigate why projects adopt GitHub Discussions, we qualitatively ana-
lyzed the first discussion thread of each project in our data. This methodology
was motivated by our anecdotal observation that the first discussion thread
was often used to discuss the Discussions feature and how to best use it, rather
than project-specific issues.

Table 8 shows the distribution of the codes across the first discussion
threads we annotated. Note that one thread might mention multiple reasons
for using GitHub Discussions. About half of the first discussion threads were
not used for meta discussions (‘not meta’ in Table 8), but were instead used to
discuss project-specific issues. For example, the first discussion thread of the
PrefectHQ/prefect project20 asks for help with a particular error message. The
remaining threads mentioned various reasons for using the GitHub Discussions
feature, in particular question-answering, idea sharing, and community engage-
ment. To further understand developers’ rationale, we conducted a survey, see
next section.

20 https://github.com/PrefectHQ/prefect/discussions/2860

https://github.com/PrefectHQ/prefect/discussions/2860

GitHub Discussions: An Exploratory Study of Early Adoption 21

Summary: For projects which used their first discussion thread to
discuss how to use the new feature, question-answering, idea sharing,
and community engagement were among the top reasons mentioned.

6.5 Developer Survey (RQ2.2)

To understand how software developers perceive the GitHub Discussions fea-
ture, we conducted a survey that 1) targeted the early adopters of GitHub
discussions and 2) targeted the rest of GitHub projects.

What is your motivation to use the discussion channel for your
project? (19 responses): Participants provided a range of answers that
revolved around being a community medium to act as a general forum, and
not necessarily about Issues. One participant responded:

It’s the perfect place to discuss feature request and other communication
forms (like questions) that don’t really fit in Issues.

Four participants mentioned that they liked that discussions were closer to the
code (within the GitHub Platform), as generic questions:

We wanted to offload the constant stream of questions about the project
to someplace other than the issue tracker, but still linked to GitHub.

Do you find GitHub Discussions useful or redundant? (19 re-
sponses): 15 out of the 19 participants were very positive about the usefulness
of GitHub Discussions. One participant responded that it was useful to store
drawn-out discussions for the community:

Useful: allows us to have long, drawn-out discussions that don’t neces-
sarily have to have a conclusion.

On the other hand, there were three participants that were not as positive
towards GitHub Discussions. One participant found the discussions difficult
to differentiate from Issues and Pull Requests.

Redundant: people often don’t know whether to use a discussion or an
issue or a PR. Many discussions end up being opened that are duplicates
of issues (and vice versa). In addition, speaking entirely from impres-
sions, it seems that discussion posters do not seem to hold themselves
to the same standards as issue posters.

How does GitHub Discussions differ from the existing communi-
cation channels such as submitting a GitHub Issue or Pull Request?
Also, how does it compare to other external forums such as Stack
Overflow? (16 responses): One participant noted that:

Way more appropriate for questions and other topics that are not ac-
tionable for the engineering team in any way. GitHub issues and PRs
are used by our engineering team as the foundation for their process.

22 Hideaki Hata et al.

Table 9 Response if respondents use a channel similar to GitHub Discussions

Using Similar Channel # Responses

Yes 19

No 26

Other 7

Total 52

Table 10 Response if respondents consider to use GitHub Discussions

Plans to use GitHub Disussions # Responses

Yes 23

No 21

Other 8

Total 52

Another participant pointed out the accessibility compared to Stack Overflow:

discussions offer a place where we can discuss ideas that aren’t neces-
sarily actionable points. Discussions is very similar to StackOverflow
in it’s approach, but it’s way more accessible as it’s scoped to the project
in question and doesn’t have the barrier of entry (due to the somewhat
hostile community) that StackOverflow does.

Overall, when comparing to Stack Overflow, there was no uniform opinion
as we received both positive and negative responses. One participant noted
that the usefulness of a discussion medium also depends on the nature of the
project:

For our project, the discussion is a much better forum than StackOver-
flow (SO) because we are not a very well-known project and have some
strange quirks in our configuration rules. For more widespread projects,
I would likely prefer SO simply because it has more reach.

For the rest of GitHub projects that have not adopted GitHub Discussions,
they provided the following responses to our survey:

What do you think of GitHub Discussions? (52 responses): All
responses were positive, stating that GitHub Discussions was different from a
pull request or issue. For instance:

I like the nested threads. Regular github issues don’t have nested threads
so the conversations get a bit shuffled.

Do you currently use an existing communication channel similar
to GitHub Discussions in your software projects? (52 responses):
Table 9 show the results of the follow-up survey sent to the rest of GitHub
projects. The results were mixed, with 26 out of the 52 respondents claiming
that they did not use such a similar channel for their communication. On

GitHub Discussions: An Exploratory Study of Early Adoption 23

the other hand, 19 respondents claimed they had an existing communication
channel like GitHub Discussions.

Do you have plans to use GitHub Discussions? (52 responses):
Similar the previous question, Table 10 shows a mixed response to whether or
not the participants had plans to adopt GitHub Discussions into their projects.
Still a bit over 50% (23 participants) were willing to use GitHub Discussions.

In your opinion, how does GitHub Discussions differ from submit-
ting a GitHub Issue or Pull Request? Also, how does it compare to
using external forums such as Stack Overflow? (46 responses): Differ-
ent to the early adopters responses, we find that there were more respondents
that were positive in regards to the difference between GitHub Discussions and
a GitHub Issue or a Pull Request. Applying a thematic analysis approach, we
were able to extract the themes of how the respondents expressed themselves.
Overall, we found 31 responses to be more positive when explaining the differ-
ences of GitHub Discussions. Most discussed the structure and how there was
a need for a discussions thread that fell outside of the development pipelines.
For instance,

Most questions and discussion should not be posted as Issues. However,
an open source project can generate a lot of valid discussion. This is
where GitHub Discussions will shine and for the reasons mentioned
above: open-source communities are oftentimes overwhelmed by requests
that are not issues.

On the other hand, there were also responses that were not as positive. We
found six respondents who raised concerns. For instance,

GH Issues (and pulls) are still the preferred way to tell the
owner/maintainer that there is a bug/feature request/question. They
are enabled on all repos by default whereas Discussions need to be en-
abled. StackOverflow has a wider community would would better be able
to answer any question you throw at them, whereas GH Discussions are
better suited to questions which are very specific to the project you are
asking them in.

Finally, we found 9 responses that were either unable to tell the difference, or
they were neutral with their stance for GitHub Discussions. For example,

Compared to Stack Overflow: sounds very similar - we will see which
system will win :)

Summary: Developers are able to distinguish between question-
answering and engineering tasks and react positively to the accessibility
and integration of GitHub Discussion with other GitHub features, but
they also point to the problem of topic duplication between Discussions
and Issues. For developers that had not adopted GitHub Discussions,
although there were still mixed reactions to its adoption, overall the
feedback was positive, often with a wait-and-see approach.

24 Hideaki Hata et al.

Table 11 Why do links to Issues or Pull Requests exist? Result on a sample of 231 links.

link reason of link appearance

newly open 42
issue deepen discussion 11

reference 90

newly open 37
pull requests deepen discussion 5

reference 46

sum 231

Table 12 Sentiment analysis of all posts and accepted answers in the GitHub Discussions
and Stack Overflow Q&A threads.

GH Discussions posts Stack Overflow posts
polarity all accepted all accepted

positive 12% 13% 3% 4%
negative 6% 4% 6% 3%
neutral 73% 78% 82% 91%
mixed 9% 6% 9% 3%

Overall items 32,714 4,317 99,918 19,227

6.6 Impact on Other Channels (RQ3.1)

To investigate the impact of GitHub Discussions on other channels, we con-
ducted a qualitative analysis of a representative sample of links to Issues and
Pull Requests from Discussions. We only considered links to artefacts that had
been opened or closed after the corresponding Discussion started.

Table 11 shows the distribution of reasons for links to Issues and Pull
Requests from GitHub Discussions. Out of 231 linked Issues and Pull Requests
in our sample, 79 (34%) were created as a result of a GitHub Discussion. In
many other cases, links were provided for reference.

Summary: GitHub Discussions does not exist in isolation, but can
play a crucial role in moving development forward by triggering new
Pull Requests or Issues.

6.7 Sentiment Characteristics (RQ3.2)

To answer our final research question (What are sentiment differences com-
pared to Stack Overflow posts?), we analysed and compared the sentiment
polarity of posts in GitHub Discussions and Stack Overflow. The voting la-
bel was assigned either with full agreement (the three tools agree) in 64%
(GitHub) and 61% (Stack Overflow) of cases or by majority voting in 27%
and 30% of cases (2 over 3 agree), indicating a substantial observed agreement

GitHub Discussions: An Exploratory Study of Early Adoption 25

between the tools. Similarly to Stack Overflow, in GitHub Discussions, an an-
swer can also be flagged as accepted. As such, we complement our analysis
by also investigating whether there is any difference in the accepted answers
between GitHub Discussions and Stack Overflow. The result of the sentiment
analysis is reported in Table 12.

In line with previous work (Calefato et al, 2018b; Murgia et al, 2014) we
observe that the majority of posts is neutral, i.e. they do not convey any
emotions or opinions, which is reasonable, given the technical nature of Dis-
cussions. The amount of both mixed and negative posts in the two samples is
comparable. As for positive sentiment, we observe that it is present in 12% of
GitHub Discussions while it appears in 3% only of Stack Overflow posts, for
which we observe also a higher percentage of neutral cases. This might be due
to the Stack Overflow community adhering to a more neutral communication
style, in line with official recommendations. A recent empirical study demon-
strated how expressing either positive or negative emotions is associated with
a lower probability of obtaining a useful answer (Calefato et al, 2018b), which
further supports our conjecture. In both datasets, accepted answers appear
more neutral, as a consequence of the less negative and mixed sentiment. We
also observe a small increment in positive sentiment. It is the case, for ex-
ample, of sentences expressing either wish (e.g., ‘See the code below! Happy
2020!’), politeness expressions (e.g., ‘I hope this solves your issue’) or positive
sentiment in formulating requests (e.g., ‘It would be nice if we can convert that
issue into a discussion ,’). To conclude, the differences in the sentiment ob-
served for the two samples are mainly due to GitHub Discussions being more
positive than SO posts. The results of chi-squared test applied to the contin-
gency table show that the differences are statistically significant (p < .05) but
the effect size is negligible (Cramer’s V = .17) (Cohen, 1988).

Previous results of qualitative analysis of emotions in Stack Overflow sug-
gest that a polarity-based operationalization of affect might not be adequate to
capture the nuances in the attitude conveyed by negative sentiment (Calefato
et al, 2018b). In fact, the presence of negative sentiment does not necessarily
indicate the use of abusive language or toxic interactions (Gachechiladze et al,
2017). Being able to identify rude, aggressive comments among negative ones
is crucial, as toxicity might impair effective collaboration and prevent people
from contributing to software projects (Steinmacher et al, 2014).

In line with this view, we performed a follow-up analysis to investigate the
toxicity of 1,962 posts from GitHub Discussions and 5,635 questions and an-
swers from Stack Overflow that were classified as negative. Consistently with
previous research (Raman et al, 2020), we computed the toxicity scores for
both samples of negative posts, using the Google Perspective API,21 specifi-
cally designed to identify abusive language and harassment in online conversa-
tions. The Perspective API provides, for a given text in input, a toxicity score
in [0,1] representing the probability that a reader would perceive the text as
rude or disrespectful, leading him/her to abandon the conversation. Results

21 www.perspectiveapi.com

www.perspectiveapi.com

26 Hideaki Hata et al.

Fig. 4 Toxicity in negative posts on GitHub Discussions and Stack Overflow.

are reported in Figure 4 and show that toxic posts are rare in line with pre-
vious evidence provided by Raman et al (2020), who analyzed the toxicity in
open source discussions.

Summary: The majority of Discussion posts is neutral. Toxicity and
abusive language are rarely detected. The sentiment is comparable to
the sentiment of Stack Overflow posts except for positive sentiment,
which is more frequent in GitHub Discussions.

7 Discussion

Our findings can be summarized into the following recommendations for prac-
titioners.

– Set guidelines for participating in discussions. As found in the response
from developers in Section 6.5, users sometimes find it difficult to choose
an appropriate channel from Discussions, Issues, and Pull Requests. It
should be beneficial for community members to set a policy of using these
channels depending on the project-specific development processes.

– Encourage core developers to participate in discussions. It is evident that
the involvement of core developers is crucial in the successful use of GitHub
Discussions as seen in Section 6.3.

GitHub Discussions: An Exploratory Study of Early Adoption 27

– Prepare for newcomers. GitHub Discussions can be a gateway for newcom-
ers to participate by creating discussions specifically for them (Steinmacher
et al, 2019). Not only does a project present tasks that are easy for new-
comers to start, but it can also provide a place for mentoring and effective
communication between mentors and newcomers, potentially solving the
mentoring challenges pointed out in a recent study (Balali et al, 2020).

Besides, our analysis has shown that Stack Overflow discussions are more
neutral compared to GitHub Discussions and also less positive (see Sec-
tion 6.7). Software projects might use this as an opportunity to establish
GitHub Discussions as a feedback channel that explicitly encourages users
to utter their appreciation for a certain feature or a response they received
in a discussion. This would also help to distinguish GitHub Discussions from
discussions on Stack Overflow, where, e.g., thank you messages are discour-
aged.22

From our exploratory study of early adoption of GitHub Discussions, we
see the following avenues for future research:

– Tool support for effective discussions. As developers mentioned (Sec-
tion 6.5), duplicate posts in Discussions and Issues could be troublesome.
Automated support using bots like (Abdellatif et al, 2020) is promising.

– Further studies of error/issue handling. As we saw in Section 6.1, more
than a third of the issues converted to discussions were “errors”. This can
be attributed to the fact that some projects prefer to have discussions on
how to deal with errors, unexpected behavior, etc., and to determine if
errors are bugs, in discussions rather than in issues. As seen in Section 6.6,
there are issues and pull requests created after discussing potential issues
and features, which indicates that the workflow of discussion before work-
ing on issues or pull requests is used in some projects. Such a new workflow
may result in new bug lifecycles that are different from those previously
considered (Aranda and Venolia, 2009). However, we have also observed
that some projects had stopped using GitHub Discussions. For example,
the dotnet/aspnetcore project decided to use issues for discussions and dis-
abled GitHub Discussions because they faced difficulties in labeling and
assignment using it.23 What features are suitable for discussions may vary
depending on the characteristics of projects, such as development histo-
ries, types of end users, maturity of the communities, etc. Since GitHub
Discussions is still in beta, there is still room for improvement in terms
of functionality. A better understanding of the required features and er-
ror/issue handling process depending on the characteristics of projects will
be a challenge in the future.

– Further studies of human aspects. As recent studies have shown, communi-
cation is an essential attribute of a great maintainer (Dias et al, 2021). A
quantitative analysis of the relationship between the type and experience

22 https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/
23 https://github.com/dotnet/aspnetcore/issues/29935

https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/
https://github.com/dotnet/aspnetcore/issues/29935

28 Hideaki Hata et al.

of developers and the discussion categories that require different skills such
as technical, social, and managerial will be a future research challenge.

– Relationship between GitHub Discussions and other channels. In addition
to comparing to Stack Overflow, future work can also consider compar-
ing GitHub Discussions to other communication channels used by open
source projects, such as Gitter (Chatterjee et al, 2021; Sahar et al, 2021),
for example focusing on links between Gitter conversations and GitHub
Discussions or comparing the channels in terms of their sentiment.

8 Threats to Validity

Threats to internal validity concern the possibility of introducing a threat
due to a possible causal relationship between the treatment and the result of
an analysis. As for sentiment and toxicity in GitHub Discussions and Stack
Overflow posts, we performed the analysis at the platform level. However, we
might have observed different distribution of sentiment and toxicity at the
level of individual repositories, depending on the degree of awareness of the
code of conduct of community members of a software project. Furthermore,
we analysed and compared the sentiment polarity distribution in two dataset
including 32,714 posts from GitHub Discussions and 99,918 posts from Stack
Overflow, respectively. Specifically, we collected posts from Stack Overflow
based on the presence of tags and owner names from GitHub projects in our
dataset. The list of keywords (tags and name) was obtained via manual search
on Stack Overflow. We acknowledge that manual search might introduce a
threat to validity as well as replicability issues. To mitigate this threat, we
include the list of keywords in our replication package. Furthermore, some
projects did not have specific tags on Stack Overflow. Further replications
could be conducted in the future on a larger set of data in order to include more
projects, thus strengthening the representativeness of the sentiment analysis
study.

Threats to construct validity concern the degree of accuracy to which the
variables defined in a study measure the constructs of interest. As for analysis
of sentiment, we operationalized developers’ emotions by measuring the senti-
ment polarity of a text, that is its positive or negative orientation. However,
emotion lexicon can convey a wide range of affective states or attitudes to-
wards the interlocutor beyond polarity. As for participant types in Section 6.4,
although we identified three types, more fine-grained type identification in-
cluding maintainers and collaborators could reveal project-specific patterns of
discussion activities and discussion participation.

Threats to external validity concern the ability to generalize the findings
in this study. As we study the usage of a beta feature, our data is derived from
a short term (seven months). Long-term studies may yield different conclu-
sions. In addition, since we studied the use of GitHub Discussions in popular
(based on the number of stargazers) and selected (by GitHub for beta testing)
projects, our results could be biased to those specific communities. To address

GitHub Discussions: An Exploratory Study of Early Adoption 29

these issues, further research is needed based on various projects participating
in GitHub Discussions after the feature is officially released.

9 Related Work

9.1 Communication during Software Development

Discussions play a vital role in reaching a decision when doing code review.
Tsay et al (2014) studied how developers used discussions to evaluate Pull Re-
quests. Hirao et al (2020) studied the divergent nature during the code review,
while Ebert et al (2019) present a taxonomy of confusion that a reviewer may
encounter when conducting a review. Pascarella et al (2018) present a taxon-
omy of information needs that help with conducting a review. Sulistyo Nugroho
et al (2020) studied the characteristics of the usage of a project-specific forum
in the Eclipse project. Other work has explored different aspects related to
the analytics of review comments (Hirao et al, 2019; Rahman et al, 2017).
One aspect that could benefit is how review comments could be used for re-
viewer recommendation (Jiang et al, 2017), where discussion recommendations
can recommend appropriate team members to help answer generic questions
from the community. This can be beneficial for the community, especially for
newcomers or even to help deepen the understanding between both users and
developers of the software.

Besides code review, discussions also take place on online platforms such
as Stack Overflow. Previous work studied aspects such as who participates
in such discussions (Vasilescu et al, 2012; Morrison and Murphy-Hill, 2015),
how frequently users contribute (Wang et al, 2013), how frequently discussed
code snippets are copied between platforms (Yang et al, 2017; Baltes and
Diehl, 2019), and how content evolves on Q&A websites (Baltes et al, 2018;
Wang et al, 2018). From the study of discussions in issue tracking systems,
Arya et al. reported various discussion categories in issue discussions, such as
observed bug behaviour, bug reproduction, solution discussion, etc. (Arya et al,
2019). We observed some categories overlap with categories found in GitHub
Discussions, such as task progress, future plan, and social conversation. Since
these discussions do not need to be closed with particular resolutions, GitHub
Discussions could be an appropriate channel as mentioned by developers in
Section 6.5.

From the point of a community knowledge base, source code comments have
been found to document information specific to the associated code, such as
technical debt (Potdar and Shihab, 2014), todo tasks (Storey et al, 2008), and
algorithm (Inokuchi et al, 2019). Similar to the analysis in Section 6.6, refer-
encing and connecting to external sources in source code comments had been
analyzed (Hata et al, 2019). A recent study identified specific cases of issues
and technical debt, called on-hold self-admitted technical debt, which needs
appropriate management of code considering the updates of issues (Maipradit
et al, 2020b,a). Although different knowledge is communicated and discussed in

30 Hideaki Hata et al.

different communication channels, a new feature of GitHub Discussions could
be a center of a community knowledge base connecting with other artefacts.

9.2 Sentiment Polarity in Communication Channels

Our sentiment analysis in Section 6.7 is motivated by the interest of the re-
search community in sentiment analysis of developers’ communication traces
(Novielli and Serebrenik, 2019; Novielli et al, 2019). Specifically, researchers
investigated how developers share their emotions in the communication chan-
nels within collaborative development environments, including issue tracking
systems (e.g., Jira) (Mäntylä et al, 2016; Ortu et al, 2015), software repository
forges (e.g., GitHub) (Guzman et al, 2014; Pletea et al, 2014; Sinha et al,
2016), and technical Q&A sites (e.g., Stack Overflow) (Uddin and Khomh,
2017; Calefato et al, 2018b; Lin et al, 2019). What the above mentioned
studies have in common is that they rely on sentiment analysis, – i.e. the
study of the subjectivity (neutral vs. emotionally loaded) and polarity (pos-
itive vs. negative) of a text (Pang and Lee, 2008) – to mine emotions and
opinions from textual developer-generated content. Beyond sentiment polar-
ity, Gachechiladze et al. investigated the problem of identifying the target of
anger expressions in collaborative software development (Gachechiladze et al,
2017). They distinguish between self -directed emotions, such as sadness, which
do not involve a negative attitude towards the interlocutor, hostile language
expressing anger towards others, and negative evaluation of objects, such as
tools or programming languages. More recently, Raman and colleagues pro-
posed an approach to mine the toxicity of developers’ online conversations
towards identification and mitigation of unhealthy interactions in open source
software development (Raman et al, 2020). Toxicity has been also reported as
a problem of Stack Overflow, which has been recognized as a hostile place espe-
cially for newcomers, women, non-native speakers, and others in marginalized
groups by both users24 and community managers.25

10 Conclusion

We conducted the first comprehensive mixed-methods study on how and why
software developers adopt GitHub Discussions and how they perceive the new
feature’s usefulness. We further studied how Discussions compare to existing
channels such as GitHub Issues, Pull Requests, and Stack Overflow threads.
Based on an analysis of Discussions in 92 GitHub projects, a survey with
developers already using the feature, and a comparison with related Stack
Overflow posts, we derive the following recommendations for project managers.
(i) Set guidelines for participating in discussions, as users sometimes find it

24 https://meta.stackoverflow.com/q/262791
25 https://stackoverflow.blog/2018/04/26/stack-overflow-isnt-very-welcoming-

its-time-for-that-to-change/

https://meta.stackoverflow.com/q/262791
https://stackoverflow.blog/2018/04/26/stack-overflow-isnt-very-welcoming-its-time-for-that-to-change/
https://stackoverflow.blog/2018/04/26/stack-overflow-isnt-very-welcoming-its-time-for-that-to-change/

GitHub Discussions: An Exploratory Study of Early Adoption 31

difficult to choose an appropriate channel from Discussions, Issues, and Pull
Requests. (ii) Encourage core developers to participate in discussions, as it is
evident that the involvement of core developers is crucial in the successful use
of GitHub Discussions.

References

Abdellatif A, Badran K, Shihab E (2020) MSRBot: Using bots to answer ques-
tions from software repositories. Empir Softw Eng 25(3):1834–1863, DOI 10.
1007/s10664-019-09788-5, URL https://doi.org/10.1007/s10664-019-

09788-5

Allamanis M, Sutton C (2013) Why, when, and what: Analyzing stack overflow
questions by topic, type, and code. In: Proc. of the 10th Working Conference
on Mining Software Repositories, IEEE Press, MSR ’13, pp 53–56

Aranda J, Venolia G (2009) The secret life of bugs: Going past the errors and
omissions in software repositories. In: Proc. of the 31st International Confer-
ence on Software Engineering, Association for Computing Machinery, New
York, NY, USA, ICSE ’09, p 298–308, DOI 10.1109/ICSE.2009.5070530,
URL https://doi.org/10.1109/ICSE.2009.5070530

Arya D, Wang W, Guo JLC, Cheng J (2019) Analysis and detection of in-
formation types of open source software issue discussions. In: Proc. of the
41st International Conference on Software Engineering, IEEE Press, ICSE
’19, pp 454–464, DOI 10.1109/ICSE.2019.00058, URL https://doi.org/

10.1109/ICSE.2019.00058

Balali S, Annamalai U, Padala HS, Trinkenreich B, Gerosa MA, Steinmacher I,
Sarma A (2020) Recommending tasks to newcomers in oss projects: How do
mentors handle it? In: Proc. of the 16th International Symposium on Open
Collaboration, Association for Computing Machinery, New York, NY, USA,
OpenSym ’20, DOI 10.1145/3412569.3412571, URL https://doi.org/10.

1145/3412569.3412571

Baltes S, Diehl S (2019) Usage and attribution of stack overflow code snippets
in github projects. Empir Softw Eng 24(3):1259–1295, DOI 10.1007/s10664-
018-9650-5, URL https://doi.org/10.1007/s10664-018-9650-5

Baltes S, Dumani L, Treude C, Diehl S (2018) Sotorrent: reconstructing and
analyzing the evolution of stack overflow posts. In: Proc. of the 15th Inter-
national Conference on Mining Software Repositories, ACM, MSR ’18, pp
319–330, DOI 10.1145/3196398.3196430, URL https://doi.org/10.1145/

3196398.3196430

Beyer S, Pinzger M (2016) Grouping android tag synonyms on stack overflow.
In: Proc. of the 13th International Conference on Mining Software Repos-
itories, Association for Computing Machinery, New York, NY, USA, MSR
’16, pp 430–440, DOI 10.1145/2901739.2901750, URL https://doi.org/

10.1145/2901739.2901750

Beyer S, Macho C, Di Penta M, Pinzger M (2020) What kind of questions do
developers ask on Stack Overflow? A comparison of automated approaches

https://doi.org/10.1007/s10664-019-09788-5
https://doi.org/10.1007/s10664-019-09788-5
https://doi.org/10.1109/ICSE.2009.5070530
https://doi.org/10.1109/ICSE.2019.00058
https://doi.org/10.1109/ICSE.2019.00058
https://doi.org/10.1145/3412569.3412571
https://doi.org/10.1145/3412569.3412571
https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1145/3196398.3196430
https://doi.org/10.1145/3196398.3196430
https://doi.org/10.1145/2901739.2901750
https://doi.org/10.1145/2901739.2901750

32 Hideaki Hata et al.

to classify posts into question categories. Empir Softw Eng 25(3):2258–2301,
DOI 10.1007/s10664-019-09758-x

Borges H, Hora A, Valente MT (2016) Understanding the factors that impact
the popularity of github repositories. In: Proc. of the 32nd IEEE Interna-
tional Conference on Software Maintenance and Evolution, ICSME ’16, pp
334–344

Braun V, Clarke V (2006) Using thematic analysis in psychology. Qualitative
research in psychology 3(2):77–101

Calefato F, Lanubile F, Maiorano F, Novielli N (2018a) Sentiment po-
larity detection for software development. Empir Softw Eng 23(3):1352–
1382, DOI 10.1007/s10664-017-9546-9, URL https://doi.org/10.1007/

s10664-017-9546-9

Calefato F, Lanubile F, Novielli N (2018b) How to ask for technical help?
evidence-based guidelines for writing questions on stack overflow. Informa-
tion & Software Technology 94:186–207, DOI 10.1016/j.infsof.2017.10.009,
URL https://doi.org/10.1016/j.infsof.2017.10.009

Calefato F, Lanubile F, Novielli N, Quaranta L (2019) Emtk: The emotion
mining toolkit. In: Proc. of the 4th International Workshop on Emotion
Awareness in Software Engineering, IEEE Press, SEmotion ’19, pp 34–
37, DOI 10.1109/SEmotion.2019.00014, URL https://doi.org/10.1109/

SEmotion.2019.00014

Chatterjee P, Damevski K, Pollock L (2021) Automatic extraction of opinion-
based q&a from online developer chats. In: Proc. of the 43rd International
Conference on Software Engineering (ICSE), IEEE, pp 1260–1272

Cleary B, Gómez C, Storey MA, Singer L, Treude C (2013) Analyzing the
friendliness of exchanges in an online software developer community. In:
Proc. of the 6th International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE), IEEE, pp 159–160

Cleveland WS, Loader C (1996) Smoothing by local regression: Principles and
methods. In: Härdle W, Schimek MG (eds) Statistical Theory and Compu-
tational Aspects of Smoothing, Physica-Verlag HD, Heidelberg, pp 10–49

Cohen J (1988) Statistical Power Analysis for the Behavioral Sciences.
Lawrence Erlbaum Associates

Dias E, Meirelles P, Castor F, Steinmacher I, Wiese I, Pinto G (2021) What
makes a great maintainer of open source projects? In: Proc. of the 43rd
International Conference on Software Engineering, ICSE ’21, pp 982–994,
DOI 10.1109/ICSE43902.2021.00093

Ebert F, Castor F, Novielli N, Serebrenik A (2019) Confusion in code reviews:
Reasons, impacts, and coping strategies. In: Proc of the IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering,
SANER ’19, pp 49–60

Fleiss JL, Cohen J (1973) The equivalence of weighted kappa and the intraclass
correlation coefficient as measures of reliability. Educational and Psycholog-
ical Measurement 33(3):613–619, DOI 10.1177/001316447303300309

Gachechiladze D, Lanubile F, Novielli N, Serebrenik A (2017) Anger and its
direction in collaborative software development. In: Proc. of the 39th In-

https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1016/j.infsof.2017.10.009
https://doi.org/10.1109/SEmotion.2019.00014
https://doi.org/10.1109/SEmotion.2019.00014

GitHub Discussions: An Exploratory Study of Early Adoption 33

ternational Conference on Software Engineering: New Ideas and Emerging
Results Track, IEEE Press, ICSE-NIER ’17, pp 11–14, DOI 10.1109/ICSE-
NIER.2017.18, URL https://doi.org/10.1109/ICSE-NIER.2017.18

Giuffrida R, Dittrich Y (2013) Empirical studies on the use of social software
in global software development–a systematic mapping study. Information
and Software Technology 55(7):1143–1164

Guzman E, Azócar D, Li Y (2014) Sentiment analysis of commit comments
in github: An empirical study. In: Proc. of the 11th Working Conf. on
Mining Software Repositories, ACM, New York, NY, USA, MSR ’14, pp
352–355, DOI 10.1145/2597073.2597118, URL https://doi.org/10.1145/

2597073.2597118

Guzzi A, Bacchelli A, Lanza M, Pinzger M, Van Deursen A (2013) Commu-
nication in open source software development mailing lists. In: Proc. of the
10th Working Conference on Mining Software Repositories, IEEE, MSR ’13,
pp 277–286

Hata H, Todo T, Onoue S, Matsumoto K (2015) Characteristics of sustainable
oss projects: A theoretical and empirical study. In: Proc. of the IEEE/ACM
8th International Workshop on Cooperative and Human Aspects of Software
Engineering, IEEE Computer Society, USA, CHASE ’15, pp 15–21, DOI
10.1109/CHASE.2015.9, URL https://doi.org/10.1109/CHASE.2015.9

Hata H, Treude C, Kula RG, Ishio T (2019) 9.6 million links in source
code comments: Purpose, evolution, and decay. In: Proc. of the 41st In-
ternational Conference on Software Engineering, IEEE Press, ICSE ’19,
pp 1211–1221, DOI 10.1109/ICSE.2019.00123, URL https://doi.org/10.

1109/ICSE.2019.00123

Hata H, Novielli N, Baltes S, Kula RG, Treude C (2021) Research Artifact:
An Exploratory Study of GitHub Discussions Early Adoption. DOI 10.5281/
zenodo.5026134, URL https://doi.org/10.5281/zenodo.5026134

Hirao T, Kula RG, Ihara A, Matsumoto K (2019) Understanding developer
commenting in code reviews. IEICE Transactions on Information and Sys-
tems E102.D(12):2423–2432

Hirao T, McIntosh S, Ihara A, Matsumoto K (2020) Code reviews with diver-
gent review scores: An empirical study of the openstack and qt communities.
IEEE Transactions on Software Engineering

Inokuchi A, Sulistyo Nugroho Y, Wattanakriengkrai S, Konishi F, Hata H,
Treude C, Monden A, Matsumoto K (2019) From Academia to Software
Development: Publication Citations in Source Code Comments. arXiv e-
prints arXiv:1910.06932, 1910.06932

Islam MR, Zibran MF (2017) Leveraging automated sentiment analysis in
software engineering. In: Proc. of the 14th International Conf. on Mining
Software Repositories, IEEE Press, MSR ’17, pp 203–214, DOI 10.1109/
MSR.2017.9, URL https://doi.org/10.1109/MSR.2017.9

Jiang J, Yang Y, He J, Blanc X, Zhang L (2017) Who should comment on this
pull request? analyzing attributes for more accurate commenter recommen-
dation in pull-based development. Inf Softw Technol pp 48–62

https://doi.org/10.1109/ICSE-NIER.2017.18
https://doi.org/10.1145/2597073.2597118
https://doi.org/10.1145/2597073.2597118
https://doi.org/10.1109/CHASE.2015.9
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/10.5281/zenodo.5026134
1910.06932
https://doi.org/10.1109/MSR.2017.9

34 Hideaki Hata et al.

Lin B, Zampetti F, Bavota G, Di Penta M, Lanza M (2019) Pattern-
based mining of opinions in q&a websites. In: Proc. of the 41st Inter-
national Conference on Software Engineering, IEEE Press, ICSE ’19, pp
548–559, DOI 10.1109/ICSE.2019.00066, URL https://doi.org/10.1109/

ICSE.2019.00066

Maipradit R, Lin B, Nagy C, Bavota G, Lanza M, Hata H, Matsumoto
K (2020a) Automated identification of on-hold self-admitted techni-
cal debt. In: Proc. of the IEEE 20th International Working Confer-
ence on Source Code Analysis and Manipulation, IEEE Computer So-
ciety, Los Alamitos, CA, USA, SCAM ’20, pp 54–64, DOI 10.1109/
SCAM51674.2020.00011, URL https://doi.ieeecomputersociety.org/

10.1109/SCAM51674.2020.00011

Maipradit R, Treude C, Hata H, Matsumoto K (2020b) Wait for it: identify-
ing “On-Hold” self-admitted technical debt. Empir Softw Eng 25(5):3770–
3798, DOI 10.1007/s10664-020-09854-3, URL https://doi.org/10.1007/

s10664-020-09854-3

Mäntylä M, Adams B, Destefanis G, Graziotin D, Ortu M (2016) Min-
ing valence, arousal, and dominance: Possibilities for detecting burnout
and productivity? In: Proc. of the 13th International Conf. on Min-
ing Software Repositories, ACM, New York, NY, USA, MSR ’16, pp
247–258, DOI 10.1145/2901739.2901752, URL https://doi.org/10.1145/

2901739.2901752

Morrison P, Murphy-Hill E (2015) Is programming knowledge related to age?
An exploration of Stack Overflow. In: Di Penta M, Pinzger M, Robbes
R (eds) 12th Working Conference on Mining Software Repositories (MSR
2015), IEEE Computer Society, Florence, Italy, pp 69–72

Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating github for engi-
neered software projects. Empir Softw Eng 22(6):3219–3253, DOI 10.1007/
s10664-017-9512-6, URL https://doi.org/10.1007/s10664-017-9512-6

Murgia A, Tourani P, Adams B, Ortu M (2014) Do developers feel emotions?
an exploratory analysis of emotions in software artifacts. In: Proc. of the
11th Working Conf. on Mining Software Repositories, ACM, New York, NY,
USA, MSR ’14, pp 262–271, DOI 10.1145/2597073.2597086, URL https:

//doi.org/10.1145/2597073.2597086

Novielli N, Serebrenik A (2019) Sentiment and emotion in software engineer-
ing. IEEE Software 36(5):6–23, DOI 10.1109/MS.2019.2924013

Novielli N, Girardi D, Lanubile F (2018) A benchmark study on sentiment
analysis for software engineering research. In: Proc. of the 15th Interna-
tional Conference on Mining Software Repositories, Association for Comput-
ing Machinery, New York, NY, USA, MSR ’18, pp 364–375, DOI 10.1145/
3196398.3196403, URL https://doi.org/10.1145/3196398.3196403

Novielli N, Begel A, Maalej W (2019) Introduction to the special issue on
affect awareness in software engineering. Journal of Systems and Software
148:180–182, DOI https://doi.org/10.1016/j.jss.2018.11.016, URL http://

www.sciencedirect.com/science/article/pii/S0164121218302504

https://doi.org/10.1109/ICSE.2019.00066
https://doi.org/10.1109/ICSE.2019.00066
https://doi.ieeecomputersociety.org/10.1109/SCAM51674.2020.00011
https://doi.ieeecomputersociety.org/10.1109/SCAM51674.2020.00011
https://doi.org/10.1007/s10664-020-09854-3
https://doi.org/10.1007/s10664-020-09854-3
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/2597073.2597086
https://doi.org/10.1145/2597073.2597086
https://doi.org/10.1145/3196398.3196403
http://www.sciencedirect.com/science/article/pii/S0164121218302504
http://www.sciencedirect.com/science/article/pii/S0164121218302504

GitHub Discussions: An Exploratory Study of Early Adoption 35

Ortu M, Adams B, Destefanis G, Tourani P, Marchesi M, Tonelli R (2015)
Are bullies more productive? empirical study of affectiveness vs. issue fixing
time. In: Proc. of the 12th Working Conf. on Mining Software Repositories,
IEEE Press, MSR ’15, pp 303–313

Pang B, Lee L (2008) Opinion mining and sentiment analysis. Foundations
and Trends in Information Retrieval 2(1-2):1–135, DOI 10.1561/1500000011,
URL https://doi.org/10.1561/1500000011

Pascarella L, Spadini D, Palomba F, Bruntink M, Bacchelli A (2018) Infor-
mation Needs in Contemporary Code Review. In: Proc. of the 21st ACM
Conference on Computer Supported Cooperative Work, CSCW ’18, vol 2,
pp 135:1–135:27

Pletea D, Vasilescu B, Serebrenik A (2014) Security and emotion: Sentiment
analysis of security discussions on github. In: Proc. of the 11th Working
Conf. on Mining Software Repositories, ACM, New York, NY, USA, MSR
’14, pp 348–351, DOI 10.1145/2597073.2597117, URL https://doi.org/

10.1145/2597073.2597117

Potdar A, Shihab E (2014) An exploratory study on self-admitted techni-
cal debt. In: Proc. of the 2014 IEEE International Conference on Soft-
ware Maintenance and Evolution, IEEE Computer Society, USA, ICSME
’14, pp 91–100, DOI 10.1109/ICSME.2014.31, URL https://doi.org/10.

1109/ICSME.2014.31

Rahman MM, Roy CK, Kula RG (2017) Predicting usefulness of code review
comments using textual features and developer experience. In: Proc. of the
14th International Conference on Mining Software Repositories, MSR ’17,
pp 215–226

Raman N, Cao M, Tsvetkov Y, Kästner C, Vasilescu B (2020) Stress and
burnout in open source: Toward finding, understanding, and mitigating un-
healthy interactions. In: Proc. of the ACM/IEEE 42nd International Con-
ference on Software Engineering: New Ideas and Emerging Results, Associ-
ation for Computing Machinery, New York, NY, USA, ICSE-NIER ’20, pp
57–60, DOI 10.1145/3377816.3381732, URL https://doi.org/10.1145/

3377816.3381732

Robillard MP, Treude C (2020) Understanding wikipedia as a resource for op-
portunistic learning of computing concepts. In: Proc. of the 51st ACM Tech-
nical Symposium on Computer Science Education, Association for Comput-
ing Machinery, New York, NY, USA, SIGCSE ’20, pp 72—-78, DOI 10.1145/
3328778.3366832, URL https://doi.org/10.1145/3328778.3366832

Rosen C, Shihab E (2016) What are mobile developers asking about? a
large scale study using stack overflow. Empir Softw Eng 21(3):1192–
1223, DOI 10.1007/s10664-015-9379-3, URL https://doi.org/10.1007/

s10664-015-9379-3

Sahar H, Hindle A, Bezemer CP (2021) How are issue reports discussed in
gitter chat rooms? Journal of Systems and Software 172:110852

Sinha V, Lazar A, Sharif B (2016) Analyzing developer sentiment in commit
logs. In: Proc. of the 13th International Conf. on Mining Software Repos-
itories, ACM, New York, NY, USA, MSR ’16, pp 520–523, DOI 10.1145/

https://doi.org/10.1561/1500000011
https://doi.org/10.1145/2597073.2597117
https://doi.org/10.1145/2597073.2597117
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1145/3377816.3381732
https://doi.org/10.1145/3377816.3381732
https://doi.org/10.1145/3328778.3366832
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.1007/s10664-015-9379-3

36 Hideaki Hata et al.

2901739.2903501, URL https://doi.org/10.1145/2901739.2903501

Steinmacher I, Graciotto Silva MA, Gerosa MA, Redmiles D (2014) A system-
atic literature review on the barriers faced by newcomers to open source
software projects. Information and Software Technology 59:67–85, DOI
10.1016/j.infsof.2014.11.001

Steinmacher I, Treude C, Gerosa MA (2019) Let me in: Guidelines for the
successful onboarding of newcomers to open source projects. IEEE Software
36(4):41–49, DOI 10.1109/MS.2018.110162131

Storey MA, Ryall J, Bull RI, Myers D, Singer J (2008) Todo or to bug:
Exploring how task annotations play a role in the work practices of soft-
ware developers. In: Proc. of the 30th International Conference on Soft-
ware Engineering, Association for Computing Machinery, New York, NY,
USA, ICSE ’08, pp 251–260, DOI 10.1145/1368088.1368123, URL https:

//doi.org/10.1145/1368088.1368123

Storey MA, Zagalsky A, Figueira Filho F, Singer L, German DM (2016) How
social and communication channels shape and challenge a participatory cul-
ture in software development. IEEE Transactions on Software Engineering
43(2):185–204

Sulistyo Nugroho Y, Islam S, Nakasai K, Rehman I, Hata H, Gaikovina Kula
R, Nagappan M, Matsumoto K (2020) Sustaining a Healthy Ecosystem:
Participation, Discussion, and Interaction in Eclipse Forums. arXiv e-prints
arXiv:2009.09130, 2009.09130

Thelwall M, Buckley K, Paltoglou G, Cai D, Kappas A (2010) Sentiment
strength detection in short informal text. J Am Soc Inf Sci Technol
61(12):2544–2558

Treude C, Barzilay O, Storey MA (2011) How do programmers ask and an-
swer questions on the web? (nier track). In: Proc. of the 33rd International
Conference on Software Engineering, Association for Computing Machinery,
New York, NY, USA, ICSE ’11, pp 804–807, DOI 10.1145/1985793.1985907,
URL https://doi.org/10.1145/1985793.1985907

Tsay J, Dabbish L, Herbsleb J (2014) Let’s talk about it: Evaluating contri-
butions through discussion in github. In: Proc. of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’14,
pp 144–154

Uddin G, Khomh F (2017) Opiner: An opinion search and summarization
engine for apis. In: Proc. of the 32nd IEEE/ACM International Conf. on
Automated Software Engineering, IEEE Press, ASE ’17, pp 978–983

Vasilescu B, Capiluppi A, Serebrenik A (2012) Gender, Representation and
Online Participation: A Quantitative Study of StackOverflow. In: Aberer
K, Flache A, Jager W, Liu L, Tang J, Gueret C (eds) Proc. of the 4th Inter-
national Conference on Social Informatics, Springer, Lausanne, Switzerland,
SocInfo ’12, pp 332–338

Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the
kappa statistic. Family medicine 37 5:360–3

Wang S, Lo David, Jiang L (2013) An empirical study on developer interactions
in StackOverflow. In: Shin SY, Maldonado JC (eds) Proc. of the 28th Annual

https://doi.org/10.1145/2901739.2903501
https://doi.org/10.1145/1368088.1368123
https://doi.org/10.1145/1368088.1368123
2009.09130
https://doi.org/10.1145/1985793.1985907

GitHub Discussions: An Exploratory Study of Early Adoption 37

ACM Symposium on Applied Computing, ACM, Coimbra, Portugal, SAC
’13, pp 1019–1024

Wang S, Chen TP, Hassan AE (2018) How do users revise answers on tech-
nical q&a websites? a case study on stack overflow. IEEE Transactions on
Software Engineering 46(9):1024–1038

Yang D, Martins P, Saini V, Lopes CV (2017) Stack Overflow in Github: Any
Snippets There? In: Gonzalez-Barahona JM, Hindle A, Tan L (eds) Proc. of
the 14th International Conference on Mining Software Repositories, IEEE
Computer Society, Buenos Aires, Argentina, MSR ’17, pp 280–290

	GitHub Discussions: An exploratory study of early adoption
	Citation

	1 Introduction
	2 GitHub Discussions
	3 Research Questions
	4 Data Collection
	5 Methods
	6 Results
	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion

