
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2015

Extracting development tasks to navigate software Extracting development tasks to navigate software

documentation documentation

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Martin P. ROBILLARD

Barthélémy DAGENAIS

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
TREUDE, Christoph; ROBILLARD, Martin P.; and DAGENAIS, Barthélémy. Extracting development tasks to
navigate software documentation. (2015). IEEE Transactions on Software Engineering. 41, (6), 565-581.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8787

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8787&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8787&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Extracting Development Tasks to Navigate
Software Documentation

Christoph Treude, Martin P. Robillard, and Barth�el�emy Dagenais

Abstract—Knowledge management plays a central role in many software development organizations. While much of the important

technical knowledge can be captured in documentation, there often exists a gap between the information needs of software developers

and the documentation structure. To help developers navigate documentation, we developed a technique for automatically extracting

tasks from software documentation by conceptualizing tasks as specific programming actions that have been described in the

documentation. More than 70 percent of the tasks we extracted from the documentation of two projects were judged meaningful by at

least one of two developers. We present TaskNavigator, a user interface for search queries that suggests tasks extracted with our

technique in an auto-complete list along with concepts, code elements, and section headers. We conducted a field study in which six

professional developers used TaskNavigator for two weeks as part of their ongoing work. We found search results identified through

extracted tasks to be more helpful to developers than those found through concepts, code elements, and section headers. The results

indicate that task descriptions can be effectively extracted from software documentation, and that they help bridge the gap between

documentation structure and the information needs of software developers.

Index Terms—Software documentation, development tasks, navigation, auto-complete, natural language processing

Ç

1 INTRODUCTION AND MOTIVATION

THE knowledge needed by software developers is cap-
tured in many forms of documentation, typically writ-

ten by different individuals [53]. Despite the best efforts of
documentation writers [14], there often remains a mismatch
between the needs of documentation consumers and the
knowledge provided in developer documentation. This
mismatch can be observed whenever developers struggle to
find the right information in the right form at the right time
[28], [43].

Many software development organizations and open-
source projects attempt to address this challenge by creating
web pages that collect the most important information. For
example, the home page of the Python web framework
Django1 links to three different documentation sources: an
installation guide, a tutorial, and a full index. At the time of
writing, the complete index contained a total of 132 links to
documentation resources, including: an FAQ, guidelines for
designers, and developer documentation for everything
from design philosophies to APIs.

For most projects, simply collecting the links to all docu-
mentation resources in one web page is not a particularly

usable or scalable solution. For example, developers at our
industry partner Xprima, a web development company,
found it difficult to navigate their documentation, and
mentioned to us that they often “forgot to look elsewhere [for
documentation or] did not know where to look”. Although docu-
mentation usually follows a hierarchical structure with sec-
tions and subsections, this kind of organization can only
enable effective navigation if the headers are adequate cues
for the information needs of developers. However, these
information needs can be impossible to anticipate. How can
we support effective navigation through rapidly-growing and con-
tinually changing free-form technical documentation?

Automatically discovering emergent navigation struc-
ture using statistical techniques [12], [13] is generally not
possible because the documentation of software projects
rarely includes a large enough corpus to extract meaningful
patterns. Basic search functionality is also insufficient
because it requires users to know what they are looking for
and have the vocabulary to express it. Most web search
engines use auto-complete to close this vocabulary gap [33],
and auto-complete has received high satisfaction scores
from users [49]. However, query completion in web search
engines is usually based on query stream mining [6] or
ontologies [33]. For customized search systems in a corpo-
rate environment, query logs are either not available or the
user base and the number of past queries is too small to
learn appropriate models [8]. In those cases, researchers
have attempted to populate the auto-complete field with
concepts extracted from the corpus using n-grams [8].

To provide improved support for searching documenta-
tion in the context of rapidly-evolving technological envi-
ronments, we investigated whether the concept of task
could be an effective means to narrow the gap between the
information needs of developers and existing documenta-
tion resources. We define a task as a specific programming

1. Available online at: https://djangoproject.com/

� C. Treude is with the Departamento de Inform�atica e Matem�atica
Aplicada, Universidade Federal do Rio Grande do Norte, Natal, RN,
Brazil. E-mail: ctreude@dimap.ufrn.br.

� M.P. Robillard is with the School of Computer Science, McGill University,
Montr�eal, QC, Canada. E-mail: martin@cs.mcgill.ca.

� B. Dagenais is with the Resulto, Montr�eal, QC, Canada.
E-mail: bart@resulto.ca.

Manuscript received 20 Mar. 2014; revised 24 Oct. 2014; accepted 18 Dec.
2014. Date of publication 30 Dec. 2014; date of current version 17 June 2015.
Recommended for acceptance by A. Marcus.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2014.2387172

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 6, JUNE 2015 565

0098-5589� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

action that has been described in the documentation. For
example, a task for a developer creating a web site with
Django could be “display date fields on templates”. We note
that our definition of task is the implementation of a small
and well-defined technology usage scenario, in contrast to
the complete resolution of a bug or feature request [27],
[36], [54].

Our main idea was to automatically analyze a documen-
tation corpus and detect every passage that describes how
to accomplish some task. We call this process task extraction.
We developed a task extraction technique specialized for
software documentation. Our technique integrates natural
language processing (NLP) techniques, statistical methods,
and the analysis of syntactical features of the text (Section 3).

To experiment with task-based navigation, we developed
an interactive auto-complete interface called TASKNAVIGATOR

(Section 4). In addition to tasks, this browser-based interface
surfaces common concepts and code elements extracted
from the documentation using recognized techniques,
as well as the original titles found in the documentation.
TASKNAVIGATOR and the underlying task extraction engine
requires no machine learning and is able to deal with het-
erogeneous and continually changing documentation.

We evaluated the accuracy of the preprocessing steps
and the task extraction algorithm using a benchmark of sen-
tences and their corresponding tasks (Section 5.1), and we
compared the relevance of the task-based auto-complete
suggestions to the relevance of auto-complete suggestions
derived from an n-gram baseline (Section 5.2). To evaluate
whether the extracted tasks are meaningful to developers,
we conducted an evaluation of the tasks extracted from the
documentation of two projects with 10 professional soft-
ware developers (Section 6.1). The evaluation showed that
more than 70 percent of the extracted tasks were meaningful
to at least one of two developers rating them.

We then conducted a field study in which six profes-
sional software developers used TASKNAVIGATOR for two
weeks as part of their ongoing work (Section 6.2). Based on
130 queries and 93 selected search results in the field study,
we found search results identified through development
tasks to be significantly more helpful to developers than
those found through code elements or section titles
(p < :001). Search results found through concepts were
rarely considered by the participants. The results indicate
that development tasks can be extracted from software doc-
umentation automatically, and that they help bridge the
gap between the information needs of software developers,
as expressed by their queries, and the documentation struc-
ture proposed by experts.

2 MOTIVATING EXAMPLE

Satchmo2 is an open source eCommerce platform based on
Django, which allows users to configure various types of
products. Currently, a developer interested in learning
about a particular type of product, such as memberships
with recurring payments, would either have to know that
Satchmo refers to these products as subscription products (see
Fig. 1 for the first two paragraphs of the corresponding

documentation), or rely on full text search. A search for
“membership” on the Satchmo website returns four results:
The first result links to a description of the Satchmo direc-
tory structure, where “membership” is mentioned in the short
description of an optional Satchmo app. In the second result
on pricing, “membership” is mentioned as part of an example
on different pricing tiers. The third result links to the section
shown in Fig. 1, and the fourth result only mentions
“membership” in a source code comment. The number of
results requires the user to browse the different search
results until they find the right one.

The approach described in this paper aims to make it eas-
ier for developers to navigate the documentation by auto-
matically associating tasks with each paragraph, and by
suggesting them in an auto-complete list. For the example
in Fig. 1, our approach associated three tasks with the first
paragraph, and seven tasks with the second paragraph (see
Table 1). In addition, both paragraphs are associated with
the automatically-detected concept “product type”. The
second paragraph also contains three code elements:
Subscription, ALLOW_URL_REBILL, and CRON_KEY.
These are detected through a set of regular expressions.
With TASKNAVIGATOR in operation, as soon as the user starts
typing the word “membership”, two tasks would be sug-
gested in auto-complete: “manage recurring billing member-
ships” and “add payment terms to non-membership product”.

3 EXTRACTING DEVELOPMENT TASKS

For our purposes, we conceptualize references to tasks in
software documentation as verbs associated with a direct
object and/or a prepositional phrase. For example, all of the
following could be tasks: “add widget” (verb with direct
object), “add widget to page” (verb with direct object and
prepositional phrase), and “add to list” (verb with preposi-
tional phrase). To extract tasks from software documenta-
tion, we make use of the grammatical dependencies
between words, as detected by the Stanford NLP parser [30]
(see Section 3.2).

To compare the usefulness of development tasks for nav-
igating software documentation to the usefulness of other
elements, we extract concepts and code elements using rec-
ognized techniques (see Sections 3.3 and 3.4). The idea of
extracting concepts is to isolate and surface recognizable
phrases that could help users search for information. As for
code elements, they play a central role as evidenced by the
multitude of tools to find source code examples, such as
Strathcona [23] or PARSEWeb [51].

We developed and evaluated the approach using docu-
mentation from three web development projects. The focus
on web development was motivated by our industry

Fig. 1. Satchmo documentation for subscription products.

2. Available online at: http://satchmoproject.com/docs/dev/

566 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 6, JUNE 2015

partner’s work with web development projects. We used
two corpora to guide our development of the approach: the
documentation of the Django-based eCommerce platform
Satchmo and the documentation of the web development
platform of our industry partner, Xprima. The documenta-
tion of the Python web framework Django was used as eval-
uation corpus. Table 2 shows the size of each corpus in
terms of number of documents, sentences, and tokens (i.e.,
words, symbols, or code terms) as well as how many tasks,
concepts, and code elements the approach extracted.

3.1 Preprocessing

To enable the extraction of development tasks, the docu-
mentation corpus of a project is preprocessed by transform-
ing HTML files into text files. In this step, most of the
HTML mark-up is removed while keeping the linebreak
information. In the next step, redundant information that is
repeated on each page of the documentation, such as sum-
maries, headers, and footers, is removed from the files.

The only meta-information kept during preprocessing is
whether a paragraph represents an HTML header (i.e., is
surrounded by either h1, h2, or h3 tags) and whether text
is explicitly marked up as code (i.e., surrounded by tt

tags). Code blocks as indicated by pre tags are removed
from the files. Which HTML tags are considered in the dif-
ferent steps is easily configurable.

We parse the resulting text files and split them into sen-
tences and tokens using the Stanford NLP toolkit [30]. Each
paragraph is processed separately to ensure that sentences
do not span several paragraphs.

Because software documentation has unique characteris-
tics not found in other texts, such as the presence of code
terms and the systematic use of incomplete sentences, the
input has to be preprocessed before invoking the NLP
parser to ensure the sentence structure is identified cor-
rectly. For example, in the sentence “It is possible to add small
tools to a page by using the <tt>include</tt> template tag”, the
Stanford part-of-speech tagger does not tag the last few
words correctly by default: include is tagged as a verb,

template as an adjective, and only tag is tagged correctly as a
noun. However, by taking advantage of the information
that include is a code term (as indicated by the tt tags), the
part-of-speech tagging can be improved. Tagging code
terms as nouns was also suggested by Thummalapenta
et al. [50].

To generalize this approach, we replace all code elements
in the original text with a temporary mask (ce followed by a
serial number), and the part-of-speech tagger is configured
to tag all words that consist of ce followed by a serial num-
ber as nouns. Subsequently, the original code terms are put
back into place. In addition to code terms explicitly tagged
with tt tags in the original HTML, all words that match
one of about 30 regular expressions are masked as code
terms. The regular expressions were handcrafted based on
the Xprima and Satchmo corpora to detect code terms using
typographical features such as camel-casing, all-upper-case
words, and annotations.3

In addition, we manually created a list of domain terms
that should always be tagged as nouns. For the three cor-
pora used in this work (containing a total of more than
300,000 tokens), this list contained 25 terms, such as
“template”, “slug”,4 and “file”. The complete list is also in
our online appendix.

To ensure the correct parsing of incomplete sentence
structures commonly used in software documentation, such
as “Returns the next page number”, we add further customiza-
tions. First, we add periods to the end of paragraphs that do
not end with a period, because the Stanford part-of-speech
tagger is sensitive to punctuation. Parts of a paragraph that
are enclosed in parentheses are removed. This is done for
two reasons: First, in our development corpora, we rarely
found complete sentences in parentheses, which would
make it difficult to process the content using natural
language processing techniques. Second, content in paren-
theses rarely contained verbs that could indicate develop-
ment tasks.

In addition, if the sentence starts with a verb in present
tense, third person singular such as returns, sets, or computes,
the sentence is prefixed with the word this to ensure that
partial sentences are tagged correctly. If the sentence starts
with a verb in present participle or gerund (e.g., “adding”,
“removing”), immediately followed by a noun, the sentence is
prefixedwith theword for to ensure the correct tagging of par-
tial sentences, such as “Displaying data from another source”.

TABLE 1
Documentation Elements Extracted from Satchmo’s

Documentation for Subscription Products

{ type documentation element

1 task manage recurring billing memberships
task add payment terms to non-membership

product
task use product type
conc. product type

2 task use product
task enable in configuration settings
task use url
task activate rebilling
task set setting ALLOW_URL_REBILL to true
task set to true
task add new unique key in CRON_KEY setting
conc. product type
code Subscription

code ALLOW_URL_REBILL

code CRON_KEY

TABLE 2
Descriptive Corpus Statistics

Xprima Satchmo Django

documents 209 22 120
sentences 11,134 2,107 17,448
tokens 71,274 18,266 220,694
tasks 1,053 844 1,209
concepts 131 13 648
code elements 4,256 686 5,161

3. The list of regular expressions is available in our online appendix
at http://cs.mcgill.ca/~swevo/tasknavigator/.

4. In Django, the term “slug” refers to a short label for something,
generally used in URLs.

TREUDE ET AL.: EXTRACTING DEVELOPMENT TASKS TO NAVIGATE SOFTWARE DOCUMENTATION 567

We manually created a benchmark using 376 sentences
from the Django documentation to intrinsically evaluate the
accuracy of the preprocessing steps (see Section 5.1).

For each sentence identified by the NLP toolkit, the
tokens and the grammatical dependencies between tokens
are stored for the following steps. In addition, files that are
unlikely to contain development tasks or relevant concepts
can be explicitly excluded from the analysis. In our case we
excluded automatically-generated indexes, release notes,
and download instructions.

3.2 Task Extraction

We define a task in software documentation as a specific
programming action that has been described in the docu-
mentation. Given that the central intuition underlying our
approach is to use grammatical clues to detect tasks in free-
form text, we needed to recover the relationships between
verbs, objects, prepositions, and prepositional objects. Using
part-of-speech tagging would not be sufficient for determin-
ing these links because part-of-speech tags (e.g., verb) do
not indicate how words are related to each other. Using the
order of words as indicator is also insufficient as the order
can be reversed, e.g., both “add widget” and “widget is added”
refer to the same task. To discover relationships between
words, we make use of the grammatical dependencies that
are detected by the Stanford NLP parser. These dependen-
cies provide a representation of grammatical relations
between words in a sentence [32].

Much experimentation was required to align gram-
matical dependencies identified through an NLP parser
with software development tasks. This is a challenging

problem because tasks can be described in software doc-
umentation in a multitude of ways. For example, the
simple task of adding a widget to a page can be
described as “add widget”, “adding widget”, “widget is
added”, “widget that is added”, or “widget added”, to name
a few. In addition, context might be important, e.g.,
whether the widget is being added to a page, a sidebar,
or whether the documentation instructs the user to “not
add widget”. Furthermore, the widget might be specified
using additional words, such as “clock widget” or “custom
widget”. A task extraction engine for software documen-
tation must account for all these subtleties. The rest of
this section describes the extraction technique, and how
it addresses some of the main text interpretation chal-
lenges we faced.

Dependency extraction. A grammatical dependency is sim-
ply a relation between one word of the text and another. A
trivial example is “add widget”, where the noun “widget” is
related to the verb “add” because widget is the object being
added. After analyzing our development corpora and con-
ducting some exploratory experimentation, we identified
nine types of grammatical dependencies that could be use-
ful for (software development) task extraction. Table 3
explains these dependencies following the definitions of de
Marneffe and Manning [32]. Table 4 shows examples for
these dependencies from the Satchmo corpus. Most of the
dependencies relate a verb to other tokens, following our
assumption that verbs are critical anchors for detecting the
mention of tasks. The first step of our technique is to extract
these dependencies from the text, in each case recording the
verb and its dependents.

TABLE 3
Grammatical Dependencies Used in This Work, Descriptions Taken from de Marneffe and Manning [32]

dependency description

direct object (dobj) The noun phrase which is the (accusative) object of the verb.
prepositional modifier (prep) Any prepositional phrase that serves to modify the meaning of the verb,

adjective, noun, or even another preposition.
agent (agent) The complement of a passive verb which is introduced by the preposition

“by” and does the action.
passive nominal subject (nsubjpass) A noun phrase which is the syntactic subject of a passive clause.
relative clause modifier (rcmod) A relative clause modifying the noun phrase.
negation modifier (neg) The relation between a negation word and the word it modifies.
phrasal verb particle (prt) Identifies a phrasal verb, and holds between the verb and its particle.
noun compound modifier (nn) Any noun that serves to modify the head noun.
adjectival modifier (amod) Any adjectival phrase that serves to modify the meaning of the noun phrase.

TABLE 4
Examples of Grammatical Dependencies Considered during Task Extraction

dependency sentence matched words tasks

dobj This can be used to generate a generate, receipt generate receipt
receipt or some other confirmation. generate other confirmation

nsubjpass The thumbnail size is set set, size set thumbnail size in templates
in your templates.

rcmod It allows you to set one rate that multiplied, rate multiply rate
is multiplied by the number of set rate
items in your order.

prep There are a couple of different ways integrate, checkout integrate with Google Checkout
to integratewith Google Checkout.

568 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 6, JUNE 2015

Task identification. We consider each verb involved in a
dependency with an object or with a prepositional phrase
(or both) as a candidate for a task. In this step, we also
account for tasks that are intertwined. For example, con-
sider the sentence “This can be used to generate a receipt or
some other confirmation”. In addition to “generate receipt”, it
contains the task “generate other confirmation” as indicated
by the conjunction “or”. To address this case, we add addi-
tional tasks for all conjunctions (and and or) that exist for
verbs, direct objects, and prepositions.

Context resolution. To capture specific tasks such as “add
widget to page” instead of “add widget”, we keep prepositions
and prepositional objects that belong to each verb or direct
object. For example, the phrase “set thumbnail size” in the
sentence “The thumbnail size is set in your templates” is con-
nected to the prepositional object “templates” via the prepo-
sition “in”. If a given verb or direct object is connected to
more than one prepositional object, we create a separate
task for each prepositional object. Our approach does not
account for tasks that span multiple sentences, but we pres-
ent a workaround to this shortcoming, adjacent noun
phrases, in Section 4.2.

Task refinement. Because grammatical dependencies
only exist between individual words, further dependen-
cies have to be analyzed for each part of a task to make
tasks as specific as possible. For example, in the sentence
“The thumbnail size is set in your templates”, the passive nom-
inal subject dependency only connects the words “set” and
“size” and thus results in the arguably unspecific task “set
size in templates”. To make tasks as specific as possible
given the information included in the documentation, all
noun compound modifier and adjectival modifier dependen-
cies are followed for each direct object and for each prepo-
sitional object. In the example, the noun compound modifier
adds the word “thumbnail” to the direct object “size”. Simi-
larly, in the sentence “This can be used to generate a receipt or
some other confirmation”, the adjectival modifier adds the
word “other” to the direct object “confirmation” (see Table 3
for definitions of these dependencies). Two dependencies
are followed for each verb: negation modifier and phrasal
verb particle. The former is used to add negation words,
such as “not”, to a verb, the latter adds related particles,
such as the word “in” in “log in”.

Task filtering. To ensure that general verbs such as
“contain” are not used to define a task, all tasks for which
the verb is not a programming action are excluded. We
have handcrafted a list of about 200 programming actions
based on the Xprima and Satchmo corpora.5 Even though
this list has only been tested on three corpora so far, we
believe that it is generalizable to other projects as it contains
very few domain specific verbs and consists mostly of
generic programming actions, such as “access”, “acquire”,
“activate”, “add”, and “adjust”. This list was developed
based on the two development corpora used in this work. A
similar but much smaller list is used to exclude tasks for
which the direct object is too generic.5 This filter is intended
to remove tasks such as “add that”, “remove it”, or “modify
this”. The list does not contain any domain-specific terms.

Task normalization. In the final step, we generate a nor-
malized representation of the task. This representation con-
tains the base form of the verb followed by the direct object
(if there is one) and the prepositional phrase (if there is
one). Verbs without direct objects and prepositional phrases
are not considered as tasks. Note that in some cases, the
order of words in the normalized task description is differ-
ent from the one observed in the original source, as shown
by the sentence “The thumbnail size is set in your templates”:
the sequence “thumbnail size is set” is changed into “set
thumbnail size”.

3.3 Concepts

As a baseline for assessing the usefulness of development
tasks for navigating software documentation, we extract
concepts from a documentation corpus by following the
approach for identifying collocations described by Manning
and Sch€utze [29, Chapter 5]. We explain the details in this
section for reproducibility, but we do not claim concept
extraction as a contribution. Collocations are detected by
finding sequences of words that co-occur more often than
they would be expected to by chance. First, all sequences of
two or three words (bigrams or trigrams) are identified, mak-
ing sure that they do not cross sentence boundaries. To filter
out meaningless collocations, such as “of the”, part-of-speech
filters are used, as suggested by Juesteson and Katz [25].
Using these filters, only bigrams and trigrams that follow a
given part-of-speech pattern, such as adjective followed by
noun, are considered. Table 5 shows all part-of-speech pat-
terns we used along with an example from the Satchmo cor-
pus for each pattern. Because none of the patterns contain a
verb, our implementations ensure that there is no overlap
between tasks and concepts extracted using our approach.
Concepts contain at least one noun and optionally adjectives
and prepositions, whereas tasks are verbs associated with a
direct object and/or a prepositional phrase.

Collocations are then filtered using Pearson’s chi-square
test. The test compares the observed frequencies to the
expected frequencies for the distributions of each word and
its co-occurrences in a bigram or trigram. For example, for
the bigram “custom product”, the observed and expected fre-
quencies for the following four situations are compared:
“custom” followed by “product”, “custom” followed by some-
thing other than “product”, “product” preceded by some-
thing other than “custom”, and bigrams that start with a
word other than “custom” and end in a word other than
“product”. We only kept as concepts collocations with

TABLE 5
Part-of-Speech Patterns Used for Concepts

pattern example

adjective noun custom product
(x2 ¼ 77:98, p < :0001)

noun noun product type
(x2 ¼ 95:04, p < :0001)

adjective adjective noun new unique key
adjective noun noun new configuration section
noun adjective noun payment specific display
noun noun noun store mailing address
noun preposition noun number of items

5. See http://cs.mcgill.ca/~swevo/tasknavigator/.

TREUDE ET AL.: EXTRACTING DEVELOPMENT TASKS TO NAVIGATE SOFTWARE DOCUMENTATION 569

x2 � 10 to ensure that all collocations were statistically sig-
nificant at p < :05 for bigrams. In addition, we discarded
collocations where any of the observed values is below 4 to
satisfy the expected cell count of Pearson’s chi-square test

[38].6 Table 5 shows the x2-value and the p-value for two of
the bigrams from the Satchmo corpus. We did not find any
trigrams that were statistically significant.

3.4 Code Elements

In addition to concepts, we extract code elements from doc-
umentation. Given the preprocessing steps (Section 3.1), the
extraction of code elements is straightforward. We consider
as code elements all text explicitly tagged as code in the
original HTML documents and all content identified
through regular expressions. However, domain terms that
were masked as nouns during the preprocessing phase are
not considered as code elements. As an example, Table 1
shows all tasks, concepts, and code elements that our
approach extracts from the two paragraphs of text shown in
Fig. 1.

4 SEARCH INTERFACE

We built an auto-complete user interface, called TASKNAVI-

GATOR, that surfaces the extracted tasks, concepts, and code
elements to help developers navigate documentation.
TASKNAVIGATOR suggests the extracted documentation ele-
ments and the section headers from the original documenta-
tion and associates them with documents, sections, and
paragraphs of the documentation.

4.1 Index Entries

TASKNAVIGATOR uses as input a set of index entries, where
each index entry is an instance of a documentation element
(a task, a concept, a code element, or a section title). Each
index entry contains meta data to indicate its category (e.g.,
task), the sentence where the instance was found, the title of
the corresponding section, and a link to the corresponding
document.

In addition, it is possible to define sets of synonyms. For
the evaluation of TASKNAVIGATOR, 17 such synonym sets
were handcrafted by professional software developers
working for Xprima, the company where part of the evalua-
tion was conducted. Twelve of the synonyms sets were not
domain-specific and contained groupings such as (“remove”,
“delete”), (“insert”, “add”), and (“parameter”, “param”). We
plan to integrate automatically-constructed synonym sets
specific to software development, such as the work by
Howard et al. [24] and Tian et al. [52], in future work.

Table 6 shows an example of an index entry based on the
first paragraph of the documentation section shown in the
motivating example (cf. Fig. 1).

4.2 Adjacent Noun Phrases

The extraction of documentation elements described in
Section 3 works on a sentence-by-sentence basis, so the
approach can only index information that is contained in a

single sentence. Consider the query “activate rebilling for sub-
scription product”, intended to locate the documentation
shown in Fig. 1. This query would not match any index
entry because the task “activate rebilling” is not mentioned in
the same sentence as “subscription product”. To mitigate this
problem, we automatically detect all noun phrases in a par-
agraph (using the Stanford NLP toolkit), and associate them
as adjacent noun phrases with all index entries generated
from the same paragraph. This feature supports queries
that span sentence boundaries. The following section shows
an example for the use of adjacent noun phrases.

4.3 Search Process

Fig. 2 shows four screenshots outlining the search process
enabled by TASKNAVIGATOR. When the user starts typing, an
auto-complete list opens and shows documentation ele-
ments that contain all words that have been typed so far.
The words do not have to appear in the order in which they
have been typed, and synonyms are considered. As shown
in Fig. 2-1, the suggestions are grouped by tasks, concepts,
code elements, and titles.7 Within each category, sugges-
tions are ordered alphabetically. If the user selects an entry
from the list, all related adjacent noun phrases are shown to
support query refinement (see Fig. 2-2).

Once the user runs the search query, results are dis-
played on the left side of the screen (Fig. 2-3). For each
result, the title of the corresponding section is displayed as
a link, the sentence that matched the query is displayed
underneath the title, and the link is shown in a smaller font.
If there is more than one result, they are displayed in the
same order as they appear in the original source. In addi-
tion, a see-also section is displayed which contains all sec-
tion headers from the documentation corpus for which the
words in the header are a subset of the words in the query.
For example, the screenshot in Fig. 2-3 shows the section on
“Product” in the see-also section because the query “add pay-
ment terms to non-membership product” contains the word
“product”.

When the user selects a result by clicking on the link, the
corresponding document is opened on the right side of the
screen (see Fig. 2-4). The paragraph that matched the query

TABLE 6
Example of an Index Entry

key value

category task
element add payment terms to non-membership

product
sentence A subscription product is a product type

that can be used to manage recurring
billing memberships or to add payment
terms to a non-membership product.

title Subscription Product
link product.html
synonyms –
adjacent non-membership product, product type,

recurring billing memberships,
subscription product

6. The expected cell count for Pearson’s chi-square test is usually set
to five, but we found through experimenting with our development
corpora that a threshold of four gave better results. 7. Titles are not shown in the screenshot.

570 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 6, JUNE 2015

is highlighted, and the document is automatically scrolled
to that paragraph.

5 ACCURACY OF THE ALGORITHMS

Because real-world documentation is messy and full of
surprises, and because NLP involves a certain amount of
approximation, we conducted a separate evaluation
of the accuracy of the preprocessing steps and the task
extraction algorithm using a benchmark of sentences and
their corresponding tasks. In addition, we compared the
relevance of the task-based auto-complete suggestions to
the relevance of auto-complete suggestions derived from
an n-gram baseline.

5.1 Accuracy of the Task Extraction

To evaluate the accuracy of the task extraction algorithm,
we randomly selected 376 sentences out of a total of
17,448 sentences from the evaluation corpus, the docu-
mentation of Django. The first author manually annotated
each sentence with the tasks that we expected to be
extracted based on our theoretical definition of the task
extraction process. The annotation resulted in a total of
255 tasks for the 376 sentences. Most sentences (57.4 per-
cent) did not describe any task, while some sentences con-
tained as many as five tasks.

For 90.7 percent of the sentences (95 percent CI
½:878; :936�), the tasks that the approach extracted matched
the tasks in the benchmark. For the remaining 35 sentences,
some of the tasks were missing (19 tasks) or wrong
(26 tasks). However, even for those 35 sentences, the major-
ity of tasks that the approach extracted (38 out of 64, i.e.,
59 percent) were still correct.

Table 7 shows the causes for the 19 tasks that the
approach missed. Despite the preprocessing steps, in some
cases, the NLP toolkit still was not able to resolve sentences
correctly if they started with a verb. The verbs “use” and
“display” were occasionally tagged as nouns, and the adjec-
tive “ordering” in “ordering constraints”was tagged as a verb,
which resulted in the incorrect task “order constraints”. In a
few other cases, a complex sentence structure resulted in an
incorrect resolution. In addition, “404” was not resolved as
a noun, and we encountered one parsing error.

Table 8 lists the causes for the 26 tasks that were extracted
incorrectly. In most cases, grammatical dependencies were
resolved incorrectly due to complex sentence structures.
Four times, an adjective was incorrectly identified as a verb.
For example, the phrase “loading and rendering system” pro-
duced the tasks “load system” and “render system”.

The comparison with the benchmark showed that the
algorithm works correctly for more than 90 percent of the
sentences in the benchmark. In addition, out of the 262 auto-
matically extracted tasks, fewer than 10 percent were wrong
and fewer than 7.5 percent of tasks were missed.

Fig. 2. Screenshots of the interface. (1) Auto-complete, (2) query refinement, (3) results, (4) one result.

TABLE 8
Causes for Tasks Incorrectly Extracted

issue freq.

dependencies not resolved correctly 20
adjective tagged as verb: 4
“ordering” (2), “loading”, “rendering”
verb at beginning of sentence tagged incorrectly 1
parsing error 1

sum 26

TABLE 7
Causes for Tasks Missed by the Approach

issue freq.

verb at beginning of sentence tagged incorrectly 8
verb tagged as noun: “use” (3), “display” (2) 5
adjective tagged as verb: “ordering” (2) 2
dependencies not resolved correctly 2
noun tagged as numeral: “404” 1
parsing error 1

sum 19

TREUDE ET AL.: EXTRACTING DEVELOPMENT TASKS TO NAVIGATE SOFTWARE DOCUMENTATION 571

5.2 Relevance of Auto-Complete Suggestions

To evaluate the relevance of TASKNAVIGATOR’s auto-complete
suggestions, we compared its suggestions to the suggestions
produced by various n-gram based baselines in terms of
precision, recall, and the number of suggestions generated.

We created a list of 33 software development tasks rele-
vant to the Xprima corpus by selecting all tasks documented
in a file called “Common Tasks for Integrators”. This file was
intended to be the main entry point to the documentation
and linked to many other files in the documentation. At the
time of our study, it contained 36 sections, each describing a
common task encountered by the company’s HTML inte-
grators.8 We only considered tasks explicitly mentioned in
the section headings, discounting three sections because
their title did not describe a task (e.g., “Common Variables”).
For the remaining 33 tasks, we manually created a gold set
of paragraphs relevant to each task. Nineteen out of the
33 tasks were associated with exactly one paragraph,
while other tasks were associated with as many as four
paragraphs. In total, the Xprima corpus contained 1,565
paragraphs.

We entered each of the 33 task descriptions into TASKNAVI-

GATOR and inspected the index entries that TASKNAVIGATOR

suggested in auto-complete and the paragraphs that these
index entries pointed to. Given the gold set of paragraphs for
each task, we determined the average precision and recall of
the paragraphs returned by TASKNAVIGATOR. Fig. 3 shows
precision, recall, and F-measure after each typed character.
For example, after typing 10 characters of a task (such as
“generate t” of the task “generate translation files”), TASKNAVI-

GATOR returned paragraphswith a precision of 0.39 and recall
of 0.96 on average, which results in an F-measure of 0.55. We
decided to evaluate precision and recall after each typed
character instead of after each typedword because TASKNAVI-

GATOR was designed to give feedback after typing only three
characters instead of an entire initial query, a characteristic
which differentiates TASKNAVIGATOR from related work on
query expansion [20], [22], [24], [47], [58].

To put these results in context, we created a number of
baselines consisting of n-gram based index entries. For all n

between two and nine, we indexed each paragraph in the
corpus using all the n-grams it contained. For example, for
n ¼ 3, all paragraphs were indexed using all trigrams they
contained. N-grams were not created across sentence
boundaries, and one index entry was created for each sen-
tence that contained fewer than n words. During the search,
we used the n-grams as potential task descriptions and
searched within them the same way we search in our task-
based index entries.

Fig. 4 shows the F-measure for task-based index entries
and the various n-gram baselines. The F-measure for
bigrams never exceeds 0.27, and the F-measure for tri-
grams never exceeds 0.69. For 4-grams, the best value for
the F-measure is 0.78 after 13 typed characters. This is par-
ticularly noteworthy because the average length of a devel-
opment task description in TASKNAVIGATOR for the Xprima
corpus is shorter than a 4-gram: 3.71 words. However, as
Fig. 4 shows, even longer n-grams are not able to achieve
the same F-measure as task-based index entries. For long
n-grams, the values for precision suffer because longer
index entries account for more false positives. For example,
the query “use css classes” will match the irrelevant 9-gram
“css classes as necessary in the HTML and use” from the sen-
tence “Add as many css classes as necessary in the HTML and
use the classes to style the page”. For the same sentence, there
is no 8-gram that includes all of the words from the query.

In addition to the better performance of task-based
index entries for complete queries, it is important to note
that task-based index entries outperform n-gram based
index entries after a few typed characters. For example,
after eight typed characters, the F-measure for task-based
entries is 0.31, and the F-measure for 8-grams (the best per-
forming n-grams) is 0.22. This difference is largely
explained by precision: While task-based index entries
result in 52 true positives and 225 false positives after eight
typed characters (about one relevant suggestion in every
five auto-complete suggestions), 8-gram based index
entries result in 50 true positives and 360 false positives
(about one relevant suggestion in every eight auto-com-
plete suggestions).

For auto-complete suggestions to be useful, the number
of suggestions presented by a tool is also important. While

Fig. 3. Precision, recall, and F-measure after each typed character. Fig. 4. F-measure for task-based index entries and the various n-gram
baselines.

8. HTML integrators are programmers who use HTML template
tools and stylesheets to create web sites.

572 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 6, JUNE 2015

longer n-grams outperformed shorter n-grams in terms of F-
measure, longer n-grams make for much longer lists of
auto-complete suggestions, as shown in Fig. 5. After typing
three characters, the task-based index entries produced 96
suggestions on average, while bigrams lead to 185 sugges-
tions, and 8-grams resulted in 347 suggestions. After five
characters, the task-based index produced 32 suggestions,
bigrams lead to 45 suggestions, and 8-grams resulted in 136
suggestions.9

For n-gram based index entries, we observed a tradeoff
between relevance and number of suggestions: while lon-
ger n-grams perform better in terms of their F-measure,
they produce many suggestions with low readability
which might be impossible for a developer to parse (e.g.,
the 9-gram “contain the name of the template used to
display”). Task-based index entries outperformed our
baselines both in terms of relevance and number of auto-
complete suggestions.

6 EVALUATION

To evaluate whether the extracted tasks are meaningful to
software developers, we asked ten professional software
developers from two projects to annotate a sample of tasks,
and we found that more than 70 percent of the extracted
tasks were meaningful to at least one of the two developers
rating them. We asked the same developers to also rate a
sample of extracted concepts, with similar results. We then
conducted a field study in which six professional software
developers at Xprima used TASKNAVIGATOR for two weeks.

6.1 Extracted Tasks and Concepts

To evaluate the extracted tasks and concepts, we asked eight
Xprima and two Django developers to annotate a sample of
tasks and concepts that we had automatically extracted
from the respective documentation corpora. As discussed in
Sections 3.2 and 3.3, concepts are collocations with at least
one noun and optionally adjectives and prepositions,

whereas tasks are verbs associated with a direct object and/
or a prepositional phrase.

6.1.1 Methodology

For Xprima, eight individuals participated in the evalua-
tion: P1-P4 work as HTML integrators for Xprima, P5-P8
are developers. In terms of seniority, P1, P5, P7, and P8 are
considered senior by Xprima (more than four months at
the company) and the remaining participants are consid-
ered junior. The documentation in the Xprima corpus was
developed by five individuals, including P5 and P8, but
none of the other participants. We created a random sam-
ple of 196 tasks out of a total of 1,053 tasks that were
extracted by the approach. The tasks in the sample were
divided up among eight developers, and just over half of
the tasks given to one participant (17 out of 33) overlapped
with the tasks given to one other participant, allowing us
to determine inter-rater agreement while maximizing rep-
resentativeness. We asked each developer to answer the
following question for the sampled tasks: “Does this repre-
sent a task (or a subtask) for HTML integrators or developers
working on [project]?”

In addition, we created a random sample of 100 concepts
out of a total of 131 concepts extracted by the approach. We
asked the same eight developers to also answer the follow-
ing question for the sampled concepts: “Does this represent a
meaningful concept for HTML integrators or developers working
on [project]?” Again, just over half of the concepts given to
each participant (9 out of 17) overlapped with the concepts
given to one other participant to determine inter-rater
agreement.

Similarly, for Django, we randomly sampled 36 tasks out
of a total of 1,209 extracted tasks and 36 concepts out of a
total of 648 extracted concepts. We recruited two Django
users through an advertisement on the django-users mailing
list,10 and we asked each one to answer the following ques-
tion for 25 of the sampled tasks: “Does this represent a task (or
a subtask) for someone working with Django?” For 13 of the
sampled tasks, both participants were asked to annotate
them. Each participant was also given the following ques-
tion for 25 concepts, 13 of which overlapped between both
participants: “Does this represent a meaningful concept for
someone working with Django?”

The sample sizes were chosen so that each participant
would have to evaluate 50 items in total (tasks and concepts),
that at least half the items evaluated by each participant
would overlap with the items of one other participant, and
that the 95 percent confidence interval for conclusions about
tasks and concepts would be identical. We indicate all confi-
dence intervals in the next section as part of the results.

6.1.2 Results

Table 9 presents the results of the evaluation of extracted
tasks and concepts for the Xprima corpus. For each of the
eight participants, the table shows how often they answered
“yes” or “no” to the question given for each of the 33 tasks
and 17 concepts. Out of a total of 264 ratings for tasks, 133

Fig. 5. Number of auto-complete suggestions for task-based index
entries and the various n-gram baselines.

9. In TASKNAVIGATOR, the list of auto-complete suggestions is trun-
cated to show at most ten suggestions per category, and suggestions
are displayed in alphabetical order (see Fig. 2).

10. Available online at: http://groups.google.com/group/django-
users/

TREUDE ET AL.: EXTRACTING DEVELOPMENT TASKS TO NAVIGATE SOFTWARE DOCUMENTATION 573

(50 percent) were positive and 131 (50 percent) were nega-
tive. However, out of the 68 tasks that were rated by two
participants, 48 or 71 percent (95 percent CI ½:60; :81�)
received at least one positive response. For those tasks, the
proportion of agreement between both raters was 47-71 per-
cent (depending on which pair of raters is considered,
median 59 percent).11

Out of a total of 136 ratings for concepts, 90 (66 percent)

were positive and 46 (34 percent) were negative. Out of

the 36 concepts that were rated by two participants, 28 or

78 percent (95 percent CI ½:66; :89�) received at least one posi-

tive response. The proportion of agreement between raters

was 56-100 percent (median 67 percent). The difference in

ratings between tasks and concepts is statistically significant

(Pearson’s chi-square test, p-value < .05).
The results for Django were similar and are shown in

Table 10. While 56 percent of the ratings for tasks were neg-
ative, out of the 13 tasks that were annotated by two partici-
pants, 11 (85 percent) received at least one positive vote
(proportion of agreement: 23 percent). For concepts, 62 per-
cent of the ratings were positive, and out of the 13 concepts
annotated by both participants, 10 (77 percent) received at
least one positive rating (proportion of agreement: 54 per-
cent). The difference in ratings between tasks and concepts
is not statistically significant (Pearson’s chi-square test,
p-value > .05).

These results show that the agreement between develop-
ers about what is a relevant task or a relevant concept for a
software project is low. We conducted a more thorough
investigation of the agreements and disagreements that our
participants had about tasks and concepts. Table 11 shows
the number of agreements and disagreements for each par-
ticipant pair for tasks, and Table 12 for concepts.

Our first assumption was that the number of disagree-
ments could be related to the role of the participant since
some participants at Xprima work as HTML integrators
while other work as developers. However, as Table 11
shows, there are as many disagreements (14) between
HTML integrators (P1-P4) as there are between developers
(P5-P8). The numbers for concepts—six disagreements

between HTML integrators and four disagreements
between developers—also do not suggest a strong influence
of participants’ roles. Similarly, seniority does not appear to
have an effect. In fact, the pairs with slightly more agree-
ment regarding tasks were mixed pairs with one junior par-
ticipant and one senior participant (P1 and P2, P6 and P8).
The data on concepts suggests that seniority could possibly
have a positive influence on agreement as the only pair of
participants with perfect agreement was a pair of senior
developers (P5 and P7).

Next, we investigated specifically for tasks whether the
length and nature of the task had an influence on the num-
ber of agreements and disagreements between participants.
For Xprima, tasks with agreement between participants con-
tained 3.70 words on average (2.67 words for Django), and
tasks without agreement contained 4.04 words on average
(3.80 words for Django). While this might suggest that
shorter tasks are easier to agree on, the differences are not
statistically significant (Wilcoxon-Mann-Whitney test,
p-value > .05).

To explore this further, we analyzed the grammatical
structure of the tasks with agreement and disagreement,
respectively. Table 13 shows the results partitioned by tasks
with verbs and direct objects (e.g., “add widget”), tasks with
verbs, direct objects, and prepositional objects (e.g., “add
widget to page”), and tasks with verbs and prepositional
objects (e.g., “add to page”). At least the data for Xprima
seems to suggest that tasks without prepositions, i.e., tasks
that are less specific, are harder to agree on.

Finally, we conducted a qualitative inspection of all 38
tasks and 16 concepts with disagreements in our data,
grouping the data by possible reasons for disagreement.
For tasks, we found missing context to be the most likely
reason for disagreement (14 tasks). For example, the task
“convert data to string” received a positive and a negative
response from our participants. In this case, a developer

TABLE 9
Evaluation of Xprima Tasks and Concepts

task concept

“yes” “no” “yes” “no”

P1 15 18 8 9
P2 29 4 11 6
P3 10 23 9 8
P4 19 14 10 7
P5 16 17 15 2
P6 17 16 13 4
P7 9 24 12 5
P8 18 15 12 5

sum 133 131 90 46
(in %) (50%) (50%) (66%) (34%)

TABLE 10
Evaluation of Django Tasks and Concepts

task concept

“yes” “no” “yes” “no”

D1 4 21 13 12
D2 18 7 18 7

sum 22 28 31 19
(in %) (44%) (56%) (62%) (38%)

TABLE 11
Number of Agreements and Disagreements
Regarding the Meaningfulness of Tasks

participants 2 yes yes/no 2 no

P1, P2 8 6 3
P3, P4 4 8 5
P5, P7 3 9 5
P6, P8 5 5 7

D1, D2 1 10 2

sum 21 38 22
(in %) (26%) (47%) (27%)

11. We do not report Cohen’s kappa as kappa calculations are lim-
ited by the size of the data set. Here, the p-value for the kappa calcula-
tion is > .05 for all but one pair of raters.

574 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 6, JUNE 2015

who knows what specific data the task is referring to
might consider it meaningful, while a developer who
does not know the context of the task might deem it not
meaningful. Nine tasks that our participants disagreed on
contained code elements. In those cases, the meaningful-
ness of a task to a developer might depend on their famil-
iarity with the referred code element. For example, the
task “call mark_safe()” led to a disagreement. Develop-
ers familiar with mark_safe() might consider the task
meaningful while others do not. For six tasks, the
wording of the task might have confused developers. For
example, the task “customize behavior by customizing” was
extracted by our approach and led to a disagreement.
For the remaining nine tasks, there appears to be no
obvious reason why developers would disagree on their
meaningfulness. For example, the task “display logo in
usedcar listing” is clearly relevant to the developers’
work. A possible explanation for the disagreement here is
that some developers do not work with the usedcar list-
ing and therefore consider it not meaningful to them.

Similarly, we conducted a qualitative investigation for
the 16 concepts with disagreement. Three of them contained
code elements (e.g., “ModelAdmin class”) and their dis-
agreement might be explained by the familiarity of develop-
ers with the particular code element. For four concepts, the
wording was possibly unclear or missing context (e.g.,
“related model”). Five concepts could be considered too gen-
eral to be useful for the work of the developers (e.g., “Python
API”). For the remaining four concepts, there was no obvi-
ous reason for disagreement other than that they might not
be relevant to the work of all developers on a project (e.g.,
“normalized string”).

These results show that it is impossible to make sure that
all tasks are relevant to all developers. Thus, we consider
elements that received at least one positive rating to be the
ones that should be suggested in auto-complete. For tasks
and concepts that were rated by two participants, more
than 70 percent received at least one positive vote both for
Xprima and Django.

6.2 TaskNavigator

We evaluated TASKNAVIGATOR through a field study in which
we deployed the tool at Xprima and recorded the interac-
tions of six developers with TASKNAVIGATOR for two weeks.
This is an end-to-end evaluation of the approach as it evalu-
ates the extracted tasks, concepts, and code elements as well
as the interface that surfaces them.

6.2.1 Methodology

We recruited six developers (P1-P6) to use TASKNAVIGATOR

for two weeks, one of which (P5) also participated in a
week-long pilot study. All participants were asked to use
TASKNAVIGATOR as part of their normal ongoing work at
Xprima. We instrumented TASKNAVIGATOR to collect usage
data by creating a log message every time an auto-complete
suggestion was selected (either through a mouse click, or by
pressing the Enter key after navigating to the suggestion
using the arrow keys), every time a query was submitted,
and every time a search result was opened by clicking on
the corresponding link. In addition, on every other click on
a link for a search result, we asked “Was this what you were
looking for?” through a pop-up window, giving “yes” and
“no” as answer options. The objective of the week-long pilot
study was to ensure the usability of TASKNAVIGATOR before
giving the tool to all participants. The setup for the pilot
study was identical to the setup for the field study, with
two exceptions: In the pilot study, the pop-up window only
appeared on one in every four clicks, and section titles were
not yet available as auto-complete suggestions. We had ini-
tially chosen to only show the pop-up window on one in
every four clicks to not overwhelm developers, but the pilot
study participant informed us that the pop-up window was
less intrusive than we thought and that displaying it on
every other click would not interfere with TASKNAVIGATOR’s
usability, in his opinion. Thus, we showed the pop-up win-
dow more frequently after the pilot study. In addition, the
pilot study participant remarked that it would be useful to
also have section titles appear as auto-complete suggestions.
We added this feature for the field study.

6.2.2 Results

Table 14 shows the results of the field study. For each partic-
ipant P1-P6 and the pilot study, the second column shows
the time elapsed between a participant’s first and last inter-
action with TASKNAVIGATOR during the field study. The val-
ues range from 2.3 days to 13.1 days with a median of
9.1 days. The third column shows the number of queries
that each participant entered. All participants contributed at
least four queries, with 130 queries in total. The next set of
columns shows the number of queries for which the query
terms were derived from an auto-complete suggestion,
either explicitly or implicitly. We count as explicit selections
those in which the participant either selected the auto-com-
plete suggestion by clicking on it or by navigating to it and
selecting it using keyboard input. Implicit selections are

TABLE 12
Number of Agreements and Disagreements Regarding

the Meaningfulness of Concepts

participants 2 yes yes/no 2 no

P1, P2 2 3 4
P3, P4 4 3 2
P5, P7 7 0 2
P6, P8 5 4 0

D1, D2 4 6 3

sum 22 16 11
(in %) (45%) (33%) (22%)

TABLE 13
Agreements (¼) and Disagreements (6¼) about Meaningfulness

of Tasks by Grammatical Structure

grammatical structure Xprima Django

¼ 6¼ ¼ 6¼
verb, direct obj. 11 13 3 3
verb, direct obj., prep. obj. 17 11 0 5
verb, prep. obj. 12 4 0 2

sum 40 28 3 10
(in %) (59%) (41%) (23%) (77%)

TREUDE ET AL.: EXTRACTING DEVELOPMENT TASKS TO NAVIGATE SOFTWARE DOCUMENTATION 575

those for which the participant typed a query where the
exact query terms (or a superset) were shown as an auto-
complete suggestion while the participant was typing. The
number of auto-complete suggestions shown in the table is
partitioned by documentation element: tasks, concepts,
code elements, and section titles. The total of implicit selec-
tions from auto-complete is not necessarily the sum of the
implicit selections from the different documentation ele-
ments because an entry in auto-complete might appear
more than once, e.g., as code element and as section title.
Each yrepresents a query containing an adjacent noun
phrase (see Section 4.2).

For about half the queries (42 percent explicitly plus an
additional 19 percent implicitly), the participants selected
an entry from auto-complete for their query. The results
also show that tasks were selected from auto-complete
almost twice as often as any other documentation element,
however, this may be influenced by the fact that tasks are
always shown first in auto-complete. We did not observe a
learning effect for the developer who also participated in
the pilot study (P5).

The last part of the table shows the number of clicks on
search results along with how often the answer to “Was this
what you were looking for?” was “yes” or “no”, respectively. A
total of 93 search results were selected during the field
study, and the participants answered whether the result
was what they were looking for in 37 cases.12 Seventeen of
the answers were positive and 20 were negative. The results
divided up by the different documentation elements clearly
indicate the usefulness of tasks: out of 12 answers about
clicks on task-related search results, 10 were positive, while
most answers about search results related to code elements
and section titles were negative. This difference is statisti-
cally significant (Fisher’s exact test, p < :001). The difference
between results derived from development tasks and sec-
tion titles is particularly noteworthy: section titles are meant
to help developers navigate the documentation, yet the cor-
responding results received overwhelmingly negative feed-
back, while development tasks stood out as the most useful

way to navigate software documentation. The results also
indicate that concepts—often used in other domains for
populating auto-complete fields [8]—were hardly consid-
ered by the participants in the field study.

To investigate whether the clicks belonged just to a few
of the queries, we investigated the distribution of clicks to
queries. Across all participants, 60 queries resulted in no
click, 58 queries resulted in one click, eight queries resulted
in two clicks, one query resulted in three clicks, two queries
resulted in four clicks, and one query resulted in eight
clicks. In total, about 54 percent of all queries led to at least
one click, suggesting that developers found a link worth
exploring for a majority of their queries.

We also analyzed the data obtained during the field
study for common patterns among all participants. The fol-
lowing three patterns suggest that TASKNAVIGATOR—in par-
ticular its auto-complete component—can help developers
find the information that they are looking for.

Unsuccessful query followed by success with auto-complete.
For three participants (P1, P3, and P5), we found instances
where an unsuccessful query without the use of an auto-
complete suggestion and without clicking on any of the
search results was followed by a successful query with
an auto-complete suggestion. P3 reworded “num�ero de
t�el�ephone” into the concept “phone number”, and the
reworded query resulted in four clicks on task-related
search results containing the words “phone number”, for two
of which we asked whether this was what P3 was looking
for. In both cases, the answer was positive.13 P5 reworded
“promos make” into “promotion” following a suggestion from
auto-complete, and the reworded query resulted in one
click on a search result and a positive rating. For P1, the pat-
tern occurred 4 times (e.g., “how to translate” was reworded
into “translate menu entry”). In all four cases, the reworded
query resulted in one click on a search result. TASKNAVIGA-

TOR did not ask for feedback in two of those cases, and
received one positive and one negative response in the other
two cases. This pattern helps confirm that our implementa-
tion of auto-complete suggestions can help developers close

TABLE 14
For Each Participant (part.), the Table Shows the Time Elapsed between their First and Last Interaction with TASKNAVIGATOR (hrs),

the Number of Queries Entered (q), and the Number of Queries for which the Query Terms Were Derived from
an Auto-Complete Suggestion, Either Explicitly or Implicitly, Partitioned by Documentation Elements. The Last Part of the Table

Shows the Number of Clicks on Search Results and how Often Participants Deemed a Result Relevant.

part. hrs q explicit (implicit) from auto-complete clicks (relevant / not relevant)

total tasks conc. code titles total tasks conc. code titles

P1 193 20 12 (0) y5 (0) 0 (0) yy2 (0) 5 (0) 9 (1/2) 3 (1/0) 0 (0/0) 2 (0/1) 4 (0/1)
P2 243 19 12 (3) y8 (2) 0 (1) 4 (3) 0 (1) 17 (4/3) 6 (1/1) 0 (0/0) 8 (1/2) 3 (2/0)
P3 55 11 1 (4) 1 (3) 0 (0) 0 (2) 0 (2) 16 (4/3) 5 (2/0) 0 (0/0) 8 (2/1) 3 (0/2)
P4 307 40 9 (13) yyy5 (8) 0 (3) y1 (11) 3 (6) 32 (3/11) 9 (3/1) 0 (0/0) 11 (0/6) 12 (0/4)
P5 170 12 3 (5) 0 (4) 1 (2) 2 (3) 0 (4) 5 (2/0) 1 (1/0) 1 (1/0) 3 (0/0) 0 (0/0)
P6 143 4 4 (0) 1 (0) 0 (0) 3 (0) 0 (0) 4 (1/0) 1 (0/0) 0 (0/0) 3 (1/0) 0 (0/0)

Pilot 145 24 13 (0) yyy9 (0) 0 (0) y4 (0) 0 (0) 10 (2/1) 6 (2/0) 0 (0/0) 3 (0/1) 1 (0/0)

sum 130 54 (25) 29 (17) 1 (6) 16 (19) 8 (13) 93 (17/20) 31 (10/2) 1 (1/0) 38 (4/11) 23 (2/7)

Each y represents a query containing an adjacent noun phrase.

12. Note that the number of answers is not necessarily half of the
total clicks as participants were able to close the browser window
before answering.

13. Note that the entire documentation corpus was written in
English, but French was the first language of all study participants.
This might explain why P3 attempted a search query in French.

576 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 6, JUNE 2015

the vocabulary gap [33] between their information needs
and the information available in the documentation.

Repeated query with auto-complete suggestion. Three partici-
pants (P2, P4, and P5) used the auto-complete function for
cognitive support by repeating a query selected from auto-
complete on different days. Re-finding is common in web
search engines [55], and in the case of TASKNAVIGATOR, it can
help developers remember what to search for without the
use of bookmarks or other explicit records.

Irrelevant links found when not using auto-complete. The 20
negative votes belonged to 15 different queries. One of these
queries resulted in two negative responses, and in two
cases, one query resulted in three negative votes for differ-
ent search results. In the case of P3, after selecting three dif-
ferent search results for the query “widget_params” and
answering “no”, the last click for the same query resulted in
a positive answer.14 In those cases, TASKNAVIGATOR could
possibly be improved by providing more meta data or
explanations about each search result. In the case of P4, the
topic of the unsuccessful query with three negative votes—
“ie8 forms”—was simply not discussed in the documenta-
tion. For eight of the 15 search queries that ultimately
resulted in negative votes, the query terms did not originate
from an auto-complete suggestion. In seven of these eight
cases, the query terms do not appear in the documentation
corpus and the links that the participants selected origi-
nated from TASKNAVIGATOR’s see-also section (see Section
4.3). In cases where the query terms were selected from an
auto-complete suggestion, the majority of suggestions
selected (four out of seven) were based on code elements.
Task-based queries only led to negative responses twice.
Another interesting observation is that in the majority of
cases (nine out of 15), the participants kept exploring other
result links for the same query even after giving a negative
vote. We conclude that the negative votes do not necessarily
invalidate a specific instance of task-based navigation. Most
negative votes were not related to tasks, but merely point at
areas where the tooling could be improved further when
search terms do not match any index entries. In future
work, we also plan to improve our treatment of code search
based on work by Bajracharya et al. [5].

6.3 Threats to Validity

The ordering of items in the auto-complete suggestions
(tasks, concepts, code elements, titles) may have influenced
what suggestions were selected. We did not attempt to ran-
domize the order because this would have impacted the
usability of TASKNAVIGATOR too much. We mitigated this
threat by limiting the number of suggestions to be displayed
per category to 10. While our results indicate that code ele-
ments and titles (both ranked lower than tasks) were
selected from auto-complete several times (16 code ele-
ments, 8 titles), they were not selected as often as tasks (29).
However, we do not draw any conclusions about how often
different items were selected from auto-complete. Our main

source of evidence, judgement about the usefulness of a
result, is independent from the ranking of suggestions.

We define concepts as collocations, following the work of
Manning and Sch€utze [29]. It is possible that another defini-
tion of concepts would have yielded better results for con-
cepts in TASKNAVIGATOR. However, n-grams—the basis for
collocations—are widely used for the detection of concepts,
in particular in related work on auto-complete interfaces for
web search engines [8], and we only used concepts as a
baseline to assess the usefulness of development tasks.

The number of professional software developers who
participated in the evaluation of tasks and concepts
extracted from the Django documentation was low. How-
ever, the results were similar to the ones we received for
Xprima, and they confirmed that the agreement between
developers as to what is a meaningful task or concept is
low. For an auto-complete interface such as TASKNAVIGATOR,
recall is more important than finding tasks and concepts
that all developers agree on. It is also natural for developers
with different roles and levels of seniority to disagree on
what tasks and concepts are meaningful to them.

7 RELATED WORK

TASKNAVIGATOR contributes to the large body of work on
information extraction from software artifacts and feature
location, but also to the area of task extraction from natural
language documents in other domains. In addition, our
work has benefited from related work on adapting NLP to
other domains.

Information extraction from software artifacts. Several
researchers have succeeded in extracting information from
software artifacts using NLP. Zhong et al. proposed an
approach for inferring specifications from API documenta-
tion by detecting actions and resources through machine
learning. Their evaluation showed relatively high precision,
recall, and F-scores for five software libraries, and indicated
potential uses in bug detection [59]. Abebe and Tonella pre-
sented an NLP-based approach for the extraction of con-
cepts and their relations from source code. Their approach
automatically constructs an ontology, which can be used to
improve concept location tasks [1]. Following a similar
objective, Falleri et al. proposed an approach to automati-
cally extract and organize concepts from software identifiers
in a WordNet-like structure through tokenization, part-of-
speech tagging, dependency sorting, and lexical expansion
[16]. Panichella et al. developed an approach for automati-
cally linking paragraphs from bug tracking systems and
mailing lists to source code methods using a number of heu-
ristics, such as the presence of the words “call”, “execute”,
or “invoke”, and their evaluation showed that they were
able to extract method descriptions with a precision of
about 80 percent [37]. Movshovitz-Attias and Cohen used
n-grams extracted from source files and topic modeling to
predict source code comments [35].

More closely related to our goal of bridging the gap
between documentation writers and users is the work by
Henß et al. [21]. They presented an approach for automati-
cally extracting FAQs from software mailing lists and
forums through a combination of text mining and NLP.
After applying several preprocessing heuristics, they used

14. There was the only one more instance in our data in which a par-
ticipant indicated both positive and negative feedback for links origi-
nating from the same query: P4’s query for “create as many variables
possible” with the adjacent noun phrase “!important declaration” resulted
in one positive answer and one negative answer for different links.

TREUDE ET AL.: EXTRACTING DEVELOPMENT TASKS TO NAVIGATE SOFTWARE DOCUMENTATION 577

latent Dirichlet allocation (LDA) [10] to automatically
extract topic models from the data which are used for the
creation of topic-specific FAQs. The authors applied the
approach to various projects and conducted a survey with
the most active committers of these projects. The results
showed that most of the reviewers were able to find at least
15 relevant questions in the generated FAQ.

As software documentation is largely unstructured data,
work on extracting information from unstructured data is
also related to our work. Bettenburg et al. [7] presented a
lightweight approach based on spell checking tools to
untangle natural language text and technical artifacts, such
as project-specific jargon, abbreviations, source code
patches, stack traces, and identifiers. The main target of
their work was developer communication through email,
chat, and issue report comments. Bacchelli et al. [3] pre-
sented a similar approach based on island parsing. They
later extended their work to classify email lines into five cat-
egories: text, junk, code, patch, and stack trace [4]. In
TASKNAVIGATOR, we distinguish between natural language
text and technical artifacts using a list of handcrafted regu-
lar expressions that identify code elements.

Feature location. Finding tasks in software documentation
is also related to locating features in source code, a chal-
lenge that has been investigated by many researchers. In
their survey on feature location, Dit et al. divided related
work into dynamic feature location, static feature location,
and textual feature location [15]. Dynamic feature location
relies on collecting information from a system during run-
time. For example, software reconnaissance is an approach
where two sets of scenarios are defined such that some sce-
narios activate a feature and others do not, and execution
traces are collected for all scenarios. Features are then
located by analyzing the two sets of traces and identifying
program elements that only appear in one set [57].

An example of static feature location was given by the
topology analysis of software dependencies proposed by
Robillard. Given a set of program elements of interest to a
developer, his technique analyzes structural dependencies
and automatically produces a fuzzy set with other elements
of potential interest [42]. Work on feature location has also
combined dynamic and static techniques. For example, the
approach introduced by Antoniol and Gu�eh�eneuc collects
static and dynamic data and uses model transformations to
compare and visualize features [2]. Other approaches for
feature location include Hipikat [56], a tool that recom-
mends artifacts from a project’s archive, and PROMESIR
[41], which performs feature location by combining expert
opinions from existing techniques.

Our work is most closely related to textual feature loca-
tion, the class of approaches aimed at establishing a map-
ping between the textual description of a feature and the
parts of the source code where the feature is implemented.
For example, Petrenko et al.’s technique is based on grep
and ontology fragments where the ontology fragments can
be refined and expanded as users gain more knowledge of
the system [39].

Several other approaches utilized information retrieval
techniques for textual feature location. Marcus et al. used
Latent Semantic Indexing to map concepts expressed in nat-
ural language to the relevant parts of the source code [31].

That approach was later refined by Poshyvanyk and Mar-
cus, who added Formal Concept Analysis to cluster the
results obtained through Latent Semantic Indexing [40]. The
cognitive assignment approach by Cleary and Exton also
used information retrieval for feature location, but their
solution incorporates non-source code artifacts, such as bug
reports, and can retrieve relevant source code even if does
not contain query terms by using indirect links between
source code and non-source code artifacts [11]. Gay et al.
improved information retrieval approaches to textual fea-
ture location by adding relevance feedback through the
incorporation of user input after each query [17].

In addition to approaches based on information retrieval,
natural language processing has been employed for textual
feature location. Similar to our work, the approach by
Shepherd et al. is based on the notion that actions in soft-
ware development can be represented by verbs and nouns
correspond to objects. Their tool, Find-Concept, allows
developers to create queries consisting of a verb and a direct
object. Find-Concept then expands the queries using natural
language processing and knowledge of the terms used
within the source code to recommend new queries [46]. Our
work differs from Find-Concept in several ways: In Find-
Concept, the initial query needs to consist of a verb and a
direct object. TASKNAVIGATOR only needs three characters to
trigger auto-complete suggestions. For example, after typ-
ing “pag”, tasks such as “add page” will already be sug-
gested, thus allowing developers to use the system even if
they do not know how to phrase the complete query yet.
Our task descriptions are also more precise by incorporating
prepositions and prepositional objects in addition to verbs
and direct objects. Find-Concept suggests adding different
forms of a verb (e.g., “add”, “added”) to a query, which is not
necessary in TASKNAVIGATOR since all verbs in the index
entries are normalized to their base form. Finally, the
domain is different: Find-Concept facilitates searching
source code and TASKNAVIGATOR searches documentation.
Shepherd et al. later integrated ideas from Find-Concept,
such as information retrieval based search, natural language
based search, and program analysis based search, into
Sando, an extensible code search framework [45].

A similar tool for query expansion was described by
Hill et al. They extracted noun phrases, verb phrases, and
prepositional phrases from method and field declarations.
Based on an initial query, their approach returns a hierar-
chy of phrases and associated method signatures [22].
Query expansion was also the focus of work by Haiduc
et al. Their Refoqus tool recommends a reformulation
strategy for a given query, based on machine learning
trained with queries and relevant results [20]. Similarly,
Sisman and Kak proposed a query reformulation frame-
work which enriches the initial query with terms drawn
from the highest-ranked artifacts retrieved in response to
the initial query [47]. Yang et al. used the context in
which query words are found to extract synonyms, anto-
nyms, abbreviations, and related words for inclusion in
the reformulated query [58]. Finding software based,
semantically similar words was also the focus of the work
by Howard et al. Their technique mines semantically sim-
ilar words by leveraging comments and programmer con-
ventions [24]. Again, the main difference to our work is

578 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 6, JUNE 2015

that TASKNAVIGATOR’s auto-complete suggestions appear
after just three typed characters and help the user com-
plete the query rather than reformulate it. For further
work on query expansion, particularly based on ontolo-
gies, we refer to the work by Bhogal et al. [9].

Task extraction. While information extraction in other
domains is often limited to detecting concepts, our focus on
tasks was motivated by previous work on the importance of
tasks in software development. Murphy et al. studied how
the structure of many tasks crosscuts system artifacts [36]
which laid the foundation for Kersten and Murphy’s work
on Mylyn, the task-focused interface for the Eclipse IDE
[27]. Mylyn is built on a mechanism that captures and per-
sists the elements and relations relevant to a task.

Task extraction from natural language documents has
been the object of research outside of software engineering.
Mizoguchi et al. presented a task ontology which has some
similarity to the way we model tasks. Their ontology
included nouns, adjectives, constraint-related vocabulary,
goals, verbs, and “constraint verbs” which are verbs that take
constraints as objects [34]. Scerri et al. presented a technol-
ogy for the automatic classification of email action items
based on a model that considers five linguistic, grammatical
and syntactical features. Their model is rich enough to cap-
ture action-object tuples, such as “request data”, “request
activity”, “suggest activity”, “assign activity”, or “deliver data”
[44]. Compared to our approach, their model does not allow
for more complex tasks such as “add widget to page”, but it is
richer in terms of who does an action and whether this
action is requested, suggested, or demanded—which is less
relevant in software documentation.

Kalia et al. went a step further to present an approach for
automatically identifying task creation, delegation, comple-
tion, and cancellation in email and chat conversations,
based on NLP techniques and machine learning. Similar to
our work, they made use of grammatical dependencies, and
they defined action verbs as “verbs that express an action or
doing something”, which is similar to our concept of pro-
gramming actions. Unfortunately, the authors did not pres-
ent how they determine what an action verb is. They
distinguished between four types of tasks: create, delegate,
discharge, and cancel [26]. Similar to the work by Scerri
et al., their task model is based on subject, object, and action,
which is not as rich as the model we use in our approach.

NLP domain adaptation. An important challenge when
applying NLP techniques to software artifacts is that these
artifacts have unique characteristics not found in other nat-
ural language text. Sridhara et al. performed a comparative
study of six state-of-the-art, English-based semantic similar-
ity techniques to evaluate their effectiveness on words from
software comments and identifiers. They found the applica-
tion of similarity detection techniques to software artifacts
without any customization to be detrimental to the perfor-
mance of the techniques [48]. Gupta et al. presented a part-
of-speech tagger and syntactic chunker for source code
names taking into account programmers’ naming conven-
tions, and they identified grammatical constructions that
characterize a large number of program identifiers. Their
approach led to a significant improvement of part-of-speech
tagging of program identifiers [19]. NLP domain adaptation
has also received attention in areas other than software

engineering. Gimpel et al. added features that leverage
domain-specific properties of data from the popular micro-
blogging service Twitter, such as orthography, frequently-
capitalized words, and phonetic normalization. Their
approach achieved almost 90 percent accuracy in tagging
Twitter data [18]. In our work, we follow the suggestion by
Thummalapenta et al. [50] to ensure that code terms and
other domain terms are always tagged as nouns.

8 CONCLUSION

To help bridge the gap between the information needs of
software developers and the structure of existing documen-
tation, we propose the idea of task-based navigation. We
investigated this idea by devising a technique to automati-
cally extract development tasks from software documenta-
tion, supplemented by TASKNAVIGATOR—a tool that presents
extracted tasks in an auto-complete list that also includes
automatically-detected concepts, code elements, and section
titles found in the documentation.

Our evaluation showed that more than 70 percent of the
extracted tasks were meaningful to at least one of two devel-
opers rating them. We also evaluated task-based navigation
with a field study in a corporate environment, in which six
professional software developers used the tool for two
weeks as part of their ongoing work. We found search
results identified through development tasks to be more
helpful to developers than those found through concepts,
code elements, and section titles. These results indicate that
development tasks can be extracted from software docu-
mentation automatically, and that they can help bridge the
gap between software documentation and the information
needs of software developers.

TASKNAVIGATOR is now deployed and in operation at
McGill University. Next, we plan to offer TASKNAVIGATOR to
open source projects, and we aim to improve the precision
of the task extraction. As the approach is not dependent on
a particular programming language and requires little proj-
ect-specific customization (synonyms, some HTML parsing
parameters), we expect our work to generalize beyond web
development projects.

ACKNOWLEDGMENTS

The authors would like to thank the study participants and
Martin Paquette, formerly at Technologies Xprima.com and
now at Resulto, for his valuable support. This project was
supported by NSERC. Christoph Treude is the correspond-
ing author of the article.

REFERENCES

[1] S. L. Abebe and P. Tonella, “Natural language parsing of program
element names for concept extraction,” in Proc. 18th IEEE Int.
Conf. Program Comprehension, 2010, pp. 156–159.

[2] G. Antoniol and Y.-G. Gu�eh�eneuc, “Feature identification: A novel
approach and a case study,” in Proc. 21st IEEE Int. Conf. Softw.
Maintenance, 2005, pp. 357–366.

[3] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci, “Extracting struc-
tured data from natural language documents with island
parsing,” in Proc. 26th Int. Conf. Automated Soft. Eng., 2011,
pp. 476–479.

[4] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza, “Content
classification of development emails,” in Proc. 34th Int. Conf. Soft.
Eng., 2012, pp. 375–385.

TREUDE ET AL.: EXTRACTING DEVELOPMENT TASKS TO NAVIGATE SOFTWARE DOCUMENTATION 579

[5] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: A search engine for open source code sup-
porting structure-based search,” in Proc. Companion 21st Symp.
Object-oriented Program. Syst., Lang. Appl., 2006, pp. 681–682.

[6] M. Barouni-Ebrahimi and A. A. Ghorbani, “On query completion
in web search engines based on query stream mining,” in Proc.
IEEE/WIC/ACM Int. Conf. Web Intell., 2007, pp. 317–320.

[7] N. Bettenburg, B. Adams, A. E. Hassan, and M. Smidt, “A light-
weight approach to uncover technical artifacts in unstructured
data,” in Proc. 19th Int. Conf. Program Comprehension, 2011,
pp. 185–188.

[8] S. Bhatia, D. Majumdar, and P. Mitra, “Query suggestions in the
absence of query logs,” in Proc. 34th ACM SIGIR Int. Conf. Res.
Develop. Inform. Retrieval, 2011, pp. 795–804.

[9] J. Bhogal, A. Macfarlane, and P. Smith, “A review of ontology
based query expansion,” Inform. Process. Manage., vol. 43, no. 4,
pp. 866–886, 2007.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet
allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[11] B. Cleary, C. Exton, J. Buckley, and M. English, “An empirical
analysis of information retrieval based concept location techni-
ques in software comprehension,” Empirical Soft. Eng., vol. 14,
no. 1, pp. 93–130, 2009.

[12] A. Csomai and R. Mihalcea, “Investigations in unsupervised back-
of-the-book indexing,” in Proc. Fl. Artif. Intell. Res. Soc. Conf., 2007,
pp. 211–216.

[13] A. Csomai and R. Mihalcea, “Linguistically motivated features for
enhanced back-of-the-book indexing,” in Proc. 46th Annu. Meet.
Assoc. Comput. Linguistics, 2008, pp. 932–940.

[14] B. Dagenais and M. P. Robillard, “Creating and evolving devel-
oper documentation: Understanding the decisions of open source
contributors,” in Proc. 18th ACM SIGSOFT Int. Symp. Found. Soft.
Eng., 2010, pp. 127–136.

[15] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: A taxonomy and survey,” J. Softw.
Maintenance Evol.: Res. Practice, vol. 25, no. 1, pp. 53–95,
2013.

[16] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and
M. Dao, “Automatic extraction of a WordNet-like identifier net-
work from software,” in Proc. 18th IEEE Int. Conf. Program Compre-
hension, 2010, pp. 4–13.

[17] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of rele-
vance feedback in IR-based concept location,” in Proc. 25th IEEE
Int. Conf. Softw. Maintenance, 2009, pp. 351–360.

[18] K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J.
Eisenstein, M. Heilman, D. Yogatama, J. Flanigan, and N. A.
Smith, “Part-of-speech tagging for Twitter: Annotation, fea-
tures, and experiments,” in Proc. 49th Annu. Meet. Assoc.
Computational Linguistics: Human Lang. Technol.: Short papers—
Vol. 2, 2011, pp. 42–47.

[19] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, “Part-of-
speech tagging of program identifiers for improved text-based
software engineering tools,” in Proc. 21st IEEE Int. Conf. Program
Comprehension, 2013, pp. 3–12.

[20] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T.
Menzies, “Automatic query reformulations for text retrieval in
software engineering,” in Proc. 35th Int. Conf. Soft. Eng., 2013,
pp. 842–851.

[21] S. Henß, M. Monperrus, and M. Mezini, “Semi-automatically
extracting FAQs to improve accessibility of software development
knowledge,” in Proc. 34th Int. Conf. Soft. Eng., 2012, pp. 793–803.

[22] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically captur-
ing source code context of NL-queries for software maintenance
and reuse,” in Proc. 31st Int. Conf. Soft. Eng., 2009, pp. 232–242.

[23] R. Holmes and G. C. Murphy, “Using structural context to recom-
mend source code examples,” in Proc. 27th Int. Conf. Soft. Eng.,
2005, pp. 117–125.

[24] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker,
“Automatically mining software-based, semantically-similar
words from comment-code mappings,” in Proc. 10th Working
Conf. Min. Softw. Repositories, 2013, pp. 377–386.

[25] J. S. Justeson and S. M. Katz, “Technical terminology: Some lin-
guistic properties and an algorithm for identification in text,” Nat-
ural Lang. Eng., vol. 1, pp. 9–27, 1995.

[26] A. Kalia, H. R. M. Nezhad, C. Bartolini, andM. Singh, “Identifying
business tasks and commitments from email and chat con-
versations,” Tech. Rep. HPL-2013-4, HP Laboratories, 2013.

[27] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proc. 14th ACM SIGSOFT Int. Symp.
Found. of Soft. Eng., 2006, pp. 1–11.

[28] T. C. Lethbridge, J. Singer, and A. Forward, “How software engi-
neers use documentation: The state of the practice,” IEEE Soft.,
vol. 20, no. 6, pp. 35–39, Nov./Dec. 2003.

[29] C. D. Manning and H. Sch€utze, Foundations of Statistical Natural
Language Processing. Cambridge, MA, USA: MIT Press, 1999.

[30] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language process-
ing toolkit,” in Proc. 52nd Annu. Meet. Assoc. Computat. Linguistics:
Syst. Demonstrations, 2014, pp. 55–60.

[31] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An informa-
tion retrieval approach to concept location in source code,”
in Proc. 11th Working Conf. Reverse Eng., 2004, pp. 214–223.

[32] M.-C. D. Marneffe and C. Manning, “Stanford typed dependen-
cies manual,” 2008.

[33] P. Mika, E. Meij, and H. Zaragoza, ”Investigating the semantic gap
through query log analysis,” in Proc. 8th Int. Semantic Web Conf.,
2009, pp. 441–455.

[34] R. Mizoguchi, J. Vanwelkenhuysen, and M. Ikeda, “Task ontology
for reuse of problem solving knowledge,” in Towards Very Large
Knowledge Bases: Knowledge Building & Knowledge Sharing, Amster-
dam, The Netherlands: IOS Press, 1995, pp. 46–59.

[35] D. Movshovitz-Attias, and W. W. Cohen, “Natural language mod-
els for predicting programming comments,” in Proc. Annu. Meet.
Assoc. Computat. Linguistics, 2013, pp. 35–40.

[36] G. C. Murphy, M. Kersten, M. P. Robillard, and D. �Cubrani�c, “The
emergent structure of development tasks,” in Proc. 19th Eur. Conf.
Object-Oriented Program., 2005, pp. 33–48.

[37] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora,
“Mining source code descriptions from developer
communications,” in Proc. 20th IEEE Int. Conf. Program Comprehen-
sion, 2012, pp. 63–72.

[38] K. Pearson, “On a criterion that a given system of deviations from
the probable in the case of correlated system of variables is such
that it can be reasonably supposed to have arisen from random
sampling,” Philosoph. Mag., vol. 50, no. 5, pp. 157–175, 1900.

[39] M. Petrenko, V. Rajlich, and R. Vanciu, “Partial domain compre-
hension in software evolution and maintenance,” in Proc. 16th
IEEE Int. Conf. Program Comprehension, 2008, pp. 13–22.

[40] D. Poshyvanyk and A. Marcus, “Combining formal concept anal-
ysis with information retrieval for concept location in source
code,” in Proc. 15th IEEE Int. Conf. Program Comprehension, 2007,
pp. 37–48.

[41] D. Poshyvanyk, A. Marcus, V. Rajlich, Y.-G. Gu�eh�eneuc, and G.
Antoniol, “Combining probabilistic ranking and latent semantic
indexing for feature identification,” in Proc. 14th IEEE Int. Conf.
Program Comprehension, 2006, pp. 137–148.

[42] M. P. Robillard, “Topology analysis of software dependencies,”
ACMTran. Soft. Eng.Methodology, vol. 17, no. 4, pp. 18:1–18:36, 2008.

[43] M. P. Robillard and R. DeLine, “A field study of API learning
obstacles,” Empirical Soft. Eng., vol. 16, no. 6, pp. 703–732, 2011.

[44] S. Scerri, G. Gossen, B. Davis, and S. Handschuh, “Classifying
action items for semantic email,” in Proc. 7th Int. Conf. Lang.
Resources Eval., 2010, pp. 3324–3330.

[45] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, “Sando: An
extensible local code search framework,” in Proc. 20th Int. Symp.
Found. Soft. Eng., pp. 15:1–15:2, 2012.

[46] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker,
“Using natural language program analysis to locate and under-
stand action-oriented concerns,” in Proc. 6th Int. Conf. Aspect-ori-
ented Softw. Develop., 2007, pp. 212–224.

[47] B. Sisman and A. C. Kak, “Assisting code search with automatic
query reformulation for bug localization,” in Proc. 10th Working
Conf. Min. Softw. Repositories, 2013, pp. 309–318.

[48] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker, “Identifying
word relations in software: A comparative study of semantic simi-
larity tools,” in Proc. 16th IEEE Int. Conf. Program Comprehension,
2008, pp. 123–132.

[49] T. Thimthong, T. Chintakovid, and S. Krootjohn, “An empirical
study of search box and autocomplete design patterns in online
bookstore,” in Proc. Symp. Humanities, Sci. Eng. Res., 2012,
pp. 1165–1170.

[50] S. Thummalapenta, S. Sinha, D. Mukherjee, and S. Chandra,
“Automating test automation,” Tech. Rep. RI11014, IBM Research
Division, 2011.

580 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 6, JUNE 2015

[51] S. Thummalapenta and T. Xie, “PARSEWeb: A programmer assis-
tant for reusing open source code on the web,” in Proc. 22nd IEEE/
ACM Int. Conf. Automated Soft. Eng., 2007, pp. 204–213.

[52] Y. Tian, D. Lo, and J. Lawall, “Automated construction of a soft-
ware-specific word similarity database,” in Proc. Conf. Softw.
Maintenance, Reengineering Reverse Eng., 2014, pp. 44–53.

[53] C. Treude and M.-A. Storey, “Effective communication of soft-
ware development knowledge through community portals,”
in Proc. 8th Joint Meet. Eur. Soft. Eng. Conf. ACM SIGSOFT Symp.
Found. Soft. Eng., 2011, pp. 91–101.

[54] C. Treude and M.-A. Storey, “Work item tagging: Communicating
concerns in collaborative software development,” IEEE Trans.
Soft. Eng., vol. 38, no. 1, pp. 19–34, Jan. 2012.

[55] S. K. Tyler and J. Teevan, “Large scale query log analysis of re-
finding,” in Proc. 3rd ACM Int. Conf. Web Search Data Min., 2010,
pp. 191–200.

[56] D. �Cubrani�c and G. C. Murphy, “Hipikat: Recommending perti-
nent software development artifacts,” in Proc. 25th Int. Conf. Soft.
Eng., 2003, pp. 408–418.

[57] N. Wilde and M. C. Scully, “Software reconnaissance: Mapping
program features to code,” J. Softw. Maintenance, vol. 7, no. 1,
pp. 49–62, 1995.

[58] J. Yang and L. Tan, “Inferring semantically related words from
software context,” in Proc. 9th Working Conf. Min. Softw. Reposito-
ries, 2012, pp. 161–170.

[59] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource speci-
fications from natural language API documentation,” in Proc. 24th
IEEE/ACM Int. Conf. Automated Soft. Eng., 2009, pp. 307–318.

Christoph Treude received the Diplom degree
in computer science/management information
systems from the University of Siegen, Siegen,
Germany, and the PhD degree from the Univer-
sity of Victoria, Victoria, BC, Canada. He is
currently a postdoctoral researcher at the Depar-
tamento de Inform�atica e Matem�atica Aplicada at
Universidade Federal do Rio Grande do Norte in
Natal, Brazil. His research interests include
empirical software engineering, natural language
processing, and social media.

Martin P. Robillard received the BEng degree
from �Ecole Polytechnique de Montr�eal, Montreal,
QC, Canada, and the MSc and PhD degrees
in computer science from the University of
British Columbia, Vancouver, BC, Canada. He is
currently an associate professor of Computer
Science at McGill University, Montreal, QC. His
research interests include problems related to
API usability, information discovery, and knowl-
edge management in software engineering.

Barth�el�emy Dagenais received the BAppSc
degree from Universit�e du Qu�ebec �a Montr�eal,
Montreal, QC, Canada, and the MSc and PhD
degrees in computer science from McGill Univer-
sity, Montreal, QC. He is currently the chief tech-
nology officer at Resulto Inc., a web application
development startup.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TREUDE ET AL.: EXTRACTING DEVELOPMENT TASKS TO NAVIGATE SOFTWARE DOCUMENTATION 581

	Extracting development tasks to navigate software documentation
	Citation

	untitled

