
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2017

Exception handling bug hazards in Android: Results from a mining Exception handling bug hazards in Android: Results from a mining

study and an exploratory survey study and an exploratory survey

Roberta COELHO

Lucas ALMEIDA

Georgios GOUSIOS

Arie VAN DEURSEN

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
COELHO, Roberta; ALMEIDA, Lucas; GOUSIOS, Georgios; VAN DEURSEN, Arie; and TREUDE, Christoph.
Exception handling bug hazards in Android: Results from a mining study and an exploratory survey.
(2017). Empirical Software Engineering. 22, (3), 1264-1304.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8786

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8786&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Empir Software Eng (2017) 22:1264–1304
DOI 10.1007/s10664-016-9443-7

Exception handling bug hazards in Android
Results from a mining study and an exploratory survey

Roberta Coelho1 ·Lucas Almeida1,2 ·
Georgios Gousios3 ·Arie van Deursen3 ·
Christoph Treude4

Published online: 13 August 2016
© Springer Science+Business Media New York 2016

Abstract Adequate handling of exceptions has proven difficult for many software engi-
neers. Mobile app developers in particular, have to cope with compatibility, middleware,
memory constraints, and battery restrictions. The goal of this paper is to obtain a thorough
understanding of common exception handling bug hazards that app developers face. To that
end, we first provide a detailed empirical study of over 6,000 Java exception stack traces we
extracted from over 600 open source Android projects. Key insights from this study include
common causes for system crashes, and common chains of wrappings between checked and
unchecked exceptions. Furthermore, we provide a survey with 71 developers involved in

Communicated by: Romain Robbes, Martin Pinzger and Yasutaka Kamei

� Roberta Coelho
roberta@dimap.ufrn.br

Lucas Almeida
lucas.almeida@ifrn.edu.br

Georgios Gousios
g.gousios@tudelft.nl

Arie van Deursen
arie.vandeursen@tudelft.nl

Christoph Treude
christoph.treude@adelaide.edu.au

1 Federal University of Rio Grande do Norte, CIVT/UFRN. Av. Senador Salgado Filho, 3000. Lagoa
Nova, CEP: 59.078-970., Natal/RN, Brazil

2 Federal Institute of Education, Science and Technology of Rio Grande do Norte, Campus São
Gonçalo do Amarante. Rua Alexandre Cavalcanti Centro. 59290000 - São Gonçalo do Amarante,
RN, Brazil

3 Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands

4 University of Adelaide, School of Computer Science, Ingkarni Wardli 4.48, Adelaide, SA 5005,
Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9443-7&domain=pdf
mailto:roberta@dimap.ufrn.br
mailto:lucas.almeida@ifrn.edu.br
mailto:g.gousios@tudelft.nl
mailto:arie.vandeursen@tudelft.nl
mailto:christoph.treude@adelaide.edu.au

Empir Software Eng (2017) 22:1264–1304 1265

at least one of the projects analyzed. The results corroborate the stack trace findings, and
indicate that developers are unaware of frequently occurring undocumented exception han-
dling behavior. Overall, the findings of our study call for tool support to help developers
understand their own and third party exception handling and wrapping logic.

Keywords Exception handling · Android development · Repository mining ·
Exploratory survey

1 Introduction

The number of mobile apps is increasing at a daily rate. If on the one hand they extend
phones’ capabilities far beyond the basic calls, on the other hand they have to cope with
an increasing number of exceptional conditions (e.g., faults in underlying middleware or
hardware; compatibility issues McDonnell et al. 2013; memory and battery restrictions;
noisy external resources Zhang and Elbaum 2012).

Therefore, mechanisms for exception detection and handling are not an optional add-
on but a fundamental part of such apps. The exception handling mechanism (Goodenough
1975), embedded in many mainstream programming languages, such as Java, C++ and C#,
is one of the most used techniques for detecting and recovering from such exceptional con-
ditions. In this paper we will be concerned with exception handling in Android apps, which
reuses Java’s exception handling model.

However, such mechanisms are more often than not the least understood and tested parts
of the system (Miller and Tripathi 1997; Robillard and Murphy 2000; Shah et al. 2010;
Garcia et al. 2007, 2001; Cabral and Marques 2007; Coelho et al. 2011; Coelho et al. 2014).
As a consequence they may inadvertently negatively affect the system: exception-related
code may introduce failures such as uncaught exceptions (Jo et al. 2004; Zhang and Elbaum
2012) – which can lead to system crashes, making the system even less robust (Coelho et al.
2011).

In Java, when an application fails due to an uncaught exception, it automatically ter-
minates, while the system prints a stack trace to the console, or to a log file (Gosling
2000). A typical Java stack trace consists of the fully qualified name of the thrown excep-
tion and the ordered list of methods that were active on the call stack before the exception
occurred (Gosling 2000; Bloch 2008). When available, the exception stack traces provide
a useful source of information about system crashes (Bettenburg et al. 2008a) which can
enable different kinds of post-mortem analysis and support: debugging (Schröter et al.
2010), bug classification and clustering (Wang et al. 2013; Kim et al. 2011; Dhaliwal et al.
2011), automated bug fixing (Sinha et al. 2009) and fault-proneness prediction models (Kim
et al. 2013).

This work is conducted in two phases. First, a mining study performs a post mortem
analysis of the exception stack traces included in issues reported on Android projects hosted
on GitHub and Google Code. The goal of this study is to investigate whether the reported
exception stack traces can reveal common bug hazards in the exception-related code. A bug
hazard (Binder 2000) is a circumstance that increases the chance of a bug being present in
the software. An example of a bug hazard can be a characteristic of the exception-related
code which can increase the likelihood of introducing the aforementioned uncaught excep-
tions. Second, we conducted an exploratory survey with the Android developers involved
in themined projects to assess their perspective about the exception handling bug hazards found.

1266 Empir Software Eng (2017) 22:1264–1304

To guide this investigation we compiled general guidelines on how to use Java exceptions
proposed by Gosling (2000), Wirfs-Brock (2006) and Bloch (2008). Then, using a custom
tool called ExceptionMiner, which we developed specifically for this study, we mine stack
traces from the issues reported in 482 Android projects hosted on GitHub and 157 projects
hosted on Google Code. Overall 159,048 issues were analyzed and 6,005 stack traces
were extracted from them. The exception stack trace analysis was augmented by means of
bytecode and source code analysis for the exception-related code of the Android platform
and Android applications. Some bug hazards consistently detected during this mining study
include:

– Cross-type exception wrappings, such as an OutOfMemoryError wrapped in a checked
exception. Trying to handle an instance of OutOfMemoryError “hidden” in a checked
exception may bring the program to an unpredictable state. Such wrappings suggest
that, when (mis)applied, the exception wrapping can make the exception-related code
more complex and negatively impact the application robustness.

– Undocumented runtime exceptions raised by the Android platform (35 methods) and
third-party libraries (44 methods) – which correspond to 4.4 % of the reported exception
stack traces. In the absence of the “exception specification” of third-party code, it is
difficult or even infeasible for the developer to protect the code against “unforeseen”
exceptions. Since in such cases the client usually does not have access to the source
code, such undocumented exceptions may remain uncaught and lead to system crashes.

– Undocumented checked exceptions signaled by native C code. Some flows contained
a checked exception signaled by native C code invoked by the Android Platform, yet
this exception was not declared in the Java Native Interface invoking it. This can lead
to uncaught exceptions that are difficult to debug.

– A multitude of programming mistakes – approximately 52 % of the reported stack
traces can be attributed to programming mistakes. In particular, 27.71 % of all stack
traces contained a java.lang.NullPointerException as their root cause.

The exploratory survey was conducted with 71 Android developers involved in one or
more of the GitHub Android projects whose issues were mined. This survey reveals that only
few developers (3 % of respondents) knew about the undocumented checked exceptions
signaled by native C code of the Android platform. Moreover, most of the developers recog-
nized that cross-type exception wrappings may negatively impact the application robustness.
The uncaught exceptions due to errors in programming logic, e.g. the NullPointerException,
were identified by most developers (68 %) as the first or second main cause of application
crashes.

The high prevalence of NullPointerExceptions found in the mining study and confirmed
in the exploratory survey is in line with findings of earlier research (Kim et al. 2013;
Fraser and Arcuri 2013; Csallner and Smaragdakis 2004), as are the undocumented runtime
exceptions signaled by the Android Platform (Kechagia and Spinellis 2014).

Some of the findings of our mining study emphasize the impact of these bug hazards
on the application robustness by mining a different source of information as the ones used
in previous works. The present work mined issues created by developers on GitHub and
Google Code, while previous research analyzed crash reports and automated test reports.
Furthermore, our work points to bug hazards that were not detected by previous research
(i.e., cross-type wrappings, undocumented checked exceptions and undocumented run-
time exceptions thrown by third-party libraries) which represent new threats to application
robustness. Moreover, we perform the first exploratory survey study whose goal was to

Empir Software Eng (2017) 22:1264–1304 1267

assess developers’ perspective regarding a set of exception handling bug hazards as well as
how developers deal with exceptions and prevent crashes while developing.

Our findings point to threats not only to the development of robust Android apps, but
also to the development of any robust Java-based system. Hence, the study results are
relevant to Android and Java developers who may underestimate the effect of such bug
hazards on the application robustness, and who have to face the difficulty of preventing
them. Moreover, such bug hazards call for improvements of languages (e.g. to prevent null
pointer dereferences) and tools to better support exception handling in Android and Java
environments.

The remainder of this paper is organized as follows. Section 2 provides the necessary
background on the Android platform and the Java exception model. Section 3 presents the
mining study design, describes the ExceptionMiner tool we developed to conduct our study,
and reports the study results. Section 4 details the exploratory survey. Section 5 provides a
discussion of the wider implications of our results, presents the threats to validity associated
with the mining study and discusses the limitations of the survey-based study, and points to
the replication. Finally Section 6 describes related work, and Section 7 concludes the paper
and outlines directions for future work.

2 Background

2.1 The Android Platform

Android is an open source platform for mobile devices based on the Linux kernel. Android
also comprises (i) a set of native libraries written in C/C++ (e.g., WebKit, OpenGL,
FreeType, SQLite, Media, C runtime library) to fulfill a wide range of functions includ-
ing graphics drawing, SSL communication, SQLite database management, audio and video
playback etc; (ii) a set of Java Core Libraries including a subset of the Java standard libraries
and various wrappers to access the set of C/C++ native libraries using the Java Native Inter-
face (JNI); (iii) the Dalvik runtime environment, which was specifically designed to deal
with the resource constraints of a mobile device; and (iv) the Application Framework which
provides higher-level APIs to the applications running on the platform.

2.2 Exception Model in Java

Exception Types In Java, exceptions are represented according to a class hierarchy, in
which every exception is an instance of the Throwable class, and can be of three kinds: the
checked exceptions (extends Exception), the runtime exceptions (extends RuntimeExcep-
tion) and errors (extends Error) (Gosling 2000). Checked exceptions received their name
because they must be declared in the method’s exception interface (i.e., the list of excep-
tions that a method might raise during its execution) and the compiler statically checks if
appropriate handlers are provided within the system. Both runtime exceptions and errors are
also known as “unchecked exceptions”, as they do not need to be specified in the method
exception interface and do not trigger any compile time checking.

By convention, instances of Error represent unrecoverable conditions which usually
result from failures detected by the Java Virtual Machine due to resource limitations, such as
OutOfMemoryError. Normally these cannot be handled inside the application. Instances of
RuntimeException are implicitly thrown by the Java runtime environment when a program
violates the semantic constraints of the Java programming language (e.g., out-of-bounds

1268 Empir Software Eng (2017) 22:1264–1304

array index, divide-by-zero error, null pointer references). Some programming languages
react to such errors by immediately terminating the program, while other languages, such
as C++, let the program continue its execution in some situations such as the out-of-bounds
array index. According to the Java Specification (Gosling 2000) programs are not expected
to handle such runtime exceptions signaled by the runtime environment.

User-defined exceptions can be either checked or unchecked, by extending either Excep-
tion or RuntimeException. There is a long-lasting debate about the pros and cons of both
approaches (The Java tutorial. Unchecked exceptions: The controversy 2014; Stackoverflow
Q&A. Java: checked vs unchecked exception explanation 2014; Jenkov Tutorials. Checked
or Unchecked Exceptions 2014). Section 2.3 presents a set of best practices related to each
of them.

Exception Propagation In Java, once an exception is thrown, the runtime environment
looks for the nearest enclosing exception handler (Java’s try-catch block), and unwinds the
execution stack if necessary. This search for the handler on the invocation stack aims at
increasing software reusability, since the invoker of an operation can handle the exception
in a wider context (Miller and Tripathi 1997).

A common way of propagating exceptions in Java programs is through exception wrap-
ping (also called chaining): One exception is caught and wrapped in another one which is
then thrown instead. Figure 1 shows an exception stack trace which illustrates such excep-
tion wrapping. For simplicity, in this paper we will refer to “exception stack trace” as just
stack trace. The bottom part of the stack trace is the root exception (Fig. 1a), which indicates
the first reason (root cause) for the exception thrown (in this case, the computer ran out of
memory). The top part of the stack trace indicates the location of the exception manifesta-
tion, which we will refer to as the exception wrapper in this paper (Fig. 1c). The execution
flow between the root exception and the wrapper may include other intermediate exception
wrappers (Fig. 1d). At all levels, the exception signaler is the method that threw the excep-
tion, represented in the stack trace as the first method call below the exception declaration
(Fig. 1b).

2.3 Best Practices

Several general guidelines have been proposed on how to use Java exceptions (Mandrioli
and Meyer 1992; Gosling 2000; Wirfs-Brock 2006; Bloch 2008). Such guidelines do not

Fig. 1 Example of an exception stack trace in Java

Empir Software Eng (2017) 22:1264–1304 1269

advocate any specific exception type, but rather propose ways to effectively use each of
them. Based on these, for the purpose of our analysis we compiled the following list of Java
exception handling best practices.

I-Checked Exceptions Should be Used to Represent Recoverable Conditions
(Mandrioli and Meyer 1992; Gosling 2000; Wirfs-Brock 2006; Bloch 2008) The devel-
oper should use checked exceptions for conditions from which the caller is expected to
recover. By confronting the API user with a checked exception, the API designer is forc-
ing the client to handle the exceptional condition. The client can explicitly ignore the
exception (swallowing, or converting it to another type) at the expense of the program’s
robustness (Gosling 2000).

II-Error Represents an Unrecoverable Condition Which Should not be Handled
(Gosling 2000) Errors should result from failures detected by the runtime environment
which indicate resource deficiencies, invariant failures or other conditions, from which the
program cannot possibly recover.

III-A Method Should Throw Exceptions that Precisely Define the Exceptional
Condition (Gosling 2000; Bloch 2008) To do so, developers should either try to
reuse the exception types already defined in the Java API or they should create a spe-
cific exception. Thus, throwing general types such as a pure java.lang.Exception or a
java.lang.RuntimeException is considered bad practice.

IV- All Exceptions Explicitly Thrown by Reusable Code Should be Documented
(Mandrioli and Meyer 1992; Gosling 2000; Wirfs-Brock 2006; Bloch 2008) For
checked exceptions, this is automatically the case. Bloch (2008) furthermore recommends
to document explicitly thrown run time exceptions, either using a throws declaration in the
signature, or using the @throws tag in the Javadoc. Doing so, in particular for public APIs
of libraries or frameworks, makes clients aware of all exceptions possibly thrown, enabling
them to design the code to deal with them and use the API effectively (Robillard andMurphy
2000; Wirfs-Brock 2006).

3 The Repository Mining Study

Our mining study was guided by a general research question: RQ 1: Can the informa-
tion available in exception stack traces reveal exception handling bug hazards in both the
Android applications and framework? As mentioned before, in this context bug hazards are
the characteristics of exception-related code that favor the introduction of failures such as
uncaught exceptions.

Our study focused on the exception stack traces contained in issues of Android projects
(hosted on GitHub and Google Code). To support our investigation, we developed a tool
called ExceptionMiner (Section 3.3) which extracts the exception stack traces embedded
in issues and combines stack trace information with source code and bytecode analysis.
Moreover, we use manual inspection to augment the understanding of stack traces and sup-
port further discussions and insights (Section 3.4). In this study we explore the domain
quantitatively and highlight interesting cases by exploring cases qualitatively.

Figure 2 gives an overview of our study. First, the issues reported in Android projects
hosted on GitHub (1) and Google Code (2) are recovered. Then the stack traces embedded

1270 Empir Software Eng (2017) 22:1264–1304

Fig. 2 Study overview

in each issue are extracted and distilled (3). The stack trace information is then combined
with source code and bytecode analysis in order to discover the type of the exceptions
(5) reported in the stack traces (e.g., error, runtime, checked), and the origin (6) of such
exceptions (e.g., the application, a library, the Android platform). Manual inspection steps
(4, 7, 9) are used to support the mining process and the search for bug hazards (8). The next
sections detail each step of this mining process.

Our study focuses on open-source apps, since the information needed to perform our
study cannot be retrieved from commercial apps, whose issue report systems and source
code are generally not publicly available. Open source Android apps have also been the
target of other research (Linares-Vásquez et al. 2013; Ruiz et al. 2012) addressing reuse and
API stability.

3.1 Android Apps on GitHub

This study uses the dataset provided by the GHTorrent project (Gousios 2013), an off-line
mirror of the data offered through the GitHub API. To identify Android projects, we per-
formed a case insensitive search for the term “android” in the repositories’ names and short
descriptions. Up to 23 February 2014, when we queried GHTorrent, this resulted in 2,542
repositories. Running the ExceptionMiner tool on this set we observed that 589 projects had
at least one issue containing a stack trace.

Then we performed a further clean up, inspecting the site of every Android project report-
ing at least one stack trace, to make sure that they represented real mobile apps. During
this clean up 107 apps were removed because they were either example projects (i.e., toy
projects) or tools to support Android development (e.g. Selendroid, Roboeletric – tools to
support the testing of Android apps). The filtered set consisted of 482 apps. This set of 482
projects contained a total of 31,592 issues from which 4,042 exception stack traces were
extracted.

Issues on GitHub are different from issues in dedicated bug tracking tools such as
Bugzilla and Jira. The most important difference is that there are no predefined fields (e.g.
severity and priority). Instead, GitHub uses a more open ended tagging system, where repos-
itories are offered a pre-defined set of labels, but repository owners can modify them at will.
Therefore, an issue may have none or an arbitrary set of labels depending on its repository.
Table 1 illustrates the occurrences of different labels on the issues including exception stack

Empir Software Eng (2017) 22:1264–1304 1271

Table 1 Labels on issues
including exception stack traces GitHub Google Code

Label % Occurrences Label % Occurrences

Empty 54.24 % Defect 91.96 %

Defect 39.56 % Enhancement 3.16 %

Enhancement 0.57 % Task 1.37 %

Support 0.52 % empty 1.12 %

Problem 0.36 % StackTrace 0.70 %

Others 4.74 % Others 1.68 %

traces. Regardless of the issue labels, every exception stack trace may contain relevant infor-
mation concerning the exception structure of the projects analyzed, and therefore can reveal
bug hazards in the exception-related code. Because of this, we opted for not restricting the
analysis to just defect issues.

3.2 Android Apps in Google Code

Google Code contains widely used open-source Android apps (e.g. K9Mail1). However,
differently from GitHub, Google Code does not provide an API to access the information
related to hosted projects.2 To overcome this limitation we needed to implement a Web
Crawler (incorporated in the ExceptionMiner tool described next) that navigates the web
interface of Google Code projects extracting all issues and issue comments and storing them
in a relational database for later analysis. To identify Android projects on Google Code, we
performed a similar heuristic: we performed a case insensitive search (on the Google Code
search interface) for the term “android”. In January 2014, when we queried Google Code,
this resulted in a list of 788 projects. This list comprised the seeds sent to our Crawler.

The Crawler retrieved all issues and comments for these projects. From this set, 724
projects defined at least 1 issue. Running the ExceptionMiner tool on this set we observed
that 183 projects had at least one issue containing an exception stack trace. Then we per-
formed further clean up (similar to the one described previously) inspecting the site of each
project. As a result we could identify 157 Android projects. This set contained 127,456
issues in total, from which 1,963 exception stack traces were extracted. Table 1 illustrates
the occurrences of different labels on the issues including exception stack traces. Differ-
ently from GitHub, on Google Code most of the issues were labeled as “Defect”. However,
based on the same assumption described for the GitHub repository we considered all issues
reporting stack traces (regardless of their labels).

3.3 The ExceptionMiner Tool

The ExceptionMiner is a tool which can connect to different issue repositories, extract
issues, mine exception stack traces from them, distill exception stack trace information, and
enable the execution of different analyses by combining exception stack trace information

1K9Mail moved to GitHub but as a way of not loosing the project history it advises their users to report bugs
in the Google Code issue tracker: https://github.com/k9mail/k-9/wiki/LoggingErrors.
2Google Code used to provide a Web service to its repositories, but this was deactivated in June 2013 in what
Google called a “clean-up action”.

https://github.com/k9mail/k-9/wiki/LoggingErrors.

1272 Empir Software Eng (2017) 22:1264–1304

with byte code and source code analysis. The main components of ExceptionMiner are the
following:

Repository Connectors This component enables the connection with issue repositories.
In this study two main connectors were created: one which connects to the GHTorrent
database, and a Google Code connector which is comprised of a Web Crawler that can tra-
verse the Google Code web interface and extract a project’s issues. Project meta-data and
the issues associated with each project are stored in a relational database.

Exception Stack Trace Distiller This component combines a parser (based on regular
expressions) and heuristics able to identify and filter exception names and stack traces inline
with text. This component distills the information that composes a stack trace. Some of the
attributes extracted from the stack trace are the root exception and its signaler, as well as
the exception wrappers and their corresponding signalers. This component also distills fine
grained information of each attribute such as the classes and packages associated with them.
In contrast to existing issue parsing solutions such as Infozilla, our parser can discover stack
traces mixed with log file information.3

Exception Type Analysis To support a deeper investigation of the stack traces every
exception defined in a stack trace needs to be classified according to its type (e.g. Error,
checked Exception or RuntimeException). The module responsible for this analysis uses
the Design Wizard framework (Brunet et al. 2009) to inspect the bytecode of the exceptions
reported in stack traces. It walks up the type hierarchy of a Java exception until it reaches a
base exception type. Hence in this study the bytecode analysis was used to discover the type
of each mined exception when the jar file of such an exception was available in the project
or in a reused Java library. A specific implementation (based on source code analysis) was
needed to discover the exception type when the bytecode was not available. With this mod-
ule we analyzed all exceptions defined in the Android platform (Version 4.4, API level 19),
which includes all basic Java exceptions that can be thrown during the app execution, and
exceptions thrown by Android core libraries. Moreover, we also analyzed the exceptions
reported in stack traces that were defined by applications and third-party libraries (the tool
only analyzed the last version available).

Exception Signaler Analysis This module is responsible for classifying each signaler
according to its origin (i.e., Android Application Framework, Android Libcore, Applica-
tion, Library). Table 2 presents the heuristics adopted in this classification. To conduct this
classification, we provide this module with the information comprising all Java packages
that compose: the Android Platform; the Android Libcore; and each analyzed Application.
To discover the packages for the first two origins we can use the Android specification. To
discover the packages for the third origin, the application itself, this module extracts the
manifest files of each Android app, which defines the main packages that the applications
consist of. If this file is not available, the tool recursively analyzes the structure of source
code directories composing the application, and filters out the cases in which the applica-
tion also includes the source code of reused libraries. Then, based on this information and

3In several exception stack traces, the exception frames were preceded by logging information e.g., 03-01
15:55:01.609 (7924): at android.app.ActivityThread.access$600(Activity
Thread.java:127) which could not be detected by existing tools.

Empir Software Eng (2017) 22:1264–1304 1273

Table 2 Sources of exceptions in Android

Signaler Description

Android If the exception is thrown in a method defined in the Android platform.

App If the exception is thrown in a method defined in an Android app.

Libcore If the exception is thrown in one of the core libraries reused by Android (e.g., org.apache.harmony,
org.w3c.dom, sun.misc, org.apache.http, org.json, org.xml).

Lib If the exception is thrown in a method that was not defined by any of the elements above.

using pattern matching between the signaler name and the packages, this module identifies
the origin of the exception signalers.

The exceptions are considered to come from libraries if their packages are neither
defined within the Android platform, nor in core libraries, nor in the applications. Table 2
summarizes this signaler classification.

3.4 Manual Inspections

In our experiments, the output of the ExceptionMiner tool was manually extended in order
to (i) support the identification of packages composing the Android platform, libs and apps
analyzed in this study (as described previously); and (ii) identify the type of some excep-
tions reported in issues that were not automatically identified by the ExceptionMiner tool
(because they were defined in previous versions of libraries, apps and Android Platform).
When the exception could not be found automatically or manually (because they were
defined in a previous version of the app or lib), we classified the exception as “Undefined”.
Only 31 exceptions remained undefined, which occurred in 60 different exception stack
traces (see Table 5).

3.5 The Mining Study Results

This section presents the results of our study that was guided by the general research
question: RQ 1: Can the information available in exception stack traces reveal exception
handling bug hazards in both the Android applications and framework? To make the anal-
ysis easier, we further refine this question into sub-questions, each one focusing on pieces
of information distilled from stack traces, more specifically: (i) the root exceptions (i.e.,
the exceptions that caused the stack traces); (ii) the exception types (i.e, Checked, Runtime,
Error, Throwable) and (iii) the exception wrappings. Hence, this section is centered around
the following sub-questions: RQ 1.1: Can the root exceptions reveal bug hazards?; RQ 1.2
Can the exception types reveal bug hazards?; and RQ 1.3 Can the exception wrappings
reveal bug hazards?.

In this section each piece of information is analyzed in detail to check whether it can
reveal bug hazards in the exception handling code – related to (i) specific violations of
the best practices presented in Section 2.3, or (ii) the general use of exception handling to
support robust development.

RQ 1.1 Can the root exceptions reveal bug harzards?

After distilling the information available in the exception stack traces, we could find
the exceptions commonly reported as the root causes of stack traces. Table 3 presents a

1274 Empir Software Eng (2017) 22:1264–1304

list of the top 10 root exceptions found in the study – ranked by the number of distinct
projects in which they were reported. This table also shows how many times the signaler of
such an exception was a method defined by the Android platform, the Android Libcore, the
application itself or a third-party library – following the classification presented in Table 2.

We can observe that most of the exceptions in this list are implicitly thrown by
the runtime environment due to programming mistakes (e.g., out-of-bounds array index,
division-by-zero, access to a null reference) or resource limitations (e.g., OutOfMemory-
Error). From this set the java.lang.NullPointerException was the most reported root cause
(27.71 %). If we consider the frequency of NullPointerException across projects, we can
observe that 51.96 % of all projects reported at least one exception stack trace in which the
NullPointerException was the root cause.

The NullPointerException was mainly signaled inside the application code (50 %) and
the Android platform (31.5 %), although we could also find the NullPointerException
being signaled by third-party libraries (16.3 %). Regarding reusable code (e.g., libraries and
frameworks), there is no consensus whether it is a good or a bad practice to explicitly throw
a NullPointerException. Some prefer to encapsulate such an exception in an instance of
IllegalArgumentException, while others (Bloch 2008) argue that the NullPointerException
makes the cause of the problem explicit and hence can be signaled by an API expecting a
non-null argument.

The high prevalence of NullPointerException is aligned with the findings of other
research (Kim et al. 2013; Fraser and Arcuri 2013; Csallner and Smaragdakis 2004;
Kechagia and Spinellis 2014). For instance, Kechagia and Spinellis showed that the Null-
PointerException was the most reported exception in the crash reports sent to BugSense4

(a bug report management service for Android applications) (Kechagia and Spinellis 2014).
Other research on robustness testing (Maji et al. 2012; Csallner and Smaragdakis 2004)
shows that most of the automatically detected bugs were due to NullPointerException and
exceptions implicitly signaled by the Java environment due to programming mistakes or
resource limitations (as the ones found in our study).

Identifying the Concerns Related to Root Exceptions To get a broader view of the
root exceptions of stack traces, we performed a manual inspection in order to identify
the underlying concerns related to the most frequently reported root exceptions. Besides
the exceptions related to programming mistakes mentioned before, we also looked for
exceptions related to concerns that are known as sources of faults in mobile development:
concurrency (Amalfitano et al. 2012) backward compatibility (McDonnell et al. 2013),
security (Enck et al. 2011; Wasserman 2010) and resource management (IO, Memory,
Battery) (Zhang and Elbaum 2012). Since it is infeasible to inspect the code responsi-
ble for throwing every exception reported in this study, the concern identification for each
exception was based on intended meaning of the particular exception type, as defined in
its Javadoc documentation and in the Java specification. For example: (i) an instance of
ArrayOutOfBoundException refers to a programming mistake according to its Javadoc; and
(ii) the Java specification lists all exceptions related to backward compatibility,5 such as
InstantiationError, VerifyError, and IllegalAccessError.

To perform this concern analysis, we selected a subset of all reported root exceptions,
consisting of 100 exceptions reported in 95 % of all stack traces analyzed in this study.

4https://www.bugsense.com/.
5http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html.

https://www.bugsense.com/
http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html

Empir Software Eng (2017) 22:1264–1304 1275

Ta
bl
e
3

R
oo
tE

xc
ep
tio

ns
oc
cu
rr
en
ce
s
an
d
po
pu
la
ri
ty

in
an
al
yz
ed

re
po
si
to
ri
es

R
oo
tE

xc
ep
tio

n
Pr
oj
ec
ts

O
cc
ur
re
nc
es

A
nd

ro
id

Li
bc

or
e

A
pp

Li
b

#
%

#
%

ja
va
.la
ng
.N
ul
lP
oi
nt
er
E
xc
ep
tio

n
33
2

51
.9
6
%

16
64

27
.7
1
%

52
5

20
83
6

28
0

ja
va
.la
ng
.I
lle
ga
lS
ta
te
E
xc
ep
tio

n
12
0

18
.7
8
%

27
8

4.
63

%
18
5

31
41

39

ja
va
.la
ng
.I
lle
ga
lA
rg
um

en
tE
xc
ep
tio

n
14
2

22
.2
2
%

35
3

5.
88

%
19
5

12
95

44

ja
va
.la
ng
.R
un
tim

eE
xc
ep
tio

n
12
2

19
.0
9
%

31
9

5.
31

%
20
3

2
64

51

ja
va
.la
ng
.O
ut
O
fM

em
or
yE

rr
or

78
12
.2
1
%

23
7

3.
95

%
14
1

16
35

34

ja
va
.la
ng
.N
oC

la
ss
D
ef
Fo

un
dE

rr
or

67
10
.4
9
%

94
1.
57

%
10

0
46

37

ja
va
.la
ng
.C
la
ss
C
as
tE
xc
ep
tio

n
64

10
.0
2
%

13
0

2.
16

%
55

0
55

20

ja
va
.la
ng
.I
nd
ex
O
ut
O
fB
ou
nd
sE
xc
ep
tio

n
62

9.
70

%
16
6

2.
76

%
53

0
93

18

ja
va
.la
ng
.N
oS

uc
hM

et
ho
dE

rr
or

54
8.
45

%
80

1.
33

%
10

0
56

14

ja
va
.u
til
.C
on
cu
rr
en
tM

od
if
ic
at
io
nE

xc
ep
tio

n
43

6.
73

%
65

1.
08

%
5

0
46

13

1276 Empir Software Eng (2017) 22:1264–1304

Table 4 Identifying the concerns
related to root exceptions Concern % Occurrences on stacks

Programming logic (java.lang and util) 52.0 %

Resources (IO, Memory, Battery) 23.9 %

Security 4.1 %

Concurrency 2.9 %

Backward compatibility 5.5 %

Specific Exceptions 4.9 %

General (Error, Exception, Runtime) 6.7 %

Hence, based on the inspection of the Javadoc related to each exception and the Java specifi-
cation, we identified the underlying concern related to each root exception. Table 4 contains
the results of this analysis. This table also illustrates the exceptions that could not be
directly mapped to one of the aforementioned concerns, either because they were too gen-
eral (i.e., java.lang.Exception, java.lang.RuntimeException, java.lang.Error) or because they
were related to other concerns (e.g., specific to an application or a given library). To ensure
the quality of the process, three independent coders classified a randomly selected sample
of 25 exception types (from the total 100) using the same list of concerns; the inter-rater
agreement was 96 %.

This analysis revealed that approximately 75 % of the exceptions that caused the stack
traces are implicitly thrown by the runtime environment due to mistakes in the programming
logic (e.g., out-of-bounds array index, null pointer references) and resource limitations.
Although such exceptions do not directly point to violations of the best practices described
before (which are related to the explicitly thrown exceptions) they impose a major threat to
app robustness, and therefore represent a critical bug hazard to the exception handling code
of Android applications. Security and concurrency, which are known to be critical issues
for Android apps, raised few of the reported exceptions (less than 5 % of the analyzed stack
traces).

RQ 1.2 Can the exception types reveal bug hazards?

As mentioned before, using the ExceptionMiner tool in combination with manual inspec-
tions we could identify the root exception type (i.e., RuntimeException, Error, checked
Exception) as well as its origin – which we identified based on the package names of the
signalers in the stack traces (Section 3.3). Table 5 presents the types and origins of root
exceptions of all analyzed stack traces.

We can observe that most of the reported exceptions are of type runtime (64.85 %); and
that the most common origins are methods defined either in the Application (47.3 %) or in
the Android platform (34.3 %). We could also find runtime exceptions thrown by library
code (17.7 %). We can also see, from Table 5, that in contrast to the other origins, most
of the exceptions signaled by Android Libcore (i.e., the set of libraries reused by Android)
are checked exceptions. This set comprises: org.apache.harmony, org.w3c.dom, sun.misc,

Empir Software Eng (2017) 22:1264–1304 1277

Table 5 Types and origins of root exceptions

Root Type Android Libcore App Lib All %

Runtime 1335 73 1843 690 3894 64.85 %

Error 188 46 302 167 691 11.51 %

Checked 276 314 313 567 1358 22.61 %

Throwable 0 0 2 0 2 0.03 %

Undefined 4 0 18 38 60 1.00 %

All 1 803 433 2478 1462 6005

org.apache.http, org.json, org.xml, and javax. Signaling checked exceptions is considered
a good practice (see best practice IV in Section 2.3) because by using checked exceptions
a library can define a precise exception interface (Miller and Tripathi 1997) to its clients.
Since such libraries are widely used in several projects, this finding can be attributed to the
libraries’ maturity.

Inspecting Exception Interfaces According to the best practices mentioned before,
explicitly thrown runtime exceptions should be documented as part of the exception inter-
face of the reusable methods of libraries/frameworks. To investigate the conformance to this
practice, we first filtered out all the exceptions implicitly signaled by the runtime environ-
ment (due to programming mistakes) – since these exceptions should not be documented in
the method signature.6 Then we inspected the code for each method (defined either in the
Android Application Framework or in third-party libraries) explicitly signaling a runtime
exception. Table 6 presents the results of this inspection. We found 79 methods (both from
libraries and the Android platform) that explicitly threw a runtime exception without listing
it in the exception interface (i.e., using a throws clause in the method signature). From this
set only one method (defined in a library) included an @throws tag in its Javadoc – report-
ing that the given runtime exception could be thrown in some conditions. These methods
were responsible for 267 exception stack traces mined in this study.

This result is in line with the results of two other studies (Sacramento et al. 2006;
Kechagia and Spinellis 2014). Sacramento et al. (2006) observed that the runtime excep-
tions in .NET programs are most often not documented. Kechagia and Spinellis (2014)
identified a set of methods in the Android API which do not document their runtime excep-
tions. One limitation of the latter work is that it did not filter out exceptions that, although
runtime, should not be documented because they were implicitly signaled by the JVM due
to resource restrictions or violations of semantic Java constraints. When explicitly signal-
ing a runtime exception and not documenting it, the developer imposes a threat to system
robustness, especially when such exceptions are thrown by third party code (e.g., libraries or
framework utility code) invoked inside the application. In such cases the developer usually

6The filtering was performed in two steps: firstly, we analyzed the bytecode of the JVM and identified all
runtime exceptions defined by it (e.g., java.lang.NullPointerExceptoin,java.lang.ArrayIndexOutOfBounds),
then if the libraries/framework method was signaling one of such exceptions it was filtered out from the
analysis.

1278 Empir Software Eng (2017) 22:1264–1304

Table 6 Absence of exception
interfaces in methods Origin stacks signaler methods throws clause @throws

Libraries 205 44 0 1

Android 62 35 0 0

All 267 79 0 1

does not have access to the source code. Hence in the absence of the exception documenta-
tion it is very difficult or even impossible for the client to design the application to deal with
“unforeseen” runtime exceptions. As a consequence, the undocumented runtime exception
may remain uncaught and lead to system crashes.

Missing Checked Exceptions in Exception Interfaces Our exception stack trace anal-
ysis revealed an unexpected bug hazard: a checked exception thrown by a native method and
not declared in the exception interface of the methods signaling them. The native method
in question was defined in the Android platform, which uses Java Native Invocation (JNI)
to access native C/C++ code. This exception was thrown by the method getDeclaredMeth-
ods defined in java.lang.Class. The Java-side declaration of this method does not have any
throws clause, leading programmers and the compiler to think that no checked exceptions
can be thrown. However, the C-code implementation did throw a “checked exception” called
NoSuchMethodException, violating the declaration. The Java compiler could not detect this
violation, because it does not perform static exception checking on native methods. This
type of bug is hard to diagnose because the developer usually does not have access to the
native implementations. Consequently, since it is not expected by the programmer, when
such a method throws this exception, the undocumented exception may remain uncaught
and cause the app to crash, or may be mistakenly handled by subsumption. The excep-
tion stack traces reporting this scenario actually correspond to a real bug of the Android
Gingerbread version (which still accounts for 13.6 % of devices running Android).

RQ 1.3 Can the exception wrappings reveal bug hazards?

Java is the only language that provides a hybrid exception model which offers three
kinds of exceptions each one holding an intended exception behavior (i.e., error, runtime
and checked). Table 7 presents some wrappings found in this study that include different
exception types (i.e., Error, checked Exception and Runtime). Below, we discuss the most
important of such “cross-type wrappings” in more detail.

Runtime Exception Wrapping a Checked Exception This wrapping was responsible
for 49.5 % of the cross-type wrappings. From this set 50 % were performed by methods

Empir Software Eng (2017) 22:1264–1304 1279

Table 7 Wrappings comprising different exception types

Wrapper Root Cause Projects Occurrences Android Java/Libcore Lib App

Runtime Checked 88 148 75 0 38 35

Runtime Error 46 67 58 0 8 1

Checked Runtime 17 31 4 0 16 11

Checked Error 8 9 5 0 1 3

Error Checked 14 27 6 7 6 8

Error Runtime 8 17 1 1 1 14

defined by the Android platform. We observe that this is a common implementation practice
in the methods of the Android platform. According to Java best practices checked excep-
tions represent conditions from which the caller is expected to recover. By converting a
checked exception in a general Runtime class, besides loosing contextual information about
the exception, the client can simply ignore such exception - which can negatively impact the
app robustness. Although it is considered a bad practice, when such wrapping is accompa-
nied by a well defined exception handling policy (which assures that proper handling will
be provided within the app) the impact on app robustness can be mitigated.

Runtime Exception Wrapping an Error From Table 7, we see that most of these
wrappings are performed by the Android platform (50.7 %). The code snippet below was
extracted from Android and shows a general catch clause that converts any instance of

Table 8 Examples of Cross-type wrappings

id Runtime Exception wrapping an Error

1 java.lang.RuntimeException - java.lang.OutOfMemoryError

2 java.lang.RuntimeException - java.lang.StackOverflowError

Checked Exception wrapping an Error

3 java.lang.reflect.InvocationTargetException - java.lang.OutOfMemoryError

4 java.lang.Exception - java.lang.OutOfMemoryError

Error wrapping a Checked Exception

5 java.lang.NoClassDefFoundError - java.lang.ClassNotFoundException

6 java.lang.AssertionError - javax.crypto.ShortBufferException

Error wrapping a Runtime Exception

7 java.lang.ExceptionInInitializerError - java.lang.NullPointerException

8 java.lang.ExceptionInInitializerError - java.lang.IllegalArgumentException

1280 Empir Software Eng (2017) 22:1264–1304

Throwable (signaled during the execution of an asynchronous task) into an instance of
RuntimeException and re-throws it.

Table 8 presents examples of exceptions that were actually wrapped in this code
snippet: java.lang.RuntimeException wrapped an java.lang.OutOfMemoryError and a
java.lang.StackOverflowError. Such Errors result from failures detected by the runtime
environment which indicate resource deficiencies from which the program cannot possibly
recover. Hence, “hiding” an unrecoverable condition into a runtime exception can lead to a
scenario where the developer tries to handle such an exception, leading the program to an
unpredictable state. This kind of wrapping should be avoided, since it represents a serious
bug hazard.

Checked Exception Wrapping an Error Most of these wrappings were also caused by
the reflection library used by applications’ methods. The methods responsible for the wrap-
pings were also native methods written in C. Table 8 illustrates some of these wrappings
— some of them are masking an OutOfMemoryError into a checked exception. On the one
hand, by confronting the API user with a checked exception, the API designer is forcing the
client to handle the exceptional condition. On the other hand, according to the Java specifi-
cation Errors are not supposed to be caught. In this case, even if the exception is caught by a
handler, the problem that trigged the Error remains: there is not enough memory to execute
the app. This kind of wrapping is even more dangerous than the previous one and may lead
to the “exception confusion” described next.

Error Wrapping Runtime and Checked Exceptions Table 8 illustrates examples of
instances of Error wrapping instances of RuntimeException. Although such a wrapping
mixes different exception types, since there is no obligation associated with handling
runtime exceptions, it does not violate the aforementioned best practices.

On the other hand, the inspection also revealed instances of Error wrapping checked
exceptions. Such wrappings were mostly performed by Java static initializers. If any excep-
tion is thrown in the context of a static initializer (i.e., static block) it is converted into an
ExceptionInitializerError at the point where the class is first used. Table 8 also illustrates
examples of such wrappings. Although such a wrapping may represent a design decision, it
violates the best practices related to checked exceptions and errors as it mixes the intended
handling behavior associated with both types.

We can also observe that some stack traces include successive cross-type wrappings,
such as: Runtime - Checked - Runtime - Checked - Runtime - Checked - Runtime. Hence,
although some of these wrappings may be a result of design decisions, the mis-use of excep-
tion wrappings may make the exception handling code more complex (e.g., the multiple
wrappings) and error-prone, and lead to “exception confusion”. To illustrate this problem

Empir Software Eng (2017) 22:1264–1304 1281

we can use one of the wrappings discussed above. When the developer is confronted with
a checked exception, the designer of the API is telling him/her to handle the exceptional
condition (according to the Java Specification and best practices). However, such an excep-
tion may be wrapping an Error such as an OutOfMemoryError, which indicates a resource
deficiency that the program cannot possibly recover from. Hence, trying to handle such an
exception may lead the program to an unpredictable state.

4 The Developers’ Perspective

As previously mentioned, the goal of this work is to obtain a thorough understanding of
common exception handling bug hazards that app developers face. In the first phase of
this work, we conducted a mining study which identified common exception handling bug
hazards in app development. In the second phase of this work, we set up an exploratory
qualitative investigation and surveyed Android developers on how they perceive the bug
hazards detected in the mining study. The scope of our study is GitHub—using our GHTor-
rent database (Gousios 2013), we aimed our survey at developers from Android projects
available in GitHub for which issues were mined during the first phase of this study. Next
sections detail this exploratory qualitative investigation.

4.1 Research Questions

The overall research question guiding our exploratory survey is the following: RQ 2: How
do developers deal with the exception handling code in Android apps and what are the
developers’ perspectives about the main bug hazards found during the mining study? This
general research question has been broken into a set of research questions that are answered
by the exploratory survey.

When developing Java-based applications it is inevitable to deal with exceptions. Hence,
our first question explores how developers deal with the exception handling code in Android
development:

RQ 2.1: How do developers deal with exception handling code while developing Android
apps?

To make the analysis easier, we further refine this question into sub-questions, as follows.
To investigate whether the development of exception handling code is a daily concern for
developers or it is something that developers rarely face and for that reason do not care
much, the following subquestions are added: How often do developers handle exceptions?
How often do developers throw exceptions? And, to evaluate developers knowledge con-
cerning EH best practices, we also investigated: Do developers know about Java EH best
practices and/or Android specific EH best practices?

The subsequent research questions focus on the developers’ perspectives about the main
bug hazards found during the mining study. We address these questions by presenting a set

1282 Empir Software Eng (2017) 22:1264–1304

of code snippets in which the bug hazards are present, asking developers what they would
do when faced with such scenarios. The questions related to bug hazards are as follows:

RQ 2.2: How do NullPointerExceptions impact the development of robust Android apps?
RQ 2.3: How do cross-type wrappings impact the development of robust Android apps?
RQ 2.4: Are developers aware of the robustness threats caused by JNI undocumented

checked exceptions?

Our last research question addresses whether the exception handling code helps with the
development of robust Android applications, and what developers usually do to prevent apps
from crashing. The motivation behind this question was to discover common practices for
dealing with uncaught exceptions and to assess developers perspective about the role of the
exception handling mechanism in the development of robust apps. Hence, the last question
is as follows:

RQ 2.5: How does the exception handling code affect the development of robust apps and
how do developers prevent apps from crashing?

4.2 Protocol

Given the exploratory nature of our research, we used methods from Grounded Theory
(Charmaz 2006) to answer some of our research questions. Since our aim is to learn from
a large number of developers, we use surveys which are known to scale well. The survey is
split into two logical sections; the motivations behind each logical section are: (i) questions
aiming at learning from developers about the usage of the exception handling code in app
development; and (ii) questions focusing on getting developers’ perceptions about the bug
hazards detected in the first phase of this study.

The survey comprises multiple choice or Likert-scale questions and open-ended ques-
tions. The multiple choice questions are intermixed with open-ended questions to further
elicit the developer’s opinions. Moreover, the survey also contains Likert-scale questions to
force participants to make a choice. Overall, the survey includes 13 open-ended questions,
5 Likert-scale questions and 10 multiple choice questions. The respondents could complete
the survey in about 15 minutes.

We used grounded theory coding to iterate through the open-ended survey responses. The
grounded theory coding used in this study consists of two phases: (1) initial coding entails a
close reading of the data and (2) later we used focused coding (Charmaz 2006) to pinpoint
and develop the most salient themes (Charmaz 2006) in the analyzed data. Answers to
different questions in the survey were coded separately. For all open-ended questions in the
survey, coding was done by two researchers until saturation was reached. Disagreements
were discussed and resolved as part of the coding, thus, we are unable to report level of
agreement. In all cases, the first author was one of the two coders, and one of the other
authors coded the data as well in close collaboration with the first author until saturation
was reached. The first author then went through the remaining responses to assign codes to
responses.

4.3 Participants

In the first phase of this study, described previously, we mined exception stack traces avail-
able in issues reported for several Android projects hosted on GitHub and Google Code.
To ensure that our sample consists of repositories that were real Android apps, we had to

Empir Software Eng (2017) 22:1264–1304 1283

inspect every project site and discard toy-programs and non-Android repositories. For each
repository, we extract the developers whose emails are registered. We emailed the 1,824
developers and received 71 valid answers. The response rate was 3.9 % – although the
response rate achieved in our study is low, it is in line with similar surveys reported in the
literature (e.g., Kochhar et al. 2015; Joorabchi et al. 2013; Bavota et al. 2015; Ko et al. 2007;
Hindle et al. 2015) whose response rates mostly vary between 2 % and 4 %. The majority
of our respondents have more than 2 years of Java development experience (87.3 %) and of
Android development (85.9 %) – see Fig. 3.

4.4 Findings

In this section, we present our findings per research question. To illustrate the different
aspects of each finding, we provide a selection of quotes from the exploratory survey. To
enable traceability, each respondent has an identification which can be traced in our database
using the following convention: D#. For instance, D1 corresponds to an answer provided by
developer 1.

RQ 2.1: How do developers deal with the exception handling in Android development?

This first research question explores the ways in which developers deal with the excep-
tion handling code, either throwing or handling exceptions, while developing an Android
app. Developers were asked about the frequency at which they develop exception handling
code and whether or not they adopt best practices while developing.

Developers were first asked how often they dealt with the exception handling code – see
Fig. 4. Many of our survey respondents recognized they have to handle exceptions most of
the time during Android app development (64.8 %). However, the frequency at which they
throw exceptions inside apps is smaller; most of the survey respondents said they throw
exceptions only some of the time or seldom (80.3 %). It shows that although we can try to
avoid throwing exceptions, it is almost always inevitable to handle the exceptions thrown
by the Android platform and reused libraries.

As mentioned before several general guidelines have been proposed on how to use Java
exceptions. Section 2.3 compiled a list of some exception handling (EH) best practices that
guided our mining study. In this survey the developers were also asked if they knew about
and used Java EH best practices – see Fig. 5. Most of them said that they knew and adopted
Java EH practices (68 %). From this set the most mentioned best practices are presented in
Table 9 – considering that one developer mentioned more than one practice. Most of the best
practices mentioned were the ones cited in Section 2.3. For instance:“Don’t throw [pure]

Fig. 3 Developers expertise in Java and Android development

1284 Empir Software Eng (2017) 22:1264–1304

Fig. 4 How often developers throw and handle exceptions during app development

RuntimeException (in most cases), don’t catch OutOfMemoryError, etc.” [D42]. Some of
the practices mentioned, however, are not well known Java EH best practices but seem to be
used by some Android developers to better deal with exceptions in the Android app context,
such as the use of a crash fast approach7 – “Crash is good for hinting developer. Fast crash
fast solve.” [D51]. According to this approach, developers should let the application crash
as soon as an unexpected situation happens. The motivation behind this approach is that the
developer will receive the crash information and fix the potential bug that caused it. On the
other hand, if the developer lets the app continue to run after an exception had happened,
the application may enter an inconsistent state. In such scenario, the time between the fault
being exercised and the failure (the fault manifestation) increases, which may impair find-
ing and fixing the potential bug that caused the failure. Moreover, some respondents favor
checked exceptions instead of runtime to represent the exceptional conditions in Android
apps – “RuntimeExceptions are not particularly well suited for Android’s robustness, as any
uncaught one would cause a crash.” [D26]; “Checked exception help, unchecked excep-
tions don’t.” [D25]; “avoid unchecked exceptions except if the case is really abnormal and
should not happen [...]”[D45].

The developers who informed us about their EH best practices were also asked whether
they knew about any EH best practices specific to Android – see Fig. 5. Most of them
(43 %) mentioned that they applied the same best practices that they used in Java programs.
Only some of them mentioned that they adopted specific best practices such as: (i) the use
of crash report tools (21 %) – to notify the developer about the uncaught exceptions that
happen in the application code; and (ii) the use of a global exception handler (14 %) – the
UncaughtExceptionHandler advised in the Android documentation (Table 10).8

1. RQ 2.2: How do the NullPointerExceptions impact the development of robust Android
apps?

7http://www.slideshare.net/pyricau/crash-fast.
8http://developer.android.com/reference/java/lang/Thread.UncaughtExceptionHandler.html.

http://www.slideshare.net/pyricau/crash-fast
http://developer.android.com/reference/java/lang/Thread.UncaughtExceptionHandler.html

Empir Software Eng (2017) 22:1264–1304 1285

Fig. 5 Summary of the survey questions related to EH best practices

Developers were asked if their apps ever crashed because of a NullPointerException –
see Fig. 6. The vast majority of respondents (96 %) said that their apps crashed at least
once due to a NullPointerException. Their answers are aligned with the high prevalence of
NullPointerExceptions found in the mining study – in Table 3 in Section 3.5 we can see that
NullPointerExceptions were the main cause of the mined exception stack traces.

Developers reported some reasons for the high prevalence of crashes caused by Null-
PointerExceptions. The activity and fragment lifecycle was one of them – “Android destroys
and recreates itself all of the time (especially during screen rotation) and if you do not han-
dle that it will crash on you every time. with the complexity of an activity with a fragment
that has fragments and each of those fragments has custom objects and variables that need
to be either retained (so saved and put back) or recreated such as views it can get complex
if you don’t have an understanding of how the android life cycle works.” [D43]. Another
developer also mentioned that: “They [NullPointerExceptions] can happen pretty much any-
where. The Android Fragment system comes to mind in this case. Often, it is possible to find
yourself in a state where getActivity() is null within the Fragment during certain points in
the life cycle, and that is something I have to plan for. This might have been avoidable under
a different structure.”[D56].

The framework complexity was also mentioned as a major cause of null pointer crashes –
since several methods of the Android framework return null, and there is not enough docu-
mentation to inform the developer when using such methods. Some respondents mentioned:
“The Android framework is what adds the complexity in figuring out what caused an excep-
tion because more often than not, the error is triggered from the framework as a result of
something else you did.” [D58]; “Java is simple language, and the problem arises when
you are using third party frameworks build on Java (or using Android which provide lots
of new classes). And the problem is you don’t always know if specific method can return
null object or only valid values.”[D7]. Moreover, a few respondents also answered that such

Table 9 Top mentioned Java EH
best practices – 40 non-empty
responses

Top Java EH Best Practices # %

Use specific handlers / don’t catch generic exceptions 9 23 %

Don’t swallow Exceptions 7 18 %

Don’t throw Runtime / Favor Checked exceptions 4 10 %

Do not use exception for normal flow control 4 10 %

Free Resources in finally-blocks 4 10 %

Crash fast 3 8 %

Crash report tools 2 5 %

Don’t catch Errors 2 5 %

1286 Empir Software Eng (2017) 22:1264–1304

Table 10 Top mentioned Android-specific EH best practices – 14 non-empty responses

Top Android EH Best Practices # %

Same as Java 6 43 %

Crash report tools 3 21 %

Add a global exception handler (UncaughtExceptionHandler) 2 14 %

Use checked exceptions 1 7 %

Use appropriate exception messages 1 7 %

NullPointerException crashes can be caused by backward compatibility as well as memory
issues as illustrated in Table 11.

Almost half of the developers mentioned, however, that NullPointerExceptions are com-
mon in Android development since they are common in Java standard development as well.
One responded even mentioned: “Honestly, there are a lot of very unskilled Java program-
mers out there writing Android apps. When they encounter NPE, they tend to null-check that
variable, which just puts a bandage on the problem and causes other failures (usually also
NPE’s) later on in the application’s lifecycle. This is nothing specific to Android, it’s just
how Java works”[D42].

Developers were also asked about what they usually do to prevent NullPointerExceptions
from happening when their app is in production. Table 12 presents the ways for preventing
NullPointerException in Android apps most cited by developers. Most of the developers
mentioned including null-checks in the application code (59 %), mostly when checking the
return of a method and as method guard conditions. Many respondents (39 %) also answered
that instead of just sprinkling the code with null-checks when a NullPointerException hap-
pens they investigate the cause of the null reference and work to fix it, instead of just adding
a null check. Determine why the object was null and attempt to fix this situation. In the
case of external API calls which return null, then check for null (the quick-and-dirty way).
For internal calls, use @NotNull and @Nullable annotations to provided more guidance on
when an object “may be” and “should never be” null” [D42].

Some respondents also mentioned using annotations such as @Nullable and @NotNull,
provided by Android Studio 0.5.5; such annotations guide the developer about what can and
cannot be null during the application lifecycle. Although catching the NullPointerExcep-
tions is considered a bad practice some respondents said that they do it to prevent crashes
caused by NullPointerExceptions. Such behavior was mentioned by one of the respondents
as the behavior adopted by non-experienced developers to prevent such crashes – which is
undoubtedly a mistake. Some respondents also suggested to replace the NullPointerExcep-
tion by IllegalArgumentException when a method should not receive a null as parameter.

Fig. 6 Summary of the survey questions relates to the null pointer problem (RQ 2.2) and the effect of EH
on app robustness (RQ 2.5)

Empir Software Eng (2017) 22:1264–1304 1287

Table 11 Top reasons why
NullPointerExceptions are more
frequent in Android apps
according to 19 respondents

Top Reasons # %

Activity/fragment life cycle 9 47 %

Framework complexity 6 32 %

API / Backward compatibility 2 11 %

Memory issues 1 5 %

No layers to catch runtimeexceptions 1 5 %

“Probably the most common exception, as such the reasons and fixes are super varying. But
in general, null checks should be utilized and illegal state or argument exceptions should be
used with an appropriate message. Which will communicate useful information without the
confusion an NPE would normally cause.”[D48]. This is a good exception handling prac-
tice mentioned by Bloch (2008). Only a few developers mentioned coding standards and
static code analyzers to prevent it (2 %).

RQ 2.3: How do Cross-Type Wrappings impact the development of robust Android
apps?

Some of the best practices are related to the different ways an exception should be handled
according to whether it is a checked or an unchecked exception. When the designer of an
API specifies that a method throws a checked exception, it is telling the caller of the API
that such an exception should be handled.

To assess the developers’ perspective on whether checked and unchecked exceptions
should be handled differently inside the app, the developers were presented with two pieces

Table 12 Top ways for
preventing NullPointerException
in Android apps – 61 non-empty
responses

Top Ways of Preventing NullPointerExceptions # %

Null-checks 36 59 %

Investigate/fix the cause 24 39 %

@Nullable @NotNull 8 13 %

Catch null-pointer (mistake) 3 5 %

Initialize/use default variable 3 5 %

New control-flow for null 3 5 %

Avoid using nulls / avoid to use methods can throw null 2 3 %

Static analysis 2 3 %

Automated testing 1 2 %

1288 Empir Software Eng (2017) 22:1264–1304

Table 13 Top ways of dealing
with a checked exception
signaled in the context of an
Activity method – 40 non-empty
responses

Top Ways of Handling Checked Exceptions # %

Add a try-catch block 25 63 %

Present error message 7 18 %

Involve the user in solving 5 13 %

Retry 5 13 %

Investigate the cause 3 8 %

Same way as runtime 3 8 %

Add a throws declaration / pass upstream 2 5 %

of code: one in which a RuntimeException was caught and another one where an IOEx-
ception was caught; both in the context of Activity life-cycle methods. Then the developers
were asked whether the way to handle a runtime exception should be different from the way
to handle a checked exception.

This question was motivated by the fact that during the mining study we could identify
that many checked exceptions were just wrapped in a runtime exception and re-thrown, as a
way to bypass any kind of handling.When asked about how to deal with a checked exception
signaled by a method (invoked in the context of the onPause() activity method), most respon-
dents (63 %) said that they should add a try-catch block surrounding the method invocation
- see Table 13. One of the respondents mentioned that “If a method signature declares that it
throws an exception, it means that the caller should handle the exception.”[D29]; “because
it is checked exception, you should expect it to happen rather than just crash”[D70]. How-
ever, most of the respondents also said that to deal with a method that is signaling a runtime
exception we should surround such a method with a try-catch block (59 %) - see Table 14.

However, what developers mentioned as handling actions (what is performed inside the
catch clause to deal with the exception) differs in both cases. For runtime exceptions most
of the handling actions were dedicated to present more specific error messages and prevent
the app from abruptly crashing. “[...] They signal exceptional behavior that may not be
recoverable, so they offer a useful way to log and gracefully crash” [D19]. “Giving the
user meaningful feed back is important, so the more specific you can be about what went
wrong, the better.”[D66]. Some developers also mentioned to use a toast to support this

Table 14 Top ways of handling
runtime exceptions – 63
non-empty responses

Top Ways of Handling Runtime Exceptions # %

Add a try-catch block 37 59 %

Present error message 14 22 %

Log the exception 12 19 %

Throw a checked exception 12 19 %

Let it crash / crash fast 6 10 %

Swallow the exception 5 8 %

Add a throws declaration 5 8 %

Report crash 3 5 %

Use Toast 3 5 %

Empir Software Eng (2017) 22:1264–1304 1289

task.9 Few developers also mentioned that the runtime exception should flow upstream to
the framework so it could crash the app.

On the other hand, some handling actions mentioned for checked exceptions were: (i)
retrying the same operation; (ii) involving the user in finding a solution to the exception
condition such as opening a pop-up and asking the user to define a new place to save the
file (the example presented to them involved a IOException being signaled); and also (iii)
presenting an error message to the user.

We can observe that the handling actions associated with checked exceptions focused
more on crash prevention than the ones related to runtime exceptions. “Its very important
in android that we gracefully handle an exception. Try not to crash an application.”[41]. It
was also interesting to observe that the developers suggested involving the user and solving
the exceptional condition represented by a checked exception – “We should try alternative
saving ways and if it fails we should prompt the user for a new location and always keep the
user informed”[D11]. “You still need to catch an IOException to prevent a crash. However,
because it is related to saving a file, you may need to reset any data within that catch
statement and either alert the user that it has failed or perform a limited retry (in the case
of an HTTP upload or something prone to server-side failure).”[D5].

Although there is a long lasting debate about the pros and cons of checked and unchecked
exceptions, the survey revealed that many Android developers considered checked excep-
tions as a way of using exceptions that can prevent uncaught exception crashes – since in
order for a checked exception to flow upstream and crash the app the developers need to
explicitly do so.

After presenting two different code snippets in which a checked and a runtime exception
were thrown, developers were presented with a code snippet in which a cross-type wrapping
was performed10 – as illustrated below. Then developers were asked whether such cross-
type wrapping could affect the application robustness in some way.

Table 15 illustrates the most mentioned reasons of why cross-type wrapping may affect
app robustness; 18 % of the respondents mentioned that the app would crash anyway,
regardless of whether the exception was wrapped or not. Most of the respondents, however,
mentioned disadvantages of such wrapping, such as: (i) it impairs proper handling since
wrapping in a general exception loses information about the exception situation to be han-
dled (24 %); such wrapping treats all exceptions as critical – in other words, every exception
will remain uncaught and will lead to an app crash – and it does not allow the developer to
perform a proper handling (e.g. retry) for exception types that are not critical. A respondent
emphasized that: “this treats all exceptions as critical failure, even though they might not

9A toast is an Android component that provides simple feedback about an operation in a small popup – http://
developer.android.com/guide/topics/ui/notifiers/toasts.html.
10This cross-type wrapping was found in several applications during the mining study as well as in some
classes of the Android framework.

http://developer.android.com/guide/topics/ui/notifiers/toasts.html
http://developer.android.com/guide/topics/ui/notifiers/toasts.html

1290 Empir Software Eng (2017) 22:1264–1304

Table 15 Top reasons why
cross-type wrapping may affect
app robustness – 49 non-empty
responses

Top Reasons Why Cross-Type Wrapping Affect Robustness # %

Impairs proper handling (loses exception information) 12 24 %

Uncaught will crash the app 12 24 %

App will crash anyway 9 18 %

Ahould catch / handle properly (do local recovery) 5 10 %

Treat all exceptions as critical 5 10 %

Useless rethrow 2 4 %

Activity methods cannot throw exceptions 1 2 %

all be unrecoverable”[D70]. Another developer alerted that: “Rethrowing a checked excep-
tion as an unchecked exception is the worst choice; it throws away any value of checked
exceptions, elevates the exception out of almost all handling, and does absolutely nothing
helpful in the process. Further, catching ‘Exception‘ suggests that the author doesn’t know
what exceptions might occur and wrongfully assumed that this solution is somehow safer
than doing nothing”[D19].

RQ 2.4: Are developers aware of the robustness threats caused by JNI undocumented
checked exceptions?

The respondents were presented with a piece of code in which a non-declared checked
exception has appeared, and they were asked if they knew any reason for this to happen.
Only 3 respondents out of 71 (4 % of respondents) were aware of the fact that there are ways
a method can throw a non-declared checked exception, such as JNI/native code, reflection,
and directly changing the bytecode/dalvik code, which bypass the compile-time checking.
One of them said: “I am guessing this is because the exception is thrown from native code
(i.e., C++ code in the JVM) where Java correct-ness semantics rules do not always apply.”
[D42].

Most of the respondents, however, were not aware that a method could throw a checked
exception without declaring it in the method’s signature. Most respondents mentioned that
if a method throws a non-declared exception it must be a RuntimeException. We could
observe that this exception handling bug hazard detected during the mining study, although
representing a threat to app robustness, is hardly known by the Android developers involved
in this survey.

RQ 2.5: How does the exception handling code affect the development of robust apps
and how do developers prevent apps from crashing?

Developers were also asked whether the exception handling code helped with the devel-
opment of robust Android applications – see Fig. 6. Although most of the developers

Empir Software Eng (2017) 22:1264–1304 1291

answered positively (78.9 %), when asked to provide one or more reasons for their answers,
most of the respondents also provided reasons why the exception handling code can
sometimes impair the robustness.

Since positive and negative reasons were provided intermixed we analyzed both sets of
answers and ranked the top reasons why exception handling can negatively or positively
affect robustness according to developers’ perceptions. Table 16 presents the top reasons
why the exception handling code may or may not help the development of robust apps.

Although most of the respondents answered that exception handling code helped with the
development of robust Android applications, almost every respondent pointed out a draw-
back associated with the exception handling code, saying that if it is not used with care the
exception handling code may lead to app crashes. “Any uncatched exception will crash the
app. There are many unknown exception thrown by the system, that are only happen once in
a lifetime like IllegalStateException: eglMakeCurrent failed EGL BAD CONTEXT”[D32].
“The lifecycle of activitiesfragments etc make it harder to work out what order things are
called in and so exceptions can occur because you didn’t realise that another method isn’t
called”[D70].

Developers were also asked to rank the main causes of crashes. Approximately 68 % of
the respondents ranked the exceptions signaled by programming logic mistakes, e.g. Null-
PointerExceptions, as the Top 1 and Top 2 cause of crashes, as illustrated in Fig. 7. In our
mining study the exceptions signaled due to programming logic mistakes (java.lang and
util) were the causes of 52 % of the exception stack traces found. Hence, the developers’
perspective is aligned with what was revealed in the mining study.

Finally developers were asked how they prevent their apps from crashing. Most of the
respondents answered that they prevent apps from crashing by handling exceptions/errors
(27 %). They mentioned strategies such as: handling exceptions in all entry points/all over;
using catch-all clauses; and adding try-catch blocks around risky methods. Different from
conventional Java programs, an Android app is composed of several entry points, each
window (i.e. Activity) is a potential entry point in which exceptions can arise leading to
an app crash. This explains the importance of handling exceptions in all entry points, and
using general catch clauses which sometimes cannot prevent crashes but allow the devel-
oper to present a detailed error message to the user before crashing. “You can wrap the

Table 16 Top 5 reasons why exception handling helps or impairs the development of robust apps

Top Reasons # %

For Positively Affecting Robustness

Improves error diagnosis 10 15 %

Anticipated erroneous situation help writing more robust code 9 13 %

Exceptions only for unrecoverable behavior 7 10 %

Checked exceptions force handling 6 9 %

Useful to gracefully crash 4 6 %

For Negatively Affecting Robustness

Crashes the app if not handled 7 10 %

Makes debugging harder 2 3 %

Unchecked/runtime exceptions may crash the app 2 3 %

NullPointerExceptions can happen anywhere/are tricky to avoid 2 3 %

VM inefficiency 1 1 %

1292 Empir Software Eng (2017) 22:1264–1304

Fig. 7 Developers’ perspectives on the main causes of crashes

main function in java in try/catch in android you can’t...”[D12]. “Though not particular
to Android, most Android apps have several different entry points: Activities, Services, etc,
can be started by different services; same thing with events. It may be hard to ensure that
all this cases are properly handled” [D46].

Many respondents also said that they used testing approaches to prevent crashes – few of
them mentioned crowd testing (3 %), an emerging approach in testing apps. Moreover, null
checks were also mentioned by 15 % of the developers as a way to prevent crashes. The
adoption of coding styles was also pointed out by 14 % of respondents as a way to prevent
crashes. Finally, crash report tools (e.g. ACRA11) were reported as a way to prevent crashes.
Once such tools notify developers about current crashes, the application can be fixed and
hence future crashes (caused by what was fixed) could be prevented. Table 17 presents the
themes for the strategies for crash prevention mentioned by developers.

5 Discussion

“Everybody hates thinking about exceptions, because they are not supposed to
happen” (Brian Foote)12

11code.google.com/p/acra/.
12Brian Foote shared his opinion in a conversation with James Noble – quoted in the paper: hillside.net/plop/
2008/papers/ACMVersions/coelho.pdf.

code.google.com/p/acra/
hillside.net/plop/2008/papers/ACMVersions/coelho.pdf
hillside.net/plop/2008/papers/ACMVersions/coelho.pdf

Empir Software Eng (2017) 22:1264–1304 1293

Table 17 Top ways of
preventing crashes – 71
non-empty responses

Top Ways of Crash Prevention # %

Handling exception/error 19 27 %

Testing 14 20 %

Null check(s) 11 15 %

- null check annotations (@Null and @NotNull) 3 4 %

Coding style(s) 10 14 %

Crash report / crash report tools 8 11 %

This section discusses the lessons learned from the mining and the survey studies. The
mining study revealed a set of bug hazards – such as (i) the cross-type wrappings; (ii) the
abundance of null pointer problems; and (iii) the undocumented runtime exceptions sig-
naled by third-party code, which were confirmed by developers during the survey. Here, we
discuss the identified bug hazards, we present how the developers perceived them and point
out at what developers can do in order to deal with them.

5.1 The Exception Handling Confusion Problem

When (mis)applied, exception wrapping can make the exception-related code more com-
plex and lead to what we call the exception handling confusion problem. This problem can
lead a program to an unpredictable state in the presence of exceptions, as illustrated by
the scenario in which a checked exception wraps an OutOfMemoryError. Currently there is
no way of enforcing Java exception type conventions during program development. Hence,
further investigation is needed on finding ways to help developers in dealing with this prob-
lem, either preventing odd wrappings or enabling the developer to better deal with them.
Furthermore, only some of the Android developers surveyed in this study were aware of
the robustness threats caused by cross-type wrappings as the one cited above. This calls for
empirical studies on the actual usefulness of Java’s hybrid exception model.

5.2 On the Null Pointer Problem

The null reference was first introduced by Tony Hoare in ALGOL W, which after some
years he called his “one-billion-dollar mistake” (Null references:the billion dollar mistake,
abstract of talk at QCon London 2009). In this study, the null references were, in fact,
responsible for several reported issues – providing further evidence to Hoare’s statement.
Moreover many of the survey respondents recognized that NullPointerExceptions were one
of the main causes of application crashes since they can happen almost anywhere in the
application code, and to make things worse the life-cycle of Android apps in which objects
are constantly recreated (i.e., Activity and Fragment classes) favors this kind of exception to
happen added to the fact that many Android framework methods return null without making
this return type explicit in the documentation. Such observations emphasizes the need for
solutions to avoid NullPointerExceptions, such as: (i) lightweight intra-method null pointer
analysis as supported by Java 8 @Nullable annotations;13 (ii) inter-method null pointer
analysis tools such as the one proposed by Nanda and Sinha (2009); or (iii) language designs

13Already supported by tools such as Eclipse, IntelliJ, Android Studio 0.5.5 (release Apr. 2014) to detect
potential null pointer dereferences at compile time.

1294 Empir Software Eng (2017) 22:1264–1304

which avoid null pointers, such as Wadler (1995) (as used in functional languages for values
that may not be available or computations that may fail), to improve the robustness of Java
programs. Some of the Android developers mentioned that @Nullable annotations could be
helpful to deal with NullPointerExceptions and consequently prevent app crashes caused by
them.

5.3 Preventing Uncaught Exceptions

In this study we could observe undocumented runtime exceptions thrown by third party
code, and even undocumented checked exceptions thrown by a JNI interface. Such undoc-
umented exceptions make it difficult, and most of the times infeasible, for the client code
to protect against “unforeseen” situations that may happen while calling library code. In
the survey-based study Android developers were asked about ways to prevent application
crashes which are mainly caused by uncaught exceptions. Many of them emphasized the
importance of handling exceptions to prevent crashes but also mentioned how difficult it is
to handle every specific exception that can happen. Several developers follow a more reac-
tive behavior against crashes: they advocate the use of crash report tools, and once the crash
happens for the first time, it is reported and the application can be changed to better cope
with the exceptions that caused the crashes, consequently preventing future similar crashes.

One may think that the solution for the uncaught exceptions may be to define a gen-
eral handler, which is responsible for handling any exception that is not adequately handled
inside the applications. Although this solution may prevent the system from abruptly crash-
ing, as mentioned by some of the surveyed developers such a general handler will not
have enough contextual information to adequately handle the exceptions, beyond storing a
message in a log file and restarting the application. Such a handler cannot replace a care-
fully designed exception handling policy (Robillard and Murphy 2000), which requires
third-party documentation on the exceptions that may the thrown by APIs used. Since doc-
umenting runtime exceptions is a tedious and error prone task, this calls for tool support
to automate the extraction of runtime exceptions from library code. Initial steps in this
direction have been proposed by Van Dooren and Steegmans (2005).

5.4 Mining Study – Threats to Validity

Internal Validity We used a heuristics-based parser to mine exceptions from issues. Our
parsing strategy was conservative by default; for example, we only considered exception
names using a fully qualified class name as valid exception identifiers, while, in many
cases, developers use the exception name in the issue description. Conservative parsing may
minimize false positives, which was our initial target, but also tends to increase false neg-
atives, which means that some cases may have not been identified as exceptions or stack
traces. Our limited manual inspection did not reveal such cases. Moreover, in this study we
manually mapped the concerns related to exceptions. To ensure the quality of the analysis,
we calculated the interrater agreement after three independent raters classified a randomly
selected sample (of 25 exception types from the total of 100); the interrater agreement was
high (96 %).

The process for identifying the type of exceptions reported in stack traces may not be
completely accurate. Specifically, we performed the selection of the version of the exception
source code or bytecode to analyze, as follows: (i) for all exceptions signaled by the Android
Platform and the Java Environment the analysis was based on Version 4.4 of Android plat-
form (API level 19); (ii) for the exceptions signaled by applications, the analysis considered

Empir Software Eng (2017) 22:1264–1304 1295

the last version of the application source-code available on Github/Google code; and (iii)
for all exceptions signaled by third-party libraries the type analysis considered the lat-
est bytecode version available on the app repository. When the exception could not be
found automatically or manually (based on the chosen version), we classified the exception
as “Undefined”. Only 31 exceptions remained undefined, which occurred in 60 different
exception stack traces out of 6,005 mined stack traces. Hence, the exception type could not
be accurately identified in 1 % of the mined exception flows. There should be situations
where the exception type (i.e., checked or runtime) changes from one version to another.
Although we believe that it will not happen very often, we did not investigate this issue.

External Validity Our work uses the GHTorrent dataset, which although comprehensive
and extensive is not an exact replica of GitHub. However, the result of this study does not
depend on the analysis of a complete GitHub dataset. Instead, the goal of our study was to
pinpoint bug hazards in the exception-related code based on exception stack trace mining
of a subset of projects. We limited our analysis to a subset of existing open-source Android
projects. We are aware that the exception stack traces reported for commercial apps can be
different from the ones found in this study, and that this subset is a small percentage of exist-
ing apps. Such threats are similar to the ones of other empirical studies which also use free
or open-source Android apps (Linares-Vásquez et al. 2013; McDonnell et al. 2013; Ruiz
et al. 2012). Moreover, several exception stack traces that support the findings of this study
referred to exceptions coming frommethods defined in the Android Application Framework
and third-party libraries. Additionally, the bug hazards observed in this study are due to
characteristics of the Java exception model, which can impose challenges to the robustness
of not only Android apps but also to other systems based on the same exception model.

Another threat relates to the fact that parts of our analysis are based on the availability of
stack traces in issues reported on GitHub and Google Code projects. In using these datasets,
we make an underlying assumption: the stack traces reported in issues are representative
of valid crash information of the applications. One way to mitigate this threat would be to
access the full set of crash data per application. Although some services exist to collect crash
data from mobile applications (e.g., ACRA,14 Google analytics,15 Bugsense, Bugsnag16),
they do not provide open access to the crash reports of their client applications. In our study,
we mitigated this threat by manually inspecting the source code associated with a subset
of the reported exception stack traces. This subset comprises the stack traces related to
the main findings of the study (e.g., “undocumented runtime and checked exceptions”, and
“cross-type wrappings”).

5.5 Limitations of the Survey-based Study

Results Generalization Due to the exploratory nature of the second phase of this work
whose goal was to identify the developers’ perspectives concerning the exception handling
bug hazards found during the repository mining phase, we chose Grounded Theory tech-
niques. The results of our survey-based study may not apply to every Android developer,
since other populations might add new insights. The population we collected data from
was comprised of Android developers of the GitHub Android projects whose issues were

14code.google.com/p/acra/.
15https://www.google.com/analytics/.
16https://bugsnag.com/.

code.google.com/p/acra/
https://www.google.com/analytics/
https://bugsnag.com/

1296 Empir Software Eng (2017) 22:1264–1304

mined in the first phase of this work, and who had time and motivation to answer the survey
questions. Although the themes and findings that emerged in our study cannot be general-
ized, they give a first view of developers’ perspectives about EH bug hazards found. Hence,
we believe that the survey-based study has contributed with valuable insights about how
Android developers used the exception handling code and what their perspectives regarding
exception handling bug hazards are.

Survey Customization Although the survey was applied to developers who had con-
tributed to at least one of the GitHub apps, analyzed in the mining study, the survey was not
customized to each developer. In other words, it did not contain questions focusing on spe-
cific bug hazards identified in their apps. That customization of the survey (for each specific
developer/app) could give more insights about the exception handling usage and bug haz-
ards, and could even have improved the response rate for the survey. However, we did not
followed this approach because the high number of projects analyzed (482 Android apps)
and their contributors (1,824 developers) would increase the complexity and time needed
(i) to prepare the survey and specially (ii) to analyze the survey responses - since themes
could emerge from specific contexts. This approach can be very useful in a guided inter-
view involving some of the respondents to refine the findings of this exploratory survey in
a future work.

5.6 Replication Package

All the data used in the mining study and in the survey-based study is publicly available
at the ExceptionMiner tool website hosted on GitHub.17 Specifically we provide: (i) all
issues related to Android projects found on GitHub and Google Code used in this study; (ii)
all stack traces extracted from issues; (iii) the results of manual inspection steps; (iv) the
ExceptionMiner tool we developed to support stack trace extraction and distilling; (v) the
survey questions; and (iv) the survey responses and summary.

6 Related Work

In this section, we present work that is related to the present paper, divided into four
categories as detailed next.

Analysis and Use of Stack Trace Information Several papers have investigated the use
of stack trace information to support: bug classification and clustering (Wang et al. 2013;
Kim et al. 2011; Dhaliwal et al. 2011), fault prediction models (Kim et al. 2013), automated
bug fixing tools (Sinha et al. 2009) and also the analysis of Android APIs (Kechagia and
Spinellis 2014). Kim et al. (2011) use an aggregated form of multiple stack traces avail-
able in crash reports to detect duplicate crash reports and to predict if a given crash will
be fixed. Dhaliwal et al. (2011) proposed a crash grouping approach that can reduce bug
fixing time by approximately 5 %. Wang et al. (2013) propose an approach to identify cor-
related crash types and describe a fault localization method to locate and rank files related
to the bug described in a stack trace. Schröter et al. (2010) conducted an empirical study
on the usefulness of stack traces for bug fixing and showed that developers fixed the bugs

17https://github.com/souzacoelho/exceptionminer.

https://github.com/souzacoelho/exceptionminer

Empir Software Eng (2017) 22:1264–1304 1297

faster when failing stack traces were included in bug issues. In a similar study, Bettenburg
et al. (2008a) identify stack traces as the second most relevant feature of good bug reports.
Sinha et al. (2009) proposed an approach that uses stack traces to guide a dataflow analysis
for locating and repairing faults that are caused by the implicitly signaled exceptions. Kim
et al. (2013) proposed an approach to predict the crash-proneness of methods based infor-
mation extracted from stack traces and methods’ bytecode operations. They observed that
most of the stack traces were related to NullPointerException and other implicitly thrown
exceptions had the higher prevalence in the analyzed set of stacks. Kechagia and Spinellis
(2014) examined the stack traces embedded in crash reports sent by 1,800 Android apps to
a crash report management service (i.e., BugSense). They found that 19 % of such stack
traces were caused by unchecked and undocumented exceptions thrown by methods defined
in the Android API (level 15). Our work differs from Kechagia and Spinellis since it is
based on stack traces mined from issues reported by open source developers on GitHub and
Google Code. Moreover, our study mapped the origin of each exception (i.e., libraries, the
Android platform or the application itself) and investigated the adoption of best practices
based on the analysis of stack trace information. Our work also identified the type of each
exception mined from issues (classifying them as Error, Runtime or Checked) based on the
source code analysis of the exception hierarchy and analyzed the exception wrappings that
can happen during the exception propagation. Such analysis revealed intriguing bug hazards
such as the cross-type exception wrappings not discussed in previous works.

Extracting Stack Traces fromNatural Language Artifacts Apart from issues and bug
reports, stack traces can be embedded in other forms of communication between develop-
ers, such as discussion logs and emails. Few tools have been proposed to mine stack traces
embedded on such resources. Bettenburg et al. (2008b) is based on a set of regular expres-
sions that extract a set of frames related to a stack trace. The main limitation of this solution
is that it is not able to extract stack traces embedded in verbose log files (i.e., in which we
can find log text mixed with exception frames). Bacchelli et al. (2012) propose a solution
to recognize stack trace frames from development emails and relate them to code artifacts
(i.e. classes) mentioned in the stack trace. In addition to those tools, ExceptionMiner is able
to both extract stack traces from natural language artifacts and to classify them into a set of
predefined categories.

Empirical Studies on Exception Handling Defects Cabral and Marques (2007) ana-
lyzed the source code of 32 open-source systems, both for Java and .NET. They observed
that the actions inside handlers were very simple (e.g., logging and presenting a message to
the user). Coelho et al. (2008) performed an empirical study considering the fault-proneness
of aspect-oriented implementations for handling exceptions. Two releases of both Java and
AspectJ implementations were assessed as part of that study. Based on the use of an excep-
tion flow analysis tool, the study revealed that the AOP refactoring increased the number
of uncaught exceptions, degrading the robustness of the AO version of every analyzed sys-
tem. The main limitation of approaches based on static analysis approaches are the number
of false positives they can generate, and the problems faced when dealing with reflection
libraries and dynamic class loading. Zhang and Elbaum (2012) were the first to perform
an empirical investigation of issues, related to exception-related bugs, in Android projects.
They perform a small scale study in which they manually inspected the issues of 5 Android
applications. They observed that 29 % had to do with poor exceptional handling code, and
this empirical study was used to motivate the development of a tool aiming at amplify-
ing existing tests to validate exception handling code associated with external resources.

1298 Empir Software Eng (2017) 22:1264–1304

This work inspired ours, which automatically mined the exception stack traces embedded in
issues reported in 639 open source Android projects. The goal of our study was to identify
common bug hazards in the exception related code that can lead to failures such as uncaught
exceptions.

Empirical Studies Using Android Apps Ruiz et al. (2012) investigated the degree of
reuse across applications in the Android Market; the study showed that almost 23 % of the
classes inherited from a base class in the Android API, and that 217 mobile apps were reused
completely by another mobile app. Pathak et al. (2011) analyzed bug reports and developers’
discussions of the Android platform and found that approximately 20 % of energy-related
bugs in Android occurred after an OS update. McDonnell et al. (2013) conducted a case
study of the co-evolution behavior of the Android API and 10 dependent applications using
the version history data found in GitHub. The study found that approximately 25 % of all
methods in the client code used the Android API, and that the methods reusing fast-evolving
APIs were more defect prone than others. Linares-Vásquez et al. (2013) analyzed approxi-
mately 7K free Android apps and observed that the least successful apps used Android APIs
that were on average 300 % more change-prone than the APIs used by the most successful
apps. Our work differs from the others as it aims at distilling stack trace information from
bug reports and combining such information with bytecode analysis, source code analysis
and manual inspections to identify bug hazards in the exception handling code of Android
apps.

Exploratory Survey Studies Exploratory surveys have been used in the software engi-
neering context to discover the user perspective regarding a broad range of topics such
as: assessing the developers’ perceptions on productivity (Meyer et al. 2014); how GitHub
developers use pull-requests (Gousios et al. 2015); how the testing culture of open-source
projects can be characterized (Pham et al. 2013); and even how developers use Twit-
ter (Singer et al. 2014). This kind of study is important as a way of better understanding the
developers’ behavior and hence providing recommendations and tools to help with specific
development tasks.

Exploratory surveys have also targeted Android developers (Kochhar et al. 2015;
Joorabchi et al. 2013; Bavota et al. 2015; Linares-Vásquez et al. 2015). Kochhar et al. (2015)
conducted a survey-based study to discover the commonly used tools for mobile app testing
as well as the problems faced by developers while testing the apps. The survey was sent to
3,905 emails of Android developers and received 83 responses (response rate of 2.13 %).
(Joorabchi et al. 2013) performed a survey-based study whose goal was to better understand
the main challenges developers face when building apps for different mobile devices. They
interviewed 12 senior mobile developers and performed a semi-structured survey, with 188
respondents from the mobile development community, since the survey was shared via e-
mail groups and social media websites response rate of the survey could not be calculated.
Linares-Vásquez et al. (2015) surveyed 485 open source Android app and library developers
(for projects hosted on GitHub) to understand developers’ practices for detecting and fixing
performance bottlenecks in mobile apps. This work emailed the survey to 24,340 developers
and received 628 responses - the response rate was 2.6 %. Bavota et al. (2015) investigated
the impact of API change-proness and fault-proneness on the user ratings of Android apps.
They surveyed developers to assess their perspective on whether such problems could be
the cause for unfavorable user ratings. The response rate was 4 %. A common characteris-
tic among such works and our work is the low response rate of the surveys (between 4 %
and 2 %). None of these surveys, however, assessed how developers deal with exceptions

Empir Software Eng (2017) 22:1264–1304 1299

in Android nor the developers’ perspective regarding a set of exception handling bug haz-
ards. In our study, we conduced the first exploratory survey focusing on exception handling
issues in Android development.

7 Conclusion

The goal of this paper is two-fold: (i) to investigate to what extent stack trace information
can reveal bug hazards related to exception handling code that may lead to a decrease in
application robustness; and (ii) to assess the developers’ perspective concerning the detected
exception handling bug hazards.

To realize this goal, we mined the stack traces embedded in all issues defined in 482
Android projects hosted on GitHub and 157 projects hosted on Google Code – overall con-
sidering 6,005 exception stack traces. We subsequently surveyed developers associated with
a selection of the mined GitHub projects.

Our first key contribution is a novel approach and toolset (ExceptionMiner) for analyzing
Java exception stack traces as occurring in GitHub and Google Code issues.

Our second contribution is an empirical study of over 6000 actual stack traces, demon-
strating that:

1. Half of the system crashes are due to errors in programming logic, with null pointer
exceptions being most prominent;

2. Documentation for explicitly thrown RuntimeExceptions is almost never provided;
3. Extensive use of wrapping leads to hard-to-understand chains violating Java’s exception

handling principles.

Our third contribution is a qualitative study to assess the developers’ perspective concern-
ing the exception handling bug hazards in Android development. This study corroborates
the findings of our stack trace analysis, most notably the prevalence of null pointer excep-
tions and the reliability implications of (in particular cross-type) wrappings. Furthermore,
we found that few developers are aware of the undocumented checked exceptions signaled
by native C code of the Android platform.

In conclusion, our findings shed light on common problems and bug hazards in Java
exception handling code, and call for tool support to help developers understand their own
and third party exception handling and wrapping logic.

Acknowledgments This work is partially supported by the National Institute of Science and Technology
for Software Engineering (INES), CNPq and FACEPE, grants 573964/2008-4, 552645/2011-7, and APQ-
1037-1.03/08, CNPq Universal grant 484209/2013-2, and CAPES/PROAP.

References

Amalfitano D, Fasolino AR, Tramontana P, De Carmine S, Memon AM (2012) Using gui ripping for auto-
mated testing of android applications. In: Proceedings of the 27th IEEE/ACM International conference
on automated software engineering. ACM, pp 258–261

Bacchelli A, Dal Sasso T, D’Ambros M, Lanza M (2012) Content classification of development emails. In:
Proceedings of ICSE 2012, pp 375–385

Bavota G, Linares-Vasquez M, Bernal-Cardenas CE, Di Penta M, Oliveto R, Poshyvanyk D (2015) The
impact of api change-and fault-proneness on the user ratings of android apps. IEEE Trans Softw Eng
41(4):384–407

1300 Empir Software Eng (2017) 22:1264–1304

Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T (2008a) What makes a good bug
report? In: Proceedings of FSE 2008, pp 308–318

Bettenburg N, Premraj R, Zimmermann T, Kim S (2008b) Extracting structural information from bug reports.
In: Proceedings of MSR 2008. ACM, pp 27–30

Binder R (2000) Testing object-oriented systems: models, patterns, and tools. Addison-Wesley Professional
Bloch J (2008) Effective java. Pearson Education India
Brunet J, Guerrero D, Figueiredo J (2009) Design tests: an approach to programmatically check your

code against design rules. In: Proceedings of new ideas and emerging research (NIER) track at the
international conference on software engineering (ICSE). IEEE, pp 255–258

Cabral B, Marques P (2007) Exception handling: a field study in Java and.Net. In: Proceedings of ECOOP
2007. Springer, pp 151–175

Charmaz K (2006) Constructing grounded theory: a practical guide through qualitative research. SagePubli-
cations Ltd, London

Coelho R, Rashid A, Garcia A, Ferrari F, Cacho N, Kulesza U, von Staa A, Lucena C (2008) Assessing the
impact of aspects on exception flows: An exploratory study. In: Proceedings of European conference on
object-oriented programming (ECOOP). Springer-Verlag, pp 207–234

Coelho R, von Staa A, Kulesza U, Rashid A, Lucena C (2011) Unveiling and taming liabilities of aspects in
the presence of exceptions: a static analysis based approach. Inf Sci 181(13):2700–2720

Csallner C, Smaragdakis Y (2004) Jcrasher: an automatic robustness tester for Java. Softw Pract Exper
34(11):1025–1050

Dhaliwal T, Khomh F, Zou Y (2011) Classifying field crash reports for fixing bugs: A case study of
mozilla firefox. In: Proceedings of international conference on software maintenance (ICSM 2011),
pp 333–342

Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android application security. In: USENIX
security symposium, vol 2, pp 2

Fraser G, Arcuri A (2013) 1600 faults in 100 projects: automatically finding faults while achieving high
coverage with evosuite. In: Empirical software engineering, pp 1–29

Garcia A, Rubira C et al. (2007) Extracting error handling to aspects: a cookbook. In: Proceedings
international conference on software maintenance (ICSM). IEEE, pp 134–143

Garcia AF, Rubira CM, Romanovsky A, Xu J (2001) A comparative study of exception handling mechanisms
for building dependable object-oriented software. J Syst Softw 59(2):197–222

Goodenough JB (1975) Exception handling: issues and a proposed notation. CACM 18(12):683–696
Gosling J (2000) The Java language specification. Addison-Wesley Professional
Gousios G (2013) The GHTorrent dataset and tool suite. In: Proceedings of the international working

conference on mining software repositories (MSR). IEEE, pp 233–236
Gousios G, Zaidman A, Storey MA, Van Deursen A (2015) Work practices and challenges in pull-based

development: the integrator’s perspective. Tech. rep
Hindle A, Bird C, Zimmermann T, Nagappan N (2015) Do topics make sense to managers and developers?

Emp Softw Eng 20(2):479–515
Jenkov Tutorials. Checked or Unchecked Exceptions? (2014) http://tutorials.jenkov.com/java-exception-hand

ling/checked-or-unchecked-exceptions.html, online
Jo JW, Chang BM, Yi K, Choe KM (2004) An uncaught exception analysis for java. J Syst Softw 72(1):59–

69
Joorabchi ME, Mesbah A, Kruchten P (2013) Real challenges in mobile app development. In: 2013

ACM/IEEE International symposium on empirical software engineering and measurement. IEEE, pp
15–24

Kechagia M, Spinellis D (2014) Undocumented and unchecked: exceptions that spell trouble. In: Proceedings
of the 11th working conference on mining software repositories. ACM, pp 312–315

Kim S, Zimmermann T, Nagappan N (2011) Crash graphs: an aggregated view of multiple crashes to improve
crash triage. In: Proceedings of the IEEE/IFIP International conference on dependable systems and
networks (DSN). IEEE, pp 486–493

Kim S, Zimmermann T, Premraj R, Bettenburg N, Shivaji S (2013) Predicting method crashes
with bytecode operations. In: Proceedings of the 6th India software engineering conference,
pp 3–12

Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. In: Pro-
ceedings of the 29th international conference on software engineering. IEEE Computer Society, pp
344–353

Kochhar PS, Thung F, Nagappan N, Zimmermann T, Lo D (2015) Understanding the test automation culture
of app developers. In: 2015 IEEE 8th International conference on software testing, verification and
validation (ICST). IEEE, pp 1–10

http://tutorials.jenkov.com/java-exception-handling/checked-or-unchecked-exceptions.html
http://tutorials.jenkov.com/java-exception-handling/checked-or-unchecked-exceptions.html

Empir Software Eng (2017) 22:1264–1304 1301

Linares-VásquezM, Bavota G, Bernal-Cárdenas C, Di Penta M, Oliveto R, Poshyvanyk D (2013) API change
and fault proneness: a threat to the success of Android apps. In: Proceedings of FSE 2013. ACM, pp
477–487. doi:10.1145/2491411.2491428

Linares-Vásquez M, Vendome C, Luo Q, Poshyvanyk D (2015) How developers detect and fix perfor-
mance bottlenecks in android apps. In: 2015 IEEE International conference on software maintenance
and evolution (ICSME). IEEE, pp 352–361

Maji AK, Arshad FA, Bagchi S, Rellermeyer JS (2012) An empirical study of the robustness of inter-
component communication in Android. In: Proceedings of the IEEE/IFIP international conference on
dependable systems and networks (DSN). IEEE, pp 1–12

Mandrioli D, Meyer B (1992) Advances in object-oriented software engineering. Prentice-Hall Inc
McDonnell T, Ray B, Kim M (2013) An empirical study of api stability and adoption in the

android ecosystem. In: Proceedings international conference on software maintenance (ICSM), pp
70–79

Meyer AN, Fritz T, Murphy GC, Zimmermann T (2014) Software developers’ perceptions of productiv-
ity. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software
engineering. ACM, pp 19–29

Miller R, Tripathi A (1997) Issues with exception handling in object-oriented systems. In: Proceedings of
ECOOP’97. Springer, pp 85–103

Nanda MG, Sinha S (2009) Accurate interprocedural null-dereference analysis for java.
In: 31st International conference on software engineering, 2009. ICSE 2009. IEEE, pp
133–143

Null references:the billion dollar mistake, abstract of talk at QCon London (2009) https://qconlondon.com/
london-2009/qconlondon.com/london-2009/presentation/Null%2BReferences %2BThe%2BBillion
%2BDollar%2BMistake.html, online

Pathak A, Hu YC, Zhang M (2011) Bootstrapping energy debugging on smartphones: a first look at energy
bugs in mobile devices. In: Proceedings of the 10th ACM workshop on hot topics in networks. ACM,
New York, HotNets-X, pp 5:1–5:6. doi:10.1145/2070562.2070567

Pham R, Singer L, Liskin O, Figueira Filho F, Schneider K (2013) Creating a shared understanding of testing
culture on a social coding site. In: 2013 35th International conference on software engineering (ICSE).
IEEE, pp 112–121

Robillard MP, Murphy GC (2000) Designing robust Java programs with exceptions. In: Proceedings
international conference on the foundations of software engineering (FSE). pp 2–10

Ruiz I, Nagappan M, Adams B, Hassan A (2012) Understanding reuse in the Android market.
In: Proceedings of the international conference on program comprehension (ICPC), pp 113–122.
doi:10.1109/ICPC.2012.6240477

Sacramento P, Cabral B, Marques P (2006) Unchecked exceptions: can the programmer be trusted to
document exceptions. In: International conference on innovative views of.NET technologies

Schröter A, Bettenburg N, Premraj R (2010) Do stack traces help developers fix bugs? In: Proceedings
working conference on mining software repositories (MSR). IEEE, pp 118–121

Shah HB, Gorg C, Harrold MJ (2010) Understanding exception handling: Viewpoints of novices and experts.
IEEE Trans Soft Eng 36(2):150–161

Stackoverflow Q&A. Java: checked vs unchecked exception explanation. (2014) http://stackoverflow.com/
questions/6115896/java-checked-vs-unchecked-exception-explanation, online

Singer L, Figueira Filho F, Storey MA (2014) Software engineering at the speed of light: how developers
stay current using twitter. In: Proceedings of the 36th international conference on software engineering.
ACM, pp 211–221

Sinha S, Shah H, Görg C, Jiang S, Kim M, Harrold MJ (2009) Fault localization and repair for Java runtime
exceptions. In: Proceedings International symposium on software testing and analysis (ISSTA). ACM,
pp 153–164

The Java tutorial. Unchecked exceptions: The controversy. (2014) http://docs.oracle.com/javase/tutorial/
essential/exceptions/runtime.html, online

Van Dooren M, Steegmans E (2005) Combining the robustness of checked exceptions with the flexi-
bility of unchecked exceptions using anchored exception declarations. ACM SIGPLAN Notices 40
(10):455–471

Wadler P (1995) Monads for functional programming. In: Advanced functional programming. Springer, pp
24–52

Wang S, Khomh F, Zou Y (2013) Improving bug localization using correlations in crash reports.
In: Proceedings working conference on mining software repositories (MSR 2013). ACM/IEEE,
pp 247–256

http://dx.doi.org/10.1145/2491411.2491428
https://qconlondon.com/london-2009/qconlondon.com/london-2009/presentation/Null%2BReferences_%2BThe%2BBillion%2BDollar%2BMistake.html
https://qconlondon.com/london-2009/qconlondon.com/london-2009/presentation/Null%2BReferences_%2BThe%2BBillion%2BDollar%2BMistake.html
https://qconlondon.com/london-2009/qconlondon.com/london-2009/presentation/Null%2BReferences_%2BThe%2BBillion%2BDollar%2BMistake.html
http://dx.doi.org/10.1145/2070562.2070567
http://dx.doi.org/10.1109/ICPC.2012.6240477
http://stackoverflow.com/questions/6115896/java-checked-vs-unchecked-exception-explanation
http://stackoverflow.com/questions/6115896/java-checked-vs-unchecked-exception-explanation
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

1302 Empir Software Eng (2017) 22:1264–1304

Wasserman AI (2010) Software engineering issues for mobile application development. In: Proceedings of
the FSE/SDP workshop on future of software engineering research. ACM, pp 397–400

Wirfs-Brock RJ (2006) Toward exception-handling best practices and patterns. Softw IEEE 23(5):11–13
Yuan D, Luo Y, Zhuang X, Rodrigues GR, Zhao X, Zhang Y, Jain P, Stumm M (2014) Simple testing can

prevent most critical failures: An analysis of production failures in distributed data-intensive systems.
In: 11th USENIX symposium on operating systems design and implementation, OSDI ’14. Broomfield,
pp 249–265

Zhang P, Elbaum S (2012) Amplifying tests to validate exception handling code. In: Proceedings interna-
tional conference on software engineering (ICSE). IEEE Press, Piscataway, pp 595–605. http://dl.acm.
org/citation.cfm?id=2337223.2337293

Roberta Coelho is a professor in the Department of Informatics and Applied Mathematics at Federal Univer-
sity of Rio Grande do Norte, Brazil. She received an MSc dregree from Federal University of Pernambuco,
Brazil, and a PhD degree in computer science from PUC-Rio in cooperation with Lancaster University. Her
research interests include software testing, software dependability and exception handling.

Lucas Almeida a professor of information systems at Federal Institute of Education, Science and Technology
of Rio Grande do Norte, Brazil. He is currently pursuing his MSc degree in Computer Science at Federal
University of Rio Grande do Norte, Brazil. His research interests include software engineering and software
testing.

http://dl.acm.org/citation.cfm?id=2337223.2337293
http://dl.acm.org/citation.cfm?id=2337223.2337293

Empir Software Eng (2017) 22:1264–1304 1303

Georgios Gousios is an assistant professor of software engineering at the Delft University of Technology,
the Netherlands. He received an MSc degree from the University of Manchester and a PhD from the Athens
University of Economics and Business. His research interests include software analytics, and software testing.

Arie van Deursen is a professor in software engineering and head of department at Delft University of
Technology, The Netherlands. He received an MSc degree from Vrije Universiteit Amsterdam and a PhD
from the University of Amsterdam. His research interests include software architecture, software testing, and
software analytics.

1304 Empir Software Eng (2017) 22:1264–1304

Christoph Treude received his Diplom degree in computer science/management information systems from
the University of Siegen, Germany, and his PhD degree in computer science from the University of Victo-
ria, Canada. After postdocs in Canada and Brazil, he is now working as a faculty member in the School
of Computer Science, University of Adelaide, Australia. His research interests include empirical software
engineering, natural language processing, and social media.

	Exception handling bug hazards in Android: Results from a mining study and an exploratory survey
	Citation

	Exception handling bug hazards in Android
	Abstract
	Introduction
	Background
	The Android Platform
	Exception Model in Java
	Exception Types
	Exception Propagation

	Best Practices
	I-Checked Exceptions Should be Used to Represent Recoverable Conditions mandrioli1992advances,gosling2000java,wirfs2006toward,bloch2008effective
	II-Error Represents an Unrecoverable Condition Which Should not be Handled gosling2000java
	III-A Method Should Throw Exceptions that Precisely Define the Exceptional Condition gosling2000java,bloch2008effective
	IV- All Exceptions Explicitly Thrown by Reusable Code Should be Documented mandrioli1992advances,gosling2000java,wirfs2006toward,bloch2008effective

	The Repository Mining Study
	Android Apps on GitHub
	Android Apps in Google Code
	The ExceptionMiner Tool
	Repository Connectors
	Exception Stack Trace Distiller
	Exception Type Analysis
	Exception Signaler Analysis

	Manual Inspections
	The Mining Study Results
	Identifying the Concerns Related to Root Exceptions
	Inspecting Exception Interfaces
	Missing Checked Exceptions in Exception Interfaces
	Runtime Exception Wrapping a Checked Exception
	Runtime Exception Wrapping an Error
	Checked Exception Wrapping an Error
	Error Wrapping Runtime and Checked Exceptions

	The Developers' Perspective
	Research Questions
	Protocol
	Participants
	Findings

	Discussion
	The Exception Handling Confusion Problem
	On the Null Pointer Problem
	Preventing Uncaught Exceptions
	Mining Study – Threats to Validity
	Internal Validity
	External Validity

	Limitations of the Survey-based Study
	Results Generalization
	Survey Customization

	Replication Package

	Related Work
	Analysis and Use of Stack Trace Information
	Extracting Stack Traces from Natural Language Artifacts
	Empirical Studies on Exception Handling Defects
	Empirical Studies Using Android Apps
	Exploratory Survey Studies

	Conclusion
	Acknowledgments
	References

