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a b s t r a c t

Do Deep Learning (DL) techniques actually help to improve the performance of duplicate bug report
detection? Prior studies suggest that they do, if the duplicate bug report detection task is treated as
a binary classification problem. However, in realistic scenarios, the task is often viewed as a ranking
problem, which predicts potential duplicate bug reports by ranking based on similarities with existing
historical bug reports. There is little empirical evidence to support that DL can be effectively applied to
detect duplicate bug reports in the ranking scenario. Therefore, in this paper, we investigate whether
well-known DL-based methods outperform classic information retrieval (IR) based methods on the
duplicate bug report detection task. In addition, we argue that both IR- and DL-based methods suffer
from incompletely evaluating the similarity between bug reports, resulting in the loss of important
information. To address this problem, we propose a new method that combines IR and DL techniques
to compute textual similarity more comprehensively. Our experimental results show that the DL-
based method itself does not yield high performance compared to IR-based methods. However, our
proposed combined method improves on the MAP metric of classic IR-based methods by a median of
7.09%–11.34% and a maximum of 17.228%–28.97%.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

With the increasing scale and complexity of software systems,
bugs are highly prevalent. In order to improve the reliability and
maintainability of software systems, bug tracking systems (BTSs)
have been widely adopted to track bug-related information in
software products. Although BTSs are of great benefit to software
developers, they also encounter problems, such as duplicate bug
reports from different bug reporters pointing to the same bug.
Assigning duplicate bug reports to different developers to fix is
not only a waste of resources but also introduces inconsistencies
when independent developers fix the same bug asynchronously.

To solve this problem, triagers need to manually identify and
label whether the new bug report is a duplicate of an already re-
ported bug. However, this process is tedious and time-consuming.
According to our statistics, during the three-year period from
January 1, 2018 to January 1, 2021, a total of 7542 bug reports
are reported to Eclipse BTS, of which 39% are duplicates and
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invalid. Therefore, manually identifying duplicate bug reports is
a challenging task for triggers.

Previous studies have shown that automatically retrieving his-
torical bug reports that are similar to the newly reported ones can
speed up the detection process of duplicate bug reports by nar-
rowing the search space of possible candidates. Therefore, most
existing methods make use of information retrieval (IR) tech-
niques for the automatic detection of duplicate bug reports (Sun
et al., 2010, 2011; Wang et al., 2008; Jalbert and Weimer, 2008;
Lin and Yang, 2014; Hindle et al., 2016), which construct a query
for a given bug report and treat all historical bug reports in BTS
as a collection of documents, and then calculate the relevance
score between query and each document to retrieve duplicate
candidates. In this context, the relevance score is defined as the
likelihood of two bug reports being duplicates of each other. All
historical bug reports are ranked by their relevance to the query
bug report, and bug reports with higher relevance are closer to
the top of the ranked list. Although these IR-based methods have
proven very useful in detecting duplicate bug reports with sat-
isfactory results, they only exploit lexical similarity as relevance
score, and ignore semantic similarity. Wang et al. (2008) first
mentioned that using lexical similarity in duplicate bug report
detection cannot match phrases with the same meaning but dif-
ferent expressions, such as ‘‘retain’’ and ‘‘still running’’. Therefore,
researchers have argued that it is difficult to determine whether
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Table 1
Bug reports 90421 and 91188 from OpenOffice.
Field Bug report 1 Bug report 2

Bug_id 90421 91188
Summary In vertical writing Japanese fonts get invisible on Ubuntu 8.04 Writer will not show Chinese Vertical Characters in correct direction

Description In vertical writing Japanese fonts disappear or get invisible
with OpenOffice.org 2.4 and 3.0 Beta on Ubuntu 8.04.

Vertical Chinese characters were not correctly displayed. 1.
Characters were not displayed. 2. After press ‘‘BOLD’’, characters
displayed but 90 degrees clockwise. You can check on youtube.
http://www.youtube.com/watch?v=m4MMNv_pjNA

Product Writer Writer
Component code Viewing
Op_sys Linux Linux
Version OOo 2.4.0 OOo 2.4.0
Priority P3 P3
Severity Trivial Trivial

a pair of bug reports is duplicate by using lexical similarity
alone (He et al., 2020). As an example, we use two duplicate bug
reports in the OpenOffice project as shown in Table 1 to explain
the problem from a practical point of view.

From Table 1, we can observe: (1) these two bug reports im-
plicitly represent the same bug, i.e., some vertical characters/fonts
were not displayed correctly in the Writer; (2) the textual fields
(i.e., summary and description) of the two bug reports are almost a
complete lexical mismatch, i.e., sharing very few words with each
other; (3) some synonyms or phrases, such as ‘‘disappear’’ → ‘‘not
displayed’’ in Bug Report 1 and 2 respectively reflect semantically
near-identical content; (4) the categorical fields of bug reports
such as product, component, priority and version, are the same
between the two duplicate bug reports.

We believe that an automatic method should be able to more
precisely detect duplicate bug reports by taking into account
the semantic relations between bug reports. A few DL-based
methods (e.g., Deshmukh et al. (2017), He et al. (2020), Budhiraja
et al. (2018a,b) and Poddar et al. (2019)) have been proposed
to extract semantic features from bug reports, and then use a
similarity layer (e.g., a full-connection neural network) to com-
pute semantic similarity between two bug reports and suggest
possible duplicates. However, does DL actually improve the per-
formance of duplicate bug report detection? The conclusions are
less clear from the experiments carried out in related work, due
to the following reasons: (1) the evaluation datasets used are
too small to cover the entire lifecycle of the studied BTSs, which
is not enough to prove that the proposed method achieves a
significantly superior performance compared to classic IR-based
methods. (2) most existing DL-based methods are evaluated on
their ability to predict whether a pair of bug reports is duplicate,
which may not be representative of their practical performance in
a ranking scenario, i.e., ranking all possible duplicates of a given
bug report. (3) since most existing methods are evaluated on
small-scale datasets, duplicates are often removed due to their
master bug report falling outside the evaluated time intervals.
Thus, it is still unclear how well DL-based methods perform
without ignoring any bug reports.

Due to the above limitations of previous work, this paper per-
forms an empirical study to comprehensively evaluate whether
DL-based methods offer distinct advantages in duplicate bug re-
port detection. For this purpose, we evaluate according to two
aspects: (1) examining the performance of DL-based methods
in isolation; (2) examining the performance of a mixed method
combining DL and IR techniques. To the best of our knowledge,
we are the first to study the performance of the combined method
on the domain of duplicate bug report detection, which is one of
the main contributions of this work. In addition, to ensure the
rationality and objectivity of the experimental results, we select
three large real-world datasets covering the entire lifecycle of the
corresponding projects to study the performance differences of

different methods. This is another important contribution of this
work.

To verify whether DL models can achieve good performance by
themselves for duplicate bug report detection, we first design two
deep learning models (i.e., siamese and triplet networks) based
on different textual feature extractors to model the semantic
relations between bug reports. Then, we experimentally evaluate
the performance of the proposed models on the duplicate bug
report detection task, and compare them with the state-of-the-
art DL-based detection methods on three large-scale, open-source
software projects with more than 1,000,000 bug reports in total.
Finally, we compare the DL-based model, which yields the max-
imum performance in the last step, with IR-based methods to
demonstrate its effectiveness in the ranking scenario. The main
advantage of the above setting is that it allows us to clearly
distill (1) which DL-based model exhibits superior performance
in detecting duplicate bug reports when evaluated on complete
datasets, and (2) whether the best-performing DL-based model
outperforms classic IR-based methods when applied to a ranking
scenario that is closer to that realistic scenario.

However, no matter whether the lexical or semantic similar-
ity calculated by IR or DL-based methods respectively, it only
measures the relevance of pairs of bug reports from one aspect
or one level. Concretely, lexical similarity evaluates the degree
of term-based matching, while semantic similarity measures the
relatedness in the semantic content. In addition, as shown in
Table 1, categorical similarity also plays an important role in
accurately evaluating the relevance between two bug reports, as
demonstrated empirically by Rakha et al. (2017). Therefore, in
this paper, we also aim to demonstrate whether combining these
three kinds of similarities can more comprehensively characterize
the semantic relatedness between bug reports. To this end, we
try to learn a ranking function to combine those three types of
features (lexical similarity, semantic similarity, and categorical
similarity) in a linear combination fashion and compute the final
score of a given bug report with respect to each historical bug
report. The weights in the ranking function can be learned auto-
matically based on previously solved bug reports using a learning
to rank technology. Experimental results on three large datasets
demonstrate that semantic similarity provides complementary
information that further improves ranking performance when
compared to popular IR-based method.

The main contributions of this paper include:

• We investigate which DL-based model is more appropriate
for extracting semantic features from textual fields of bug
reports. The experimental results show that BERT is better
for duplicate bug report detection.

• We investigate which feature is the most important in
the duplicate bug report detection task. Empirical stud-
ies on large-scale datasets show that ‘‘lexical similarity’’ is
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Fig. 1. The general framework for detecting duplicate bug reports in the ranking scenario.

more important than ‘‘semantic similarity’’ in determining
whether a pair of bug reports are duplicate or not.

• We investigate whether or not combining these three types
of similarities can characterize the semantic relatedness be-
tween bug reports in a more comprehensive way. Exper-
imental results show that using all features works better
than using each type of feature individually.

• We conduct extensive experiments on benchmark datasets
and our newly collected datasets from three projects to
study the performance of different methods. Since the bug
reports in our datasets span the entire lifecycle of projects,
the main conclusions that drawn from the experiments can
represent real-life/practical situations.

The paper is organized as follows. Section 2 presents our em-
pirical study methods. Section 3.2 describes our empirical study
data. Section 3 presents our empirical study setup. In Section 4,
we conduct extensive experiments and provide experimental re-
sults. Section 5 presents a discussion, and Section 6 introduces
related work. Section 7 offers the conclusion and future work.

2. Empirical study methods

As described in Section 1, DL-based approaches address the
task of duplicate bug report detection in two ways: (1) they make
decisions directly on each pair of bug reports to detect possible
duplicate bug reports (He et al., 2020), and (2) they first use a
deep neural network to learn a semantic vector representation
for each bug report, and then rank all historical bug reports
according to their similarity scores with the new bug report to
detect possible duplicate bug reports (Deshmukh et al., 2017). The
first way can be formalized as a binary classification task, where
the input is a pair of bug reports and the output is a similarity
score to indicate whether the input bug reports are duplicates of
each other. The detailed detection process of DL-based methods
in the classification scenario is depicted in Section 2.1.3. The
second way can be viewed as a ranking problem where the goal
is to return a rank list of historical bug reports that may have
reported the same bug as the given input bug report. Since DL-
based models can be used alone or in combination with IR-based
methods in such a ranking problem, we propose a general frame-
work as shown in Fig. 1 to explain how DL-based methods work
in the ranking scenario. As can be seen in Fig. 1, the proposed
framework can be further divided into two main phases: training
and testing. During the training phase, the model is built based
on historical bug reports with known ground truth. During the
testing phase, the trained model is used to rank possible duplicate
bug reports with newly-submitted bug reports.

For training, we first organize the bug reports in the bug track-
ing database into a list of buckets which is a kind of data structure
similar to hash-map (Sun et al., 2010). There is only one master
bug report per bucket, which is the first one reported, and the
others are all duplicate with the master bug report. Second, we
extract training samples in the form of {BRquery, BR+, BR−} triplets
from buckets where BRquery refers to a query bug report, BR+

is duplicate with BRquery, and BR− is non-duplicate with BRquery.
Third, for each bug report in triplets, we collect and preprocess
its textual information (i.e., summary and description) as well
as the categorical information (e.g., product, component, version
and type). Fourth, various types of similarities between two bug
reports are calculated, which serve as features for duplicate bug
report detection. Finally, based on these features, a ranking model
is trained to compute the global matching score between a pair of
bug reports with the ranking based objective, aiming at ranking
positive pairs (i.e., BRquery and BR+) higher than negative pairs
(i.e., BRquery and BR−).

For testing, given a newly-submitted bug report, we first apply
the same preprocessing and feature extraction in the training
phase, and then feed the calculated similarities into the trained
ranking model to predict the relevance score between the new
bug report and each historical bug report in the bug tracking
database. Next, all historical bug reports are ranked in descending
order of predicted scores, with the expectation that the most
likely duplicate ones (with the new bug report) are closer to the
top of the list. Finally, the triager manually examines the ranked
list to determine if the new bug report has already been reported.
If so, the triager needs to label the new bug report as a duplicate
and link it to the bug report describing the same bug issue and
reported by other users.

2.1. Studied features

In total, we calculate 9 similarities between a pair of bug
reports, which can be used as features for duplicate bug report
detection. These similarities can be divided into three unique
dimensions: lexical similarity, semantic similarity and categor-
ical similarity. Table 2 summarizes the similarities of different
categories. The reasons for using these similarities as features to
detect duplicate bug reports are as follows:

• Lexical and categorical similarities have been widely adopted
in prior studies, which describe whether a pair of bug
reports are duplicates of each other from different perspec-
tives.

3
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Table 2
Studied similarities of bug reports.
Dimension Notation Definition Rationale

Lexical
similarity

Lunigram Lexical similarity between the summary or description field
of two bug reports based on unigram model Duplicate bug reports tend to be represented

with the same termsLbigram Lexical similarity between the summary or description field
of two bug reports based on bigram model

Categorical
similarity

Prodsim Categorical similarity between the product field of two bug
reports

The issue described by duplicate bug reports tend to occur
in the same product

Compsim Categorical similarity between the component field of two
bug reports

The issue described by duplicate bug reports tend to occur
in the same component

Typesim Categorical similarity between the type field of two bug
reports

The issue described by duplicate bug reports tend to have
the same issue type

Priosim Categorical similarity between the priority field of two bug
reports

The issue described by duplicate bug reports tend to have
the same priority

Verssim Categorical similarity between the version field of two bug
reports

The issue described by duplicate bug reports tend to occur
in the same version of software

Semantic
similarity

Sss Semantic similarity between the summary field of two bug
reports

Duplicate bug reports tend to represent the same
semantics in the summary field

Sdd Semantic similarity between the description field of two
bug reports

Duplicate bug reports tend to represent the same
semantics in the description field

• Semantic similarity learned by deep learning techniques is
often used to estimate how well the semantic content of
a document matches the input query. We conjecture that
semantic similarity also plays an important role in deter-
mining whether a bug report is a duplicate by providing an
accurate measure of bug semantics.

Semantic similarity is mainly calculated by DL-based methods,
which is the focus of this paper. Lexical and categorical similar-
ities are mainly calculated by IR-based methods, e.g., BM25Fext
and REP, which will be detailed in the latter part of this section.
The reasons for using IR-based methods are that (1) they are
popular and representative in the field of duplicate bug report
detection; (2) their effectiveness in real scenarios has empiri-
cally been demonstrated in previous work (Rakha et al., 2017;
Sun et al., 2011). Therefore, employing these IR-based methods
as classical baselines enables convincing comparisons with DL-
based methods. In addition to the above methods, some other
techniques, e.g., machine learning and topic model, have also
been applied to detect duplicate bug reports. However, previous
work (Rakha et al., 2017) has empirically found that most of
these methods are not publicly available or too complex to be
implemented, which brings difficult to make a fair comparison
in this paper. Nonetheless, this does not affect our comparison
studies as our aim is to demonstrate the effectiveness of DL-based
methods.

2.1.1. Lexical similarity
Lexical similarity is one of the most important dimensions for

predicting duplicate bug reports. This is because the duplicate
bug report detection task can often be transformed into an IR
problem where lexical similarity is used as a metric to determine
the degree of duplication of a pair of bug reports based on
their textual descriptions. To measure lexical similarity, many
ranking models (e.g. Boolean model and Vector Space Model
(VSM) Manning et al., 2008, Liu (2011)) based on probabilistic
ranking principles have been proposed in the field of IR and have
been effectively applied in practice. One of the most well-known
probabilistic ranking models is BM25F (Hermawati et al., 2017),
which allows the use of machine learning algorithms to learn the
weights of different fields or terms in each field, resulting in more
accurate text similarity between bug reports. Although BM25F
model is a strong baseline for traditional IR tasks and seems a
natural fit for duplicate bug report detection, one of its major

drawbacks is that it considers only the importance of different
terms in the document and not the terms in the query. The reason
for such designs is that in IR tasks, the query usually consists of
several keywords without repeated terms. However, for duplicate
bug report detection, the query is a bug report that contains a
long text summary and description. Therefore, following previous
work (Sun et al., 2011; Jiang et al., 2020), we use a new variant of
BM25F (i.e. BM25Fext ) to calculate the lexical similarity between
two bug reports by considering the weights of terms in both
query and documents. The calculation formulas of BM25Fext are
as follows:

IDF (t) = log
N
Ndt

(1)

TFD(d, t) =

K∑
f=1

weightf ∗ occurrences(d[f ], t)

1 − bf +
bf ∗lengthf

average_lengthf

(2)

TFQ (q, t) =

K∑
f=1

weightf ∗ occurrences(q[f ], t) (3)

BM25Fext =

∑
t∈q∩d

IDF (t) ∗
TFD(d, t)

k1 + TFD(d, t)

∗
(k3 + 1) ∗ TFQ (q, t)

k3 + TFQ (q, t)

(4)

where N represents the total number of bug reports, Ndt rep-
resents the number of bug reports containing a given term t ,
weightf is the field weight, bf is the parameter that determines
the scaling of the field length, d[f ] represents the bag of terms
in the f th field of bug report d, lengthf is the size of d[f ],
average_lengthf is the average size of all d[f ] of all bug reports, K
represents the number of textual fields and its default value is 2
which represents two textual fields used in duplicate bug report
detection, k1 and k3 are the scaling parameters to control the
values of TFD(d, t) and TFQ (q, t) respectively, occurrences(d[f ], t)
is the frequency of a term t that appears in field f of bug report
d. IDF (Inverse Document Frequency) is a global weight of a
given term across all bug reports, which is the logarithmic of N
divided by Nd. TFD(d, t) represents the frequency of the term t
appearing in historical bug reports. TFQ (q, t) is an extension of
BM25F, which represents the frequency of the term t appearing
in a query bug report q.
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Fig. 2. The architecture of the DL-based duplicate bug report detection framework.

The above formulas calculated based on unigrams yield the
first lexical similarity feature, i.e., Lunigram. If we represent bug re-
ports using bigrams, and then use the same formulas to calculate
the similarity between bug reports, we can get another lexical
similarity feature, i.e., Lbigram.

2.1.2. Categorical similarity
Actually, duplicate bug reports are not only similar in the

textual field, but also in some categorical fields including product,
component, type, priority, version etc. Therefore, in addition to
textual similarity, categorical similarity, which is calculated based
on non-textual information (i.e., categorical fields) of bug reports,
is also widely used for duplicate bug report detection (Sun et al.,
2011).

As shown in Table 2, there are five categorical similarities
involved. Prodsim compares if two bug reports are in the same
product. In a bug report, the product field stores the product
affected by the reported bug. The value of Prodsim is 1 if two bug
reports belong to the same product, and 0 otherwise.

Compsim determines whether two bug reports are in the same
component. In a bug report, the component field specifies in which
architecture layer or in which sub-module within an architecture
layer the reported bug occurred (Alipour et al., 2013). The value
of Compsim is 1 if two bug reports have the same component, and
0 otherwise.

Typesim compares the type of two bug reports. If two bug
reports have the same bug type, they are more likely to be
duplicates. Similarly, we set the Typesim to 1 if equality holds for
the type field of two bug reports, and 0 otherwise.

Priosim and Verssim compare the differences in the priority and
version fields of two bug reports respectively. Since the values of
these two fields are continuous, following Sun et al. (2011), the
reciprocal of the distance between the priority or version fields
of two bug reports is assigned to the corresponding categorical
similarity (i.e., Priosim or Verssim).

The calculation formulas of the above categorical similarities
are as follows:

Prodsim =

{
1, if d.prod = q.prod
0, otherwise (5)

Compsim =

{
1, if d.comp = q.comp
0, otherwise (6)

Typesim =

{
1, if d.type = q.type
0, otherwise (7)

Priosim =
1

1 + |d.prio − q.prio|
(8)

Verssim =
1

1 + |d.vers − q.vers|
(9)

2.1.3. Semantic similarity
Lexical similarity is commonly used in traditional IR tasks

based on explicit text matching (Jones et al., 2000a,b). How-
ever, merely using the lexical similarity between two bug reports
is insufficient to comprehend their semantic relationships. To
bridge the semantic gap, deep learning has been introduced in the
field of duplicate bug report detection to measure the semantic
similarity of bug reports. A major benefit of using deep learning is
that it can automatically extract semantic features from input bug
reports without relying on hand-engineering features based on
expert domain knowledge. In this paper, we argue that lexical and
semantic similarities compensate each other in textual similarity
measures and hence ensembling these two similarities can more
comprehensively capture the semantic relatedness between bug
reports.

Since semantic similarity measures the relatedness in the em-
bedded semantic space (Bengio et al., 2003; Mikolov et al., 2013a;
Fan et al., 2017), we first need to map the textual description of
bug reports into this semantic space and then calculate semantic
similarities between these vectors. Inspired by the widespread
success of existing DL-based embedding methods, in this paper,
we present a general DL-based framework for learning deep
semantic representation of bug reports, as shown in Fig. 2, which
mainly consists of the following components.

• Feature-Net transforms any bug reports into feature embed-
dings for high-level representations.

• Similarity Layer evaluates the probability that two bug
reports are duplicates by measuring the similarity of their
vector representations.

• The framework offers two different ways (i.e., one is siamese
and another is triplet network architecture) to detect du-
plicate bug reports using similarity scores of pairs of bug
reports.

For a newly submitted bug report, we denote it as a query
(BRquery). The goal of DL-based methods is to detect whether the
BRquery is duplicate or non-duplicate in the classification or rank-
ing scenario. In both cases, the Feature-Net plays an important
role in the duplicate bug report detection since it affects the

5
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quality of extracting reliable information from bug reports. Thus,
Feature-Net should be able to generate low-dimensional vectors
while preserving the semantics of bug reports. In this study, we
employed a broad range of neural networks as the candidate
Feature-Net, including convolutional networks (i.e., CNN LeCun
et al., 1998) and recurrent neural networks (e.g., BiLSTM Hochre-
iter and Schmidhuber, 1997), which are popular models widely
used in NLP tasks within a decade. Besides, with the develop-
ment of transformer structures, various transformer based mod-
els (e.g., BERT (Bidirectional Encoder Representations from Trans-
formers) Devlin et al., 2018) have recently been proposed to
model natural language texts. There is plenty of evidence that
BERT exhibits strong performance on many NLP tasks. Therefore,
we also chose BERT as a candidate for Feature-Net, and compared
it to LSTM or CNN based networks and existing DL-based models
(e.g., DCNN He et al., 2020 and Deshmukh et al., 2017).

Our key insight is that by comparing the similarities of pairs of
bug reports, we can train a siamese or triplet network (Kaya and
Bilge, 2019). The trained network not only acts as a predictor to
determine whether two bug reports are duplicates of each other
in the classification scenario, but also acts as a feature extractor to
produce the representations required for the semantic similarity
calculation in the ranking scenario.

As illustrated in Fig. 2, the siamese network is built on two
Feature-Nets, whereas the triplet network is built on three
Feature-Nets. In a siamese or triplet network, different Feature-
Nets share the exact same architecture and parameters. That
is, any changes to one Feature-Net also have an impact on the
others. For each Feature-Net, it takes the word2vec embeddings
of all tokens contained in a bug report as input and outputs
a feature representation f (BR, θf ) defined by different network
f , where θf denotes the network parameters. Taking the CNN
network as an example, f (BR, θf ) can be formalized as follows:

f (BR, θf ) = fL ◦ ...f2 ◦ f1(BR) (10)

where fi represents a composition function, which consists of
four cascade-operations: convolution operation, a batch normal-
ization, an activation operation (such as ReLU) and a pooling
operation. L is the number of convolutional layers of CNN.

A similarity layer on top of Feature-Nets is used to measure the
pairwise similarity score between bug reports based on their rep-
resentation. In metric learning, there are three most commonly
used ways to understand the similarity relationship between
samples (Kaya and Bilge, 2019; Nguyen et al., 2018). Specifically,
fully-connected layers, as used in Wang et al. (2014), support
accurate calculation of similarity scores but incur high compu-
tational costs. Euclidean distance (Schroff et al., 2015) is another
widely used similarity function that satisfies speed requirements
but fails to deal effectively with high-dimensional sparse data. In
our framework, we employ cosine similarity, for its cost-effective,
robust and good performance (Xie et al., 2018), as the similarity
function in the similarity layer to construct a low-dimensional
target space (Nguyen et al., 2018). Given a pair of bug reports
BRi and BRj, the similarity function g(f (BRi), f (BRj)) defined by
g : Rn

× Rn
→ R, is computed as follows:

g(f (BRi), f (BRj)) =
f (BRi) · f (BRj)

∥f (BRi)∥
f (BRj)

 (11)

The function g calculates the similarity between two bug
reports, ranging from 0 to 1. If the input is a pair of duplicate
reports, g returns a large value, called positive score g+. Ideally,
the cosine similarity of a pair of duplicate bug reports should be
1. Conversely, the similarity of a non-duplicate pair calculated by
g is smaller, called negative score g−.

Since model architectures of siamese and triplet networks are
different, two specialized training strategies are developed to
learn them respectively. The training of the triplet network is
performed by feeding triplet examples, each of which includes
three instances: {BRquery, BR+, BR−} where BR+ is a positive bug
report that is duplicate with BRquery, and BR− is a negative bug
report that is different from BRquery in the reported bug. The
training process of the siamese network is similar to that of the
triplet network, differing in that siamese takes as input a pair
of bug reports (i.e., {BRquery, BR+} or {BRquery, BR−}) rather than
a triplet example.

The hinge loss is used as the loss function for training the
triplet network, and the parameters θf of Feature-Net are learned
by maximizing the hinge-loss between the positive score g+ and
the negative score g−:

L = max(0,m + g− − g+) (12)

where m is a margin. Instead of setting a threshold to determine
whether or not the measured pairs of bug reports are duplicates,
we utilize the hinge-loss function to ensure that positive scores
are always greater than negative scores with a certain margin m.

The cross-entropy loss is used as the loss function for training
the siamese network, and the parameters θf of Feature-Net are
learned by maximizing the similarity value for a duplicate pair
and minimizing it for a non-duplicate pair:

L = −ylog(v) − (1 − y)log(1 − v) (13)

where v is the similarity score computed by the siamese network
for a pair of input bug reports, and y ∈ {0, +1} is the ground-truth
label, i.e., +1 for duplicate pairs and 0 for non-duplicate pairs.

Due to the different importance of summary and description
on duplicate bug report detection, each textual field is handled
separately as most previous approaches did (Deshmukh et al.,
2017; Rakha et al., 2017). We denote the feature embedding of
summary and description in BRquery and BRdoc (i.e., BR+ or BR−)
as Vqs, Vqd, Vds, Vdd respectively, which are all produced by the
trained Feature-Net. Taking the semantic similarity between Vqs
and Vds as an example, it is calculated as follows:

Sss =
Vqs · VdsVqs

 ∥Vds∥
(14)

2.2. Approach

In this empirical study, we consider three types of similarities:
lexical similarity, categorical similarity and semantic similarity,
which characterize the relatedness between bug reports from
three different perspectives. Then, based on these computed sim-
ilarities, we learn a global score function to determine whether
or not the newly submitted bug report is duplicate. Previous
research (Sun et al., 2011; Rakha et al., 2017) has shown that
combining both lexical and categorical similarities can improve
detection performance when compared to utilizing only one simi-
larity measure. However, there is not enough evidence to indicate
that combining semantic similarity with other traditional similar-
ities will further improve the performance of the detection model
over long periods of time with a significant margin. Therefore,
in this paper, we aim to demonstrate whether or not combining
these three types of similarities can characterize the semantic
relatedness between bug reports in a more comprehensive way.
To this end, we follow the idea that is used in Sun et al. (2011),
where the author combines different duplicate scores (i.e., simi-
larities) using a supervised learning to rank approach. The reason
for employing learning to rank is that it uses machine learning
algorithms to build effective ranking score functions from training
data, and has been widely used in the past duplicate bug report
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detection studies (Liu, 2011). The formula to compute the global
similarity score (Dupscore(d, q)) between bug reports is as follows:

Dupscore(d, q) =

9∑
i=1

wi ∗ simi (15)

where wi is the weight of the ith similarity value Simi, which can
be learned from the training data with known duplicated labels.
Once the wi is fixed, the model is learned, and can be used for
detection.

Although there are three types of similarities in total as shown
in Table 2, each of them can be used standalone as the feature
of the ranking model to calculate the global similarity score
by Eq. (15). For example, some of the previous studies are based
on the lexical similarities (e.g., BM25F Sun et al., 2011; Rakha
et al., 2017, BM25Fext Sun et al., 2011) or the combination of lex-
ical and categorical similarities (e.g., REP Sun et al., 2011; Rakha
et al., 2017), whereas other recent work focuses on leveraging
semantic similarities for duplicate bug report detection (e.g., DL-
based methods Deshmukh et al., 2017; He et al., 2020). Unlike
previous work that only considers one type of similarity, our
work is the first to explore the combinations of three types of
similarities to boost detection performance compared to both IR-
and DL-based methods. For convenience, we refer to the proposed
method as CombineIRDL throughout this paper.

3. Empirical study setup

3.1. Research questions

The main research questions (RQ) focused in this paper are as
follows:

RQ1: How does the performance of the DL-based approaches on
benchmark datasets with different scales? Most existing ap-
proaches are evaluated on small-scale datasets with bug
reports collected from a short period of time. This type of
evaluation (called classical evaluation in the literature Rakha
et al., 2017) tends to overstate model performance in a real-
world production setting due to the assumption that the
time-interval between duplicate bug reports and their mas-
ter report is short. Therefore, in this RQ, we spontaneously
wonder whether or not such a phenomenon occur during
the evaluation process of DL-based methods. To answer this,
we first construct two datasets of different sizes for each
studied BTSs and then assess the performance of DL-based
methods on different sized datasets.

RQ2: How well do the DL-based approaches perform compared to ex-
isting popular IR-based approach? The DL-based approaches
address the duplicate bug report detection task in two ways:
(1) they make decisions for any pair of bug reports to in-
dicate whether they are duplicates (Lin et al., 2016), and
(2) they first use deep neural networks to learn from the
textual fields of bug reports to generate low-dimensional
semantic vector representations, and then compare repre-
sentations of bug reports to identify possible duplicate bug
reports that are similar to a new bug report. The first way
can be formalized as a binary classification via DL which is
analyzed in RQ1, while the second way can be formulated
as a ranking problem that is closer to the realistic situation.
In this RQ, we aim to study whether the state-of-the-art
DL-based approaches perform better than other popular
IR-based methods by comparing their ranking performance?

RQ3: How does combining DL with IR impact the performance of the
duplicate bug report detection task? In RQ3, we investigate
whether it is possible to further improve the performance
of detection methods by combining DL with IR techniques.
The reasons for this combination are two-fold: (1) Deep
semantic information is crucial for accurately evaluating the
textual similarity between two bug reports, and DL has been
proven to be very effective at extracting such information
from bug reports; (2) The lexical and categorical features
calculated by IR-based methods also have been previously
shown to achieve good performance for finding duplicate
bug reports.

RQ4: How effective is the approach of combining IR and DL when ap-
plied to three large unpublished datasets over recent time peri-
ods? Three benchmark datasets from 1998 to 2010 (11 years
before this study) are widely used in previous studies to val-
idate the effectiveness of various detection methods. Even
though the experimental results on these datasets illustrate
the potential of the IR-based and DL-based approaches for
solving the duplicate bug report detection task, we still have
no insight into whether these approaches lead to desired
performance on the reported bug reports that occurred in
recent time periods. Therefore, additional empirical studies
are needed to answer the above question. In RQ4, we first
expand the benchmark datasets by collecting additional bug
reports in BTSs of three open-source projects from January
1, 2011 to December 31, 2020, and then perform extensive
experiments on the new datasets to evaluate and com-
pare the performance of IR-based baseline and the proposed
combined approach CombineIRDL.

3.2. Studied datasets

3.2.1. Benchmark DataSets
Experiments are conducted on three datasets collected from

OpenOffice,1 Eclipse,2 and Mozilla,3 where OpenOffice is a pop-
ular software system while Eclipse and Mozilla are two popular
software foundations. The Mozilla Foundation is a free software
community that uses, develops, spreads and supports Mozilla
products, such as Firefox, Thunderbird and Bugzilla. The Eclipse
Foundation is an open-source organization, and is home to over
375 open-source projects, including runtimes, tools, and frame-
works for a wide range of technical fields. OpenOffice is a dis-
continued open-source office suits, owned by Apache Foundation,
which provides a word processor, a spreadsheet, a presentation
application and a drawing application for office purposes.

Although the datasets collected from the above sources are
widely used in prior work, no standardized data size (or time
period) exists for their evaluation. In this study, the datasets we
adopt as benchmarks are the ones contributed by Rakha et al.
(2017). The reasons we choose the datasets are threefold. (1)
All three datasets span a period over decades, ensuring that a
large amounts of bug reports can be used for method evalu-
ation; (2) The datasets of these projects are also adopted by
previous studies, which allows for more convenient comparisons
between different methods; and (3) All three datasets are from
well-known and large-scale open-source projects, which are sta-
tistically representative and relevant to the real-world situations.
The statistical information of all the datasets is detailed in Table 3,
where ‘‘Time Range’’ is the time range for the bug reports, ‘‘#
of Reports’’ is the total number of bug reports and ‘‘# of Dupli-
cates’’ is the number of duplicated bug reports in the dataset. As

1 https://www.openoffice.org/.
2 https://www.eclipse.org/.
3 https://foundation.mozilla.org/en/.
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Table 3
The statistics of the benchmark datasets.
Project Time Range # of Reports # of Duplicates

Eclipse 10/10/01–12/31/10 332,600 40,232
Mozilla 04/07/98–12/31/10 552,451 135,163
OpenOffice 10/16/00–12/31/10 116,043 19,119

shown in Table 3, these datasets contain a total of 1,001,094 bugs
reported from April 7, 1998 to December 31, 2010. Among the
1,001,094 bugs, 194,514 are duplicates.

3.2.2. Newly collected datasets
As can be seen from Table 3, most bug reports are submitted

before December 31, 2010, which may be too old to simulate the
present situation as the development organization and process
have changed significantly over the years. To further verify the
effectiveness of different methods over the most recent periods,
we first conduct data collection to augment benchmarks and then
report the experimental results of different methods on the new
datasets. For data collection, we first implement a web crawler
to collect all bug reports from January 1, 2011 up to December
31, 2020 in OpenOffice, Eclipse and Mozilla BTSs. Then, we store
each collected bug report as an XML file, which has a set of fields
such as bug_id, summary, description, product, component, op_sys,
version, priority, severity and others. Finally, if the resolution field
of the bug report is ‘‘DUPLICATE’’ it will be labeled as duplicate
and non-duplicate otherwise. More details about the newly col-
lected datasets can be found in Section 4.4. All these Datasets for
Eclipse, OpenOffice and Mozilla are freely and openly available to
the public via the link (https://sites.google.com/view/dbddl).

3.2.3. Bug report preprocessing
As textual fields of bug reports, including summary and de-

scription, may contain some irrelevant information for duplicate
bug report detection, we apply the following preprocessing steps
to clean up the textual fields. First, we tokenize the text into a list
of terms. Second, we remove URLs, stack trace, hex code, and non-
alphabetic characters. Finally, we convert the remaining terms to
lower-case and then transform them to their root forms using
NLTK Porter Stemmer. Considering the tremendous number of
bug reports and for saving the query and computational time, we
adopt the distributed search engine Elasticsearch (ES) to manage
and store the preprocessed bug reports in our datasets.

3.3. Performance evaluation

3.3.1. Evaluation metrics
In this section, we include the most widely-used metrics,

i.e., precision, recall, F1-measure, Recall Rate@k and MAP to mea-
sure the performance of the different approaches for the duplicate
bug report detection task.

When evaluating DL-based methods in the classification sce-
nario, we use well-known metrics including precision, recall
and F1-measure to measure and compare their overall perfor-
mance on different datasets, which is consistent with previous
work (Deshmukh et al., 2017; He et al., 2020). Precision =

TP
TP+FP ,

Recall =
TP

TP+FN , F1-measure = 2 ∗
precision∗recall
precision+recall , where TP is true

positives, FP is false positives, FN is false negatives and TN is true
negatives.

When treating the duplicate bug report detection task as a
ranking problem, i.e., searching historical bug reports to find the
original master report for a given bug report, we use the same
two evaluation metrics as Rakha et al. (2017) to compare the

ranking performance of different methods including IR-based, DL-
based and the hybrid method (i.e., the proposed CombineIRDL).
The two metrics are defined as follows.

MAP: The mean of the average precision for all queries, which
is the most commonly used IR metric for evaluating the power of
retrieval approaches (Youm et al., 2017; Akbar and Kak, 2019).
MAP is important if a developer is interested in finding the
true master report by reading the returned list one by one in
descending order of similarity (Wang and Lo, 2016). A higher
MAP value indicates more effective of the retrieval approach. The
original formula is defined as follows:

MAP =
1

|Q |

|Q |∑
q=1

1
|K |

∑
k∈K

Prec@k(Qq) (16)

where Q is the set of query bug reports, K is the set of positions
of the relevant bug reports in the rank list, and Prec@k(Qq) is the
precision of relevance at position k in the returned bug report list.
The definition of Prec@k(Qq) is:

Prec@k(Qq) =
# the relevant docs for Qq in topk

k
(17)

Due to the specialized nature of the duplicate bug report
detection task, i.e., only one master report relevant to a given
query bug report, |K | is equal to 1, and k ∈ |K | is the index of
the right master bug report in the candidate list. Thus, MAP can
be simplified as:

MAP =
1

|Q |

|Q |∑
q=1

1
k

(18)

Recall Rate@k: The percentage of bug reports whose master
can be detected in the returned bug report list. Following pre-
vious work (Rakha et al., 2017), the value of k is set to 5 or 10.
Unlike MAP, Recall Rate@k only considers the top-k ranked results
when evaluating retrieval approaches. It is also important since
prior studies (Kochhar et al., 2016; Huo et al., 2019) has shown
that more than 95% of practitioners only check the top 10 results.

Recall Rate@k =
Ndetected

Ntotal
(19)

where Ndetected is the number of bug reports whose master can be
successfully detected in the top-k candidate reports, and Ntotal is
the number of query bug reports.

3.3.2. Statistical tests
Most previous work conducts experiments on datasets belong-

ing to three projects (Mozilla, Eclipse and OpenOffice) collected
over a specific time period. For example, the testing periods of
the three projects in the literature (Sun et al., 2011) range from 1
to 2 years. However, only performing evaluation over a period of
time may introduce randomness or bias, and hence some results
could not be generalized to the whole lifetime of a studied BTS.
To better demonstrate whether the comparisons between the two
classes of approaches vary significantly with the time period, we
follow recent work (Rakha et al., 2017) to first randomly select
100 chunks of data that cover the lifetime of each dataset, and
then iteratively conduct experiments on each chunk of data to
collect a set of evaluation results in terms of various metrics
(i.e., Recall Rate@k and MAP). Finally, we carry out a statistical
analysis of the experimental results using Mann–Whitney U test
to verify the statistical significance of our conclusions. The reason
for using the Mann–Whitney U test is that, it is a non-parametric
statistical test approach that does not require the population
to follow a normal distribution, but only require samples to be
randomly selected, and observation values are independent. For
example, when performing comparisons between IR-based and
DL-based methods, we define the following hypotheses:
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Table 4
Configuration search space of various deep learning models.
Hyper-parameter Value Description

Embedding size (Word2Vec) [60, 120, 200] The embedding size of the Word2vec is set to 60, 120 or 200

Widths of convolutional filters (CNN, DC-CNN
He et al., 2020)

[(1,2,3), (2,3,4), (3,4,5)] Each tuple, e.g., (1, 2, 3), represents that we use three types of
convolutional filters whose widths are 1, 2 and 3

The number of filters (CNN, DC-CNN He et al.,
2020)

[50, 100, 150, 200] The number of filters for CNN is set to 50, 100, 150 or 200

RNN layer (BiLSTM, Deshmukh et al. (2017)) [1, 2] The number of layers for RNN is set to 1 or 2.
RNN hidden size (BiLSTM, Deshmukh et al.
(2017))

[50, 100, 150, 200] The hidden size in each RNN unit is set to 50, 100, 150 or 200.

RNN cell number (BiLSTM, Deshmukh et al.
(2017))

[50, 100, 150, 200] The number of cells for each RNN layer is set to 50, 100, 150 or 200.

Initial learning rate [2e−02, 2e−03, 2e−04, 2e−05] The initial learning rate is set to 2e−02, 2e−03, 2e−04, 2e−05
Mini-batches of size [8, 16, 32, 64, 128] The network is trained with mini-batches of 8, 16, 32, 64 or 128.
Epoch [5, 15, 20, 30, 50] The epochs for training networks are set to 5, 15, 20, 30 or 50

• H0: The IR-based approaches and DL-based approaches have
no significant performance difference.

• H1: The IR-based approaches and DL-based approaches have
significant differences in performance.

Under the null hypothesis and 5% level of significance, our
specification test will reject the null hypothesis (i.e., H0) with
a probability (i.e., p-value) that, in the limit, does not exceed
the significance level of the test. Additionally, cliff’s delta is also
calculated to measure the probability that the values from one
group of the evaluation metrics X = {x1, x2, ..., xm} are greater
than the other Y = {y1, y2, . . . , yn}, which can be used as effect
size to quantify the difference between two distributions. The
definition of cliff’s delta is as follows:

δ(i, j) =

{
+1, xi > yj
−1, xi < yj
0, xi = yj

(20)

δ =
1
mn

m∑
i=1

n∑
j=1

δ(i, j) (21)

The formula (20) is used to calculate the difference between
a pair of metric values which are sampled from two different
groups, and the formula (21) is used to calculate the effect size
by averaging over m ∗ n results obtained from formula (20).
Obviously, the value of δ is between −1 and +1, and when it is
close to +1 or −1, indicating a more significant group difference
in the evaluation metric; otherwise, when δ is close to 0, the
difference between two groups is not significant.

Moreover, we use the kurtosis (Joanes and Gill, 1998) measure
to determine whether two or more detection approaches have a
stable performance on datasets over different periods of time. The
kurtosis is often used to explain the peakedness of a population.
The higher the kurtosis, the more agreement that samples in the
distribution have on the average of the distribution. Specifically,
all the normal distributions have the same kurtosis, i.e., 3. The
formulas for calculating kurtosis used in this study are provided
by Cramir (1946), which can be defined as follows:

G2 =
K4

K 2
2

=
n − 1

(n − 2)(n − 3)
{(n + 1)g2 + 6}

where

K4 =
n2

{(n + 1)m4 − 3(n − 1)m2
2}

(n − 1)(n − 2)(n − 3)

K2 =
n

n − 1
m2

g2 =
m4

m2
2

− 3

mr =
1
n

n∑
i=1

(xi − x)r

(22)

where mr is the r-order sample moment of samples of size n, m4
is the fourth sample moment, m2 is the second sample moment,
xi is the ith value in the set of samples, x is the sample mean, n
is the total number of samples.

3.4. Hyperparameter adjustment

Since most models are sensitive to hyperparameter values, a
proper hyperparameter tuning is required to yield good perfor-
mance on benchmark datasets. Existing methods for duplicate
bug report detection can be roughly divided into two categories,
namely DL-based methods and IR-based methods. For DL-based
methods, we follow the previous work by Guo et al. (2017)
to tune the hyperparameters of deep neural networks by grid
searching on the validation dataset. Specifically, we first identify
optimal or near-optimal hyperparameters that may lead to the
desired performance, based on the default values of the original
paper and practical observation. Next, we design a search space
around the identified values such that only the most probable
optimal values of hyperparameters are included in the space.
Finally, we perform a grid search on the search space and pick
the best performing model with a good set of hyperparameters
on the validation set. Table 4 describes the search space we used
to tune deep neural networks.

To reproduce the experimental value of this paper, we offer
a default configuration of parameters that are likely to work
out of the box. The embedding of words are trained on training
datasets using Word2Vec (Mikolov et al., 2013b) with Skip-gram
algorithm and the embedding size is set to 200. The number of
hidden layers for each RNN is set to 2, and each hidden layer
dimension is set to 200. The number of convolutional filters used
is 150 with kernel size of Akbar and Kak (2019), Alduailij and
Al-Duailej (2015) and Alipour et al. (2013). All of the activation
functions in these models are set to tanh function. As for the
Bert model, we use the default architecture and hyperparameter
settings (i.e., 12-layer, 768-hidden, 12-heads, 110M parameters)
in order to reuse their pre-trained models (Devlin et al., 2018). In
addition, we train DL models for a total of 30 epochs using the
Adam optimizer (Kingma and Ba, 2014) with a learning rate of
0.002, a dropout of 0.5 and a batch size of 64. Our approach is
implemented with the Pytorch library in Python with an Intel(R)
Core i7@3.2 GHz, 192 GB DDR4-RAM and 1 GeForce RTX 2080
GPU.

The automated IR-based methods retrieve duplicate candi-
dates from BTSs for query bug reports through a scoring function
Dupscore that assigns each historical bug report a similarity score
to represent their likelihood of being duplicates. The higher the
value of similarity, the higher the probability of the query bug
report and the historical bug report being duplicates. RankNet
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is often used for learning the parameters of the scoring func-
tion (Burges et al., 2005). The simplified version of RankNet cost
function RNC proposed by Taylor et al. (2006) is as follows:

RNC(I) = log(1 + eY ) (23)

Y = Dupscore(BRquery, BR−) − Dupscore(BRquery, BR+) (24)

where Dupscore(BRquery, BR+) refers to the score of a pair of du-
plicate bug reports, and Dupscore(BRquery, BR−) corresponds to the
score of a pair of non-duplicate bug reports. The parameters
in Dupscore are optimized by using the RankNet method, which
mainly include feature weights (i.e., w1 ∼ w9) in Eq. (15) and
the parameters (i.e., weightf , bf , k3 and k1) of the BM25Fext in
Eqs. (2)∼(4).

3.5. Validation settings

To evaluate the ranking performance of different models, we
followed the same evaluation protocol with Rakha et al. (2017),
which conducts performance evaluation in a realistic setup where
no data is ignored, making the performance comparison fair. Re-
alistic evaluation differs from classical evaluation in that classical
evaluation ignores the bug reports that are submitted before
the evaluated time period, while realistic evaluation does not. In
addition, we randomly select 100 different chunks of data from
each studied dataset and further divide each chunk into tuning
and testing data. Specific details about the implementation are
presented in the later sections (i.e., Sections 5.2∼5.3). As a result,
there are 100 effectiveness values for each studied BTS, and we
perform a statistical significance test to determine whether the
differences in performance measures between different methods
are statistically significant.

However, if we only compare the performance among DL-
based models, we can use a simpler strategy to evaluate the per-
formance of these models, which does not require randomly se-
lecting 100 chunks from each studied dataset and conducting ex-
tensive experiments on each chunk. This is because a deep learn-
ing model with a huge number of parameters requires a large
amount of data for adequately training. Generally, hyperparame-
ter optimization and model training come with huge costs (time
and resources). Therefore, we partitioned the studied dataset into
mutually exclusive training and testing sets with a proportion of
80% and 20%, which is a common practice in the deep learning
literature.

4. Results

4.1. Answer question 1: How does the performance of the DL-based
approaches on benchmark datasets with different scales?

Motivation. When evaluating IR-based models on small-scale
datasets, their performance may be overestimated, as demon-
strated in the literature (Rakha et al., 2017). However, we are
unaware of whether such problems hold in the evaluation of
DL-based methods. This is mainly because DL-based methods
focus on predicting whether or not a pair of bug reports are
duplicates, which differs from IR-based methods by ranking all
possible duplicates of the given bug reports. Therefore, in this RQ,
we evaluate the performance of previous DL-based methods on
datasets of different scales, and demonstrate whether detection
models trained on large-scale datasets have statistically signifi-
cant differences in evaluation metrics when compared to models
trained on small-scale datasets. In addition, we are interested in
which model is more effective for extracting semantic features
from bug reports, considering that the performance of DL-based
methods depends on its ability to extract deep semantic features.

Approach. To answer this question, we conduct the following
experiment. First, for each project, we construct two datasets of
different sizes, the smaller dataset, which has the same evaluated
time periods as previous work (Sun et al., 2011), and the larger
dataset, which is large enough to fully cover the life cycle of
each studied BTS under evaluation. Each instance in datasets
is represented by a triplet in the form of (BRquery, BR+, BR−).
Second, we build two deep network frameworks (i.e., siamese
and triplet networks) based on various textual feature extractors
for duplicate bug report detection, and evaluate these models
using multiple evaluation metrics. Finally, we perform statistical
testing on the experimental results to analyze whether there
are statistically significant differences in evaluation metrics when
training detection models on benchmark datasets with different
scales.

In this study, we use three commonly used deep learning
models BiLSTM, CNN and BERT as Feature-Nets to extract the
semantic features from bug reports, and construct a triplet or
siamese network for duplicate bug report detection. As a result,
we can obtain three baselines:

• BiLSTM or CNN-based Detection Model. CNN and LSTM are
the two main types of neural networks, both of which
can automatically extract features instead of manually de-
signed features (Lee et al., 2017). In particular, CNN can
extract local features through convolutional filters and per-
form well on semantic parsing tasks in NLP (Kim, 2014),
whereas LSTM can capture long-range dependencies across
sequences by incorporating gating mechanisms, thereby
outperforming traditional supervised learning methods on
serialization tasks in NLP. Considering that CNN and LSTM
are state-of-the-art semantic feature extractors and have
been widely explored to handle various NLP tasks (Yin et al.,
2017), we examine the performance differences of the two
alternative networks in the duplicate bug report detection
task.

• BERT-based Detection Model. BERT leverages a multi-layer
multi-head self-attention together with a positional word
embedding to construct an effective text representation,
which has achieved great success in many NLP tasks such
as text classification over the past few years (Devlin et al.,
2018; Lu et al., 2020). Since the semantic features of bug
reports are mainly derived from the textual fields of bug re-
ports and BERT has strong semantic extraction ability in nat-
ural language processing, we design a method to integrate
the triplet or siamese framework and BERT for duplicate bug
report detection, which can be served as a strong baseline in
our comparison experiments.

Different networks (i.e., triplet and Siamese networks) have
different learning processes depending on the number of Feature-
Nets. Specifically, for the triplet network, triplets in the form of
(BRquery, BR+, BR−) sampled from the constructed databases are
employed as the input. However, for the siamese network, a pair
of bug reports, i.e., (BRquery, BR+) or (BRquery, BR−), are taken as
input, which is constructed by removing BR− or BR+ from the
triplet (BRquery, BR+, BR−). The total number of triples and pairs
extracted from three datasets are shown in Table 5.

In addition, we also compare the performance of the above
baselines with those proposed by Deshmukh et al. (2017) and He
et al. (2020). The details of these state-of-the-art methods are as
follows:

• BiLSTM+CNN+MLP based Detection Model. The model is a
state-of-the-art DL-based duplicate bug report detection ap-
proach proposed by Deshmukh et al. (2017), in which BiL-
STM and CNN are used to extract semantic features from
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Table 5
The statistics of the constructed datasets used for evaluating DL-based models.

Small scale dataset Large scale dataset

Time Range # of triplets # of pairs Time Range # of triplets # of pairs

Eclipse 01/01/08–12/31/08 8762 17,524 10/01/01–12/31/08 79,948 159,896
Mozilla 01/01/10–12/31/10 17,367 34,734 04/07/98–12/31/10 246,282 492,560
OpenOffice 01/01/08–12/31/10 9181 18,362 10/16/00–12/31/10 38,225 76,450

Fig. 3. Accuracy and F1-measure results of different feature-Nets trained in siamese and triplet forms.

summary and description of bug reports, respectively, and
MLP is adopted to encode categorical information to accu-
rately and comprehensively represent the bug reports. Since
it is one of the most representative work in the field of
research on duplicate bug report detection, we adopt it as
a baseline detection method.

• Dual-Channel Convolutional Neural Network (DC-CNN) based
Detection Model. DC-CNN is a type of CNN that is used to
extract features from the original input in the form of the
dual-channel matrix. Given a pair of bug reports, a new
dual-channel matrix can be constructed based on the single-
channel metrics of two bug reports. Therefore, the DC-CNN
can naturally act as the feature extractor to capture the
correlated semantic relationships between bug reports by
convolving on the dual-channel matrix. In our experiments,
we adopt DC-CNN as a baseline as it has proved to be more
effective and efficient than the CNN in determining whether
or not a pair of bug reports are duplicates.

Results. Table 6 presents the classification results of the three
baselines and the two state-of-the-art methods, in which each
row is the result of a specific combination of Feature-Net (Model)
and learning architecture (Learning Framework), the bold indi-
cates those with the highest value of metrics for each project
under different sized datasets. To compare and analyze the ef-
fectiveness of all DL-based models more intuitively, we report
the accuracy and F1-measure of three projects with large- and
small-scale datasets in histogram form as shown in Fig. 3, where
Siamese_S and Siamese_L represent models trained in the siamese
way on small and large datasets respectively, while Triplet_S and
Triplet_L represent models trained in the triplet way on small and
large datasets respectively. From Table 6 and Fig. 3, we can obtain
some notable conclusions:

(1) For different projects, the highest F1-measure is achi-
eved by models trained on large-scale datasets. A paired Mann–
Whitney U test further confirms that the detection model per-
forms significantly better (p-value < 0.05) on large-scale datasets
than on small-scale datasets. This is evident from the fact that
most current deep neural networks with a large number of
learning parameters require a large amounts of manually labeled
data to produce satisfactory results. Therefore, models trained on
large-scale datasets tends to perform better than those trained on
small-scale datasets.

(2) For OpenOffice and Mozilla, BERT-based models provides
the best prediction results, with F1-measure of 96.81% and 97.69%,
respectively, on two projects with large scale datasets. This is
due to the fact that BERT is able to capture complex contextual
information using multiple bidirectional self-attention modules.
However, for the Eclipse project, Deshmukh et al.’s approach
(i.e., BiLSTM+CNN+MLP) performs the best, slightly outperform-
ing BERT-based models on the F1-measure.

(3) Our results show that the BiLSTM method performs better
than the CNN method, which indicates the BiLSTM is more ef-
fective than CNN in capturing bug semantics from textual fields
of bug reports. A possible explanation for this phenomenon is
that the long-term global dependencies of the text learned by
the hidden states of BiLSTM help to uncover the meaning of bug
reports more accurately.

(4) Interestingly, Deshmukh et al.’s approach (i.e., BiLSTM +
CNN + MLP) achieves stronger results than the state-of-the-art
method DC-CNN. This is not consistent with the findings reported
in the original work (He et al., 2020). This is because, in their orig-
inal study, DC-CNN is only compared to the BiLSTM+CNN+MLP
model trained in the siamese form. However, as we found by ex-
periments, most models exhibit varying degrees of performance
improvement by adopting the triplet training form. As a conse-
quence, DC-CNN may outperform the BiLSTM+CNN+MLP method
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Table 6
Experimental results of DL-based models trained in siamese and triplet forms.
Project Model Learning Small scale dataset Large scale dataset

Framework Acc Prec Recall F1-measure Acc Prec Recall F1-measure

OpenOffice

BiLSTM Siamese 77.95 77.43 78.87 78.14 86.30 86.08 86.61 86.34
Triplet 87.69 82.04 96.51 88.69 92.10 93.36 90.66 91.99

CNN Siamese 64.55 61.12 79.96 69.28 83.06 80.70 86.92 83.69
Triplet 84.48 83.07 86.60 84.80 87.10 85.62 89.17 87.36

DC-CNN Siamese 83.66 84.72 82.14 83.41 86.53 85.13 88.52 86.79
Triplet 84.26 79.26 92.81 85.50 85.56 82.41 90.43 86.23

BiLSTM+CNN+MLP Siamese 76.86 74.77 81.05 77.78 84.62 83.09 86.95 84.97
Triplet 90.96 88.84 93.68 91.20 93.61 92.29 95.17 93.71

BERT Siamese 91.64 91.84 91.39 91.62 93.77 95.90 91.45 93.62
Triplet 93.36 90.95 96.30 93.54 96.78 96.08 97.54 96.81

Eclipse

BiLSTM Siamese 81.51 78.45 86.87 82.45 91.21 90.86 91.64 91.25
Triplet 89.16 85.36 94.52 89.71 92.55 93.35 91.62 92.47

CNN Siamese 62.05 63.20 57.65 60.30 71.56 65.65 90.44 76.08
Triplet 85.96 83.16 90.18 86.53 84.91 93.11 75.41 83.33

DC-CNN Siamese 89.22 89.90 88.36 89.12 90.95 91.32 90.50 90.91
Triplet 87.96 88.44 87.33 87.88 91.12 88.75 94.18 91.38

BiLSTM+CNN+MLP Siamese 78.80 77.02 82.08 79.47 88.73 86.35 92.01 89.09
Triplet 91.89 87.91 97.15 92.30 96.62 94.70 98.76 96.69

BERT Siamese 91.38 93.73 88.70 91.14 93.14 96.32 89.70 92.89
Triplet 93.55 91.97 95.43 93.67 96.12 91.94 96.85 94.33

Mozilla

BiLSTM Siamese 86.76 85.65 88.31 86.96 87.52 83.99 92.70 88.13
Triplet 90.93 90.96 90.90 90.93 92.88 91.82 94.14 92.97

CNN Siamese 67.31 64.15 78.46 70.59 62.43 61.65 65.75 63.63
Triplet 86.64 85.82 87.80 86.80 89.48 85.93 94.42 89.98

DC-CNN Siamese 88.46 87.91 89.17 88.54 88.03 90.83 84.61 87.61
Triplet 88.03 84.93 92.46 88.53 90.76 89.69 92.11 90.89

BiLSTM+CNN+MLP Siamese 87.82 85.94 90.44 88.13 91.90 90.63 92.52 91.57
Triplet 93.15 89.85 97.29 93.42 97.07 95.89 96.13 94.08

BERT Siamese 92.08 94.57 89.29 91.85 95.31 96.57 93.96 95.25
Triplet 94.53 91.97 97.58 94.69 97.67 96.96 98.42 97.69

when trained in the siamese form, and vice versa when trained
in the triplet form.

When duplicate bug report detection is treated as a binary
classification task, the experimental results show that deep
learning models perform well on three studied BTSs, especially
on large scale datasets. Additionally, among the compared
models, BERT achieves the overall best performance as it can
better capture the deep semantics embedded in the textual fields
of bug reports

4.2. Answer question 2: How well do the DL-based approaches per-
form compared to existing popular IR-based approach?

Motivation. Most existing DL-based methods are only eval-
uated in the classification scenario such as our experiments in
Section 4.1, which may not represent their practical performance
in the ranking scenario. Although there are a few studies (Desh-
mukh et al., 2017) that attempt to evaluate their solutions in both
scenarios, almost none of them use the full dataset of the studied
BTSs. Therefore, there is no clear evidence that DL-based methods
are significantly better than the classical IR-based methods. To
fill this gap, in this RQ, we study whether DL-based approaches
outperform other popular IR-based methods by comparing their
ranking performance.

Approach. For performance comparison with IR-based base-
lines on benchmark datasets, we follow the realistic evaluation
settings in Rakha et al. (2017) to first randomly select 100 dif-
ferent chunks of data from each studied BTS and then divide
each chunk into tuning and testing data. Here the tuning data is
actually the training data in the sense that it is used to train a
ranking model. We call it tuning data in order to be consistent

Fig. 4. Data organization of each chunk to tune and test IR-based methods.

with previous work (Rakha et al., 2017). The bug reports within a
single chunk span a period of one year. Thus, there may be some
overlap between different chunks. For example, the chunks Feb 2,
2009 to Feb 2, 2010 and Feb 3, 2009 to Feb 3, 2010 are considered
as two different chunks (Rakha et al., 2017). Since the start times
of 100 chunks across the lifecycle of each BTS are randomly gen-
erated, this guarantees that our experimental evaluations cover
the whole lifespan of each BTS. The data structure of each chunk
for tuning and testing IR-based methods is shown in Fig. 4.

As seen in Fig. 4, all the parameters described in formula (4)
and (15) are tuned only on the tuning dataset consisting of 200
duplicate bug reports. The considered duplicates in the testing set
are those that are marked as duplicates and have corresponding
masters in previously reported bug reports. The reasons for using
a certain number of bug reports as tuning data in this section
are as follows: (1) According to previous research results (Rakha
et al., 2017), the detection performance of IR-based models is
not significantly affected by the choice of tuning data, especially
for OpenOffice and Eclipse projects; (2) when the tuning data
contains a certain number of bug reports, the comparative ex-
perimental results of different methods throughout this paper
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are not affected by the choice of tuning data; (3) previous re-
search (Rakha et al., 2017) has shown that, for different projects,
the IR-based detection models can achieve the best performance
in most cases when the number of tuning dataset is fixed to N =

200.
Various IR-based approaches employ IR techniques to calcu-

late the similarity between the newly-submitted bug report and
all historical bug reports in BTS. The most successful IR-based
method is REP, which provides better relevant results by making
full use of textual and categorical information via learning a
ranking model. In addition, REP has publicly available implemen-
tation whose effectiveness has empirically been demonstrated
in previous work (Rakha et al., 2017). Therefore, we adopt REP
as a baseline for fair comparison studies. Lexical and categori-
cal similarities in REP are calculated using the same equations
described in Sections 2.1.1 and 2.1.2, respectively. Besides REP,
we also compare the performance of the DL-based methods with
the existing advanced document similarity approach BM25Fext .
The reason for using BM25Fext as a baseline is that it only uses
lexical similarities in detecting duplicate bug reports, so we can
easily determine which feature (i.e., lexical similarity or semantic
similarity) is better by comparing it with DL-based methods in
the ranking scenario.

Since, as we stated in RQ1, there are multiple DL-based meth-
ods for duplicate bug report detection, comparing IR-based ap-
proaches with each DL-based model is a complex and time-
consuming task, especially when the datasets are very large and
each dataset is further divided into 100 chunks. Therefore, we
choose the DL-based model (i.e., BERT) that performs best in
terms of F1-measure across different projects in the classification
scenario as the semantic generator to produce a semantic vector
for each historical bug report.

To evaluate BERT in a realistic setup, we need to train the
model with historical bug reports. However, the tuning dataset
is relatively small, with only 200 duplicate bug reports. Although
we observe from Rakha et al. (2017) that a size of 200 is sufficient
to tune the weights of ranking models in IR-based methods,
it is not enough to build robust deep neural networks with a
large number of parameters. Therefore, we propose a three-step
procedure for learning an effective semantic vector generator to
simulate practical usage of DL-based models. More specifically,
we first use some of the oldest bug reports to fine-tune a BERT
model that has been pre-trained on a large corpus of bug report
in a self-supervised fashion. Then, the trained model can learn
semantic vectors of unseen bug reports one by one. Finally, the
trained model can be updated as soon as the unseen bug reports
have been confirmed to be duplicates or non-duplicates with
previous-reported bug reports. The advantage of this procedure
is that it prevents the network from cheating by peeking into
the future when computing the vector representation of each bug
report. After generating the semantic vectors for all bug reports,
we follow the experimental setup described above to conduct an
empirical study to verify whether the DL-based method helps to
improve the effectiveness of duplicate bug report detection.

Results. Figs. 5 and 6 show the distribution of performance
metrics of different methods when conducting experiments on
100 randomly selected chunks in the realistic evaluation for each
project. Table 7 reports the results of the Mann–Whitney U sta-
tistical test between different methods. Table 8 presents the
kurtosis of the observed performance on different metrics. From
the results, we can make the following important conclusions:

(1) As the results show, the performance gap between the
DL-based detection method (named DLD in Figs. 5 and 6 for
simplicity) and REP or BM25Fext is significant in most metrics,
according to the Mann–Whitney U test (p-value < 0.05) and the
Cliff’s delta (effect size > 1), for all studied BTSs, which means

the DL-based approach (i.e., triplet architecture based on BERT
Feature-Net used in this section) performs the worst in the rank-
ing metrics compared to REP (Fig. 5) and BM25Fext (Fig. 6). For
example, the DL-based method lowers the performance measured
in terms of MAP by a median of 45%–57% percent when com-
pared to the REP method. The low performance of the DL-based
approach in the ranking scenario is unexpected. This is because,
although we would like semantically duplicate bug reports to be
close in the embedding space represented by the DL-based model,
this space may not have enough dimensions to generate a proper
representation, leading to similar bug reports with the same
technical topics to cluster together. That means, when calculating
the cosine similarity between semantic vectors to find duplicate
candidates for a given bug report, a large number of bug reports
with the same topic as the given bug report are likely to be
ranked higher. However, most similar bug reports are usually not
duplicates of each other, which affects the performance of the DL-
based detection method. To support this finding, we also conduct
a in-depth case study in Section 5.2.

(2) Among the IR-based methods, REP performs better than
BM25Fext on three projects when evaluating in the realistic sce-
nario. This shows that categorical similarities of the REP method
are crucial for good performance in detecting duplicate bug re-
ports. Therefore, categorical information should not be disre-
garded when calculating the similarity between bug reports using
IR-based techniques.

(3) As can be seen from Fig. 5 and Table 8, Recall Rate@k and
MAP display large variation across the evaluated chunks for all
the studied BTSs. More specifically, the kurtosis of MAP is 3.243
for REP and 2.462 for the DL-based method on average, which
indicates that the same approach (i.e., REP and BM25Fext ) has
large differences for different evaluated chunks with different
time periods. This is because the chunks from more recent pe-
riods tend to search for massive historical bug reports, making
automated approaches more difficult to effectively detect dupli-
cate bug reports. To find evidence to support this analysis, in
our experiments, we present the metrics of different approaches
across all chunks over the evaluated time period, as shown in
Fig. 7. From the results, it can be seen that the chunks with
the earliest years achieve the best average performance in terms
of various metrics for different methods. This is consistent with
previously reported results (Rakha et al., 2017).

As can be seen, the DL-based model itself cannot provide high
accuracy for all studied BTSs, and its performance is much lower
than that of the IR-based methods REP and BM25Fext . This
clearly demonstrates the effectiveness of classic IR-based
methods for duplicate bug report detection. In addition, this in
turn verifies that DL-based methods still have room for further
improvement regarding ranking performance.

4.3. Answer question 3: How does combining DL with IR impact the
performance of the duplicate bug report detection task?

Motivation. Existing methods rely on textual similarity (i.e.,
lexical or semantic similarity) to detect duplicate bug reports.
However, they lack a comprehensively assessment of textual
similarity between bug reports, which is crucial for accurately
retrieving duplicate bug reports. Therefore, in this RQ, we investi-
gate whether combining DL with IR techniques can help improve
the ranking performance of currently popular detection methods.

Approach. In this section, we also conduct experiments on
three large-scale, open-source projects, i.e., OpenOffice, Eclipse
and Mozilla. The experimental setup is the same as in Section 4.2.
More concretely, we first build a dynamically updated Feature-
Net as described in Section 4.2, to generate semantic vectors
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Fig. 5. Performance comparisons of REP and the DL-based method (i.e., DLD) on 100 randomly selected chunks of data using the realistic evaluation.

Table 7
Mann–Whitney U statistical test (P-value) between the DL-based method (i.e., DLD) and IR-based methods (i.e., BM25Fext and REP).

OpenOffice Eclipse Mozilla

Recall
Rate@5

Recall
Rate@10

MAP Recall
Rate@5

Recall
Rate@10

MAP Recall
Rate@5

Recall
Rate@10

MAP

DLD vs. BM25Fext 3.257e−34 2.562e−34 2.562e−34 2.561e−34 2.562e−34 2.562e−34 1.407e−33 3.899e−34 2.562e−34
DLD vs. REP 2.562e−34 2.562e−34 2.562e−34 2.561e−34 2.562e−34 2.562e−34 2.640e−34 2.562e−34 2.562e−34

Table 8
Kurtosis comparison of the BM25Fext , REP and DL-based method in the realistic evaluation.
Kurtosis OpenOffice Eclipse Mozilla

DLD BM25Fext REP DLD BM25Fext REP DLD BM25Fext REP

Kurtosis (Recall Rate@5) 2.174 2.707 2.550 1.799 10.004 4.676 2.393 2.303 2.425
Kurtosis (Recall Rate@10) 2.093 2.566 2.491 1.767 11.651 4.226 2.318 2.112 2.587
Kurtosis (MAP) 2.409 2.552 2.511 2.848 10.419 4.802 2.128 2.555 2.416
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Fig. 6. Performance comparisons of BM25Fext and the DL-based method (i.e., DLD) on 100 randomly selected chunks of data using the realistic evaluation.

for bug reports one by one. Second, we randomly select 100
chunks of data for each BTS to ensure that the studied datasets
cover the entire project lifecycle. Thirdly, we use the tuning data
consisting of the first 200 duplicate bug reports in each chunk
to automatically learn the parameters of the ranking model, and
take the remaining bug reports as testing data to compare the
performance of different models in the realistic evaluation. Since
we are concerned with how much semantic features help to
detect duplicate bug reports, we mainly compare the perfor-
mance between REP and the combined method CombineIRDL,
where REP employs lexical and categorical similarities to evaluate
the overall similarity between bug reports, while CombineIRDL
focuses on improving REP by combining with additional semantic
similarity. To determine whether or not the two methods perform
significantly differently in terms of various metrics, we perform
a statistical test (Mann–Whitney U test) on the distribution of

experimental results. In addition, we also calculate Cliff’s delta
to measure the effect size, i.e., quantify the amount of difference
between the two methods.

Results. Fig. 8 presents the distribution of performance met-
rics of REP and CombineIRDL when conducting experiments on
100 randomly selected chunks in the realistic evaluation for each
studied BTS. Table 9 reports the results of the Mann–Whitney U
statistical test between REP and CombineIRDL. Table 10 presents
the kurtosis on the observed performance in terms of various
metrics for REP and CombineIRDL. Fig. 9 presents the cumu-
lative number of master bug reports detected by the REP or
CombineIRDL method on 100 chunks of data under the real-
istic evaluation. From the results, we can draw the following
conclusions:

(1) For all projects, CombineIRDL outperforms REP, and the
statistical test shows that these improvements are significant
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Fig. 7. The Recall Rate@5, Recall Rate@10, and MAP yielded by the DL-based method (i.e., DLD), BM25Fext and REP using the realistic evaluation over the evaluated
time period on 100 chunks of data.

Table 9
Statistical analysis results of the Mann–Whitney U test (p-value) between REP
and CombineIRDL.

OpenOffice Eclipse Mozilla

Recall Rate@5 5.731e−10 5.803e−31 1.121e−22
Recall Rate@10 2.660e−10 4.490e−31 3.085e−23
MAP 4.180e−15 9.409e−31 8.596e−26

(effect size > 0.474) with the exception of OpenOffice in the MAP
metric. This demonstrates the usefulness of semantic features
for duplicate bug report detection. The experimental results also
prove that combining semantic and lexical features can more
accurately measure the textual semantic similarity between bug
reports.

(2) For different projects, CombineIRDL has varying degrees of
performance boost. For example, CombineIRDL achieves an 11.3
performance boost in terms of median MAP over the REP method
on the Eclipse project, while it only achieves a 7.1 performance
boost on the OpenOffice project. That means the importance of
semantic features is tend to be different. This could be due to the
fact that the quality of bug reports varies greatly from project to
project (Wen et al., 2016). Extracting semantic information from
bug reports with low-quality textual contents is difficult. There-
fore, more noise could lead to more bias in accurately calculating
semantic similarity.

(3) We note from the distribution of Recall Rate@5, Recall
Rate@10 and MAP in Fig. 8 that the range of performance values
exhibits large variations when evaluating on 100 chunks for each
studied BTS. It is consistent with our observation in Section 4.2.
As explained earlier, the chunks from the latest years require
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Fig. 8. Performance comparisons of the REP and CombineIRDL approaches on 100 randomly selected chunks of data using the realistic evaluation.

Table 10
Kurtosis comparison of REP and CombineIRDL in the realistic evaluation.
Kurtosis OpenOffice Eclipse Mozilla

REP CombineIRDL REP CombineIRDL REP CombineIRDL

Kurtosis (Recall Rate@5) 2.550 2.474 4.676 3.075 2.425 5.282
Kurtosis (Recall Rate@10) 2.491 2.719 4.226 2.889 2.587 6.471
Kurtosis (MAP) 2.511 2.523 4.802 3.648 2.416 3.824

searching a large number of historical bug reports to find the
possible ones that duplicate with the query bug report. Because
of this, the chunks from the earliest years generally lead to better
results than those from the latest years.

(4) As can be seen in Fig. 9, the number of duplicate bug re-
ports whose master can be successfully detected by CombineIRDL

is greater than that of REP. We also noticed that the number of
duplicate bug reports detected by different methods has a very
wide range at different periods of time. Specifically, in the early
stages of the project lifecycle, the performance between different
methods did not differ significantly compared to the later stages.
This also emphasizes the importance of performing experiments
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Fig. 9. The cumulative number of found duplicate reports using the realistic evaluation for REP and CombineIRDL approaches over the evaluated time period on 100
chunks of data.
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on the entire life span of projects, instead of performing experi-
ments on a randomly selected time period as most previous work
did.

Combining the IR-based and DL-based method helps improve the
overall detection performance. Specifically, CombineIRDL boosts
MAP by on average of 3.03%, with a max average difference of
5.6% on the Mozilla project.

4.4. Answer question 4: How effective is the approach of combining
IR and DL when applied to three large unpublished datasets over
recent time periods?

Motivation. In RQ3, we have demonstrated the effective-
ness of the proposed combined approach CombineIRDL on three
publicly available benchmark datasets when compared to clas-
sic IR-based methods. However, the bug reports in these three
benchmark datasets were submitted before December 31, 2010
(11 years ago before we conducted the study), which may be
too old to simulate the present situations as the development
organization and process have changed significantly over time.
Therefore, we still have no insight into whether the proposed
approach CombineIRDL can achieve the desired generalization
performance on the bug reports from recent time periods. There-
fore, further studies should be performed to answer the above
question.

Approach. To answer this RQ, we first conduct a data col-
lection to do data augmentation and then conduct extensive
experiments on the newly collected datasets to evaluate the per-
formance of different approaches, including the IR-based method
REP and the proposed CombineIRDL in the ranking scenario. For
data collection, we first implement a web crawler to collect all
bug reports from January 1, 2011 up to December 31, 2020 in
OpenOffice, Eclipse and Mozilla BTSs. Each collected bug report
is organized as an XML file, which has a set of fields such as
bug_id, summary, description, product, component, op_sys, version,
priority, severity and others. Next, if the resolution field of the
bug report is ‘‘DUPLICATE’’ then it will be labeled as duplicate
and non-duplicate otherwise. Finally, to ensure the quality of
the generated dataset, we filter bug reports that do not have
a corresponding master report in the dataset referred by their
dup_id field. Table 11 summarizes the statistics of our newly
collected datasets. From the table, we notice that the total num-
ber of bug reports in the newly collected datasets is still large,
especially for Mozilla (953,066 bug reports in total). In addition,
we also show statistics on the number of bug reports that must
be searched for each bug report in the newly collected datasets,
as shown in Fig. 10. As can be seen from the figure, the search
space for historical bug reports is huge when experimenting
with the newly collected dataset. For example, for bug reports
whose bug ids range from 622,321 to 1,684,626 in the collected
Mozilla dataset, the number of historical bug reports needed to
be searched ranges from 600,000 to 1,500,000.

Targeted at the vast search space of historical bug reports
for each testing bug report in the new datasets under realistic
evaluation, we choose a year as the unit time of each chunk and
divide the new datasets into nonoverlapping chunks. This setting
differs from that we used in Sections 4.2 and 4.3, which allows
two consecutive chunks to have ‘‘overlapping time period’’. By
doing so, we can greatly reduce the number of chunks used for
testing to save a lot of computational effort, while ensuring that
different methods are evaluated on the entire datasets. It is worth
noting that, for Mozilla and Eclipse projects, we follow the data
preparation as described above to generate chunks of bug reports
that span the entire lifecycle of our collected datasets, while for
the OpenOffice project, we only generate chunks covering the
time period from January 2011 to June 2014. This is because after

Table 11
The statistics of the newly collected datasets.
Project name Time Range # of Reports # of Duplicates

Eclipse 01/01/11–12/31/20 224,565 15,882
Mozilla 01/01/11–12/31/20 953,066 104,917
OpenOffice 01/01/11–12/31/20 12,062 1413

2014 the OpenOffice project reported too few bug reports (less
than 200 in the number of duplicate bug reports) to tune and
validate the IR-based methods. We will share the databases as
benchmarks for future work.

Results. Fig. 11 shows the distribution of performance metrics
of REP and CombineIRDL when conducting experiments on the
newly collected datasets in the realistic evaluation. From Fig. 11,
we can make the following observations.

(1) CombineIRDL outperforms the classic IR-based method REP
in terms of all measures. For example, compared with REP, the
proposed CombineIRDL achieves an average performance pro-
motion of 13% regarding MAP. This is mainly due to the fact
that IR and DL have distinct advantages in measuring the simi-
larity between bug reports from different aspects. Therefore, by
combining both of them, we can achieve the best overall results.

(2) Both methods produce larger variances for different
projects. This is due to the fact that detection methods may
be sensitive to the text quality of bug reports. Higher-quality
bug reports may be easier to be retrieved and then contribute
to a better performance than the lower-quality ones. A larger
difference in quality among different bug reports indicates a
higher variance of performance on the evaluation set. In addition,
software development for different projects is done by different
teams, each of which has its own writing style and diction for
describing bugs (Gegick et al., 2010). Therefore, potential differ-
ences in the writing style of bug reports may also lead to a larger
variance in performance on the evaluation set.

(3) On the Mozilla project, the superiority of CombineIRDL’s
performance is more obvious than on other projects. The reason
for this may be that semantic similarity plays an extremely im-
portant role in duplicate bug report detection for large projects
with a significant number of bug reports. Specifically, as stated
before, DL-based methods work by automatically discovering the
feature space in order to cluster and group bug reports that
describe the same bug. This indicates, if two bug reports are quite
similar, they should be close to each other in the feature space.
Although non-duplicate bug reports from the same technical
topic are more likely to be clustered in the same group, it can
still greatly reduce the search space for potential duplicate bug
reports. This phenomenon seems more pronounced on larger-
scale datasets, since the number of bug reports that address the
same technical topics does not increase too much with the size
of the entire dataset increases.

Extensive experiments on three newly collected datasets validate
the effectiveness of the proposed method CombineIRDL.
Furthermore, we also demonstrate that semantic similarity has
the ability to distinguish bug reports with different semantic
meanings, which can greatly reduce the search space of possible
duplicate bug reports, especially for large-scale datasets, and thus
help to boost the overall performance.

5. Discussion

5.1. What lessons we can learn for future duplicate bug report
detection research?

In this study, we perform extensive experiments on three
large-scale open-source datasets to demonstrate the practical
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Fig. 10. The number of historical bug reports that must be searched for each bug report with a unique bug id in the realistic evaluation.

Fig. 11. Boxplots showing the performance of the REP and CombineIRDL methods on newly collected datasets in the realistic evaluation.

effectiveness of DL-based methods compared to other state-of-
the-art IR-based methods. From our study, we learned three
lessons for future research.

Evaluate the performance of detection models on the entire
dataset. Many approaches have been proposed to detect dupli-
cate bug reports. However, most of them are evaluated on the
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datasets over a period of time. This setting may introduce ran-
domness or bias such that some results could not be generalized
to the lifetime of each studied BTS. For example, as suggested by
the experiments in Section 4.3, there are no significant differences
in the performance between REP and CombineIRDL in the early
stage of studied BTSs, but the differences get increasingly large
over time. Therefore, differences in dataset construction may
mislead researchers to over- or under-estimate the performance
of some techniques. To address this problem, we recommend that
researcher’s studies should be evaluated on the entire dataset,
rather than on a random selected sub-dataset.

Evaluate the performance of DL-based methods in both
ranking and classification scenarios. The experimental results
are not consistent with previous work (Deshmukh et al., 2017; He
et al., 2020), suggesting that DL-based methods can provide better
results than the classic IR-based methods. This is because previ-
ous work focuses mostly on evaluated their proposed DL-based
methods in the classification scenario. However, we observe that
higher performance in the classification scenario does not neces-
sarily correlate with better performance in the ranking scenario.
More detailed explanations can be found in Section 4.2. Therefore,
we suggest that future research should focus more explicitly on
improving the performance of DL-based methods on the entire
datasets in two evaluation scenarios (i.e., the classification and
ranking scenarios).

Deal with duplicate bug report detection by simultaneously
considering the lexical and semantic similarity. The basic idea
of automatically identifying possible duplicate bug reports is to
evaluate their semantic relevance to historical bug reports in
the bug repository. Most of the existing approaches are IR-based
and DL-based, which calculate the textual similarity between
bug reports from different aspects. More concretely, IR-based
methods focus on exploiting lexical matching between bug re-
ports to identify duplicate bug reports, while DL-based methods
accomplish this detection by measuring the semantic similarity
between the feature vectors of bug reports. Although both types
of methods have achieved promising performance, each of them
being applied alone fails to comprehensively evaluate textual
similarity between bug reports, and thus there is still much
room for improvement. To alleviate this problem, we propose
CombineIRDL, which combines the benefit of IR and DL to capture
semantic relatedness between bug reports in a more comprehen-
sive way. Our extensive experiments also demonstrate that the
combined method outperforms using either of them separately.
Furthermore, we notice that the combined method can reduce the
variance of using a single model to some extent, which may also
account for the improved performance. Therefore, we suggest
that researchers should take into consideration both the lexical
and semantic similarity of textual fields when detecting duplicate
bug reports.

5.2. In-depth case study

As we detailed in Section 4.2, similar bug reports with the
same topic as the query bug report may be ranked higher than the
true master report in the list produced by the DL-based method.
To support this finding, we take a pair of OpenOffice bug reports
in Table 12 as an example to explore a further in-depth case
study. From our results, we can observe that if we take bug report
89219 as a query and retrieve its duplicates (i.e., 83441) from
historical bug reports, bug report 83441 ranks 31 in the returned
list produced by the DL-based method (i.e., BERT-based model).
The ranking performance seems far from satisfactory. To find out
the reason behind this, we carried out a complementary analysis,
creating a topic model over the first 100 bug reports in the ranked
list returned by the DL method. The learned topics from 100 bug

Fig. 12. Top key words for bug report topics learned by an LDA model with 4
topics on the first 100 bug reports retrieved by the DL-based method for query
bug report 89219.

Fig. 13. A 2D visualization of topic features of the top-100 bug reports in the
returned list produced by the DL-based method for query bug report 89219
using t-SNE. The legend presents the topics of projected bug reports. For the
convenience of distinction, the query bug report is colored in red and the master
bug report is colored in orange, although both belong to the 3th topic (colored
in purple). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

reports using the LDA model (Alduailij and Al-Duailej, 2015) are
shown in Fig. 12.

As can be seen in Fig. 12, the words ‘‘online_update’’, ‘‘option’’
etc. in Topic 3 refer to the software online update operation. Here,
we consider each topic recovered by topic modeling as a technical
concern (Xia et al., 2016) and use these topics as features to
represent the top-100 bug reports in the list returned by the DL-
based method. Then, we project the topic features of each bug
report with high dimensions to 2-dimensional spaces using t-SNE.
Finally, we plot the 2-D projected points in Fig. 13.

As can be seen in Fig. 13, both query bug report 89219 and its
duplicates (i.e., 83441) belong to the same topic (i.e., Topic 3). In
addition, we find that Topic 3 contains many other bug reports
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Table 12
A pair of duplicate bug reports 89219 and 83441 from OpenOffice.
Field Bug report 1 (query) Bug report 2 (master)

Bug_id 89219 83441
Summary missing ‘‘online update’’ Win2K: Online Update not working

Description Hi, Install OOo 3.0 beta on pc/windows 2000sp4. ‘‘online update’’ is missing
below; ‘‘java’’ : tools − > options − > OOo. Remarks: - OOo 2.4 is run well on
this machine; - not possible to run ‘‘check for updates’’ and ‘‘add new dictionaries’’
(proxy setup is ok); - same install file installed on a pc/windows xp sp2 : no
problem.

- installed wntmsci11 build on Win2000 and Win98; -
installed with selected Online Update Module; - after
installation Online Update is not listed in Tools
Options; - checking for updates in Help Menu does
nothing.

Product General Installation
Component www code
Op_sys Windows 2000 Windows, all
Version OOo 3.0 Beta OOo 2.3
Priority P3 P2
Severity Trivial Trivial

that are not duplicates with the above two bug reports. This
means that bug reports sharing the same topic may not duplicate
of each other. In addition, we observed that a large number of
bug reports (e.g., 70315, 71040, 72885, 79563, . . . ) with the same
topic as the query bug report are likely to be ranked higher than
the master report (i.e., 83441). The full ranked list of historical
bug reports according to their similarity to the query bug report
(i.e., 89219) using the DL-based method can be found in the sup-
plementary material.4 From this case study, we can conclude that
DL methods perform well below our expectations in capturing the
semantics of bug reports, especially when distinguishing minor
differences between bugs with the same topic.

Even though, DL can help improve the performance of IR-
based methods, as shown in the experiments in Section 4.4. Still
taking the query bug report 89219 on OpenOffice as an example,
its master report (i.e., 83441) can be successfully retrieved at the
top of the list returned by the combined method CombineIRDL,
outperforming the ranking results produced by both IR-based and
DL-based methods.

5.3. Time efficiency

In this section, we present an analysis of execution time for
the DL approaches. For the classification scenario, each studied
dataset is partitioned into 80% training and 20% testing. When
performing experiments on the large-scale datasets shown in the
left part of Table 5, the training and testing time of different
DL methods are presented in Table 13. As can be seen from the
table, BiLSTM+CNN+MLP adopts a combined network to learn
bug features automatically from bug reports, which consumes
much longer than those use a single network. In addition, we
found that BERT-based models take the longest time to train
since they use much more complex architectures and typically
have more than 100 million parameters (Jiang et al., 2022). In
addition, most existing DL-based methods do not show significant
differences in prediction time. Furthermore, the prediction time
can be amortized across all testing samples. Therefore, a few
seconds varying is almost negligible for the entire testing dataset.

In addition to the time analysis of the DL-based methods,
we also analyze the tuning and testing time of the IR-based
method (i.e., REP) and the combined method (i.e., CombineIRDL).
In our experiments, a total of 100 chunks of data are used for
empirical study, and the evaluation periods of different chunks
vary greatly because they are randomly selected from the entire
lifecycle of the studied BTs. This results in a different number
of historical bug reports being searched for each bug report in
different chunks. Therefore, analyzing the time efficiency of IR-
based methods for a single query bug report is not easy. Here,

4 https://sites.google.com/view/dbddl.

we present the total experimental times of various methods on
the benchmark datasets, as shown in Table 14.

As can be seen from the Table 14, our experiments on
the benchmark datasets in the ranking scenario take a total of
54,972 min (about 38 days) to compare the performance between
REP and CombineIRDL, which is extremely time-consuming due
to the vast search space of historical bug reports for each testing
bug reports in 100 chunks of data. However, as an empirical
study, we consider this expensive work valuable since it provides
practitioners with advice on how to better apply DL in real-world
applications.

5.4. Threats to validity

5.4.1. Threats to internal validity
In this study, we perform extensive experiments on the effects

of different DNNs such as CNN, LSTM and BERT on duplicate
bug report detection. Although we have considered some popular
neural networks, there may be a few existing techniques that
could potentially be used to detect duplicate bug reports but
they are ignored in this study. In addition, we compare the
performance of several state-of-the-art DL-based methods for du-
plicate bug report detection. Since no open implementations were
available for these methods, we made a fair effort toward the best
implementation of DL-based methods based on specifications in
their original paper for ease of comparison. Therefore, there could
be some minor deviations from the original implementation. To
reduce the threats of re-implementation bias, we test our imple-
mentation on the datasets from the same projects and compare
the results produced by our implementation to the original one.
We find that our implementations yield nearly identical results
to the original paper. The slight differences in results may be due
to the fact that the dataset used in this study is randomly divided
into training and testing set, which may not be exactly the same
as in the previous studies.

For IR-based methods including REP and BM25Fext , we use
the original implementation provided by its authors Sun et al.
(2011) to avoid re-implementation bias. For the proposed method
CombineIRDL, we have double-checked our implementation and
all the experimental results to reduce the likelihood of making
mistakes.

5.4.2. Threats to external validity
The threat to external validity comes from the generalization

of the obtained results. We evaluate the performance of different
detection methods on datasets covering the entire lifecycle of
three studied BTSs (about 2,190,787 bug reports in total). To the
best of our knowledge, the size of dataset used in our exper-
iments is much larger than previous studies. Furthermore, we
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Table 13
Running time comparisons between different DL models on the large scale datasets in the classification scenario (in Seconds).
Time OpenOffice Eclipse Mozilla

Siamese Triplet Siamese Triplet Siamese Triplet

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing

BiLSTM 743.4 18.39 1195.4 18.6 957.0 20.5 1389.1 20.9 1989.6 28.6 2147.9 26.6
CNN 707.4 19.1 743.4 18.6 934.2 21.8 947.4 20.6 1806.1 27.9 2143.2 30.3
DC-CNN 760.5 19.4 1194.9 18.3 974.4 20.8 1900.8 19.6 1998.9 28.8 4873.5 26.5
BiLSTM+CNN+MLP 1012.5 21.4 1437 19.4 1308.9 24.2 1857.0 21.5 3256.2 39.5 4515.0 28.1
BERT 6504.3 32.5 9178.8 31.1 8325.1 35.0 16520.4 34.3 18315.2 43.7 32368.5 40.1

Table 14
Running time comparisons of REP and CombineIRDL on the benchmark datasets
in the ranking scenario (in Minutes).
Project name REP CombineIRDL

Eclipse 6768 14,400
Mozilla 8640 20,448
OpenOffice 1428 3288

have demonstrated that the detection methods for recently re-
ported bug reports are still quite effective despite the vast search
space of historical bug reports. Nonetheless, we are not sure yet
whether the models we considered would be applicable to other
projects. To further mitigate the threat, we plan to do a more
comprehensive evaluation of various methods by considering
more projects in the future.

6. Related work

Many methods have been proposed for detecting duplicate
bug reports, which mainly use information retrieval, machine
learning and deep learning techniques.

6.1. Information retrieval based methods

Hiew (2006) proposed a practical approach to detect duplicate
bug reports, in which the textual fields (i.e., summary and descrip-
tion) are converted into TF–IDF vectors and then the vectors of
similar reports are clustered together as centroids. According to
whether the similarity between the newly submitted bug report
and each centroid is smaller or greater than a predetermined
threshold, it will be labeled as UNIQUE or DUPLICATE. Runeson
et al. (2007) used a vector space model to represent the tex-
tual information of bug reports, and then calculated the textual
similarity between bug reports via three similarity measures in-
cluding dice, cosine and jaccard. The higher the similarity value,
the more likely the two bug reports are duplicates. Wang et al.
(2008) proposed an approach by further adding execution infor-
mation instead of using natural language information alone to
detect duplicate bug reports. However, it is often difficult to ob-
tain execution information for most bug reports. Sun et al. (2011)
proposed a new duplicate bug report detection model called REP,
which linearly combines the lexical similarity of textual fields
and the similarity of categorical features to evaluate the global
similarity between bug reports. Nguyen et al. (2012) proposed a
new model DBTM that combines topic models with information
retrieval to improve the accuracy of duplicate bug report detec-
tion, and it can address textual dissimilarity between bug reports
to some extent. In similar efforts, Alipour et al. (2013), Lazar et al.
(2014) and Aggarwal et al. (2017) proposed to combine IR-based
techniques with topic models in different ways, which have also
been shown to be effective for duplicate bug report detection in
their experiments on a particular dataset covering a specific time
period of studied BTSs.

6.2. Machine learning based methods

Jalbert and Weimer (2008) developed a classifier to detect
duplicate bug reports. The classifier is trained by linear regression
using surface features, textual similarity, and graph clustering.
Sun et al. (2010) introduced an SVM-based discriminative model
to identify duplicate bug reports. Their experiments prove that
these methods outperform previous methods based on informa-
tion retrieval. Gopalan and Krishna (2014) proposed a threshold-
based clustering approach to detect duplicate bug reports. Feng
et al. (2013) proposed leveraging user profiles and query feed-
back as features for a classifier to detect whether a pair of bug
reports are duplicates. The user profile reflects the knowledge
background of the submitter and the quality of submitted re-
ports, while the query feedback can take into consideration the
submitter’s writing style. In addition, their approach considers
three different classifiers, including Naive Bayes, Decision Tree
and SVM, as candidate predictors for the detection task. Similar
to the work of Feng et al. (2013), Banerjee et al. (2017) first
calculated 24 document similarities between two bug reports via
a combination of three simple techniques, which is then passed to
a random forest classifier provided by the Weka toolkit to predict
whether the two bug reports are duplicates of each other.

6.3. Deep learning based methods

Recently, DL has undoubtedly become the most popular tech-
nique with great success in many different application areas,
such as natural language processing (Otter et al., 2020), computer
vision (Voulodimos et al., 2018) and speech recognition (Nassif
et al., 2019), etc. Compared with traditional machine learning
methods, DL methods have two major advantages: (1) effec-
tively and efficiently capturing highly complicated non-linear
features (Li et al., 2017); (2) eliminating the need for hand-crafted
feature extractors (LeCun et al., 1998). Such attractive charac-
teristics of DL raise the interest of its applications in the field
of software engineering. Using deep learning to automatically
capture features from bug reports is an interesting and promis-
ing area of research. Performing an empirical study to evaluate
whether DL methods offer similar advantages in real situations is
an important contribution of this paper to the research field of
duplicate bug report detection. Existing DL methods for duplicate
bug report detection are as follows.

Deshmukh et al. (2017) introduced deep learning to detect du-
plicate bug reports for the first time. In their work, various neural
networks are used to encode summary, description and categorical
information respectively, and then the learned representations of
bug reports are fed into a two-layer network to complete the
binary classification task. Budhiraja et al. (2018a,b) proposed a
DL-based approach (called DWEN) to detect duplicate bug reports
by computing the similarity between two bug reports. Poddar
et al. (2019) proposed a multi-task learning (MTL) architecture
that works on both detecting duplicate bug reports and aggre-
gating bug report’s topics. In addition, considering the different
importance of the same words in the two tasks, they designed
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a two-step attention mechanism to focus on different text parts
of bug reports for different tasks. He et al. (2020) proposed a
novel model DC-CNN to represent a pair of bug reports in order to
better capture semantic relationships between bug reports, which
has shown effectiveness in the duplicate bug report detection task
under the classification scenario.

6.4. Empirical study

Besides the above approaches, there are several empirical
studies on duplicate bug report detection. For example, Rakha
et al. (2017) empirically evaluated the performance of the popular
IR-based methods REP and BM25F in different evaluation settings.
Their empirical study shows that classical evaluation suffers from
problems with over-estimation performance. This happens due
to classical evaluation being performed on a subset of dataset
spanning across a few years, which significantly limits the search
space of historical bug reports, and thus noticeably decreases the
difficulty of the task. To address this problem, Rakha et al. (2017)
proposed to conduct performance evaluation in a realistic setup
without ignoring any bug reports, which allows for a fair compar-
ison of different methods. Inspired by their work, we follow the
realistic evaluation setting to compare the performance of differ-
ent approaches. In addition, to draw stabler conclusions, we adopt
the same strategy as in Rakha et al. (2017) to randomly select
100 different chunks of data from each studied BTS to perform
experiments, and further conduct some statistical analysis on the
experimental results.

Although the evaluating setting is the same as in previous
work (Rakha et al., 2017), the present study has several points
of novelty. First, to the best of our knowledge, it is the first
empirical study work to verify the effectiveness of different DL-
based approaches on the entire datasets in both classification and
ranking scenarios. Second, instead of using only lexical similarity
to measure the relevance between textual fields of bug reports,
we propose to combine multiple types of similarities to capture
the semantic relatedness between bug reports in a more compre-
hensive way. Third, we complement existing benchmark datasets
by collecting newly submitted bug reports, and then conduct an
empirical study to compare the performance of different methods
on the new datasets. Note that, the key idea of combining lexical
and semantic similarities has been applied to other fields of
software engineering, such as bug localization (Lam et al., 2015;
Ye et al., 2016). However, it is the first work, to our knowledge,
which uses various types of similarities to automatically detect
duplicate bug reports and gives an overall assessment of this
combined method in realistic evaluations.

7. Conclusions and future work

In this paper, we perform an empirical study to investigate
how far the DL-based methods have really progressed in the task
of duplicate bug report detection. To this end, we perform a series
of experiments on the entire datasets of studied BTSs and make
some interesting observations.

In our experiments, we first show that DL-based methods for
duplicate bug report detection achieve outstanding performance
when evaluated in the classification scenario. This result is consis-
tent with similar findings from previous work. However, through
empirical evaluations, we further show that DL-based methods
exhibit lower performance compared to IR-based baselines when
evaluated in the ranking scenario. Secondly, considering that
neither lexical similarity nor semantic similarity can provide a
comprehensive measure to get a more accurate textual simi-
larity between bug reports, we propose to tackle this problem
by combining the two types of similarities to characterize the

relatedness between textual fields of bug reports, which has been
shown to be effective for duplicate bug report detection in our
study. More concretely, the proposed CombineIRDL achieves a
significant performance boost with a range of 7.1% to 11.3% in
terms of median MAP over the REP method on three benchmark
datasets. Finally, we explore whether these models generalize be-
yond their benchmark datasets. Through extensive experiments
on our newly collected datasets with recently submitted bug
reports, we show that CombineIRDL still achieves the state-of-
the-art performance on all datasets, outperforming the previous
classic IR-based model.

Our future work includes: (1) exploring more advanced mod-
els to work with the duplicate bug report detection task, (2)
exploring new integrated approaches to combine DL- and IR-
based methods, and (3) conducting more experiments on other
projects.
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