
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2022

API-related developer information needs in Stack Overflow API-related developer information needs in Stack Overflow

Mingwei LIU

Xin PENG

Andrian MARCUS

Shuangshuang XING

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LIU, Mingwei; PENG, Xin; MARCUS, Andrian; XING, Shuangshuang; TREUDE, Christoph; and ZHAO,
Chengyuan. API-related developer information needs in Stack Overflow. (2022). IEEE Transactions on
Software Engineering. 48, (11), 4485-4500.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8783

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8783&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Mingwei LIU, Xin PENG, Andrian MARCUS, Shuangshuang XING, Christoph TREUDE, and Chengyuan
ZHAO

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8783

https://ink.library.smu.edu.sg/sis_research/8783

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

API-Related Developer Information Needs
in Stack Overflow

Mingwei Liu, Xin Peng, Andrian Marcus, Shuangshuang Xing, Christoph Treude, and Chengyuan Zhao

Abstract—Stack Overflow (SO) provides informal documentation for APIs in response to questions that express API related developer
needs. Navigating the information available on SO and getting information related to a particular API and need is challenging due to the
vast amount of questions and answers and the tag-driven structure of SO. In this paper we focus on identifying and classifying
fine-grained developer needs expressed in sentences of API-related SO questions, as well as the specific information types used to
express such needs, and the different roles APIs play in these questions and their answers. We derive a taxonomy, complementing
existing ones, through an empirical study of 266 SO posts. We then develop and evaluate an approach for the automated identification
of the fine-grained developer needs in SO threads, which takes a thread as input and outputs the corresponding developer needs, the
types of information expressing them, and the roles of API elements relevant to the needs. To show a practical application of our
taxonomy, we introduce and evaluate an approach for the automated retrieval of SO questions, based on these developer needs.

Index Terms—Developer Information Need, API, Stack Overflow.

F

1 INTRODUCTION

SOFTWARE reuse through Application Programming In-
terfaces (APIs) is an integral part of software devel-

opment [1], but learning how to effectively use APIs can
be difficult [2], often impeded by the inadequacies of API
documentation. While such documentation might capture
an API’s structure, it tends to lack information on concepts,
purposes, and usage scenarios [3]. As an alternative form
of documentation, the question-and-answer forum Stack
Overflow (SO) can fill this gap to some extent by providing
informal “how-to” documentation in response to specific
needs [4].

However, identifying and extracting information avail-
able on Stack Overflow, which is relevant to APIs in the
context of a task, is challenging due to the vast amount
of questions and answers. At the time of writing, Stack
Overflow hosts more than 19 million questions and close
to 29 million answers. Even for a particular API library,
the amount of information can be overwhelming, e.g., there
are currently about 25,000 questions tagged with “junit”.
Stack Overflow only offers minimal organization of this
information via its tagging mechanism which allows users
to associate up to five tags and a title with each question.
This tagging mechanism is predominantly used to indicate
the technologies relevant to a question [5]. As a result, all
discussions relevant to an API library are often grouped
under a single tag, not doing justice to developers who have
task-specific information needs [6]. The title of SO posts
summarizes them better than the tags, however it often does
not cover all pertinent information for the question. For
example, the following title “How to split a string in Java”1

• M. Liu, X. Peng, S. Xing and C. Zhao are with the School of Computer
Science and Shanghai Key Laboratory of Data Science, Fudan University,
and the Shanghai Institute of Intelligent Electronics & Systems, China.

• X. Peng is the corresponding author (pengxin@fudan.edu.cn).
• A. Marcus is with the University of Texas at Dallas.
• C. Treude is with the University of Melbourne.

1. https://stackoverflow.com/questions/3481828

only reflects one of the two goals of the questioner: “I have a
string [..] that I want to split into two strings. [...] I also want
to check if the string has ’-’ in it.” If developers only look
at the title, they might ignore discussions related to their
needs.

People asking questions on SO have various back-
grounds (e.g., students, professional developers, etc.), yet
we will refer to them simply as developers. With regard to
the goals of the questioners, we refer to them as developer
information needs or simply developer needs.

Developer information needs have been the subject of
many studies (e.g., [7], [8]) and several researchers analyzed
and categorized the SO questions on some of these needs (
[4], [5], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]).
Beyer et al. [9] categorized SO questions in seven high-level
categories (i.e., API Usage, Conceptual, Discrepancy, Errors,
Review, API Change and Learning), which subsume categories
defined in previous work.

We conjecture that the categories defined by Beyer et al.
[9] are too coarse-grained to reason about specific developer
needs and require further refinement. For example, the “API
Usage” category is defined as “A how type of questions asks for
ways to achieve a goal”. As Beyer et al. , we found that many
SO questions (51.9% in our data - Section 2.2.1) refer to more
than one developer information need, showing that many
questions are complex. For example, the following SO ques-
tion2 includes information (highlighted in bold) expressing
at least three different information needs: (1) implementing
a functionality; (2) error handling; (3) comparing APIs.

I was trying to load a file in a webapp, and I was
getting a FileNotFound exception when I used FileIn-
putStream. However, using the same path, I was able to
load the file when I did getResourceAsStream(). What
is the difference between the two methods, and why
does one work while the other doesn’t?

2. https://stackoverflow.com/questions/2308188

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Although it seems that only the last API comparison
question is the question directly raised by the questioner,
other developers with similar goals to the first one and
second one can also benefit from this discussion. At the
same time, the answers to a question often involve multiple
APIs, each having a different role in the answer, an aspect
not captured in existing taxonomies.

We argue that we need a more fine-grained categoriza-
tion of developer information needs and expressed in SO
question, which would help users to understand and find
easier complex questions and answers.

In this paper we focus on identifying and classifying
fine-grained developer needs expressed in sentences of API-
related SO questions, as well as the specific information types
used to express such needs, and the different roles APIs
play in these questions and their answers. We derive a fine-
grained taxonomy, complementing existing ones, through
an empirical study of 266 SO posts (Section 2). We then
develop and evaluate an approach for the automated identi-
fication of these fine-grained developer needs in SO threads
(a thread includes a question post with the corresponding
answer posts), which takes a thread as input and outputs
the corresponding developer needs, the types of information
used to express them, and the roles of the pertinent API
elements from the thread (Section 3.3). The evaluation indi-
cates that our approach can accurately (83.6% precision and
85.4% recall, in average) identify developer needs, relevant
information types, and API roles, in SO threads.

We conjecture that the fine-grained API-related devel-
oper needs and the API roles capture essential features of the
SO threads, which help in the retrieval of SO questions, es-
pecially multiple developer information needs are involved.
We developed a retrieval approach leveraging the above-
mentioned identification tool (Section 5). For evaluation, we
compared the retrieval performance of our approach with
a state-of-the-art retrieval approach, AnswerBot [19] The
results show that our approach outperforms AnswerBot on
Top@1 (0.625 vs 0.484), Top@5 (0.828 vs 0.797), and Top@10
(0.859 vs 0.828) accuracy and MRR (0.698 vs 0.617). We
further conducted a user study asking participants to com-
plete programming tasks with the help of our approach or
with AnswerBot. The results show that, using our approach,
participants could complete tasks faster (378s vs 518s).

In summary, the contributions of this paper are:
• A fine-grained taxonomy of developer needs in SO

posts, together with the information needed to ex-
press them, and the roles of the APIs in addressing
the needs. The taxonomy is accompanied by an an-
notated data set used to derive it.

• An approach that automatically identifies fine-
grained developer needs and relevant information in
SO posts.

• An approach for the retrieval of API-related SO ques-
tions, based on the developer information needs.

2 DEVELOPER NEEDS IN SO POSTS

We conducted an empirical study for understanding what
type of developer needs are expressed in API related SO
questions and how. Fig. 1 shows the relationships between
the main concepts used in the paper. An SO [thread] could

Fig. 1. Conceptual Schema of Our Taxonomy

include a [question] (with a title and the body) and multi-
ple [answers]. The question may express multiple [developer
information needs]. Each [developer need] is an instance of a [de-
veloper need type] and it is described by [describing sentences]
from the [question]. The [describing sentences] contain the
[relevant information] for expressing the [developer need]. Each
[relevant information] is an instance of a [relevant information
type]. Multiple [APIs] may be mentioned in the [question]
or [answers], and each API plays a specific [API role] in
describing the [developer need] or its solution.

We focus on answering the following research questions:
RQ1: What type of developer needs are present in SO questions?
RQ2: What type of information is used to describe the developer
needs?
RQ3: What roles do APIs play related to the developer needs?

2.1 Study Design

While we considered the seven categories defined by Beyer
et al. as a starting point to our study, we performed open
coding on a set of SO threads with the goal of refining
and/or redefining them, as needed. Since our focus is on
API-related questions only, we limited the scope of the
“Learning” category to “API Usage Learning” only.

Qualitative Analysis Method. Based on the thematic
analysis framework proposed by Braun and Clarke [20], we
conducted a qualitative analysis by performing open coding
on API-related threads. We treat the developer need, rele-
vant information, and API role as themes and the analysis
was conducted collaboratively by following steps similar to
Robillard et al. [21].

1. Data Collection and Familiarisation. We first collected
API-related threads from SO. Then all annotators read those
collected threads in order to become familiar with them,
paying specific attention to patterns that occur.

2. Coding on Data. Annotators analyzed the API-related
threads and coded those threads according to the coding
protocol we designed. As a result, we obtained a list of codes
for developer need types, relevant information types, and
API role types.

3. Generating, Reviewing and Defining Codes/Themes.
We first grouped codes into themes, i.e., developer need,
relevant information, and API role. Then we discussed the
distribution of codes across threads and the relationships
between themes (i.e., Fig. 1) and codes (i.e., Table 2 and
Table 4). We reviewed once again all API-related threads, fo-
cusing on checking whether the definitions of codes/themes
are appropriate, and whether the relationships between

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Fig. 2. An Example of Coding of a SO Question

themes and codes are correct. We repeated this process until
the results were stable.

Next, we elaborate on our data collection and coding
protocol.

Data Collection. We selected threads related to JDK and
Android APIs for this empirical study. We chose JDK and
Android APIs because they are popular [22] and we are
familiar with them. To obtain the data, we first selected
threads tagged with “java” and an accepted answer from
the SO data dump [23] and removed those that did not
contain any qualified name or aliases of APIs from JDK
1.83 or Android API 274 in the title, question body, or
accepted answer. The aliases of APIs were derived from the
qualified name (e.g., StringBuffer is one derived alias for
java.lang.StringBuffer). To further ensure the quality
of threads, we ranked the threads by the number of question
votes and retained the top 500 voted threads. Then, we
manually removed threads that were not about APIs. The
manual removal was conducted by two students indepen-
dently (one PhD and one MS student, each with more
than five years Java and Android experience). One of the
authors was assigned to resolve any conflicts, although the
agreement between students was near perfect (i.e., Cohen’s
Kappa coefficient [24] of 0.92). After this step, we obtained
266 threads about APIs. Unlike our data set, Beyer et al. [9]
used 500 randomly sampled posts with the tag “android”
which were not necessarily API related.

Coding Protocol for Developer Needs and Relevant
Information. To answer RQ1 and RQ2, we analyzed the
questions from the 266 threads. We preprocessed the ques-
tions from HTML format to clean text using Beautiful-
Soup [25]. Long code snippets that were wrapped by
<pre><code></code></pre> were replaced with a place-
holder “-CODE-” during parsing. Where necessary, a “.” was
added after -CODE- to ensure that the following sentence
splitting is correct. For each question, we split the text in the
title and question body into sentences and combined them
together because we need to annotate questions at sentence-
level. As shown in Fig. 2, for the question5 “How to split a
string in Java” is the first sentence and “I have a string, "004-
034556", that I want to split into two strings: -CODE-.” is the
second sentence.

Fig. 2 shows an example of how we coded the ques-
tions. First, three of the authors (two PhD and one MS
student, each with more than five years Java and Android
experience) coded the questions into developer need types

3. https://docs.oracle.com/javase/8/docs/api/java/lang/
package-summary.html

4. https://developer.android.com/reference/packages
5. https://stackoverflow.com/questions/3481828

through discussion and consensus. If the question expresses
a developer need type but it does not meet the current def-
inition of any type, we modify the definition of the existing
type or create a new developer need type after discussion.
If developer need types are changed, we re-annotate all
questions again. As a result, one question could be classified
into several developer need types at the same time, e.g.,
the SO question shown in the box in the introduction. We
classified the question in Fig. 2 into developer need type
“Functionality Implementation” (Table 1).

Then if a question is an instance of a developer need
type, we will check each sentence in the question for iden-
tifying the specific information that describes this devel-
oper need, which we call relevant information. The relevant
information instances were classified and refined through
card sorting. One sentence could be classified into several
relevant information types of the same developer need types
or different developer need types at the same time. If the
sentence does not provide important information for any
developer need type, we will annotate it as “useless” (e.g.,
“Thanks.”). For example, the three colored sentences in the
Fig. 2 are all annotated as relevant information “Desired
Functionality” for “Functionality Implementation” (see Table 2)
and the remaining sentences are annotated as “ useless”.

In summary, the coding for developer need types and
relevant information was iterative. When we found that a
question/sentence cannot be coded with an existing type,
we created a new type or modified the definition of an
existing type. Then, we re-annotated all the questions again,
to account for the new type or the modified definition. We
finished the coding process once we achieved saturation, i.e.,
once no new developer need types and relevant information
types were found.

To further verify that our coding for developer needs
and relevant information is correct and complete, and to
minimize any bias, we asked two MS students (not involved
in previous annotation) familiar with Java and Android to
annotate a subset of the 266 questions with our coding by
following our coding protocol with the codes we derived.
First we sampled five questions for each developer need
type based on our annotation for questions, and we got
34 questions, after removing duplicate questions. The an-
notation was performed by both students independently.
For each question, they annotated it with some developer
need types, and they annotated each sentence with rel-
evant information types corresponding to the annotated
developer need types or “useless”. If none of the existing
codes was suitable, they annotated the question or sentence
as “New Code”. The Cohen’s Kappa agreement coefficients
for developer need types are all above 0.6 (i.e., substantial
agreement), with a minimum of 0.62, a maximum of 1.00,
and an average of 0.89. The Cohen’s Kappa agreement
coefficients for relevant information types are also all above
0.6, with a minimum of 0.66, a maximum of 1.00, and
an average of 0.85. All developer need type codes and
relevant information type codes were used in this round of
annotation and no new codes were reported. We found the
disagreements often occurred when the students overlooked
some parts of very long questions.

To identify developer need instances we need to group
the sentences that describe the same developer need in-

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

TABLE 1
Definitions and Examples of Developer Need Types (QC: Question Count, DNC: Developer Need Count)

Developer Need Type Definition SO ID Example Summary QC DNC

Functionality Implementation The developer wants to implement spe-
cific functionality 1816673 How do I check if a file exists in Java? 182 187

Non-Functional Improvement

The developer wants to improve the
existing implementation for some non-
functional requirements, e.g., code qual-
ity

1306727 Is there a neater way for getting the
length of an int than this method? 32 32

Functional Improvement

The developer wants to fix an imple-
mentation whose expected performance
is not consistent with the actual perfor-
mance without an obvious error message

869033

I want to copy the dum to dumtwo
and change dum without affecting the
dumtwo. But the code above is not do-
ing that.

32 32

Error Handling The developer wants to fix an implemen-
tation with an obvious error message 1393486 java.lang.OutOfMemoryError: GC over-

head limit 28 28

Rationale Analysis
The developer wants to understand the
internal implementation and design of
an API.

7421004 Is FileInputStream using buffers al-
ready? 39 54

API Comparison The developer wants to compare multi-
ple APIs. 355089 Difference between StringBuilder and

StringBuffer 27 27

Alternative Solution The developer wants to find an alterna-
tive of an existing solution. 54516417 Backward alternative solution for Chro-

noUnit.Days.between() 9 9

API Usage Learning The developer wants to learn
how/when/where to use an API 2793150 How to use java.net.URLConnection to

fire and handle HTTP requests 87 87

stances together. Note that the sentences in a question
providing relevant information for the same developer need
type are not always describing the same developer need in-
stance. First, we filtered out sentences annotated as “useless”
and grouped the remaining sentences. A sentence group
contains several sentences from the same question and is an-
notated with relevant information types of the same devel-
oper need type. A sentence may appear in different groups
because it may be annotated with relevant information
types of different developer need types at the same time.
For each sentence, two MS students were asked to group
them independently, based on the developer need type they
describe. The original question was provided as the context
when grouping. If they disagreed on the grouping, one of
the authors was assigned to resolve conflicts. The Cohen’s
Kappa agreement coefficient for sentence grouping is 0.95,
(i.e., nearly perfect agreement). The coding for developer
needs and the relevant information are providing guidance
for identifying developer need instances, which makes it
easier for participants to reach consensus. As a result, we
obtained 456 developer need instances described by one or
more sentences in the questions from the 266 SO threads. For
example, the three colored sentences in Fig. 2 are grouped
into two developer need instances, colored with orange and
green, respectively.

Coding Protocol for API Roles. To answer RQ3, we
asked two MS students (same as above) to identify the APIs
involved in answering the 456 developer needs and the
roles of each involved API. Three of the authors analyzed
20 threads and defined an initial set of codes for different
API roles. For example, “suggested API” is the role for the
APIs suggested by answerers to satisfy the developer need.

The students were shown one developer need at a
time with its original question and accepted answer of the
question as context. The APIs could be identified from the
question or its accepted answer. To make the annotation
easier, we ignored the other answers of the question. An
API could only be coded with one API role for the current
developer need, but could be coded with different API

roles for other developer needs. For example, “string” (i.e.,
java.lang.String) is annotated as “Context API” (Table 3)
for both developer needs in Fig. 2.

The students coded independently. If their role annota-
tions for the same API in a developer need were different,
one of the authors was assigned to resolve the conflict. Dur-
ing coding, if an API could not be coded with any existing
API role, we changed the definition of existing API roles
or created new API roles, after discussion and agreement. If
the categories were changed, the students re-coded the APIs
again. The two coders identified 2,049 APIs in total (same
APIs for different developer needs were treated as different
APIs) and among them 68.6% APIs (1,406 of 2,049) were
identified by both coders. We checked the APIs that were
not identified by both coders. The main cause was that the
questions or the answers in those cases were very long, with
large code snippets, and the coders missed some APIs. The
Cohen’s Kappa agreement coefficient for annotating API
roles is 0.88 (i.e., near perfect agreement). After resolving
the conflicts, we obtained 1,932 APIs (note that the same
API playing a different role is considered distinct) involved
in the questions and answers of the 456 developer needs.
Note that 117 APIs are removed after resolving the conflicts.
Mainly, those removed APIs are APIs that were misidenti-
fied by participants, e.g., java.lang.StringBufer, which should
be java.lang.StringBuffer.

2.2 Results
2.2.1 RQ1 (Developer Need Types)
Table 1 shows the definitions and examples of the eight
developer information need types we identified, with the
numbers of questions where these developer need types
appear. The last column indicates the number of distinct
developer needs that belong to that type.

Among the 456 specific developer needs we identified
in the 266 questions, functionality implementation is the most
frequent developer need type (41.0%). This implies that
developers often ask for help to implement a specific func-
tionality. Among the 266 questions, 128 questions contained

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

TABLE 2
Definitions and Examples of Relevant Information Types (SC: Sentence Count, DNC: Developer Need Count)

Developer Need Type Relevant Information Definition Example SC DNC Essen.

Functionality
Implementation Desired Functionality

Describes the functionality
that developer wants to im-
plement

How do I check if a file exists in
Java? 379 187 Yes

Non-Functional

Improvement

Implemented
Functionality

Describes the functionality
that has been implemented

Is there a neater way for getting
the length of an int than this
method: -code-

62 32 Yes

Suboptimal
Implementation

Describes the existing sub-
optimal implementation

Is there a neater way for getting
the length of an int than this
method: -CODE-

40 32 Yes

Improvement Describes the improvement
developer wants to make

Is there a neater way for get-
ting the length of an int than this
method: -code-

37 27 No

Functional

Improvement

Expected Result Describes the result expected
I want to copy the dum to
dumtwo and change dum with-
out affecting the dumtwo.

66 32 Yes

Actual Result Describes the actual results
obtained

However, I only get the file
name, not the file content. 48 32 Yes

Insufficient
Implementation

Describes the insufficient im-
plementation I’ve tried doing this: -CODE- . 46 32 Yes

Error Handling

Error Type Describes the error type of
implementation

java.lang.OutOfMemoryError:
GC overhead limit exceeded 49 28 Yes

Error Occasion Describes where the error oc-
curred

I get exception when using
Thread.sleep(x) or wait() 41 28 No

Erroneous
Implementation

Describes the implementa-
tion with error

This is my test case: Parent.java
-CODE-. 18 15 No

Rationale Analysis Rationale Question
Describes the question about
the internal implementation
or design of an API

Is FileInputStream using buffers
already? 81 54 Yes

API Comparison

Comparison Subject Describes the subjects being
compared

Difference between StringBuffer
and StringBuilder? 47 27 Yes

Comparison Scenario Describes the scenario for
the comparison

What is the difference between
using the Runnable and Callable
interfaces when designing a con-
current thread in Java, why
would you choose one over the
other?

17 15 No

Alternative Solution

Current Solution
Describes the current solu-
tion that needs an alternative
solution

Backward alternative solution for
ChronoUnit.Days.between() 11 9 Yes

Alternative Description
Describes the functionality
and constraints that the al-
ternative solution has

I need an alternative solution for
ChronoUnit.Days.between() that
works for Android version prior
to API 26.

12 6 No

API Usage Learning

Used Subject
Describes which API the de-
veloper want to know the
usage of

How to use
java.net.URLConnection to
fire and handle HTTP requests

149 87 Yes

Usage Scenario Describes the scenario to use
the API

How to use
java.net.URLConnection to
fire and handle HTTP requests

140 80 No

1 developer need; 93 questions contained 2 developer needs;
38 questions contained 3 developer needs; 7 questions
contained 4 developer needs. Among the questions with
more than one developer need (51.9%), 92.8% (128 of 138)
questions address developer needs of different types. That
is, 48.1% (128 of 266) questions may be classified into several
developer need types at the same time.

As shown in Table 1, the value of QC is the same as
DNC’s in six out of eight developer need types (except for
functionality implementation and rationale analysis). This
shows that different developer need types have different
characteristics. For some developer need types (e.g., func-
tionality implementation and rationale analysis), the ques-
tioners may mention multiple developer needs of the same
type but belonging to different instances in one question,
e.g., the question shown in Fig. 2. For other types, such as al-
ternative solution, the questioner is unlikely to inquire about

alternative solutions for two different implementations at
the same time.

Some developer need types seem to overlap to some ex-
tent, e.g., API comparison and API usage learning. However,
each developer need type we define has a different way
of describing questions from other types (see Section 2.2.2
and Section 2.2.3). These eight developer need types refine
the taxonomy proposed by Beyer et al. [9]. We discuss in
more detail at the end of this subsection how these two
frameworks complement each other.

Among the eight developer need types, the top three
(i.e., functionality implementation, non-functional improve-
ment, and functional improvement) are more general than
the rest and they can apply to other non-API related
questions. Some developer need types have commonalities.
Non-functional improvement, functional improvement, er-
ror handling and alternative solution are for developers who

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 3
Definitions of API Roles

API Role Definition Count

Context API

APIs as the context to describe the
developer need, e.g., APIs being
compared, API in need of alterna-
tive

522

Suggested API APIs suggested by the answerer to
solve the developer need 1,188

Currently Used API APIs used in current implementa-
tion of questioner. 138

Error API APIs maybe the reason why this
error happened. 53

Exception Type API The exception type usually is Ex-
ception class or Error class. 31

already have a solution and want to improve/fix it. API
comparison, API usage learning and rationale analysis are
for developers who want to learn specific APIs.

In conclusion, questions on Stack Overflow could be
quite complex and contain multiple developer needs from
different developer need types. This is also consistent with
our intuition. We need a way to more accurately analyze the
developer needs in the questions.

2.2.2 RQ2 (Relevant Information Types)

Table 2 shows the definitions and examples of the 17 types of
relevant information used for describing developer needs.
We report how many sentences (SC) and how many de-
veloper needs (DNC) are described with the corresponding
relevant information. We observed that not all relevant
information types are used to describe all instances of a
developer need type. For example, an API usage learning
need described by the sentence “how to use FileInput-
Stream” only provides relevant information for “Used Sub-
ject” without “Usage Scenario”. The “Essen.” (i.e., Essential)
column indicates whether the corresponding relevant infor-
mation appears in the descriptions of all instances of the
corresponding developer need type. We consider the other
relevant information “non-essential” for a developer need
type, meaning that it may be omitted from the description
of a developer need of that type.

The 456 developer needs we identified are described
in 1,027 sentences (764 unique ones) that provide rele-
vant information. Each developer need is described by 2.3
sentences on average (min. 1, max. 9, median 2). These
descriptive sentences constitute only 53.2% (764 of 1,436)
of the sentences in the 266 questions providing relevant
information. The implication is that, the developer needs
from a question are described with only half of its sentences,
on average. Further, we analyzed sentences providing rele-
vant information related to developer needs. 75.7% of de-
veloper needs contain sentences providing duplicate types
of relevant information, implying that we could summarize
developer needs from questions in a concise way by using
sentences without providing duplicate types of relevant
information.

2.2.3 RQ3 (API Roles)

Table 3 shows the definitions of five API roles we identified
and the last column is the number of APIs playing that role
in at least one instance. Suggested API is a special API role

TABLE 4
Relationships Between Developer Need Types, API Roles,

and Relevant Information Types

Developer
Need Type API Role Count Relevant

Information
Functionality
Implementation

Context API 188 Desired
Functionality

Suggested API 836 -

Non-Functional
Improvement

Context API 39 Implemented
Functionality

Currently
Used API

65 Suboptimal
Implementation

Suggested API 124 -

Functional
Improvement

Context API 27 Expecting Result,
Actual Result

Currently
Used API

73 Insufficient
Implementation

Suggested API 132 -

Error
Handling

Error API 53
Erroneous
Implementation,
Error Occasion

Exception
Type API

31 Error Type

Suggested API 77 -
Rational Analysis Context API 80 Rationale Question

API Comparison Context API 56 Comparison
Subjects

Alternative
Solution

Context API 8 Current Solution
Suggested API 19 -

API Usage
Learning

Context API 124 Used Subject

and it is usually played by the APIs appearing in the answer
as part of the solution for the developer need. APIs with
other roles could appear in both questions and the answers,
in the question as part of the developer need description
and referenced in the answer. Table 4 shows the relations
between API roles and developer need types and relevant
information. Different developer need types could share
API roles. Some developer need types include multiple
API roles but not all corresponding API roles must exist
in their developer need instances. We further analyzed the
relations between API roles and relevant information, which
are shown in the fourth column “Relevant Information”.
We found that APIs with a specific role tend to appear in
sentences with specific relevant information. This suggests
that we can design heuristic rules to determine the role of
an API based on the relevant information type present in
the sentence.

The 456 developer needs have 1,932 pertinent APIs in
total (4.24 APIs on average, min. 1, max. 34, and median
3). 77.4% (353 of 456) of the developer needs have mul-
tiple pertinent APIs. Not all APIs appearing in the ques-
tion/answer are pertinent for a developer need. The API
could be mentioned only as an example or only related to
one of the developer needs in the question (when multiple
are present). The same API could be involved in different
developer needs by playing different roles, which implies
that those threads provide different information about the
same API.

2.2.4 Comparison with prior taxonomies
We discuss here how the taxonomy we defined relates to
the one proposed by Beyer et al. [9]. We contend that our
taxonomy extends and complements the one proposed by

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

TABLE 5
Relationships Between Taxonomies

Our Taxonomy Beyer et al. Taxonomy
Functionality Implementation API Usage
Non-functional Improvement Review

Functional Improvement Discrepancy, API Change
Error Handling Errors

Rationale Analysis Conceptual, API Change, Review
API Comparison API Change, Discrepancy

Alternative Solution API Change
API Usage Learning Learning

Beyer et al. Table 5 maps our developer need types to
the categories from that taxonomy. There is no one-to-one
correspondence between the categories. Since our taxonomy
is finer-grained, one can consider that the categories from
Beyer et al. that share our developer need types are related
and the relationships are expressed by the common devel-
oper needs. Our other categories can be mapped to the ones
derived by Beyer et al. , refining them into sub-categories.
Moreover, our taxonomy includes relevant information types
and API roles, which are not captured by Beyer et al. , hence
extending that work.

2.2.5 Summary
Through our systematic annotation of 266 SO threads, we
have identified 8 types of API-related developer needs and
17 types of information relevant to these developer needs.
In addition, for the APIs related to these developer needs,
we have identified the roles they play, leading to a set of 5
API roles.

2.3 Threats to Validity

The internal validity of our findings is dependent on
whether our codes for developer need types, relevant infor-
mation, and API roles are correct and complete. To alleviate
this threat we had more than one coder participating in each
coding activity and have reported the agreement. Our data
is available in the replication package [26] and the study
may be replicated in the future, confirming the validity
of the codes. Another threat is that the categorization of
developers needs has been done by students, not devel-
opers with industrial experience, cf. existing studies on
potential differences [27], [28], [29]. To alleviate this threat
we reported their Java development experience. The types
identified by the students are not esoteric, so it is unlikely
that more-informed coders would disagree with them.

The external validity of our findings is dependent on the
number of threads we used in the study. We only analyzed
266 API-related threads, which affects generalizability. The
findings may not generalize to other API-related questions.
To alleviate this threat, as much as possible, we chose ques-
tions related to two popular libraries (JDK and Android)
with high scores and we believe they are representative of
typical API related questions. Scaling up our analysis to
more SO threads may lead to the identification of additional
developer need or relevant information types. The extension
of our taxonomy is expected and desirable, but it will not
invalidate the results we obtained. It would lead to better
analysis tools in the future.

Fig. 3. Overview for Automated Identification of Developer Needs

TABLE 6
Regular Expressions for API Identification

Regular Expressions Matching Examples
(\w+\.)+(\w)+ java.lang.String
([A-Z](\w)+)([A-Z](\w)+)+ StringBuffer
(\w+\.)*(\w)+\(\) String.split()
(\w+\.)*(\w)+\([\w,]+\) StringBuffer.insert(int,int)

3 AUTOMATED IDENTIFICATION OF DEVELOPER
NEEDS

We develop an approach for the automated identification of
developer needs from threads. An overview of the approach
is presented in Fig. 3. For a given thread from SO, we
identify the APIs mentioned in the thread (Section 3.1). Then
we use pretrained classifiers to identify developer need
types in the question and describing sentences providing
the relevant information (Section 3.2). After that, we extract
developer needs from the question by a cluster-based ap-
proach (Section 3.3). Finally, we identify the APIs pertinent
to each developer need and their roles (Section 3.4).

3.1 API Identification
For an API-related thread, we consider its question and its
accepted answer for API identification. We identify APIs
in three different places (i.e., code snippets, stack traces,
text) in different ways from the question and its accepted
answer, based on our observations from the empirical study.
APIs identified from different places may play different
roles in developer needs. For example, the API identified
from a code snippet may be a currently used API, the API
identified from a stack trace may be an error API, and the
API identified from text may be a context API.

API Identification from Code Snippets/Stack Traces.
In Stack Overflow, code snippets and stack traces are both
wrapped in <pre><code></code></pre>6. They can both
contain APIs and their formats are quite different. Thus, we
extract APIs from them in different ways. First, we extract
each text wrapped in <pre><code></code></pre> and
classify it into three categories: code, stack trace, and other.
The classification is done by a list of regular expressions
designed based on empirical study data, available in our
replication package [26]. We extract APIs from code snippets
with our own implementation of Baker [30], an approach
to link APIs in incomplete code snippets to their qualified
names. Because the official implementation is not available,
we implemented a version of Baker by ourselves and built
the oracle for Java APIs. To build the oracle for Baker, we
used JavaPaser7 to analyze the third-party libraries from

6. An example in https://stackoverflow.com/questions/2965747
7. https://github.com/javaparser/javaparser

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Maven together with JDK 1.8 and Android 27. As a result,
the oracle contains 946,325 classes, 9,711,745 methods and
3,448,472 fields for 32,238 libraries. We tested the Baker im-
plementation on a test set and the results were comparable
with those reported for the original implementation.

For a stack trace, we identify all APIs based on the
structure of the stack trace by using regular expressions as
well. The regular expressions are shown in Table 6, which
take into account common API name conventions (similar
to [31], [32]). For example, from the stack trace: 06-03
15:05:29.614: ERROR/AndroidRuntime(7737):
java.lang.UnsupportedOperationException 06-03
15:05:29.614: ERROR/AndroidRuntime(7737):
at java.util.AbstractList.remove(Abstract-
List.java:645), we extract two APIs java.lang.Unsupport-
edOperationException and java.util.AbstractList.remove.

API Identification from Text. We identify APIs in
text in the following way. (1) Using regular expres-
sions shown in Table 6 for common API name con-
ventions, e.g., camel-case (e.g., StringBuffer), qualified
name (e.g., java.lang.String) and method name (e.g.,
String.split()); (2) We consider the text wrapped in
<code> as an API and the text shorter than two characters
or more than one word will be filtered out. (3) We match
the text with all APIs in the given API list, including the
qualified names and the aliases of APIs. This part is optional
and with the help of a given API list, we could identify APIs
in text which could also be common words. For example,
“string” in “How to split a string in Java” could match with
java.lang.String if we provide JDK APIs for matching.

After we collect all APIs identified from the question
and the accepted answer, we remove the duplicates. Quali-
fied names and their aliases are considered duplicates, e.g.,
java.lang.String and String. We ignore parameters
for API methods because API methods mentioned in SO
questions are often lacking parameters. We further filter out
APIs that match SO tag names. SO tags could represent
some common words. For example, “BeautifulSoup” will
be identified as an API from text because of its camel case
name and it will be filtered out by matching with the SO
tag “beautifulsoup”. If no APIs can be identified, then we
consider this thread as not being API related and will not
perform the next steps for developer needs extraction.

3.2 Relevant Information Analysis

We use text classifiers to classify the questions into de-
veloper need types and each describing sentence from the
question into relevant information types.

Text Preprocessing. We preprocess the text of the ques-
tion as follows. (1) We extract the text from HTML format
using BeautifulSoup [25]. The text in the title and the ques-
tion body are combined together as the question text. (2)
Text wrapped by <pre><code></code></pre> is replaced
with one of following placeholders: “-CODE-” for code
snippet, “-STACKTRACE-” for stack trace, “-XML/JSON-” for
XML or Json format data, “-NUMBER-” for number or list of
numbers, and “-TEXT-” for plain text. The placeholder type
is determined using regular expressions. We shorten the text
as the text classifier underperforms for long text. Further,
in the specific content replaced by placeholders, there are

many unique words (e.g., custom variable names), which
would introduce noise to the classifiers. Moreover, the place-
holders allow the classifiers to focus on the type and the
context of the content replaced by placeholders, rather than
the specific content. For example, “-STACKTRACE-” usually
implies an “Error Handling” developer need type in the
question and “An exception was thrown while I run the
following code: -CODE-.” usually implies an “Erroneous
Implementation”. Note that we record the original content
replaced by the placeholder for later restoration. The rela-
tionships between code snippets/stack traces and the API
identified from them in Section 3.1 are also recorded. (3)
We add a placeholder “-API-” before each API mention
in the text (identified in Section 3.1). If the API mention is
ending with “Exception” or “Error”, the added placeholder
is “-EXCEPTION-”. The presence of APIs is an important
feature for some developer need types (e.g., API Usage
Learning, Error Handling) and relevant information (e.g., Used
Subject, Error Type).

Developer Need Type and Relevant Information Clas-
sification. We define this task as a sentence classification
and we design a two-phase classifier. In the first phase,
we classify the question text into developer need types. We
train binary classifiers for each developer need type, which
classify an input question into two classes “Yes” or “No”,
representing whether the input question contains this type
of developer needs or not.

In the second phase, we classify describing sentences
into relevant information types. For each type of relevant
information, we train a binary classifier that classifies a
sentence into two classes: “Yes” and “No”, representing
whether this sentence provides this type of relevant infor-
mation or not. If the question is classified into one developer
need type, we use all relevant information classifiers that
belong to this developer need type. Based on the results
of RQ2 (see Table 2), some types of relevant information
are essential for the related developer need types (e.g., “Used
Subject” is essential for “API Usage Learning”). We use this
finding to improve the sentence classification. We combine
the results of the sentence classifiers from the same question
together to fix classification errors. For example, if a sentence
is classified as “Usage Scenario” and none of the sentences in
the same question is classified as “Used Subject”, then we
will adjust the classification result of “Usage Scenario” from
“Yes” to “No”. If a sentence can not be classified as “Yes” by
any classifier, it will be annotated as “useless”.

We train multiple binary classifiers for two reasons: (1)
A previous study for knowledge pattern classification for
sentences of API reference documentation [33] has shown
that when there are many classes for sentence classification,
training a binary-classifier for each class is better than di-
rectly training a single complex classifier; and (2) Our clas-
sification is a multi-label task, i.e., each question could have
several developer need types and each description sentence
could provide multiple types of relevant information. It is
easier to collect training data for training multiple binary
classifiers.

We used FastText [34] to implement the two classifiers.
FastText is a fast approximation of the softmax classifier
designed by Facebook, which is based on n-gram features
and dimensionality reduction. It is fast enough that we can

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

run iterative tests quickly.
We asked five MS students (with more than two years of

Java development experience each) to annotate sentences by
relevant information type, in addition to those we annotated
in the empirical study (Section 2.1). To make the annotation
easier, we designed the annotation task as a binary classifier
as well. For each sentence, we show a candidate relevant
information type and the annotators only need to annotate
“Yes” or “No”. If a sentence of the question is annotated as
the relevant information type, we will consider the question
annotated with the developer need type that the relevant
information describes. We used doccano [35], an online
annotation tool to support the annotation. We sampled the
sentences for each relevant information type in the follow-
ing ways: (1) random sampling; (2) sentences containing
keywords related to the corresponding relevant information
(e.g., “difference between” for “Compared Subject”); (3)
sentences classified as positive by the classifier trained on
the already annotated data; (4) sentences with high text
similarity (based on TF-IDF) with already annotated data;
(5) sentences in a question that were already annotated
with the developer need type for this type of relevant
information. There is no priority between different sampling
ways. We took the union set of the sentences selected by the
five ways. The same sentences may be sampled for different
relevant information types. Each sampling sentence was
annotated by two persons and a third person was assigned
to resolve conflicts. The different sampling approaches were
used for reducing annotation costs and getting more anno-
tated data. The annotated data is provided in the replication
package [26].

3.3 Cluster-based Developer Need Extraction

Since a question may contain several developer need in-
stances, as shown in Fig. 2, we extract the developer need
instances in the question via clustering.

First, we filter out sentences annotated as “useless” and
cluster the remaining ones by relevant information. A sen-
tence cluster contains sentences from the same question with
information types relevant to the same developer need type,
e.g., sentences annotated with “Used Subject” and “Usage
Scenario” are in the same cluster, after clustering based on
relevant information.

Then we refine the clusters to separate different de-
veloper need instances. We represent each sentence into a
fixed-length vector by averaging the vectors of all words
in the sentence. The vector for a word is obtained from a
100-dimensional Word2Vec [36] model pre-trained on the
Wikipedia corpus8. The model is tuned based on the corpus
of all SO threads tagged with “java” by gensim [37]. The
similarity between two sentences S1 and S2 is computed by
Eq. (1). Eq. is short for Equation.

Sim(S1, S2) = (cos(VS1
, VS2

) + 1)/2 (1)

For each sentence cluster Cs, we refine the cluster in
two phases. In the first phase, we cluster the sentences
that provide the same relevant information types. We use
DBSCAN (Density-Based Spatial Clustering of Applications

8. https://github.com/3Top/word2vec-api

with Noise) [38] as the clustering algorithm. We also add
all other sentences from the question to act as noise in the
clustering. After obtaining the clusters, we remove all the
noise sentences and obtain several non-empty clusters.

In the second phase, we use the list of clusters
Set(Cluster) and we merge them. In each merging, we re-
move the two most similar clusters Cluster1 and Cluster2
from Set(Cluster) that do not contain the same relevant
information type and merge Cluster1 and Cluster2 as
Clusternew and then add the Clusternew back to the
Set(Cluster). We stop when Set(Cluster) has only one
Cluster or we can not merge any cluster pair. The similarity
of two clusters Cluster1 and Cluster2 is the the highest sen-
tence similarity between the sentences in the two clusters.

Finally, we remove Clusters in Set(Cluster) that do
not contain all essential relevant information types for the
corresponding developer need types. Each cluster left in
the Set(Cluster) corresponds to a developer need instance.

3.4 API Role Identification

Given a developer need, we first select APIs pertinent to
the developer need as candidates. Then, we classify each
candidate API into an API role using rule-based classifiers.

Candidate APIs Selection. Based on our experience, an
API is relevant to a developer need DN in two cases: (1)
it explicitly appears in the sentence of this developer need,
e.g., java.lang.String in “How to split a string in Java”; (2) it
is not explicit in the sentence of this developer need, but its
name or the context of the API implies its relevance, e.g., the
sentence “Just use the appropriate method: String#split().”
from the answer of “How to split a string in Java” mentions
the java.lang.String.split API and its name already shows the
relevance.

Then, for a developer need DN and each API E in the
same thread, identified in Section 3.1, we calculate their
relevance score based on the location of E or the context
similarity by Eq. (2). If DN contains the API E in any
of its sentences, then Contain(DN,E) = 1; otherwise,
Contain(DN,E) = 0. The context similarity between E
and DN is calculated by Eq. (3) based on a Word2Vec [36]
model. We represent E and DN by averaging the vectors
of all words in their description text. For E, the description
text is the combination of all sentences in the thread that
mentioned the API E and all aliases of E (same as Sec-
tion 2.1); For DN , the description text is the combination of
all sentences in developer need DN . The Word2Vec model is
the same as we used for sentence clustering (see Section 3.3).
We filter out APIs with relevance score less than a threshold
T .

Rel(DN,E) = max(Contain(DN,E), Sim(DN,E)) (2)

Sim(DN,E) = (cos(VDN , VE) + 1)/2 (3)

API Role Classification. Based on the results of RQ3
(see Section 2.2.3), we know the relations between API roles
and the relevant information (see Table 4). We designed
rule-based binary classifiers for each type of API role and
use each classifier to classify each API E for developer
need DN as: (1) Context API, if E appears in a sentence
classified as one of: functionality implementation, implemented
functionality, expected result, actual result, rationale analysis,
comparison subject, used subject, current solution; (2) Currently

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Used API, if E appears in a sentence classified as one
of: suboptimal implementation, insufficient implementation; (3)
Error API, if E appears in a sentence classified as one of:
erroneous implementation, error occasion; (4) Exception Type
API, if E appears in a sentence classified as error type and
containing “Error” or “Exception” in its name; (5) Suggested
API, if E only appears in the answer.

It is worth noting that all API role classifiers assume that
the developer need type must have corresponding API roles.
If an API is classified as having multiple API roles, then
we select the final role, following the priorities: Exception
Type API > Error API > Context API > Currently Used API >
Suggested API.

3.5 Evaluation
As shown in Fig. 3, our approach contains four steps: API
identification, relevant information analysis, cluster-based
developer need extraction, and API role identification. To
verify the effectiveness of our approach, we evaluated the
main parts of our approach: developer need type classifica-
tion, relevant information classification, cluster-based devel-
oper need extraction, and API role identification. API iden-
tification mainly consists of existing methods and heuristic
rules, which are not the focus of our approach, and we
did not perform a separate evaluation for that part. The
relevant information analysis includes developer need type
classification and relevant information classification, which
we evaluated separately.

Developer Need Type and Relevant Information Clas-
sification. We obtained annotation data for developer need
types and relevant information from our empirical study
in Section 2.1 and additional annotation from Section 3.2.
As a result, we have 6,985 annotated questions for devel-
oper need classification and 14,718 annotated sentences for
relevant information classification. For each developer need
type and relevant information, we conducted 10-fold cross
validation on the annotated data. That is, we randomly
divided the annotated data into 10 folds and each time used
9 folds as the training set and the remaining one fold as
test set. We trained the 8 developer need type classifiers and
17 relevant information classifiers based on the official im-
plementation of FastText on GitHub9. We did not compare
FastText with other baselines because the purpose of this
evaluation is to show that FastText is an acceptable choice.
FastText can be replaced with a more advanced model,
based on progress in the NLP domain, in the future. The
average precision, recall and F1 for all classifiers across the
10 folds are shown in Table 7. “P” means precision and “R”
means recall, while “F1” is the harmonic mean of the two.
For the developer need type classification, precision, recall
and F1 for FastText are all above 0.8, while for relevant
information classification, they are all above 0.7 (with one
exception).

We attribute the lower classification accuracy on some
relevant information to the size of the training data, e.g., the
precision of “Comparison Scenario” is only 0.64 because it is
not essential for API comparison (i.e., it may be missing),
hence we only had 67 positive samples in the annotation
data. At the same time, we also observed that our method

9. https://github.com/facebookresearch/fastText

does not perform well when the question body is very
lengthy with vague descriptions.

Cluster-based Developer Need Extraction. We grouped
a list of sentences providing relevant information from 266
questions into 456 developer needs in Section 2.2.1. We used
this data as the ground truth for evaluating our developer
need extraction, using as input the sentences with human
annotated relevant information.

For each question, we obtained a list of sentence pairs
from its ground truth developer needs. A sentence pair
contains two sentences that share a developer need. We
compared the extracted developer needs and ground truth
developer needs on sentence pairs to compute the precision
and recall for this question. The average precision and
recall for all questions are 0.91 and 0.92 respectively, which
indicates that if the relevant information classification is
accurate enough, we can extract developer needs correctly.

API Role Identification. We randomly selected 5 devel-
oper need instances for each developer need type from the
456 developer needs identified before, in total 40 developer
need instances with 145 APIs (44 for context API, 21 for
currently used API, 64 for suggested API, 11 for error API, 5 for
error type API). We used the approach to identify the APIs
with roles for these 145 APIs. Comparing with the human
annotated ground truth, the average precision and recall
for identification of APIs roles are 77.5% and 69.0%. The
precision and recall for context API are 73.1% and 86.4%; for
suggested API, 89.7% and 54.7%; for currently used API 61.1%
and 52.5%; for error API 73.3% and 100%; for error type API
100% and 100%. The lower accuracy for suggested API and
currently used API roles is caused by the fact that APIs with
these two roles often appear in code snippets (a limitation
of Baker). Another problem is that the mention of the API in
the text is often a common word and we did not recognize it
or link it correctly to its qualified name. Identifying the API
mentions in SO posts more accurately is not the focus here,
but subject of future work.

Summary. Our approach can accurately (83.6% precision
and 85.4% recall, in average) identify developer needs,
relevant information types, and API roles, in SO threads.

4 LARGE-SCALE SO QUESTION ANALYSIS

The motivation for our research is that many SO posts
contain multiple developer needs, hence the need for our
detectors. We used our tool to extract developer needs from
213,959 SO threads, as follows: (1) tagged with “java”; (2)
created time is before March 2016; (3) has at least one
accepted answer or one answer with at least one vote. This
particular SO data was also used in previous research on SO
question retrieval [19].

Our approach extracted developer needs from 83.6% of
the questions (178,868 of 213,959). It identified 337,267 de-
veloper needs, 66,074 for functionality implementation, 37,441
for non-functionality improvement, 70,881 for functional im-
provement, 68,419 for error handling, 47,233 for rationale analy-
sis, 24,402 for API comparison, 11,570 for alternative solution
and 11,247 for API usage learning. Functionality implemen-
tation is the most common need, followed by functional
improvement and error handling, which is consistent with

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 7
Evaluation of Developer Need Type and Relevant Information Classification

Developer Need Type
Category P R F1 Category P R F1

Functionality Implementation 0.90 0.95 0.92 Non-Functional Improvement 0.91 0.97 0.94
Functional Improvement 0.89 0.94 0.91 Error Handling 0.92 0.97 0.95

Rationale Analysis 0.91 0.96 0.93 API Comparison 0.93 0.99 0.96
Alternative Solution 0.91 0.98 0.94 API Usage Learning 0.84 0.98 0.91

Relevant Information
Desired Functionality 0.78 0.94 0.85 Implemented Functionality 0.80 0.95 0.87

Suboptimal Implementation 0.74 0.95 0.83 Improvement 0.84 0.95 0.89
Expecting Result 0.75 0.90 0.81 Actual Result 0.82 0.95 0.88

Insufficient Implementation 0.78 0.94 0.85 Error Type 0.82 0.97 0.89
Error Occasion 0.74 0.95 0.83 Erroneous Implementation 0.80 0.99 0.88

Rationale Question 0.81 0.90 0.84 Comparison Subject 0.93 0.99 0.96
Comparison Scenario 0.64 0.88 0.73 Current Solution 0.90 0.98 0.94

Alternative Description 0.78 0.98 0.87 Used Subject 0.74 0.92 0.82
Usage Scenario 0.72 0.90 0.79

our intuition. Developers often ask for help on SO for im-
plementing specific functionality or debugging an existing
implementation. As opposed to functionality implementation,
API usage learning is the least common. The reason may
be that most of the questions on SO are task-oriented. The
problem for developers is that they do not know which API
to use, not how to use a specific API.

For 106,026 questions with multiple developer needs, we
found that in 66.4% of the questions (70,387 of 106,026), at
least one sentence provides relevant information for differ-
ent developer needs at the same time. We observed two
patterns for describing multiple developer needs in a ques-
tion. One is sequential, where developers describe different
developer needs in turn, and the other is interrelated where
multiple needs are mentioned in parallel.

Further, 66.3% of the developer needs are not included
in the sentences from the title. For questions with one
developer need, the developer needs from 63.5% questions
do not contain the sentences from title. Because sometimes
the title is too vague and low quality and does not reflect
the developer needs of the developer in detail, e.g., in the
question with title “Simple data thread question - java” 10.
For questions with multiple developer needs, only 9.5% of
the questions contain sentences in the title for describing
all needs. The other 90.5% questions contain at least one
developer need that is not described in the title. Sometimes
it is hard to express multiple developer needs in a short title,
which leads to some developer needs being described in the
body of a question only, e.g., the developer need “ I also
want to check if the string has ’-’ in it.” is not reflected by
the title “How to split a string in Java” of the question11.

We conclude that a large proportion of SO threads refer
to multiple developer needs and in 90% of these cases,
titles do not describe all the needs. This observation has
implications on using question titles when retrieving related
questions, as they may have insufficient information.

5 RELEVANT QUESTION RETRIEVAL

To show the usefulness of our taxonomy and automated
identification of developer needs, we design an approach

10. https://stackoverflow.com/questions/4719146
11. https://stackoverflow.com/questions/3481828

for the retrieval of API-related questions for a given query,
based on developer needs.

5.1 Retrieval Approach
The main idea of our retrieval approach is that we match
the user’s query with the question at the granularity of
developer needs, not just the title of the question or the
whole question body. The retrieval approach has two parts,
an offline part for developer needs extraction, and an online
part to retrieve a set of questions related the given query.

For the offline part, we first collect questions to be
retrieved as a question corpus and extract developer needs
from questions in the corpus. At the same time, we train
a TF-IDF metric using gensim [37] based on the question
corpus. Each question is treated as a document and pre-
processed in the same way as described in Section 3.2. The
TF-IDF metric measures the importance of a word in the
corpus.

For the online part, we define the relevance between
a given query q in natural language and an API-related
question Q, using the extracted developer needs, as a linear
combination of two similarity measures, (see Eq. 4). First,
we calculate the relevance between the query q and each
developer need DN (i.e., Simtext(q,DN)) in the question
Q, and select the DN most relevant to q. Then we use
the relevance between q and DN as the relevance between
q and Q. When calculating the relevance between q and
DN , both text similarity and API similarity are considered
and weighted by two weights W1 and W2 respectively (See
Eq. 4).

We convert q and DN into bags of words Wq and
WDN respectively after stop word removal and stem-
ming. An asymmetric text similarity Simtext(q → DN)
between the query q and the developer need DN is
computed by Eq. 5. Sim(wq,WDN) is computed as
maxwDN∈WDN

sim(wq, wDN) where sim(wq, wDN) is the
cosine similarity of two vectors of wq and wDN normalized
to the range between 0 and 1. That is, for a word wq in
the query q, we select a word from DN that has the closest
semantics and use the similarity score between wq and the
selected word as the similarity between wq and DN . The
importance of each word wq in the query q is different.
We use the TF-IDF value to measure the importance of wq .

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Intuitively, the most important word in the query should
carry more weight when calculating relevance.

The symmetric text similarity Simtext(q,DN) between
the query q and the developer need DN is computed as
Eq. 6, which is the average of the two asymmetric text
similarities between q and the developer need DN .

The API similarity is calculated with Eq. 2 using the
number of APIs that appear in the query q and the developer
need DN at the same time. APIq is the set of APIs identified
from the query q and APIDN is the set of APIs involved in
DN .

Rel(q,Q) = max
DN∈Q

W1 ∗Simtext(q,DN)+W2 ∗SimAPI(q,DN) (4)

Simtext(q → DN) =

∑
wq∈Wq

TFIDF (wq) ∗ Sim(wq ,WDN)∑
wq∈Wq

TFIDF (wq)
(5)

Simtext(q,DN) = (Simtext(q → DN) + Simtext(DN → q))/2 (6)

SimAPI(q,DN) = |APIq ∩APIDN |/|APIq | (7)

Based on the relevance between the query and each
question in the question corpus, the questions in the corpus
are ranked and the top-N ranked questions are returned as
the relevant questions for the query.

The similarity measures in our approach (Eq. 5 and Eq. 6)
are related to the ones used by AnswerBot [19], a tool for the
retrieval and summarization of SO posts. The measures used
by AnswerBot directly compute the text similarity between
the query and the question represented by the title as the
score for ranking. In contrast, our approach uses the devel-
oper needs, not the title of the question. Further, AnswerBot
uses IDF as the weight in Eq. 6 and we use TF-IDF as the
weight, because the developer needs are usually longer than
the title and important word may have higher frequency.
In addition, we also use the API-similarity, compared to
AnswerBot, that only uses text similarity, because we focus
on API related question.

5.2 Evaluation

We compare our retrieval approach with AnswerBot [19]
and we refer to it as baselinetitle.

We used the implementation of baselinetitle from the
replication package12 of AnswerBot. Since we want to com-
pare the retrieval using the complete question (title and
body), not just the title, we have modified baselinetitle and
obtained its variant baselinefull, which uses the title and
the body of a question together, when calculating similarity
to a query.

Data. We obtained the 100 SO questions that were used
to evaluate AnswerBot from the authors’ replication pack-
age. Then we manually removed questions that were not
API-related and obtained 64 for our evaluation. AnswerBot
handles any type of question, as it relies on textual sim-
ilarity only, whereas our approach focuses on API-related
questions only. We used the same 213,959 questions from
Section 4 as the retrieval corpus. This corpus does not
include the 64 questions used as retrieval tasks. We further

12. https://github.com/XBWer/AnswerBot.git

TABLE 8
Top@K Accuracy And MRR of Our Approach And the Baseline

Approaches In Relevant Question Retrieval

Approach Top@1 Top@5 Top@10 MRR
Baselinetitle 0.484 0.797 0.828 0.617
Baselinefull 0.438 0.734 0.797 0.568

Our Approach 0.625 0.828 0.859 0.698

used the developer needs extracted from these questions
(see Section 4) for retrieval with our approach.

Protocol. For each of these 64 retrieval tasks, we used the
title of the question as the query and retrieved the top 10
results using baselinetitle, baselinefull, and our approach.
We merged the search results for the same task and removed
duplicate questions. Then we invited 8 participants (MS
students with more than three years of Java development
experience each) to assess the relevance of the results. All
results retrieved for a task were assessed by the same two
participants independently. When assessing the retrieved
results for a task, participants were asked to read the SO
threads for the task carefully to ensure they understood the
task. They judged the relevance of each retrieved question
to the task, i.e., whether the retrieved question is a hit for the
task. Note that a related question does not need to exactly
match the task. All retrieval results for the same task were
shuffled before assessment and participants did not know
which approach retrieved the result. If the assessment of two
annotators for the same retrieved result was inconsistent,
a third annotator was assigned to produce an additional
judgment, and the final annotation was determined based
on majority. The agreement between the judgments was
substantial (i.e., Cohen’s Kappa coefficient [24] of 0.684).

Results. Based on the judgments we compute the Top@1,
Top@5, and Top@10 accuracy measures, which gives the
average of how many results returned in the top 1, 5, or
10 (respectively) are relevant. We also use MRR (Mean Re-
ciprocal Rank) [39] to compare the approaches, as it reflects
the ranking of the first relevant questions in the returned
results. These measures are used by previous work that
evaluated AnswerBot and are commonly used measures in
information retrieval. In each case, higher values represent
a better performance. The measures are shown in Table 8.
Our approach achieves the best results for all metrics, while
baselinefull the worst. We argue that the main reason
explaining the results is that, although the question bodies
contain useful information, they also contain a lot of noise,
which hampers the retrieval. Using the content of the ques-
tion body did not bring improvement, especially when the
query is a short title. Our approach uses the developer needs
extracted from questions, which arguably are less noisy than
other information in the question bodies.

5.3 User Study
In order to further show how our approach can help de-
velopers, we conduct a user study by asking participants to
complete programming tasks with the help of our approach
and the help of a baseline.

Data. We selected 6 Java programming exercises shown
in Table 9 from Practice-it13 as the tasks for participants

13. https://practiceit.cs.washington.edu/

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 9
Tasks for User Study

ID Task Name Summary Group
T1 plusScores Reads students’ score records and calculate the proportion of plus scores for each student TA
T2 readEntireFile Reads a file and returns the entire text contents of that file as a String TA

T3 mostCommonNames Reads a file that contains several names in each line and find names that occurs the most
frequently in each line of that file TA

T4 inputStats Reads a file and report various statistics about the file’s text, e.g., the number of lines in
the file, the longest line TB

T5 removeDuplicates Reads an ArrayList of Strings and eliminates any duplicates from this list TB
T6 countUnique Reads List of integers and returns the number of unique integer values in the list by using Set TB

to complete. Those tasks cover different domains, such as
string operations, file reading and writing, lists, and sets. We
ensure that some JDK APIs are involved in each program-
ming exercise solutions. We randomly divided the 6 tasks
into two roughly equivalent groups (TA and TB) according
to difficulty.

Our Approach and Baseline. We only use baselinetitle
from Section 5.2 as the baseline, because the experiment
showed that it outperforms baselinefull. We developed web
pages for both our approach and the baseline. According to
the query provided by the user, the web pages will display
the titles of the top-100 most relevant questions obtained
by our approach or the baseline. We show a summary for
each question in the search results. For our approach, the
summary of a question is the developer need most relevant
to the query in each question. For the baseline, the summary
of a question is the first 200 characters of the question body.

Protocol. We asked 10 Master students with 1–3 years
of Java programming experience to participate in the study.
We conducted a pre-experiment survey on their Java pro-
gramming experience and divided them into two roughly
equivalent groups (GA and GB) based on the survey. For
GA, participants complete TA with the baseline and TB with
our approach. For GB, participants complete TB with the
baseline and TA with our approach. When completing a
task, participants must submit the complete code for each
task and the code is reviewed by the authors to confirm
its correctness. Participants can write their own queries and
search multiple times with our approach or the baseline.
We will record the time they need to complete the task. If
a participant does not complete the task within 15 minutes,
the participant will stop and the completion time will be
recorded as 15 minutes.

After the completion of their tasks, the participants were
interviewed and were asked to describe how they used the
SO retrieval tools and what issues they encountered, if any.

Results. We received 54 solutions that were completed
on time. We checked the participants’ submitted code for
each task and evaluated their correctness by comparing with
the ground truth solution. From a total of 54 submitted
solutions, we received 6 incorrect solutions (3 using our
approach and 3 using the baseline), mainly because partic-
ipants did not understand the task correctly. We removed
those incorrect solutions from the following analysis.

Fig. 4 shows the participants’ completion time using our
approach and the baseline. Using our approach, participants
completed the tasks 27.0% faster (378s vs. 518s on average)
compared to the baseline. In the six tasks, except the T4,
using our approach is faster than using the baseline. T4 is
an exception is mainly because some useful questions for

Fig. 4. Completion Time for Our Approach and Baseline

T4 rank higher when using the baseline. We used Welch’s t-
test [40] for verifying the statistical significance of the differ-
ence between our approach and the baseline on completion
time. The difference is not statistically significant (p = 0.06).

The feedback we received from participants shows that
when using the baseline they usually spent a lot of time
to check whether the questions shown in the search results
are relevant to their query. They often find that it does not
meet their needs after reading the description of a question
in detail. Conversely, the summary of the developer needs
displayed by our approach can help them judge whether the
question is relevant faster without reading the question in
detail.

We conclude that using our approach, which retrieves
questions based on developer needs, decreases the amount
of time developers need for completing programming tasks.

5.4 Threats to Validity
A threat to the internal validity is related to the subjective
judgment of the annotators during data annotation. To
alleviate this threat, we follow commonly used data analysis
principles, such as, multiple annotators, conflict resolution,
and reporting agreement coefficients, where appropriate.
Another threat to the internal validity of the user study is

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

related to individual differences between the 10 students.
To alleviate this threat, we conducted a pre-experiment
survey about participants’ Java programming experience
and divided them into two roughly equivalent groups based
on the survey. The 6 tasks were divided into two roughly
equivalent groups, according to difficulty as well. We con-
ducted a crossover study and adopted a balanced treatment
distribution for the groups. Another threat is related to the
prior knowledge of students. Depending on the knowledge
that students have, they may be able to solve tasks without
further searching with a tool. To alleviate this threat, we
asked participants to search at least once when completing
a task with our approach or the baseline.

A threat to the external validity of our evaluation and
user study is related to the limited number of subjects
(e.g., questions, tasks, and participants) considered in the
evaluation and user study. The evaluation and user study
may not generalize to broader development scenarios.

6 DISCUSSION

Discussions on SO are often rich in information and can
be quite complex. Existing research has treated the entire
thread/question as plain text and generated coarse-grained
classifications. We posit that by analyzing the developer
needs with relevant information and API roles involved in
SO discussions, we can achieve a deeper understanding of
the semantics of SO discussions. This is a crucial step to-
wards converting SO discussions from unstructured natural
language into structured knowledge enabling us to make
better use of the information contained in these discussions.

Multiple applications are possible using such structured
information. Section 5 has already shown one of the possible
applications, i.e., retrieving API-related questions based on
developer needs. Other possible applications are as follows.

(1) Supplementing API reference documentation with
real developer needs and corresponding solutions. The
scenario-oriented knowledge about the same API is gath-
ered according to the developer needs. Developers can
explore scenario-oriented knowledge about an API based
on different aspects, such as the developer need types, API
roles.

(2) Relevant SO question recommendation for a given
question, with relevance established based on shared
developer needs and API roles. Developers can investigate
relevant SO questions according to their interests. For exam-
ple, for a functionality implementation question, developers
may be concerned about API comparison questions compar-
ing the suggested APIs with other alternative APIs or error
handling questions involving the suggested APIs as error
APIs.

(3) Explaining API recommendation results based on
a query, highlighting the developer need related to the
query and the recommended APIs. Developers can under-
stand the relationship between a recommended API and the
query based on the developer need provided, so as to select
the appropriate API more accurately and quickly.

7 RELATED WORK

Previous research has categorized Stack Overflow content.
Treude et al. [4] identified ten categories of SO questions:

i.e., how-to, discrepancy, environment, error, decision help, con-
ceptual, review, non-functional, novice, noise. Nasehi et al. [41]
described SO question types along two dimensions: (1) the
main technology or construct that the question revolves
around and usually can be inferred from the question tags;
(2) the main concerns of the questioners and what they
wanted to solve (i.e., Debug/Corrective, Need-To-Know, How-
To-Do-It, and Seeking-Different-Solution). Allamanis et al. [16]
used topic modeling to uncover question categories and
identified five question categories: Does not work, How/Why
something works, Implement something, Way of using, and
Learning. Beyer et al. [18] identified eight SO question types:
How to...?, What is the Problem...?, Error...?, Is it possible...?,
Why...?, Better Solution...?, Version...?, and Device...?. In a
similar study, Rosen et al. [15] manually investigated 384
mobile-related posts and categorized them into three main
categories: How, What, and Why.

These studies tend to gloss over the complexity of SO
questions, in particular the fact that they may express multi-
ple concerns of a developer. To address this gap, we propose
a fine-grained taxonomy of developer needs in SO posts,
together with the information needed to express them, and
the roles of the APIs in pertinent to the needs.

In addition, several studies have analyzed the discus-
sions around domain-specific topics on Stack Overflow, such
as security [14], mobile development [15], Android test-
ing [10], requirements engineering [11], and configuration-
as-code [13]. In contrast, our focus is on API-related SO
questions, orthogonal to the application domain.

Many researchers have proposed applications based on
Stack Overflow data to help developers, e.g., by building a
question-answering system based on question-and-answer
pairs [42], by integrating Stack Overflow post recommen-
dations into the IDE [43] and through API recommenda-
tions [44].

In addition to AnswerBot [19], several approaches were
previously proposed for retrieving information from Stack
Overflow [45], [46], [47], [48]. These approaches focus on
retrieving entire posts (as opposed to related questions) and
ignore the explicit developer needs.

Other studies have targeted mining knowledge from
Stack Overflow. For example, Wong et al. [49] mined code
snippets and their descriptions from Stack Overflow to sup-
port comment generation for similar code snippets. Zhang et
al. [50] developed BDA (Bing Developer Assistant) to recom-
mend sample code mined from GitHub and Stack Overflow.
Treude et al. [51] used a machine-learning model to identify
insight sentences in Stack Overflow posts that could be
used to augment API reference documentation. Xu et al. [19]
proposed AnswerBot to summarize the answers to a ques-
tion. Uddin et al. [52] developed a tool, Opiner, to present
summaries of opinions about an API from Stack Overflow.
They focus on extracting API-related opinion sentences from
Stack Overflow posts and summarizing them into several
aspects (e.g., performance, usability). Unlike them, we focus
on analyzing the developer needs in the questions and the
role that the API plays in different developer needs.

8 CONCLUSION AND FUTURE WORK

Our new taxonomy, focuses on API-related questions in
Stack Overflow and defines fine-grained developer needs

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

and pertinent information, complementing existing frame-
works, while addressing their gaps. API-related SO ques-
tions describe such developer needs with specific types of
information, while the pertinent APIs play various roles in
the answers. These aspects are also captured by our new
taxonomy.

We found that the fine-grained developer needs and
relevant information, together with API roles in SO threads,
can be identified automatically with high accuracy, using
a combination of heuristic-based and supervised learning
approaches. We argue that these elements capture the es-
sential information of SO questions. A practical application
of our taxonomy is the automated retrieval of SO ques-
tions, based on the automatically extracted developer needs
and API roles. A comparison with state-of-the-art baseline
approaches, which use textual similarities, supports our
argument.

In the future we will focus on improving our tools
and the retrieval approaches, as well providing additional
API knowledge services based on the identification of API-
related developer needs in Stack Overflow.

9 DATA AVAILABILITY

All the data used in the empirical studies is included in the
replication package [26].

REFERENCES

[1] G. Uddin, B. Dagenais, and M. P. Robillard, “Temporal analysis
of API usage concepts,” in 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. IEEE
Computer Society, 2012, pp. 804–814.

[2] M. P. Robillard and R. DeLine, “A field study of API learning
obstacles,” Empir. Softw. Eng., vol. 16, no. 6, pp. 703–732, 2011.

[3] W. Maalej and M. P. Robillard, “Patterns of knowledge in API
reference documentation,” IEEE Trans. Software Eng., vol. 39, no. 9,
pp. 1264–1282, 2013.

[4] C. Treude, O. Barzilay, and M. D. Storey, “How do programmers
ask and answer questions on the web?” in 33rd International
Conference on Software Engineering, ICSE 2011, May 21-28, 2011,
Waikiki, Honolulu, HI, USA. ACM, 2011, pp. 804–807.

[5] M. Nassif, C. Treude, and M. P. Robillard, “Automatically catego-
rizing software technologies,” IEEE Trans. Software Eng., vol. 46,
no. 1, pp. 20–32, 2020.

[6] C. Treude, M. P. Robillard, and B. Dagenais, “Extracting devel-
opment tasks to navigate software documentation,” IEEE Trans.
Software Eng., vol. 41, no. 6, pp. 565–581, 2015.

[7] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in
collocated software development teams,” in 29th International
Conference on Software Engineering, ICSE 2007, May 20-26, 2007,
Minneapolis, MN, USA. IEEE Computer Society, 2007, pp. 344–
353.

[8] R. P. L. Buse and T. Zimmermann, “Information needs for software
development analytics,” in 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. IEEE
Computer Society, 2012, pp. 987–996.

[9] S. Beyer, C. Macho, M. Pinzger, and M. D. Penta, “Automatically
classifying posts into question categories on stack overflow,” in
26th Conference on Program Comprehension, ICPC 2018, May 27-28,
2018, Gothenburg, Sweden, 2018, pp. 211–221.

[10] I. K. Villanes, S. M. Ascate, J. Gomes, and A. C. Dias-Neto, “What
are software engineers asking about android testing on stack
overflow?” in 31st Brazilian Symposium on Software Engineering,
SBES 2017, September 20-22, 2017, Fortaleza, CE, Brazil, 2017, pp.
104–113.

[11] Z. S. H. Abad, A. Shymka, S. Pant, A. Currie, and G. Ruhe,
“What are practitioners asking about requirements engineering?
an exploratory analysis of social q&a sites,” in 24th IEEE Interna-
tional Requirements Engineering Conference, RE 2016, September 12-
16, 2016, Beijing, China, 2016, pp. 334–343.

[12] S. Beyer and M. Pinzger, “Grouping android tag synonyms on
stack overflow,” in 13th International Conference on Mining Software
Repositories, MSR 2016, May 14-22, 2016, Austin, TX, USA, 2016,
pp. 430–440.

[13] A. Rahman, A. Partho, P. Morrison, and L. Williams, “What
questions do programmers ask about configuration as code?” in
4th International Workshop on Rapid Continuous Software Engineering,
RCoSE@ICSE 2018, May 29, 2018, Gothenburg, Sweden, 2018, pp. 16–
22.

[14] X. Yang, D. Lo, X. Xia, Z. Wan, and J. Sun, “What security questions
do developers ask? A large-scale study of stack overflow posts,” J.
Comput. Sci. Technol., vol. 31, no. 5, pp. 910–924, 2016.

[15] C. Rosen and E. Shihab, “What are mobile developers asking
about? A large scale study using stack overflow,” Empir. Softw.
Eng., vol. 21, no. 3, pp. 1192–1223, 2016.

[16] M. Allamanis and C. A. Sutton, “Why, when, and what: analyzing
stack overflow questions by topic, type, and code,” in 10th Working
Conference on Mining Software Repositories, MSR 2013, May 18-19,
2013, San Francisco, CA, USA, 2013, pp. 53–56.

[17] S. Beyer, C. Macho, M. Di Penta, and M. Pinzger, “Analyzing the
relationships between android API Classes and Their References
on Stack Overflow,” Technical Report. University of Klagenfurt,
University of Sannio, Tech. Rep., 2017.

[18] S. Beyer and M. Pinzger, “A manual categorization of android app
development issues on stack overflow,” in 30th IEEE International
Conference on Software Maintenance and Evolution, ICSME 2014,
September 29 - October 3, 2014, Victoria, BC, Canada, 2014, pp. 531–
535.

[19] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: automated gen-
eration of answer summary to developersź technical questions,”
in 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, October 30 - November 03, 2017, Urbana, IL,
USA, 2017, pp. 706–716.

[20] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, pp. 101 – 77, 2006.

[21] M. P. Robillard and C. Treude, “Understanding wikipedia as
a resource for opportunistic learning of computing concepts,”
in Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, SIGCSE 2020, March 11-14, 2020, Portland, OR,
USA, J. Zhang, M. Sherriff, S. Heckman, P. A. Cutter, and A. E.
Monge, Eds. ACM, 2020, pp. 72–78.

[22] C. Lima and A. C. Hora, “What are the characteristics of popular
APIs? A large-scale study on java, android, and 165 libraries,”
Softw. Qual. J., vol. 28, no. 2, pp. 425–458, 2020.

[23] StackOverflow, “Stack overflow data dump version from march 3,
2019,” https://archive.org/download/stackexchange/.

[24] M. L. McHugh, “Interrater reliability: the kappa statistic,” Bio-
chemia medica: Biochemia medica, vol. 22, no. 3, pp. 276–282, 2012.

[25] (2020) Beautifulsoup. [Online]. Available: https://www.crummy.
com/software/BeautifulSoup/bs4/doc/

[26] (2020) Replication package. [Online]. Available: https:
//developneed.github.io/

[27] J. C. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Issues in using
students in empirical studies in software engineering education,”
in 9th IEEE International Software Metrics Symposium, METRICS
2003, September 3-5, 2003, Sydney, Australia. IEEE Computer
Society, 2003, p. 239.

[28] R. Feldt, T. Zimmermann, G. R. Bergersen, D. Falessi, A. Jedl-
itschka, N. Juristo, J. Münch, M. Oivo, P. Runeson, M. J. Shepperd,
D. I. K. Sjøberg, and B. Turhan, “Four commentaries on the use
of students and professionals in empirical software engineering
experiments,” Empir. Softw. Eng., vol. 23, no. 6, pp. 3801–3820, 2018.

[29] M. Svahnberg, A. Aurum, and C. Wohlin, “Using students as
subjects - an empirical evaluation,” in 2nd International Symposium
on Empirical Software Engineering and Measurement, ESEM 2008,
October 9-10, 2008, Kaiserslautern, Germany. ACM, 2008, pp. 288–
290.

[30] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API docu-
mentation,” in 36th International Conference on Software Engineering,
ICSE 2014, May 31 - June 07, 2014, Hyderabad, India, 2014, pp. 643–
652.

[31] D. Ye, Z. Xing, C. Y. Foo, J. Li, and N. Kapre, “Learning to extract
API mentions from informal natural language discussions,” in
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2016, October 2-7, 2016, Raleigh, NC, USA. IEEE Computer
Society, 2016, pp. 389–399.

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3120203, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

[32] J. Sun, Z. Xing, R. Chu, H. Bai, J. Wang, and X. Peng, “Know-
how in programming tasks: From textual tutorials to task-oriented
knowledge graph,” in IEEE International Conference on Software
Maintenance and Evolution, ICSME 2019, September 29 - October 4,
2019, Cleveland, OH, USA. IEEE, 2019, pp. 257–268.

[33] D. Fucci, A. Mollaalizadehbahnemiri, and W. Maalej, “On us-
ing machine learning to identify knowledge in API reference
documentation,” in 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, August 26-30, 2019, Tallinn,
Estonia, 2019, pp. 109–119.

[34] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and
T. Mikolov, “Fasttext.zip: Compressing text classification models,”
CoRR, vol. abs/1612.03651, 2016.

[35] H. Nakayama, T. Kubo, J. Kamura, Y. Taniguchi, and X. Liang,
“doccano: Text annotation tool for human,” 2018, software
available from https://github.com/doccano/doccano. [Online].
Available: https://github.com/doccano/doccano

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in 27th Annual Conference on Neural Information
Processing Systems 2013, NIPS 2013, December 5-8, 2013, Lake Tahoe,
Nevada, USA, 2013, pp. 3111–3119.

[37] (2020) gensim. [Online]. Available: https://radimrehurek.com/
gensim/

[38] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in 2nd International Conference on Knowledge Discovery and
Data Mining, KDD 1996, Portland, Oregon, USA, 1996, pp. 226–231.

[39] C. D. Manning, H. Schütze, and P. Raghavan, Introduction to
information retrieval. Cambridge university press, 2008.

[40] B. L. Welch, “The generalization of student’s problem when
several different population variances are involved,” Biometrika,
vol. 34, no. 1/2, pp. 28–35, 1947.

[41] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a
good code example?: A study of programming q&a in stackover-
flow,” in 28th IEEE International Conference on Software Maintenance,
ICSM 2012, September 23-28, 2012, Trento, Italy. IEEE Computer
Society, 2012, pp. 25–34.

[42] D. Wu, X. Jing, H. Chen, X. Zhu, H. Zhang, M. Zuo, L. Zi,
and C. Zhu, “Automatically answering api-related questions,”
in 40th International Conference on Software Engineering: Companion
Proceeedings, ICSE 2018, May 27 - June 03, 2018, Gothenburg, Sweden,
2018, pp. 270–271.

[43] C. Greco, T. Haden, and K. Damevski, “Stackintheflow: behavior-
driven recommendation system for stack overflow posts,” in 40th
International Conference on Software Engineering: Companion Pro-
ceeedings, ICSE 2018, May 27 - June 03, 2018, Gothenburg, Sweden,
2018, pp. 5–8.

[44] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “API method
recommendation without worrying about the task-api knowledge
gap,” in 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, September 3-7, 2018, Montpellier,
France, 2018, pp. 293–304.

[45] S. Gottipati, D. Lo, and J. Jiang, “Finding relevant answers in
software forums,” in 26th IEEE/ACM International Conference on
Automated Software Engineering ,ASE 2011, November 6-10, 2011,
Lawrence, KS, USA, 2011, pp. 323–332.

[46] T. Ye, B. Xie, Y. Zou, and X. Chen, “Interrogative-guided re-ranking
for question-oriented software text retrieval,” in 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE
2014, September 15-19, 2014, Vasteras, Sweden, 2014, pp. 115–120.

[47] L. B. L. de Souza, E. C. Campos, and M. de Almeida Maia,
“Ranking crowd knowledge to assist software development,” in
22nd International Conference on Program Comprehension, ICPC 2014,
June 2-3, 2014, Hyderabad, India, 2014, pp. 72–82.

[48] E. C. Campos, L. B. L. de Souza, and M. de Almeida Maia,
“Searching crowd knowledge to recommend solutions for API
usage tasks,” J. Softw. Evol. Process., vol. 28, no. 10, pp. 863–892,
2016.

[49] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question
and answer sites for automatic comment generation,” in 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2013, November 11-15, 2013, Silicon Valley, CA, USA, 2013,
pp. 562–567.

[50] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu,
“Bing developer assistant: improving developer productivity by
recommending sample code,” in 24th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/SIGSOFT FSE 2016, November
13-18, 2016, Seattle, WA, USA. ACM, 2016, pp. 956–961.

[51] C. Treude and M. P. Robillard, “Augmenting API documentation
with insights from stack overflow,” in 38th International Conference
on Software Engineering, ICSE 2016, May 14-22, 2016, Austin, TX,
USA. ACM, 2016, pp. 392–403.

[52] G. Uddin and F. Khomh, “Automatic summarization of API re-
views,” in 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, October 30 - November 03, 2017,
Urbana, IL, USA. IEEE Computer Society, 2017, pp. 159–170.

Authorized licensed use limited to: University of Adelaide. Downloaded on August 04,2022 at 14:31:52 UTC from IEEE Xplore. Restrictions apply.

	API-related developer information needs in Stack Overflow
	Citation
	Author

	API-Related Developer Information Needs in Stack Overflow

