Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

2-2024

Mutation analysis for evaluating code translation

Giovani GUIZZO
Jie M. ZHANG
Federica SARRO

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Mark HARMAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Software Engineering Commons

Citation

GUIZZO, Giovani; ZHANG, Jie M.; SARRO, Federica; TREUDE, Christoph; and HARMAN, Mark. Mutation
analysis for evaluating code translation. (2024). Empirical Software Engineering. 29, (1), 1-23.
Available at: https://ink.library.smu.edu.sg/sis_research/8780

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Empirical Software Engineering (2024) 29:19
https://doi.org/10.1007/5s10664-023-10385-w

®

Check for
updates

Mutation analysis for evaluating code translation

Giovani Guizzo'® - Jie M. Zhang? - Federica Sarro’ - Christoph Treude® -
Mark Harman'#

Accepted: 14 August 2023 / Published online: 6 December 2023
© The Author(s) 2023

Abstract

Source-to-source code translation automatically translates a program from one programming
language to another. The existing research on code translation evaluates the effectiveness
of their approaches by using either syntactic similarities (e.g., BLEU score), or test exe-
cution results. The former does not consider semantics, the latter considers semantics but
falls short on the problem of insufficient data and tests. In this paper, we propose MBTA
(Mutation-based Code Translation Analysis), a novel application of mutation analysis for
code translation assessment. We also introduce MTS (Mutation-based Translation Score),
a measure to compute the level of trustworthiness of a translator. If a mutant of an input
program shows different test execution results from its translated version, the mutant is
killed and a translation bug is revealed. Fewer killed mutants indicate better code translation.
MBTA is novel in the sense that mutants are compared to their translated counterparts, and
not to their original program’s translation. We conduct a proof-of-concept case study with
612 Java-Python program pairs and 75,082 mutants on the code translators TransCoder and
j2py to evaluate the feasibility of MBTA. The results reveal that TransCoder and j2py fail to
translate 70.44% and 70.64% of the mutants, respectively, i.e., more than two-thirds of all
mutants are incorrectly translated by these translators. By analysing the MTS results more
closely, we were able to reveal translation bugs not captured by the conventional comparison
between the original and translated programs.

Keywords Mutation testing - Source to source translation - Code translation

Communicated by: Jingiu Yang

The work of G. Guizzo, F. Sarro, and M. Harman at UCL is supported by the ERC Advanced fellowship
grant EPIC (741278).

X Giovani Guizzo
giovaniguizzo @gmail.com

B Federica Sarro
f.sarro@ucl.ac.uk

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10385-w&domain=pdf
http://orcid.org/0000-0001-5361-2973

19 Page2o0f23 Empirical Software Engineering (2024) 29:19

1 Introduction

Converting a software program from a given programming language into another is often
needed by companies that need to migrate their systems to a more recent/popular technology
in order to reduce the cost of maintenance in the long run. Furthermore, some companies may
require software in a specific programming language in order to seamlessly integrate it into
their ecosystem. However, this task poses a series of technical challenges, such as data types
conversion, paradigm incompatibilities, floating point precision, and many more (Terekhov
and Verhoef 2000) that can rapidly increase the upfront cost, especially when done manually.
Terekhov and Verhoef (2000) report in their study what they called “catastrophic failures”:
Three companies that went bankrupt, two departments of large technology companies that
were dismantled, and an enterprise that lost US$50 million, all because of failed language
conversion attempts.

Automating code translation among different languages is thus needed to reduce both the
cost and risks of such kinds of projects. Source-to-source translators (also known as tran-
spilers or transcompilers) are tools that can provide this level of automation. These translators
can automatically translate source code from one programming language to another (Roziere
etal. 2020). Automatic code translation has recently received more attention from researchers,
and the state-of-the-art has significantly improved (Aggarwal et al. 2015; Chen et al. 2018b;
Karaivanov et al. 2014; Nguyen et al. 2013; Roziere et al. 2020) since its first applica-
tions (Waters 1988; Yasumatsu and Doi 1995). Recent advances in code translation include
statistical translation (Karaivanov et al. 2014; Nguyen et al. 2013), conventional natural lan-
guage machine translation techniques (Aggarwal et al. 2015), and deep neural networks (Chen
et al. 2018b; Roziere et al. 2020).

One of the most widely used methods of evaluating whether source code is correctly
translated to another programming language is the use of Bilingual Evaluation Understudy
(BLEU) (Papineni et al. 2002), a measure of syntactic similarities taken from human language
machine translation. However, BLEU only evaluates the syntactical correctness of a transla-
tion, which is hardly sufficient to assess whether two programs are semantically equivalent.
Programs with different syntax might have the same semantics, and different semantics can
be derived from similar syntax.

Recently, Roziere et al. (2020) proposed to use test cases to assess the correctness of a
translated program in what they called Computational Accuracy (CA). The idea is simple,
if a translated program produces the same outputs as the source program using the same set
of test cases, then the CA result is high and they deem the translation successful. Although
useful for semantic faithfulness assessment, this approach has two shortcomings: First, the
assessment is limited to the specific input program itself, which may overfit the training
and test data, leading to biased evaluation results of code translators; second, the adopted
test suite might be insufficient in exposing the difference between the input program and its
translation, yet test suite enhancement remains no easy task (Barr et al. 2015).

Therefore, when using current state-of-the-art techniques, the translation assessment cri-
teria can suffer from various limitations in judging the correctness and trustworthiness of
the translated code. An incorrectly translated program assessed as correct may incur human
effort to fix the translation bugs that are eventually revealed or, even worse, such bugs may
not be revealed in a timely manner. Hence, there is a demand for additional measurements
to complement existing ones, to better assess the trustworthiness of code translations.

We propose Mutation-Based Translation Analysis (MBTA), a novel application of
mutation analysis for assessing the trustworthiness of code translation. A trustworthy trans-

@ Springer

Empirical Software Engineering (2024) 29:19 Page3of23 19

lator is expected to capture minor code changes and translate well not only the input program
from the test set, but also any other program that is syntactically similar to the input program.

Conventional mutation analysis is used as a method for assessing the test adequacy of a
given test suite (Papadakis et al. 2019). A (first-order) mutant is a perturbed program with a
small syntactic change generated with a mutation operator. If a test suite produces different
outputs between the original program and the mutant, the mutant is said to be killed by the
test suite. The mutation score represents the ratio of mutants a test suite kills. A test suite
with a higher mutation score has a better ability to reveal synthetic faults, thereby it is hoped
it will also prove better at revealing real faults (Papadakis et al. 2018).

Similarly, in MBTA, if a mutant has different outputs from its translation, we deem this
mutant as “killed” by the translator. Otherwise, the mutant “survives” the translator. The more
mutants a translator kills regarding a program, the less translation adequacy the translator
has towards translating this program.

To evaluate MBTA, we perform a proof-of-concept case study with 612 Java-Python
program pairs with their respective test cases and a total of 75,082 mutants (which is signif-
icantly more than related work (Roziere et al. 2020)). We collect the translation results of
two widely-studied translators, namely TransCoder (Roziere et al. 2020) and java2python
(G2py) (Melhase 2022). We evaluate the results with our newly proposed MTS measure, as
well as with Computational Accuracy (the approach based on test cases proposed by Roziere
et al. 2020). We also analyse the relations between specific types of mutants and their trans-
lation susceptibility.

The results of our case study show that TransCoder and j2py fail to translate the generated
mutants correctly for more than 70% of the cases. Moreover, when analysing the results,
we found translation bugs that could not be revealed by using solely the original programs
and their translations (and thus only based on Computational Accuracy). In other words,
while Computational Accuracy achieved a perfect score for the original translation, MTS
highlighted results that were not matching such perfect scores, thus revealing translation bugs.
We have also observed interesting scenarios in which the translators successfully translated
the original program, but it failed to generate correct translations for any of its mutants, thus
suggesting overfitting in the translation procedure.

To conclude, the main contributions of this work are:

— We propose Mutation-based Translation Analysis (MBTA), a novel application of muta-
tion analysis for code translation assessment, as well as Mutation-based Translation
Score (MTS), a novel code translation measurement that complements the existing
measurements to quantify the trustworthiness of a given translator.

— We conducted a proof-of-concept case study with two translators (TransCoder and
j2py), 612 programs and 75,082 mutants, and a qualitative analysis of the susceptibility
of translators to mutants.

— We provide the code and results of our case study as an open-source online replication
package: https://doi.org/10.5522/04/24552178.

2 Preliminaries
This section describes the background on code translation (Section 2.1) and conventional

mutation analysis (Section 2.2). It also provides a motivating example (Section 2.3) for our
work.

@ Springer

https://doi.org/10.5522/04/24552178

19 Page4of23 Empirical Software Engineering (2024) 29:19

2.1 Code Translation

Programming languages keep evolving. Software written in older programming languages
needs to be transferred to more recent languages from time to time. However, manual language
translation can be error-prone, tedious, and expensive. The Commonwealth Bank of Australia,
for example, spent approximately $750 million over five years to switch its platform from
COBOL to Java (Roziere et al. 2020).

Code translation tools, or code translators, aim to automatically conduct code translation.
Nguyen et al. (2013) and Karaivanov et al. (2014) investigate how well statistical machine
translation (SMT) models for natural languages could apply to code translation between
Java and C#. Aggarwal et al. (2015) used statistical machine translation models to convert
Python 2 code to Python 3 code. These methods are phrase-based, which ignores the grammar
information of programming languages. Instead, Chen et al. (2018b) proposed a tree-to-tree-
based code translator. Their work is also the first to use deep neural networks toward tackling
the code translation problem.

These works rely on the BLEU score to evaluate the translation, which measures the
overlap between the tokens in the translation and in the reference. However, the BLEU score
does not consider the semantic correctness of the translations, without which the translated
code is hardly useful for developers.

Recently, Roziere et al. (2020) proposed an unsupervised approach to automatically trans-
late programming languages. Their approach achieves outstanding effectiveness. Later on,
they presented DOBF (Roziere et al. 2021a) and TransCoder-ST (Roziere et al. 2021b), the
former pretrains a model to revert the code obfuscation function by training a sequence-to-
sequence model; the latter uses automatic test generation techniques to automatically select
high-quality translation pairs to fine-tune the pre-trained model. These works use Computa-
tional Accuracy (CA), a measure to evaluate the translated code, which is based on the ratio
of test cases that have similar outputs between the input program and its translation.

Compared to the BLEU score, CA captures the semantic equivalence of the code transla-
tion. Nevertheless, it relies on the fault-revealing ability of available test cases. In addition,
an acceptable code translator is expected to translate well not only the input program from
the test set, but also any other program that is syntactically similar to the input program. CA
only evaluates the translation of a particular input program. It is unclear whether the code
translator could still make successful translations once the program is slightly changed if we
merely rely on CA assessment.

MTS (presented in Section 3) is a novel mutation-based analysis measurement that com-
plements BLEU score and CA in assessing code translation. Different from BLEU score,
MTS captures semantic information of the translated code. Different from CA, MTS pro-
vides a more comprehensive assessment on the translation ability of the code translator with
multiple mutated input programs. It captures the trustworthiness and robustness of the code
translator under evaluation.

Sun et al. (2020) proposed TransRepair (and later on CAT (Sun et al. 2022)) with semantic-
similar word mutation to automatically test machine translation errors. Our work has the
following three primary differences with TransRepair: 1) TransRepair focuses on testing
translators of text rather than source code. In a sense, the mutation of software shown in our
paper is analogous to the mutation of text shown in their work, but they differ drastically
in how they are created, evaluated, and analysed. For instance, software mutants need to
be executed against test cases to unveil behavioural differences, a property that machine
text does not have. The objective of our paper is precisely to showcase how mutation of
software and behavioural execution of test cases can be used to test source-code translation.

@ Springer

Empirical Software Engineering (2024) 29:19 Page50f23 19

2) TransRepair conducts context-similar word mutation, while our paper does not have any
restriction on the mutation operators in terms of semantic, context, or syntactic similarity. 3)
TransRepair has the hypothesis that the unchanged part of the sentence should have a similar
translation, but this work does not have such a hypothesis.

2.2 Mutation Analysis

Mutation Analysis is a fault-based criterion to evaluate the testing adequacy of a given test
suite (Jia and Harman 2011; Offutt and Untch 2001; Papadakis et al. 2019). In mutation anal-
ysis, mutated programs are created by applying mutation operators to the original program.
Such mutation operators modify the Software Under Test (SUT) by applying small syntactic
changes. A mutant is said to be killed when its output differs from the output of the original
program against the SUT’s test suite. Otherwise, the mutant survived. There is a special type
of mutant called Equivalent Mutant, which cannot be killed by any possible test suite, i.e., it
is semantically equivalent to the original program.

Mutation Testing is the activity of using the results of Mutation Analysis to guide and
improve the test suite. In other words, if a (non-equivalent) mutant survives, then the test
suite can be enhanced to kill such a mutant. If a test suite kills all mutants, then it is called
“adequate”. The level of adequacy of a test suite is measured by the Mutation Score measure,
as shown in (1) (Guizzo et al. 2020).

DM(T, M)
MS(T,M) = —————_ (1)
M| — EM(M)

where M is the set of mutants; T is the SUT’s set of test cases; M S(T, M) is the mutation
score obtained when executing T against M; DM (T, M) is the number of mutants in M
killed by T'; |[M| is the number of mutants in M; and EM (M) is the number of equivalent
mutants in M. In summary, the mutation score measures the percentage of non-equivalent
mutants killed by the test suite 7. The greater the mutation score M S(T, M) is, the more
adequate 7 is in revealing faults.

2.3 Motivating Example

This section presents an example scenario to motivate our approach. Figure 1 depicts a
scenario which comes from a real case in our case study. The functionality of the code is to
return the maximum XOR subarray value in a given array. The top two code snippets are the
original Java function a (on the left) and its Python translation #(a) (on the right) provided
by TransCoder. The bottom two snippets are one mutant of the Java function a’ (by changing
i into ++1i in Line 4) and the Python translation of this mutant 7 (a’).

The translation from a to #(a) is incorrect: as the lines that are highlighted in the yellow
show, int ans = Integer.MIN_VALUE; istranslated into ans = int (0),butthe
value of Integer .MIN_VALUE is -2147483648 and not 0. However, the available test
cases fail to capture the translation bug, given that the minimum value of curr_xor is 0.
Consequently, the assessment of this translation produces a false negative.

The mutant we generate (a’) changes i into ++i in Line 4, as highlighted in red. The
change makes the test input {arr=[33,98],n=1} skip the loop, producing an output of
-2147483648, which is different from the translation #(a’) with an output of 33. Thus, the
mutant is killed during the translation because it produces different test execution outputs

@ Springer

19 Page 6 of 23

Empirical Software Engineering (2024) 29:19

a: a Java function

t(a): Python translation of Java function a

static int f_gold(int arr[], int n){ def f_gold(arr, n):
int ans = Integer.MIN_VALUE; ans = int (0)
for(int i = 0; i < n; i++){ for i in range(n):
int curr_xor = 0; curr_xor = 0
for(int j = 1i; J < n; Jj++){ for j in range(i, n):
curr_xor = curr_xor ~ arr[jl; curr_xor = curr_xor ~ arr[j]
ans = Math.max(ans, curr_xor); ans = max(ans, curr_xor)

}

return ans

}
return ans;

}

’

a’: a mutant of Java function a t(a’): Python translation of mutant a’

static int f_gold(int arr([], int n){ def f_gold(arr, n):
int ans = Integer.MIN_VALUE; ans = int (0)
for(int i = 0; ++i < n; i++){ for i in range(n):
int curr_xor = 0; curr_xor = 0
for(int j = 1i; J < n; Jj++){ for j in range(i, n):
curr_xor = curr_xor ~ arr[j]; curr_xor = curr_xor "~ arr[]]
ans = Math.max (ans, curr_xor); ans = max(ans, Curr_xor)

} return ans
}
return ans;

}

Fig. 1 Motivating Example. The code translator mistranslates the statement highlighted in yellow. Our
mutation analysis exposes this mistranslation that is ignored by test execution. The mutant example also
demonstrates that code translators tend to “memorize” coding templates, thereby ignoring the changes in the
mutant (highlighted in red) and producing an identical translation to that of the original program

before and after translation. This observation exposes the translation bug that the original
test execution results are unable to unveil.

In addition, the change from 1 to ++1 is completely ignored by the code translator, which
still translates the loop condition into range (n) . This suggests that code translators tend
to overfit the available data and “memorize” coding templates, thereby ignoring the changes
in the mutant and producing an identical translation to that of the original program. This
interesting observation also provides another reason to be cautious of the translation of the
original program. Even if the original translation is correct, failure in translating mutants
with very minor changes (i.e., very similar to the original program) suggests that the code
translator may occur in similar bugs in future translations.

3 Mutation-Based Translation Analysis

Mutation-Based Translation Analysis (MBTA) provides a criterion to assess the translation
trustworthiness of a given source-to-source code translator. Similarly to conventional Muta-
tion Analysis, MBTA uses the mutant execution results to assess a translator. The main
difference with conventional Mutation Analysis is that the mutants are instead compared
to their own translations, rather than the original program. Thus, a reasonable translator is
expected to have a low mutation score in code translation, i.e., fewer mutants generating a
different output from their translations. That is, the more mutants survive the translator, the
better.

Figure 2 presents the workflow of MBTA. MBTA consists of 3 main steps: i) Mutation;
i) Translation; and iii) Analysis. In the first step of Mutation, the engineer shall provide the
original source code written in the original language. Then a mutator (mutation tool) is used
to apply the mutation and generate the mutants for the original program. Such mutants are
generated in the same language as the original program.

@ Springer

Empirical Software Engineering (2024) 29:19 Page70f23 19

based ion Analysi
T y

Mutation Translation Analysis

-) Target Language
?E /Ongmal Test Su:te/ e

; v v !
Original Source Code, Mutator > Translator _.y| | Execution || i
i H of Mutants
1 l --------- Z Original Outputs /f------]

Mutation i1 | |Translation

Comparison|):

/ Mutants / -‘-%ns/a!ed Muta:% T
[Mutation-based
@ Translation Score,

Fig.2 Workflow of Mutation-Based Translation Analysis (MBTA)

In the step of Translation, the mutants generated in the previous phase are given as input to
the translator under test. The translator then translates the mutants from the source language
to the target language. The output is a set of translated mutants.

In the final step, Analysis, the mutants (both original and translated) are compiled (when
necessary) and then executed against their respective test suites. The test suite of the original
mutants is the test suite in the original language, usually accompanying the original program.
On the other hand, the translated mutants require a test suite in their respective language. The
simplest way is for the tester to collect the original test inputs in the source language, and
translate them to the target language. The important aspect of this activity is to make sure
that both test suites contain equivalent test inputs.

Unlike conventional mutation, the expected output that usually comes with the test cases
is not needed for such a process. During the execution of mutants, the oracle that defines
the expected output is actually the output of the mutants in the source language. These
outputs are the ones that the translated mutants should match, i.e., an original mutant and its
respective translated mutant ideally should both produce the same outputs for all inputs. If a
translated mutant produces different results than its original mutant, then the translated mutant
was incorrectly translated by the translator and the mutant is said to be killed. Therefore,
the mutation-based translation analysis can also be regarded as a new form of metamorphic
testing (Chen et al. 2018a; Zhang et al. 2014a). Equation (2) presents how to compute whether
a mutant is killed:

killed(m|T,m'|T"y = 3t € T : output(t, m) # output(t', m’))

where m is a mutant in its original language; m’ is the respective translated mutant; 7' is the
original test suite in the original language; T is the test suite in the target language; 7 is a
test case in T'; 1’ is the respective translated test case in T’; and output (¢, m) is the result of
the execution of ¢ in m.

If a translator can translate all mutants such that none of them mismatches the original
mutants’ outputs when executed with the same inputs, then we can increase the trustworthi-
ness of the translator in translating similar programs. However, it is unlikely that a translator
will not generate a failing translation for at least one mutant. Hence, in order to evaluate the
trustworthiness level of a given translator, we define the Mutation-based Translation Score

@ Springer

19 Page80f23 Empirical Software Engineering (2024) 29:19

(MTS) in (3):

MTSM|T, M'|T") = — x)

3
] 3)

0 otherwise

1 M{l killed(m;|T, m}|T")

where M is the set of all available mutants; M’ is the respective set of translated mutants; m;
is the i-th mutant in M ; and m; is the respective i-th translated mutant. In summary, the MTS
measure computes the percentage of translated mutants that mismatch their respective original
mutant, i.e., the percentage of killed mutants. The greater the MTS, the more translation
bugs are revealed. Conversely, the lower the MTS, the better the translator is in generating
translations which produce the same result as the original program.

When using MTS with multiple programs, one can analyse it in two ways: i) Overall
MTS - the percentage of mutants and translated mutants from all programs mismatching
their outputs; or ii) Individual M TS — the percentage of mismatches per program separately.
The former should be used to compute the overall trustworthiness of the translator when
considering multiple scenarios, whereas the latter should be used to obtain a more fine-
grained result considering specific programs.

Anomalous mutants can be found during the execution of the last step. An anomalous
mutant is a mutant that: i) does not compile; i) generates runtime errors/exceptions; iii) time-
out/takes too long to execute (e.g., infinite loops); or iv) does not produce outputs for all the
inputs (e.g., kills the process midway). Although such mutants are useful and can be manually
analysed by the developer in order to unveil what is causing such anomalies, they are not
interesting during the MTS computation due to the inconsistent set of results that can arise.
In this case, the default action is to discard such mutants during the MTS computation.

Furthermore, although equivalent mutants are a threat to conventional Mutation Analysis,
for MBTA, they do not interfere with the results. This is due to the fact that the outputs of the
mutants are used as oracles for the MTS assessment, i.e., they are not compared to the original
outputs, but rather with their translations. Therefore, an equivalent mutant does not impact
the results of MTS and, if its translation mismatches the original program’s translation, it can
further reveal a mismatching behaviour in two translations that should be equivalent.

The engineer can also analyse the results beyond the MTS quantitative values, i.e., the
engineer can qualitatively analyse the original program, mutants, and their translations on
given occasions. For instance, if a translator fails to translate a program, but successfully
translates a mutant, then the difference between the mutant and original program can be
analysed to discover the reason why the original translation fails. It can also unveil overfitting
if the two translations (original and mutant) are largely different, i.e., the translator loses the
ability to generate similar translations for similar programs. Therefore, MBTA can be very
helpful for the engineer in revealing new bugs (finding translation bugs in mutants), debugging
the cause of failing translations (the translator fails to translate the original program but
successfully translates the mutants), and unveiling overfitting (when the original and mutant
programs yield largely different translations).

In a broader sense, MTS works similarly to the conventional Computational Accuracy
(CA) (Roziere et al. 2020) by measuring whether mutants and their translations match the
output of their respective test suites. However, only applying CA to mutants would not
be enough, as this would entail issues with the evaluations, including biased CA towards
programs with more mutants. This is why we propose the analysis of MTS from many
angles, such as MTS per class, MTS per mutation operator, and qualitative analysis of the
generated mutants and translations. By doing so, the engineer can have more fine-grained
information about the behaviour of their translator.

@ Springer

Empirical Software Engineering (2024) 29:19 Page90of23 19

4 Case Study Design
In order to evaluate the MBTA, we design the following research questions:

RQ1: What is the assessment result of MTS on code translators?
RQ2: How does MTS compare with the assessment results of existing criteria?
RQ3: How does MTS assess the code translators with different mutation operators?

4.1 Translators

We use two widely studied code translators that enable the automatic translation from Java
to Python in our evaluation.

The first is TransCoder (Roziere et al. 2020), which is an open-source multi-language
transpiler that uses self-supervised learning to perform the translations. During training,
TransCoder uses a tokenization technique to mask and obfuscate code. Then, it tries to
generate a correct completion of the code it just masked and tries to match the original code.
During translation, it uses all those learnt tokens and code completions seen during training
to provide the translation of unseen programs. It is unsupervised in the sense that it does not
require a ground-truth translation, i.e., it works solely with the input programs. We use the
pre-trained model provided by Roziere et al. (2020) to translate the set of subject programs
written in Java to their respective Python code.!

The second is java2python (j2py) (Melhase 2022), an open-source and commercial tool
that translates Java code into Python code. j2py, different to TransCoder, is not an ML based
technique. Rather, it first translates the code into an Abstract Syntax Tree (AST). Then, j2py
walks the tree by generating equivalent nodes in Python using a set of pre-defined translation
rules. j2py starts from the assumption that for each Java node, there is one or a set of equivalent
nodes in Python. It is a rather simple approach that works well for most cases.

We selected those two translators because they are widely studied for source-to-source
translation, are both open-source, require little configuration, and do not require training
(TransCoder provides a pre-trained model and j2py is not ML-based), and can be executed
in a feasible time. TransCoder is widely adopted in the literature as a baseline for multi-
language comparisons (Roziere et al. 2020; Roziere et al. 2021a,b), while java2python is
a more practical tool with a specific goal of unidirectional translation. We did not choose
DOBF (Roziere et al. 2021a) or TransCoder-ST (Roziere et al. 2021b) in this paper either
because they do not support the translation between Java and Python, or because they are not
widely studied and used in the literature.

4.2 Subjects

To answer the RQs, we use the same subject programs used by Roziere et al. (2020) in their
empirical evaluation of TransCoder. The dataset is composed of 852 programs written for
the GeeksforGeeks platform,? an online course website with many challenging problems for
which solutions are provided in many languages. The dataset contains 615 Java-Python pairs,

1 https://dl.fbaipublicfiles.com/transcoder/pre_trained_models/TransCoder_model_1.pth
B https://practice.geeksforgeeks.org/

@ Springer

https://dl.fbaipublicfiles.com/transcoder/pre_trained_models/TransCoder_model_1.pth
https://practice.geeksforgeeks.org/

19 Page 10 of 23 Empirical Software Engineering (2024) 29:19

from which we used 6123 alongside their respective and equivalent test suites (with 10 test
cases each). The largest program in the dataset has 127 lines of code and the average program
size is 30 lines. These programs and test suites serve as our “ground truth”, i.e., the results
of the tests are used as an oracle to decide whether the translations are successful or not.

4.3 Mutation Tool

We use the pnJava (Ma et al. 2005; Offutt 2014) tool to mutate the Java programs. It uses
two sets of Mutation Operators: i) class-level operators and ii) method-level operators. The
former applies mutations to classes, such as inserting the keyword “super” in a method call
or removing the parent’s constructor call. Method-level operators, on the other hand, work
on changing the methods’ statements, such as adding an increment to a variable, deleting
a line, inverting a conditional operator, and others. pJava contains 29 class-level operators
and 16 method-level operators. We refer the reader to the official uJava website for a full
description of all operators (Offutt 2014).

pJava offers a comprehensive GUI which allows all tasks involved in mutation analysis.
When using pJava, the engineer first generates mutants at the source-code level and stores
them in a dedicated directory. Using pJava, the engineer can also check the mutations manu-
ally and exclude mutants they find equivalent or uninteresting. Then, the engineer can select
the test suite and run it against all mutants. In the end, pJava shows the killed and living
mutants so the engineer can enhance their test suite or mark equivalent mutants.

pnJava is a widely used mutation tool in the Mutation Testing literature (Papadakis et al.
2019), which fits our purposes by providing a great gamma of mutation operators and, more
importantly, by mutating the source-code, instead of binary code. We have used all of uJava’s
method-level mutation operators in our study. We have not used class-level operators due
to the nature of our programs, which do not use any type of class inheritance, and thus not
allowing the application of such operators.

4.4 Case Study Procedure

To answer RQ1, we followed the workflow depicted in Fig. 2 and described in Section 3. We
report the MTS results and analyse the translation trustworthiness of TransCoder and j2py.

For answering RQ2, we compute the Computational Accuracy (CA) (Roziere et al. 2020)
of both translators using the original and translated programs, and then compare the results
with MTS. CA measures the percentage of outputs that match a given program and its
translated counterpart using the same inputs. Hence, if a program and its translation generate
matching outputs for the same input, then CA is incremented. If the program and its translation
mismatch their output for a given input, then CA is decremented. In cases where all outputs
match, then CA = 1.0, whereas CA = 0.0 when all outputs mismatch.

RQ3 is answered by analysing the results of MTS with each mutation operator. With this
RQ we want to unveil whether different operators generate mutants that are easier/harder to
translate, so as to explore what kinds of code translators are weak to translate automatically.

3 We discarded three programs because they were raising exceptions during execution.

@ Springer

Empirical Software Engineering (2024) 29:19 Page 110f23 19

700 A

600 -

500

400

Mutant

300 A

200 1

100 -

0

Fig.3 Distribution of the number of generated mutants for Java input programs. The Y axis shows how many
mutants were generated for the programs under test. Each data point represents a single program. The “X”
marks the mean

5 Results

This section summarises the results and provides insights into how they can be used by
practitioners to assess the translations of their translators. The programs, mutants, translations,
and execution results of our case study can be found in our replication package: https://doi.
org/10.5522/04/24552178.

For the 612 programs considered in our case study, puJava generated a total of 75,082
mutants. Figure 3 shows the distribution of the number of mutants generated for each program,
and Fig. 4 presents the distribution of generated mutants by each mutation operator. Among
these 75,082 mutants, 52,386 (69.77%) are non-anomalous, meaning that their executions
do not timeout after three seconds with the available test cases,* generate one output for
each test input, and do not throw runtime errors. Since we discarded the anomalous mutants,
the MTS analysis done hereby considers only the 52,386 non-anomalous mutants and 584
program pairs for which at least one mutant could be used.

5.1 RQ1: MTS Assessment Results

Table 1 presents the general overview of the results for both TransCoder and j2py. TransCoder
was able to generate translations for 52,377 (99.98%) of the non-anomalous mutants, out of
which 47,729 (91.11%) could be compiled successfully. However, only 26,829 (51.21%)
translated mutants are non-anomalous, i.e., could be run successfully (without any runtime
errors, or timeouts) and generate one output for each test input. j2py was able to generate
translations for 47,247 (90.19%), out of which 13,794 (26.33%) are non-anomalous.

Out of the original 52,386 non-anomalous mutants, 36,899 (70.44%) translated mutants
by TransCoder obtained at least one different output as their respective translation, i.e., the
overall MTS of our case study is 0.7044. Similarly, the MTS of j2py translations is 0.7064,
meaning that j2py also failed to translate more than two-thirds of the mutants. Figure 5

4 The three seconds threshold is set to capture infinite loops or behaviour that makes the program hang. All
the original programs take less than 0.5 seconds to run.

@ Springer

https://doi.org/10.5522/04/24552178
https://doi.org/10.5522/04/24552178

19 Page 12 of 23 Empirical Software Engineering (2024) 29:19

140 A

1204

100 A

80 1

60

40 A

”Jﬁéaﬁ s

Number of Generated Mutants

Mutation Operator

Fig. 4 Distribution of the number of generated mutants per mutation operator for Java input programs. The
Y-axis depicts the number of generated mutants for the input programs, whereas the X-axis depicts the different

mutation operators used in this study. Each data point is one program under test

presents the distribution of the MTS results for the programs considered in this paper using

TransCoder and j2py.

AsFig. 5 shows, the most frequent MTS resultis 1.0, i.e., all of the mutants for that program
entirely mismatch the output of their translated counterparts. In fact, for the TransCoder

Table 1 RQ1-2: Results for mutant generation (top row), overall MTS (middle row, lower is better), and
Computational Accuracy (CA, bottom row, higher is better)

Measure TransCoder j2py
Non-anomalous mutants 52,386 52,386
Translation outputs 52,377 (99.98%) 47,247 (90.19%)
Compilable translations 47,729 (91.11%) 39,237 (74.90%)
Timeouts 496 (0.95%) 883 (1.69%)
Exceptions 19,018 (36.30%) 23,859 (45.54%)

Non-anomalous translations

Overall MTS

Median Individual MTS
Mean Individual MTS
Std. Dev. Individual MTS

Overall CA

Median Individual CA
Mean Individual CA
Std. Dev. Individual CA

26,829 (51.21%)

0.7044
0.7877
0.6848
0.3034

0.3632
0.0

0.3700
0.4545

13,794 (26.33%)

0.7064
0.9101
0.7235
0.3304

0.3279
0.0

0.3279
0.4566

The percentages in the first two rows are calculated against the total number of non-anomalous mutants. CA
is calculated against the number of original programs

@ Springer

Empirical Software Engineering (2024) 29:19 Page 130f23 19

1.0 | T 7 r
3" 1 y
s x
©
» 0.6
C
o
=
el
[
@ 0.4
Q
<
K]
g
2 0.2

0.0

TransCoder j2py
Translator

Fig. 5 RQI1-2: Distribution of the MTS (lower is better) per program. The Y-axis depicts the MTS for each
program under test, whereas the X-axis depicts the two translators used in this study. Each data point represents
the overall MTS of a single program under test. The “X” marks the mean

results, 109 programs (18.66%) achieve an MTS of 1.0 (full mismatch), and only six programs
(1.03%) achieve an MTS of 0.0 (full match). However, all six programs with an MTS of 0.0
have less than 10 mutants each, whereas only three of the 109 programs with an MTS of 1.0
have less than 10 mutants. For j2py, we obtained an MTS of 1.0 for 151 programs (26.88%)
and 0.0 for 9 programs (1.54%).

In summary, by using MTS we discovered that more than two-thirds of all mutants were
incorrectly translated using TransCoder and j2py. Furthermore, for almost a fifth of all pro-
grams, TransCoder did not generate a single correct mutant translation, whereas j2py failed
to translate a mutant for more than a quarter of all programs. Strictly speaking, according
to our MTS results, TransCoder is a more trustworthy translator due to the lower number of
failing mutant translations. It is worth noting that both translators do not always fail on the
same input programs (although they do sometimes fail on the same inputs). We hypothesise
that this is due to the different strategies used by both translators: TransCoder uses ML and
j2py uses a set of pre-defined transformation rules applied on a syntax tree traversal.

5.2 RQ2: MTS vs Computational Accuracy

Recapitulating, the Computational Accuracy (CA) (Roziere et al. 2020) measures the per-
centage of test inputs of a given program that generate the same output as the translated
program, i.e., it quantifies the level of accuracy of a translated program when exercised with
the same inputs used with the original program. The CA obtained by TransCoder and j2py
in our case study when considering all test cases is 0.3632 and 0.3279, respectively. In other
words, for all test inputs, both the original and translated programs achieve the same out-
put in 36.32% and 32.79% of the cases for the respective translators. Figure 6 depicts the
distribution of the CA results of the programs for both TransCoder and j2py.

As evidenced by these results, most programs either produce a CA of 0 (no output match)
or 1 (all outputs match), skewing the data towards both boundaries. In fact, for the TransCoder
results, for 55.14% of the programs the CA is 0 (incorrect outputs for all inputs), for 29.62%
of the cases it is 1 (adequate translation), and for 70.38% of the cases it is lower than 1

@ Springer

19 Page 14 of 23 Empirical Software Engineering (2024) 29:19

1.0 4 —_——
0.8 1
>
O
e
3
S 061
©
[=4
i)
804l
= x
g x
o
o
0.2 1
| —
0.0
TransCoder j2py

Translator

Fig. 6 RQ2: Distribution of the Computational Accuracy (higher is better) per program. The Y-axis depicts
the CA for each program under test, whereas the X-axis depicts the two translators used in this study. Each
data point represents the overall CA of a single program under test. The “X” marks the mean

(faulty translation with at least one incorrect output). Similarly, j2py obtains a CA of 0 for
62.96% of the programs, 1 for 29.43% of the programs, and lower than 1 for 70.57% of the
cases.

When comparing MTS to CA, we confirmed what we expected for their correlation. CA
and MTS are strongly and inversely correlated according to Spearman’s p test -0.78 (p-value
< 0.001), meaning that they tend to agree with each other inversely. This inverse correlation
was expected because they are measuring quality in different directions: higher CA and lower
MTS are better for the translator. They are correlated because, as we previously expected, if
the translator can successfully translate the original program, it is very likely that it will also
successfully translate similar variations of this program.

We also found that MTS reveals approximately the same proportion of bugs as CA. For
example, when using MTS and CA to evaluate TransCoder, the metrics are able to reveal
that 70.44% and 70.38% of the translations are faulty, respectively. Similarly, for j2py, MTS
reveals a ratio of 70.64% of faulty translations, whereas CA reveals a faulty translation
proportion of 70.57%. This evidences even further that both metrics tend to agree on their
results. Upon further analysing the results, we found out that when the CA of a program
translation is 1 (all test inputs pass on the translation), the MTS result tends to be low with
a median of ~0.3, i.e., 30% of the mutants die and 70% of the mutants pass the translation
check when the original program is adequately translated. On the other hand, when the CA
of a program is O (incorrect outputs for all inputs), then MTS tends to be close to 1.0 with
a median of 0.98, i.e., approximately 98% of mutants fail to be translated when the original
program is incorrectly translated. Measuring MTS on programs that obtain 0 CA can reveal
cases where a given translated mutant passes the test suite and the engineer can check what
is causing the original program translation to fail. These types of mismatches between the
two metrics provide useful information to the engineer.

MTS also provides a more fine-grained measurement with a different distribution of values.
This difference in distributions is evident in Figs. 5 and 6, where the MTS values are more
dispersed along the Y axis, thus enabling a more informative analysis. Moreover, if we

@ Springer

Empirical Software Engineering (2024) 29:19 Page 150f23 19

look at the total number of bugs revealed in the TransCoder translations, due to the greater
amount of mutants than programs, MTS can naturally reveal more bugs (36,899 mutants
versus 411 original programs failing the translation). This can be extremely useful for an
engineer assessing a translator, since they are given more cases in which their translator
can fail. For example, by analysing the results of MBTA on the original program with the
following statement “while ((int) (x & m) >= 1)”, we found that TransCoder
translates the following mutated Java statement “while ((int) (--x & m) >= 1)”
into the Python statement “while int ((--x & m) >= 1)”. It may seem correct at
first, but it neglects the fact that “--" preceding a number variable in Python is simply
interpreted as a double sign negation, thus rendering the translated mutant equivalent to the
original translated program and different to the mutant. The correct translation would be to
keep the original statement “while int((x & m) >= 1)”, while also including the
assignment x = x — 1 before exiting the loop. This translation bug could only be revealed
with MBTA, since none of the 612 original Java programs uses the operator “--" before a
variable in an expression evaluation.

Although TransCoder obtains a perfect CA (1) with the original program of the aforemen-
tioned example, the MTS for the same program is 0.4531. In other words, small syntactic
changes to that program will make TransCoder generate a faulty translation in almost half
of the cases. This phenomenon was also observed in other programs. For 168 programs,
TransCoder obtains a perfect CA, but the MTS results are greater than 0, i.e., the original
translation seems correct, but the tool fails to translate at least one of its mutants. j2py fails
to translate mutants for 147 programs for which it obtains a perfect CA.

Another interesting phenomenon occurred with a program for which the CA is 1, but
the MTS is also 1. In other words, TransCoder generated a correct translation (which we
manually checked) for the original program, but it failed to translate any mutant of those
programs. In this case, it seems that TransCoder is overfitting to the original program, and
any syntactic change leads to a wrong translation. In such situations, the engineer may be
compelled to include programs with small variations during the training process in order
to generate models capable of translating programs similar to the ones represented by the
generated mutants.

We also found one case where CA is O (the original translation is incorrect on all test
cases) and MTS is also O (all mutant translations pass all test cases). In such case, only six
mutants were generated for that program, which means that only six mutants need to pass the
test cases to obtain an MTS of 0 and the original program must fail the 10 test cases to obtain
a CA of 0. With such a low number of mutants, this may occasionally happen, although such
a scenario is unlikely. In general, as shown by our case study, we do not expect the translators
to incorrectly translate the original program and correctly translate potentially hundreds of
similar mutants as both metrics tend to agree.

We have also performed a statistical analysis on the correlations between the number of
generated mutants for a given program and the obtained MTS and CA using Spearman’s p
test (Spearman 1904). The intuition is that, as the number of mutants increases, one could
expect the trustworthiness measures to also increase or decrease. However, we have only
found negligible to very weak correlations between the number of mutants and either CA or
MTS, i.e., correlations with Spearman’s p test returned 0.16 and 0.22 respectively (p-value
< 0.001). Therefore, the number of mutants is not a good predictor for the obtained CA and
MTS of a program.

5 The pre-decrement operator —- in C, C++, and Java evaluates to x-1 and decrements the value of x.

@ Springer

19 Page 16 of 23 Empirical Software Engineering (2024) 29:19

All in all, we can state that MTS is especially useful for unveiling bugs since it provides
more programs to test the translators, as opposed to using only one with CA. With MTS,
the engineer can look at more fine-grained and complementary information to unveil specific
cases in which their translators fail. Hence, we believe MTS can complement the CA measure
by providing additional information on the trustworthiness of the translations and insights
on possible overfittings.

5.3 RQ3: Results of each Mutation Operator

Table 2 presents the MTS for each of the 19 pJava’s mutation-level operators (Ma et al. 2005;
Offutt 2014) over 584 programs. We refer the reader to pJava’s website for the complete
description of all mutation operators (Offutt 2014).

Interestingly enough, one of the simplest mutation operators, the Insert arithmetic short-
cut operator (AOIS), is the one with the highest MTS for both translators. This operator is
designed to insert “++" and “——"" before or after variables in expressions. While in Java
they are used to increase or decrease numerical values, in Python they perform a double
change in signal for the variables they precede. Such operations are correctly translated by

Table2 RQ3: MTS by pJava’s mutation operators

Operator Description TransCoder MTS j2py MTS
AODS Arithmetic Operator Deletion (short-cut) 0.85 1.00
AODU Arithmetic Operator Deletion (unary) 0.52 0.67
AOIS Arithmetic Operator Insertion (short-cut) 0.90 0.91
AOIU Arithmetic Operator Insertion (unary) 0.58 0.71
AORB Arithmetic Operator Replacement (binary) 0.67 0.74
AORS Arithmetic Operator Replacement (short-cut) 0.63 0.81
ASRS Assignment Operator Replacement (short-cut) 0.69 0.80
CDL Constant Deletion 0.67 0.77
COD Conditional Operator Deletion 0.67 0.86
COI Conditional Operator Insertion 0.63 0.68
COR Conditional Operator Replacement 0.75 0.81
LOD Logical Operator Deletion 0.50 0.50
LOI Logical Operator Insertion 0.61 0.71
LOR Logical Operator Replacement 0.42 0.35
ODL Operator Deletion 0.66 0.74
ROR Relational Operator Replacement 0.62 0.72
SDL Statement Deletion 0.59 0.71
SOR Shift Operator Replacement 0.54 0.69
VDL Variable Deletion 0.67 0.77
Median 0.63 0.74
Mean 0.64 0.74
Standard Deviation 0.11 0.14

@ Springer

Empirical Software Engineering (2024) 29:19 Page 17 0f23 19

TransCoder when appearing in a for loop (e.g., Java’s “for (int i = 0; i < 10;
i++)”is correctly translated to Python’s “for i in range (0, 10) :”),butare incor-
rectly translated in situations where the incremented variable is being used in the same
statement (e.g., in the example given in the previous subsection). This high MTS is probably
due to the fact that the programs used in the training process of TransCoder do not con-
tain variables being incremented or decremented while being used in the same expression.
Hence, the model is not trained to deal with such situations. Moreover, j2py seems to also
fail to recognise this different behaviour between both programming languages by placing
the increment/decrement before the loop.

The Logical Operation Replacement (LOR) operator obtains the best MTS. These muta-
tions switch logical operators (e.g., Java’s “&&” and “II”’) with other logical operations. This
is most of the time a simple mutation with a straightforward translation from one language
to another. Moreover, such logical operations are very common in any program, including
the ones used to train the TransCoder model used in this case study.

With these results in mind, we can state that the type of mutation plays an important role
in the translation results of both TransCoder and j2py. Finally, by analysing the information
unveiled by the MTS results, the engineer can focus on improving certain aspects of their
translators. For instance, in the case of the case study presented in this paper, we discov-
ered that both TransCoder and j2py should be improved in regard to short-cut arithmetic
operations.

5.4 Threats to Validity

Threats to External Validity As it happens with most Software Engineering papers, the set
of program subjects may not be representative of the overall population of software, thus the
generalisation of our results may not hold with different datasets. To mitigate this threat, we
collected a dataset with 612 programs performing multiple computational tasks, of different
sizes, and with a ground-truth version in the target programming language. We have used
two translators in our evaluation. Using other translators could produce different results and
conclusions. In order to cater for this threat, we specifically selected a well-known translator
in the literature and an open-source commercial translator, both using different translation
techniques.

Threats to Internal Validity We used a pre-trained model with TransCoder in order to gen-
erate the translations. We decided to use such a model for a fair comparison with the results
of Roziere et al. (2020). One possible threat is obtaining different results with a different
model, generated with different hyper-parameters during training.

Threats to Construct Validity Similarly to the conventional Mutation Score in Mutation
Analysis, MTS could be inflated by redundant and easy-to-kill mutants. This could induce
a low level of trustworthiness for the translators. However, in our case study, we observed
that even small changes to the source code often result in different translations. In this sense,
even though similar mutants may be redundant in the original programming language, they
may differ when translated.

Another threat to construct validity may be related to the strength of the test suites. A weak
test suite may achieve a high CA thus leading to incorrect results regarding this measure.
However, although it is a threat to the CA results presented in this paper, this is precisely
where MBTA shines. As shown by our results, it is very unlikely that a test-passing translation
of a given program will have all of its translated mutants also passing the tests. With that

@ Springer

19 Page 18 of 23 Empirical Software Engineering (2024) 29:19

in mind, the engineer can analyse the MTS results and pinpoint translations of the original
program that might be incorrect, despite having perfectly matching test outputs.

6 Discussion

In this section, we discuss the advantages and limitations of using MBTA, and the main
differences between robustness and trustworthiness.

6.1 Advantages and Limitations of MBTA

MBTA has the following advantages:

MBTA provides a larger gamma of “test cases” In other words, instead of using a single
original program to check whether a translator is capable of producing correct translations,
with MBTA, an engineer can generate multiple program variants in order to test the translator.
This can also be used to automatically enhance datasets by providing more valid programs,
which can be paired with their test-equivalent translations.

No need for a pre-defined output oracle With MBTA, there is no need for an oracle to
define expected outputs. The expected outputs can be derived from the results of the original
mutants.

MBTA checks for trustworthiness Whereas common measures such as BLEU check
whether a translator is able to syntactically match a piece of code, MTBA goes beyond
and checks how good a translator is when faced with unseen programs. Much like mutation
analysis checks whether a test suite is adequate to find bugs, MBTA tests whether a translator
is adequate to find good translations.

MBTA can help find more fine-grained translations Since MBTA uses mutation analysis
as part of its process, the “test cases” (mutants) represent only small syntactic changes, thus
we can expect that the translator shall perform similarly well/badly. Indeed, if a translator is
able to adequately translate a piece of code, it is reasonable to expect that the translator will
produce adequate translations of a similar program with a small syntactic change. If this is
not the case, then the engineer can further analyse the results, discover why the translator
failed to translate such a similar program, and consequently improve the translator. With
this fine-grained analysis, the engineer can tackle specific weaknesses of their translator in
unseen programs and improve it.

MBTA does not need many translations of test suites When the engineer needs to test
their translator against many programs, then as many test suites written in the target language
are necessary to test for correctness. Translating test suites is still a manual task that is error-
prone and requires considerable effort from the engineer. With MBTA, instead of testing the
translator against many programs, the engineer can translate the mutants of a single program
and use a single test suite for all of them. Not only is it easier to use one program, but
also the cost of searching for test suites in the target language, or even translating them, is
considerably reduced.

Equivalent mutants is not an issue Since the results of the mutants and their translations
are not compared to the original programs, equivalent mutants play no role in the MTS results.
In fact, they can be powerful assets during the analysis. Because one can expect a mutant’s

@ Springer

Empirical Software Engineering (2024) 29:19 Page 190f23 19

translation to be equivalent to the original translation, if the mutant is killed and the original
translation passes the test, the engineer can unveil a clear translation bug.

The authors of this paper have explored many novel applications of mutation analysis,
such as using mutation for providing baselines for fairness improvement methods (Hort et al.
2021), assessing machine learning model redundancy (Zhang et al. 2023), increasing test
coverage (Zhang et al. 2016a), and detecting bugs via program behaviour deduction (Zhang
et al. 2018). In this paper, we explored how mutation analysis works on source-to-source
code translation. In theory, mutation analysis can also be applied to assess other types of code
translation tasks, such as code generation (Sun et al. 2020), code summary generation (Chen
and Zhou 2018), code comment generation (Hu et al. 2018), and others.

MBTA also has some limitations, as described below:

MBTA is sensible to the mutation space and tool A smaller set of mutants would reduce
the ability of MTS in revealing translation faults, but it would not affect its soundness.
Analysing all the possible mutants for a program is nearly (if not) impossible due to the
potentially infinite number of variants a program can have. For situations where efficiency
is highly concerned, we recommend engineers to consider using mutation cost reduction
techniques such as selective mutation testing (Zhang et al. 2014b; Papadakis et al. 2019) and
predictive mutation testing (Zhang et al. 2016b).

MBTA can inflate when redundant tests and mutants are considered 1In situations where
redundant test cases (i.e., test cases that test the same behaviour) and easily killable mutants
are considered, much as it happens to conventional mutation score, MTS may lead to an
inflated result. In other words, the translator may seem like close to fully adequate, when in
reality it may be only translating a set of “easy to translate” mutants or using many test cases
that test the same behaviour.

MBTA is sensible to the quality of test suite If a weak or small test suite is used, it is
likely that the original and translated mutants are not tested enough to unveil errors in the
translation. This is a limitation of mutation analysis in general as well: the weaker the test
suite, the fewer mutations it can kill.

Covering mutated programs does not necessarily mean killing mutants Because the
programs we used in our experiments are generally simple, most programs are covered in
their entirety (in terms of statement coverage). Unfortunately, covering a mutated statement
does not necessarily mean that the mutant will be revealed, thus impacting MBTA. However,
if an original mutant is not covered by the test cases and it is killed during MBTA, it means
that the mutation failed, either because the translated mutant is covered by the same test
cases or because there is a translation bug in one of the covered statements. In this case, the
mutation triggered a translation bug, which can be evaluated by the engineer to improve the
translation effectiveness.

MBTA needs a test suite in the target language The dataset used in our case study
contains equivalent test cases for both languages. However, one cannot assume this is true
for all programs. This is indeed a limitation of MBTA: it requires equivalent test cases.
However, depending on the complexity of test cases, they can be automatically translated to
other languages by translating the inputs with simple scripts. If manual translation is required,
a subset of test cases can be used instead, but it would hinder the revealing of translation
bugs.

@ Springer

19 Page 20 of 23 Empirical Software Engineering (2024) 29:19

6.2 Trustworthiness and Robustness

This section discusses the main differences between trustworthiness and robustness in trans-
lation systems, because they may sound similar and both involve input changes, although we
are not aware of any existing work on either of them.

“Robustness” (Zhang et al. 2020) is the resilience of the translator when faced with input
perturbations, i.e., refers to the degree to which a system continues to function in the presence
of invalid inputs. In our work, if the translator can generate the exact same output with and
without perturbation, then the translator is said to be robust.

“Trustworthiness” is a measure of translation quality, rather than model robustness. In
other words, if we treat the translator as a black box and analyse only the input-output
pair, a translator is said to be trustworthy when it can correctly generate translations for
all perturbations, regardless of whether the perturbed program is semantically equivalent
to the original or not. Hence, trustworthiness is the ability of a code translator to produce
reliable code translations whenever required, including mutants that are valid inputs to the
code translator.

In fact, the two concepts of trustworthiness and robustness are closely related and may
seem to overlap, but there is a key distinction that separates them as summarised below:
1) the inputs to study robustness are mostly (but not always) invalid; 2) for an ML system
with good robustness, its outputs are expected to remain the same despite the changes in the
inputs.

For example, to test translation robustness, one can generate the adversarial example ‘x
+= 2’ for the Java statement ‘x += 1°, both with similar (but not the same) behaviour. If the
translator can generate the same correct output in Python ‘x += 1’ in both cases, then we
can say the translator is robust enough to translate two semantically similar statements. If it
fails, then the translator is not robust to adversarial attacks. In the case of trustworthiness,
the translator would be required to provide the correct translation ‘x += 2’ that generates
different outputs from the original one. If the translator generates the same Python translation
for original and mutated cases, it means that the translator does not provide trustworthy
translations to slightly different programs.

The two concepts differ because a trustworthy translator is the one that generates the
correct translation of the perturbation, rather than neglecting it and generating the original
translation. In other words, if a translator is robust yet it ignores the syntactic and semantic
changes to the input and generates the original program’s translation, it is not trustworthy
because it cannot generate the correct translation to a different program.

A key aspect of MBTA is that it considers all compiling perturbations as valid alternative
programs rather than “noise” or incorrect inputs. Hence, a mutant is not an adversarial attack,
but rather another program. Therefore, our approach measures trustworthiness because MTS
measures precisely how many perturbations (valid but similar programs) are correctly trans-
lated and not how many perturbations are ignored.

7 Conclusion

In this paper, we propose MBTA, a mutation-based technique to evaluate the trustworthiness
of translators. MBTA uses the concepts of mutants from Mutation Analysis, but it does it
differently. Instead of comparing the outputs of a given mutant with the outputs of the original
program, in MBTA we compare the mutant outputs with its translation outputs. When such

@ Springer

Empirical Software Engineering (2024) 29:19 Page210f23 19

outputs mismatch, then a translation bug is revealed. We also propose the MTS measure,
which quantifies the level of trustworthiness of a given translator.

We perform a case study evaluation of MTS using TransCoder, a well-known and recent
translator in the literature, and j2python, an open-source commercial translator, over a total
of 612 programs and 75,082 mutants. Our results show that these translators fail to translate
more than two-thirds of all mutants. Moreover, by analysing the mutants killed, we were able
toreveal bugs that could not be captured using measures based solely on the original programs
and their translations, such as the CA measure. Finally, we discovered that some types of
mutations are more likely to produce incorrect translations, unveiling possible weaknesses in
the translators. As shown in our examples, MTS is able to reveal bugs even when the original
program and its translation produce the same outputs (i.e., the CA score is perfect). In such
cases, MTS can either reveal a translation bug in an unseen program (mutant) or a missed
bug in the original translation due to a weak test suite.

For future work, we intend to compare additional translators for different programming
languages in order to evaluate whether MTS can be helpful in different scenarios. We also
intend to perform experiments with other datasets and mutation tools. Another possibility is
to use the mutation results to aid the fault localisation tasks in the context of source-to-source
translation. By comparing the mutant translation code to the original translation code, we can
pinpoint cases where the original translation passes the test suite but the mutant translation
is killed, hence potentially revealing faulty lines of code by analysing the diff between them.

Data Availability The datasets generated during and/or analysed during the current study are available in the
UCL’s repository, https://doi.org/10.5522/04/24552178

Declarations

Conflicts of interest The authors declared that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aggarwal K, Salameh M, Hindle A (2015) Using machine translation for converting Python 2 to Python 3
code. PeerJ PrePrints 3:e1459v1. https://doi.org/10.7287/peerj.preprints.1459v1

Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The oracle problem in software testing: a survey.
IEEE Trans Softw Eng 41(5):507-525. https://doi.org/10.1109/TSE.2014.2372785

Chen Q, Zhou M (2018) A neural framework for retrieval and summarization of source code. In: 2018 33rd
IEEE/ACM international conference on automated software engineering (ASE), IEEE, pp 826-831

Chen TY, Kuo FC, Liu H, Poon PL, Towey D, Tse T, Zhou ZQ (2018) Metamorphic testing: a review of
challenges and opportunities. ACM Computing Surveys (CSUR) 51(1):1-27

Chen X, Liu C, Song D (2018b) Tree-to-tree neural networks for program translation. arXiv:1802.03691

Guizzo G, Sarro F, Krinke J, Vergilio SR (2020) Sentinel: a hyper-heuristic for the generation of mutant
reduction strategies. IEEE Transactions on Software Engineering

@ Springer

https://doi.org/10.5522/04/24552178
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7287/peerj.preprints.1459v1
https://doi.org/10.1109/TSE.2014.2372785
http://arxiv.org/abs/1802.03691

19 Page 22 of 23 Empirical Software Engineering (2024) 29:19

Hort M, Zhang JM, Sarro F, Harman M (2021) Fairea: a model behaviour mutation approach to benchmark-
ing bias mitigation methods. In: Proceedings of the 29th ACM joint meeting on European software
engineering conference and symposium on the foundations of software engineering, pp 994-1006

Hu X, LiG, Xia X, Lo D, Jin Z (2018) Deep code comment generation. In: 2018 IEEE/ACM 26th international
conference on program comprehension (ICPC), IEEE, pp 200-20010

Jia Y, Harman M (2011) An analysis and survey of the development of mutation testing. IEEE Trans Softw
Eng 37(5):649-678. https://doi.org/10.1109/tse.2010.62

Karaivanov S, Raychev V, Vechev M (2014) Phrase-based statistical translation of programming languages.
In: Proceedings of the 2014 ACM international symposium on new ideas, new paradigms, and reflections
on programming & software, association for computing machinery, New York, NY, USA, Onward! 2014,
pp 173-184. https://doi.org/10.1145/2661136.2661148

MaYS, Offutt J, Kwon YR (2005) Mujava: an automated class mutation system: Research articles. Softw Test
Verif Reliab 15(2):97-133

Melhase T (2022) java2python. https://github.com/natural/java2python. Accessed 13 Nov 2023

Nguyen AT, Nguyen TT, Nguyen TN (2013) Lexical statistical machine translation for language migration.
In: Proceedings of the 2013 9th joint meeting on foundations of software engineering, association for
computing machinery, New York, NY, USA, ESEC/FSE 2013, pp 651-654. https://doi.org/10.1145/
2491411.2494584

Offutt AJ, Untch RH (2001) Mutation testing for the new century, Springer, chap Mutation 2000: Uniting the
Orthogonal, pp 3444

Offutt J (2014) Mujava home page. https://cs.gmu.edu/~offutt/mujava/, Accessed 05 June 2023

Papadakis M, Shin D, Yoo S, Bae DH (2018) Are mutation scores correlated with real fault detection? A large
scale empirical study on the relationship between mutants and real faults. In: Proceedings of the 40th
international conference on software engineering, association for computing machinery, New York, NY,
USA, ICSE 18, pp 537-548. https://doi.org/10.1145/3180155.3180183

Papadakis M, Kintis M, Zhang J, Jia Y, Traon YL, Harman M (2019) Chapter six - mutation testing advances:
an analysis and survey. In: Memon AM (ed) Advances in computers, vol 112, Elsevier, pp 275-378.
https://doi.org/10.1016/bs.adcom.2018.03.015

Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine translation.
In: Proceedings of the 40th annual meeting of the association for computational linguistics, pp 311—
318

Roziere B, Lachaux MA, Chanussot L, Lample G (2020) Unsupervised translation of programming languages.
Adv Neural Info Process Syst 33

Roziere B, Lachaux M, Szafraniec M, Lample G (2021a) DOBF: a deobfuscation pre-training objective for
programming languages. CoRR arXiv:2102.07492, https://arxiv.org/abs/2102.07492

Roziere B, Zhang JM, Charton F, Harman M, Synnaeve G, Lample G (2021b) Leveraging automated unit tests
for unsupervised code translation. CoRR arXiv:2110.06773, https://arxiv.org/abs/2110.06773

Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72—
101. https://doi.org/10.2307/1422689

Sun Z, Zhang JM, Harman M, Papadakis M, Zhang L (2020a) Automatic testing and improvement of machine
translation. In: Proceedings of the ACM/IEEE 42nd international conference on software engineering,
pp 974-985

Sun Z, Zhu Q, Xiong Y, Sun Y, Mou L, Zhang L (2020) Treegen: a tree-based transformer architecture for
code generation. Proc AAAI Conf Artif Intel 34:8984-8991

Sun Z, Zhang JM, Xiong Y, Harman M, Papadakis M, Zhang L (2022) Improving machine translation systems
via isotopic replacement. In: Proceedings of the 44th international conference on software engineering,
pp 1181-1192

Terekhov AA, Verhoef C (2000) The realities of language conversions. IEEE Softw 17(6):111-124

Waters RC (1988) Program translation via abstraction and reimplementation. IEEE Trans Softw Eng
14(8):1207-1228. https://doi.org/10.1109/32.7629

Yasumatsu K, Doi N (1995) Spice: a system for translating smalltalk programs into a ¢ environment. IEEE
Trans Softw Eng 21(11):902-912. https://doi.org/10.1109/32.473219

Zhang J, Chen J, Hao D, Xiong Y, Xie B, Zhang L, Mei H (2014a) Search-based inference of polynomial
metamorphic relations. In: Proceedings of the 29th ACM/IEEE international conference on automated
software engineering, pp 701-712

Zhang J, Zhu M, Hao D, Zhang L (2014b) An empirical study on the scalability of selective mutation test-
ing. In: 2014 IEEE 25th international symposium on software reliability engineering, IEEE, pp 277—
287

@ Springer

https://doi.org/10.1109/tse.2010.62
https://doi.org/10.1145/2661136.2661148
https://github.com/natural/java2python
https://doi.org/10.1145/2491411.2494584
https://doi.org/10.1145/2491411.2494584
https://cs.gmu.edu/~offutt/mujava/
https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1016/bs.adcom.2018.03.015
http://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2102.07492
http://arxiv.org/abs/2110.06773
https://arxiv.org/abs/2110.06773
https://doi.org/10.2307/1422689
https://doi.org/10.1109/32.7629
https://doi.org/10.1109/32.473219

Empirical Software Engineering (2024) 29:19 Page230f23 19

Zhang J, Lou Y, Zhang L, Hao D, Zhang L, Mei H (2016a) Isomorphic regression testing: executing uncovered
branches without test augmentation. In: Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering, pp 883-894

Zhang J, Wang Z, Zhang L, Hao D, Zang L, Cheng S, Zhang L (2016b) Predictive mutation testing. In:
Proceedings of the 25th international symposium on software testing and analysis, pp 342-353

Zhang J, Hao D, Zhang L, Zhang L (2018) To detect abnormal program behaviours via mutation deduction. In:
2018 IEEE international conference on software testing, verification and validation workshops (ICSTW),
pp 11-17. https://doi.org/10.1109/ICSTW.2018.00022

Zhang JM, Harman M, Ma L, Liu Y (2020) Machine learning testing: survey, landscapes and horizons. IEEE
Trans Softw Eng

Zhang JM, Harman M, Guedj B, Barr ET, Shawe-Taylor J (2023) Model validation using mutated training
labels: an exploratory study. Neurocomputing 539:126116

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Giovani Guizzo'® - Jie M. Zhang? - Federica Sarro’ - Christoph Treude3 -
Mark Harman'#

Jie M. Zhang
jie.zhang @kcl.ac.uk

Christoph Treude
christoph.treude @unimelb.edu.au

Mark Harman

m.harman@ucl.ac.uk

University College London, England, UK

2 King’s College London, England, UK
University of Melbourne, Melbourne, Australia

4 Meta Platforms, Inc., Menlo Park, CA, USA

@ Springer

https://doi.org/10.1109/ICSTW.2018.00022
http://orcid.org/0000-0001-5361-2973

	Mutation analysis for evaluating code translation
	Citation

	Mutation analysis for evaluating code translation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Code Translation
	2.2 Mutation Analysis
	2.3 Motivating Example

	3 Mutation-Based Translation Analysis
	4 Case Study Design
	4.1 Translators
	4.2 Subjects
	4.3 Mutation Tool
	4.4 Case Study Procedure

	5 Results
	5.1 RQ1: MTS Assessment Results
	5.2 RQ2: MTS vs Computational Accuracy
	5.3 RQ3: Results of each Mutation Operator
	5.4 Threats to Validity

	6 Discussion
	6.1 Advantages and Limitations of MBTA
	6.2 Trustworthiness and Robustness

	7 Conclusion
	References

