
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2018

The impact of rapid release cycles on the integration delay of The impact of rapid release cycles on the integration delay of

fixed issues fixed issues

Daniel Alencar DA COSTA

Shane MCINTOSH

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Uirá KULESZA

Ahmed E. HASSAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
DA COSTA, Daniel Alencar; MCINTOSH, Shane; TREUDE, Christoph; KULESZA, Uirá; and HASSAN, Ahmed
E.. The impact of rapid release cycles on the integration delay of fixed issues. (2018). Empirical Software
Engineering. 23, (2), 835-904.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8770

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8770&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1 23

Empirical Software Engineering
An International Journal

ISSN 1382-3256

Empir Software Eng
DOI 10.1007/s10664-017-9548-7

The impact of rapid release cycles on the
integration delay of fixed issues

Daniel Alencar da Costa, Shane
McIntosh, Christoph Treude, Uirá
Kulesza & Ahmed E. Hassan

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Empir Software Eng
https://doi.org/10.1007/s10664-017-9548-7

The impact of rapid release cycles on the integration
delay of fixed issues

Daniel Alencar da Costa1 ·Shane McIntosh2 ·
Christoph Treude3 ·Uirá Kulesza4 ·Ahmed E. Hassan5

© Springer Science+Business Media, LLC 2017

Abstract The release frequency of software projects has increased in recent years.
Adopters of so-called rapid releases—short release cycles, often on the order of weeks,
days, or even hours—claim that they can deliver fixed issues (i.e., implemented bug fixes
and new features) to users more quickly. However, there is little empirical evidence to sup-
port these claims. In fact, our prior work shows that code integration phases may introduce
delays for rapidly releasing projects—98% of the fixed issues in the rapidly releasing Fire-
fox project had their integration delayed by at least one release. To better understand the
impact that rapid release cycles have on the integration delay of fixed issues, we perform

Communicated by: Romain Robbes, Christian Bird, and Emily Hill

� Daniel Alencar da Costa
daniel.alencar@queensu.ca

Shane McIntosh
shane.mcintosh@mcgill.ca

Christoph Treude
christoph.treude@adelaide.edu.au

Uirá Kulesza
uira@dimap.ufrn.br

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON, Canada

2 Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada

3 School of Computer Science, University of Adelaide, Adelaide, South Australia, Australia

4 Department of Informatics and Applied Mathematics (DIMAp), Federal University of Rio Grande
do Norte, Natal, Brazil

5 Software Analysis and Intelligence Lab (SAIL), Queen’s University, Kingston, ON, Canada

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9548-7&domain=pdf
http://orcid.org/0000-0003-4525-3266
mailto:daniel.alencar@queensu.ca
mailto:shane.mcintosh@mcgill.ca
mailto:christoph.treude@adelaide.edu.au
mailto:uira@dimap.ufrn.br
mailto:ahmed@cs.queensu.ca

Empir Software Eng

a comparative study of traditional and rapid release cycles. Our comparative study has two
parts: (i) a quantitative empirical analysis of 72,114 issue reports from the Firefox project,
and a (ii) qualitative study involving 37 participants, who are contributors of the Firefox,
Eclipse, and ArgoUML projects. Our study is divided into quantitative and qualitative anal-
yses. Quantitative analyses reveal that, surprisingly, fixed issues take a median of 54% (57
days) longer to be integrated in rapid Firefox releases than the traditional ones. To investi-
gate the factors that are related to integration delay in traditional and rapid release cycles,
we train regression models that model whether a fixed issue will have its integration delayed
or not. Our explanatory models achieve good discrimination (ROC areas of 0.80–0.84) and
calibration scores (Brier scores of 0.05–0.16) for rapid and traditional releases. Our explana-
tory models indicate that (i) traditional releases prioritize the integration of backlog issues,
while (ii) rapid releases prioritize issues that were fixed in the current release cycle. Comple-
mentary qualitative analyses reveal that participants’ perception about integration delay is
tightly related to activities that involve decision making, risk management, and team collab-
oration. Moreover, the allure of shipping fixed issues faster is a main motivator for adopting
rapid release cycles among participants (although this motivation is not supported by our
quantitative analysis). Furthermore, to explain why traditional releases deliver fixed issues
more quickly, our participants point out the rush for integration in traditional releases and
the increased time that is invested on polishing issues in rapid releases. Our results suggest
that rapid release cycles may not be a silver bullet for the rapid delivery of new content to
users. Instead, our results suggest that the benefits of rapid releases are increased software
stability and user feedback.

Keywords Integration delay · Rapid releases · Mining software repositories · Release
engineering

1 Introduction

To achieve sustained success, software projects must attract and retain the interest of users
(Subramaniam et al. 2009). Since users will quickly lose interest in a stagnant software
project, successful projects need to continuously provide exciting new features and fix bugs
that are frustrating users.

Within the context of constantly evolving requirements (e.g., in agile development),
approaches like eXtreme Programming (XP) and Scrum1 have arisen to foster faster soft-
ware delivery (Beck 2000). Those methodologies claim to better embrace a constantly
evolving requirements context by shortening release cycles. Indeed, modern release cycles are
on the order of days or weeks rather than months or years (Baskerville and Pries-Heje 2004).
Such rapid releasing enables faster user feedback and a smoother roadmap for user adoption.

The allure of delivering new features faster has led many large software projects to shift
from a more traditional release cycle (e.g., 12–18 months to ship a major release), to shorter
release cycles (e.g., weeks). For example, Google Chrome, Mozilla Firefox, and Facebook
teams have each adopted shorter release cycles (Adams and McIntosh 2016). In this paper,
we use the term rapid releases to refer to releases that are produced in release cycles that last
for weeks or days (such as a sprint in the Scrum agile process (Schwaber 1997)). Conversely,
we use the term traditional releases to refer to releases that are produced in cycles that last
for months or years.

1http://www.scrumguides.org/.

Author's personal copy

http://www.scrumguides.org/

Empir Software Eng

Prior research has investigated the impact of adopting rapid releases (Mäntylä et al. 2014;
Souza et al. 2014, 2015; Baysal et al. 2011; Khomh et al. 2012). For example, Khomh et al.
(2012) found that bugs that are related to crash reports tend to be fixed more quickly in
the rapid Firefox releases than the traditional ones. Mäntylä et al. (2014) found that the
Firefox project’s shift from a traditional to a rapid release cycle has been accompanied by
an increase in the testing workload.

To the best of our knowledge, little prior research has empirically studied the impact that
a shift from a traditional to a rapid release cycle has on the speed of integration of fixed
issues. Such an investigation is important to empirically check if adopting a rapid release
cycle really does lead to the quicker delivery of fixed issues. In our previous work (da Costa
et al. 2014), we studied the delay that is introduced by the integration phase of a software
project. We found that 98% of the bug-fixes and new features in the rapid releases of Firefox
were delayed by at least one release. Such delayed integration hints that even though rapid
releases are consistently delivered every 6 weeks, they may not be delivering fixed issues as
quickly as its proponents purport.

Hence, in this paper, we perform a two-part empirical study to compare traditional and
rapid release cycles with respect to integration delay. The first part is a quantitative anal-
ysis of 72,114 issue reports from the Firefox project (34,673 for traditional releases and
37,441 for rapid releases). These issue reports refer to bugs, enhancements, and new features
(Antoniol et al. 2008). In the second part, we set out to qualitatively analyze the integration
delay of fixed issues by surveying 37 participants from the Firefox, Eclipse, and ArgoUML
projects.

This paper is an extended version of our prior work (da Costa et al. 2016). We extend our
prior study to add a new qualitative analysis that is comprised of:

– An analysis of survey data that we collect from 37 participants from the Firefox,
Eclipse, and ArgoUML projects (RQ4-RQ6).

– An open-coding analysis of the open-ended questions of our survey (RQ4-RQ6).
– A quantitative analysis using the responses to the Likert-scale questions of our survey

(RQ4).
– An analysis of the extent to which the perceived integration delay of our participants

are in accordance with the collected quantitative data from our prior work (da Costa
et al. 2014; da Costa et al. 2016) (RQ5).

– Follow-up interviews with participants who were willing to clarify and provide deeper
explanations about their survey responses (RQ4-RQ6).

1.1 Quantitative Study

Our quantitative analysis focuses on the following research questions.

– RQ1: Are fixed issues integrated more quickly in rapid releases? Interestingly, we
find that although issues are fixed more quickly in rapid releases, they tend to require a
longer time to be integrated and released to users.

– RQ2: Why can traditional releases integrate fixed issues more quickly? We find that
minor-traditional releases (i.e., releases of smaller scope that are shipped after a major
version of the software) are a key reason as to why fixed issues tend to be integrated
more quickly in traditional releases. In addition, we find that the length of the release
cycles are roughly the same between traditional and rapid releases when considering
both minor and major releases, with medians of 40 and 42 days, respectively.

Author's personal copy

Empir Software Eng

– RQ3: Did the change in release strategy have an impact on the characteristics of
delayed issues? Our models suggest that issues are queued up as a project backlog in
traditional releases, while issues in rapid releases are queued up on a per release basis
(i.e., a backlog per release cycle). Issues that are fixed early either in a project or release
cycle backlog are less likely to be delayed.

1.2 Qualitative Study

Next, we survey 37 developers from the Firefox, Eclipse, and ArgoUML projects to study
the perceived impact of integration delay and the shift from a traditional to a rapid release
cycle. More specifically, we address the following research questions:

– RQ4: What are developers’ perceptions as to why integration delays occur? The per-
ceived reasons for the integration delay of fixed issues are related to decision making,
team collaboration, and risk management activities. Moreover, integration delay will
likely lead to user/developer frustration according to our participants.

– RQ5: What are developers’ perceptions of shifting to a rapid release cycle? The allure
of delivering fixed issues more quickly to users is the most recurrent motivator of
switching to a rapid release cycle. Moreover, the allure of improving the flexibility and
quality of fixed issues is another advantage that are perceived by our participants.

– RQ6: To what extent do developers agree with our quantitative findings about inte-
gration delay? The dependency of fixed issues on other projects and team workload
are the main perceived explanations of our findings about integration delay in gen-
eral. Integration rush and increased time spent on polishing fixed issues (during rapid
releases) emerge as main explanations as to why traditional releases may achieve
shorter integration delays.

Paper Organization The remainder of this paper is organized as follows. In Section 2, we
present the necessary background and definitions to the reader. In Section 3, we describe the
design of our quantitative and qualitative studies. In Sections 4 and 5, we present the results
of our quantitative and qualitative studies, respectively. In Section 6, we analyze potential
confounding factors that are related to our quantitative analysis. In Section 7, we suggest
practical guidelines based on the results of our two studies. Section 8 discloses the threats
to the validity of our studies, while we discuss the related work in Section 9. Finally, we
draw conclusions in Section 10.

2 Background & Definitions

2.1 Issue Reports

An issue report describes a new feature, enhancement, or bug. Modern software projects
use Issue Tracking Systems (ITSs, e.g., Bugzilla) to manage issues as they transition from
being reported to being fixed.2

Each issue report has a unique identifier (issue ID), a description of the nature of the
issue, and a variety of other metadata (e.g., the severity and priority of the issue).3 Large

2https://www.bugzilla.org/.
3https://bugzilla.readthedocs.org/en/5.0/using/understanding.html.

Author's personal copy

https://www.bugzilla.org/
https://bugzilla.readthedocs.org/en/5.0/using/understanding.html

Empir Software Eng

software projects receive plenty of issue reports on a daily basis. For example, our data
shows that a median of 124 Firefox issues were opened on a daily basis from 1999 to 2010.

When developers start working on issue reports, they use the issue status to track progress
throughout the lifetime of an issue. An issue is first (1) reported (new status), (2) triaged
to an appropriate developer (assigned status), and (3) finally fixed (fixed status). A more
detailed description of the life cycle of an issue report in the Firefox project is provided in
the Bugzilla documentation.4

In this paper, we study fixed issues, which are issues that are resolved with the fixed status
(i.e., the RESOLVED-FIXED status in the Bugzilla ITS) and integrated into traditional or
rapid releases of the Firefox project.

2.2 Release Cycles

In this paper, we use the term rapid releases to refer to releases that are produced in rapid
release cycles, i.e., cycles that last for weeks, days, or even hours. For example, the Scrum
agile process uses the term sprint to refer to a rapid release cycle (Schwaber 1997). Also,
we use the term traditional releases to refer to releases that are produced in cycles that
last for several months or even years. Traditional release cycles resemble the classic Spi-
ral model (Boehm 1988), in which the scope of a release is firmly fixed at the beginning
of the release cycle the tasks within the scope should be completed by a fixed date. Con-
versely, rapid releases have a more flexible scope by shortening the duration of their release
cycles (Schwaber 1997). Since a shorter release cycle exposes the release more quickly to
customers, there are more windows for changing and re-prioritizing the release scope. In
this way, shorter release cycles are claimed to better embrace changes in scope that occur
throughout the development process.

In our quantitative study, we examine the popular Firefox web browser.5 Firefox has
approximately 18% of the worldwide market share of web browsers at the time that this
paper was written.6 Firefox is a fitting subject for our study because it shifted from a tra-
ditional release cycle to a rapid release cycle (Khomh et al. 2012; Souza et al. 2014, 2015;
Mäntlä et al. 2014).

2.2.1 Firefox Traditional Releases

The traditional release cycle of Firefox was applied to major releases from 1.0 to 4.0. These
traditional major releases took 12-18 months to be shipped.7 In traditional release cycles,
major traditional releases have subsequent minor releases containing bug fixes. These minor
releases can be developed and released in parallel with major releases. Indeed, the final
minor traditional release (3.6.24) was released in tandem with major rapid release 8.

2.2.2 Firefox Rapid Releases

Firefox began adopting a rapid release cycle in March 2011. The first official rapid release
was shipped in June 2011. The development process of rapid releases differs from that

4https://bugzilla.readthedocs.org/en/5.0/using/editing.html#life-cycle-of-a-bug.
5https://www.mozilla.org/en-US/firefox/new/.
6https://clicky.com/marketshare/global/web-browsers/.
7https://en.wikipedia.org/wiki/Firefox release history.

Author's personal copy

https://bugzilla.readthedocs.org/en/5.0/using/editing.html#life-cycle-of-a-bug
https://www.mozilla.org/en-US/firefox/new/
https://clicky.com/marketshare/global/web-browsers/
https://en.wikipedia.org/wiki/Firefox_release_history

Empir Software Eng

of traditional releases. Rapid release cycles last for 6 weeks (42 days) in Firefox, while
traditional release cycles last for 12 to 18 months. Also, the rapid release process consists
of a pipeline process, i.e., a release is developed (or trained) through four stabilization
channels. These channels are the NIGHTLY, AURORA, BETA, and RELEASE channels,
respectively—each channel yielding more stable releases than its prior counterpart.

In the Firefox rapid release strategy, a release is shipped into the NIGHTLY chan-
nel every night. This NIGHTLY release incorporates the fixed issues that were integrated
into the main code repository (mozilla-central).8 Then, a release candidate in the
NIGHTLY channel migrates to the AURORA and BETA channels to be stabilized. Once
stabilized, an official release is broadcasted on the RELEASE channel. In the AURORA
and BETA channels, the Quality Assurance team (QA) makes decisions about whether the
code that was stabilized in these channels should be pushed to the next channel.9 Code that
was further stabilized in the BETA channel is pushed to the RELEASE channel. The rapid
release strategy is able to produce new official releases (on the RELEASE channel) every
six weeks because it allows for the development of consecutive releases that are migrated
from one channel to another on a regular basis.

2.3 Major and Minor Releases

We also analyze major and minor releases in our study. Major releases are releases that are
produced in official release cycles, which produce the official versions of a software project.
For example, Firefox versions 25, 26, and 27 were produced by major release cycles. On the
other hand, minor releases are off-schedule releases that are usually produced to fix specific
bugs (e.g., security bugs) or provide specific enhancements (e.g., stability improvements).
For example, Firefox 27.0.1 is a minor release that was shipped after Firefox had adopted
rapid release cycles.10

The rapid release cycle of the Firefox project also includes minor releases that con-
tain bug fixes and Extended Support Releases (ESR). ESRs are shipped to organiza-
tions/customers who cannot update their Firefox installations at the same pace at which the
rapid releases are shipped.11

2.4 Integration Delay

Figure 1 shows how we compute integration delays. Integration delay is the time between
the moment at which an issue is fixed (T 3) and the moment at which this fix is released to
end users (T 5). We consider that an issue is fixed when it reaches the RESOLVED-FIXED
status. We define two kinds of integration delay that we study in this work below.

Definition 1—Time Delay The time delay is the number of days between T 3 and T 5.
For example, if the time in days between each T of Fig. 1 is 30 days, the integration delay
in terms of days for issue-#1 is 60 days. We use Definition 1 to perform our analyses in
RQ1-RQ2 and to gather developer feedback about these analyses in RQ6.

8https://hg.mozilla.org/mozilla-central/.
9http://mozilla.github.io/process-releases/draft/development overview/.
10https://en.wikipedia.org/wiki/History of Firefox#Version 27.
11https://www.mozilla.org/en-US/firefox/organizations/faq/.

Author's personal copy

https://hg.mozilla.org/mozilla-central/
http://mozilla.github.io/process-releases/draft/development_overview/
https://en.wikipedia.org/wiki/History_of_Firefox#Version_27
https://www.mozilla.org/en-US/firefox/organizations/faq/

Empir Software Eng

Issue
#1

Time

T1
Issue #1 is
reported

T2
A release
is shipped

R1 R2 R3

T4
A release
is shipped

T3
Issue #1
is fixed

T5
A release
is shipped

Issue
#1

Shipped After 1 release

Fig. 1 An illustrative example of how we compute integration delays

Definition 2—Release Delay Instead of counting the number of days between T 3 and
T 5 as we specify in Definition 1, we count the number of releases between T 3 and T 5.
For example, the release delay for issue-#1 is one release. We use this definition to fit our
statistical models in RQ3 and to understand the perceived reasons of why fixed issues are
not integrated in RQ4-RQ6.

3 Empirical Study Design

We perform two studies: a quantitative and a qualitative study. In this section, we pro-
vide information about the subject projects, the motivation, and approach of the research
questions for each of our studies.

3.1 Quantitative Study (Study I)

In Study I, we set out to comparatively analyze the integration delay of fixed issues that
were shipped in traditional versus the ones that were shipped in rapid releases.

Analyze
tags

VCS
Link

commits
to issues

Commit
logs

Release
data

ITS

Step1
Collect
release

information

Remove
false

positives

Release
notes

Step 3

Linked
issues
data

Linked
issues
data

Compute
integration

delay factors Final
dataset

Step 2

Fig. 2 Overview of the process to construct the dataset that is used in our Study I

Author's personal copy

Empir Software Eng

Table 1 The studied traditional
and rapid Firefox releases Strategy Version range Time period # of majors # of minors

Trad. 1.0–4.0 Sep/2004–Mar/2012 7 104

Rapid 5–27 Jun/2011–Sep/2014 23 50

3.1.1 The Firefox Subject Project

We choose to study the Firefox project because it offers a unique opportunity to investigate
the impact of shifting from a traditional release cycle to a rapid release cycle using rich,
publicly available ITS and Version Control System (VCS) data. Although other open source
projects may have ITS and VCS data available, they do not provide the opportunity to inves-
tigate the transition between traditional releases and rapid releases. In addition, comparing
different projects that use traditional and rapid releases poses a great challenge, since one
has to distinguish to what extent the results are due to the release strategy and not due to
intricacies of the projects themselves. Therefore, we highlight that the choice to investi-
gate Firefox is not accidental, but based on the specific analysis constraints that such data
satisfies, and the very unique nature of such data.

3.1.2 Data Collection

Figure 2 shows an overview of our data collection approach. Each step of the process is
described below.

Step 1: Collect Release Information We collect the date and version number of each
Firefox release (minor and major releases of each release strategy) using the Firefox release
history wiki.12 Table 1 shows: (i) the range of versions of releases that we investigate, (ii)
the investigated time period of each release strategy, and (iii) the number of major and
minor studied releases in each release strategy. Release versions 1.0 to 4.0 are considered
as traditional releases (i.e., they have a release cycle duration of 12 to 18 months), while
release versions from 5 to 27 are considered as rapid releases (i.e., their release cycles are
only 6 weeks long). The release version 4.0 was the last release that was produced in the
traditional release cycle (Khomh et al. 2012; Souza et al. 2014, 2015; Mäntylä et al. 2014).

Step 2: Link Issues to Releases Once we collect the release information, we use the tags
within the VCS to link issue IDs to releases. First, we analyze the tags that are recorded
within the VCS. Since Firefox migrated from CVS to Mercurial during release 3.5, we
collect the tags of releases 1.0 to 3.0 from CVS, while we collect the tags of releases 3.5
to 27 from Mercurial.13,14 By analyzing the tags, we extract the commit logs within each
tag. The extracted commit logs are linked to their respective tags. We then parse the commit
logs to collect the issue IDs that are being fixed in these commits. By inspecting the commit
logs, we notice that they mention issue IDs using the following patterns:

1. “Bug <ID>” or “bug <ID>” followed by a description of the fix.
2. “b=<ID>” followed by a description of the fix.

12https://en.wikipedia.org/wiki/Firefox release history.
13http://cvsbook.red-bean.com/cvsbook.html.
14https://mercurial.selenic.com/.

Author's personal copy

https://en.wikipedia.org/wiki/Firefox_release_history
http://cvsbook.red-bean.com/cvsbook.html
https://mercurial.selenic.com/

Empir Software Eng

Time
New Assigned Fixed Released

t1 t2 t3

Issue Solution

Fig. 3 A simplified life cycle of an issue

For example, the commits with IDs bd0fdb3585c6 and 2e06eade69ce are instances of
the aforementioned patterns.15,16

In order to mitigate false positives, i.e., links between commit logs and issue IDs that
should not exist, we discard the following patterns.

1. Potential IDs that have less than five digits, since the issue IDs of the investigated
releases should have at least five digits (2,559 issues were discarded).

2. Commit logs that follow the pattern: “Bug <ID> reftest”, “Bug <ID> JavaScript
Tests”, or “Bug <ID> crash tests”, which refer to tests and not issue fixes (441 issues
were discarded). We also include the “b=<ID>” variations in these cases.

3. Backout commits, i.e., commit logs that follow the pattern: “back out of bug <ID>”
or “back out of b=<ID>” because these are reverting commits that are related to the
specified IDs rather than fixes (168 issues were discarded) (Shimagaki et al. 2016;
Souza et al. 2015).

4. Any potential ID that is the name of a file, e.g., “159334.js” (607 issues were discarded).

In total, we link 77%
(

168,153
217,245

)
of the commit logs that are related to the traditional

releases data, while we link 97%
(

127,254
130,136

)
of the commit logs for the rapid releases data.

These linkage rates suggest that the practice of providing issue IDs in commit logs has been
more broadly adopted as the Firefox community has matured.

Since the commit logs are linked to VCS tags, we are also able to link the issue IDs found
within these commit logs to the releases that correspond to those tags. For example, since
we find the fix for issue 529404 in the commit log of tag 3.7a1, we link this issue ID to that
release. We also merge together the data of development releases like 3.7a1 into the nearest
minor or major release. For example, release 3.7a1 would be merged with release 4.0, since
it is the next user-intended release after 3.7a1. In the case that a particular issue is found
in the commit logs of multiple releases, we consider that particular issue to pertain to the
earliest release that contains the last fix attempt (commit log), since that release is the first
one to contain the complete fix for the issue. Finally, we collect the issue report information
of each remaining issue (e.g., opening date, fix date, severity, priority, and description)
using the ITS. Moreover, since the minor-rapid releases are off-cycle releases, in which
fixed issues may skip being integrated into mozilla-central (i.e., NIGHTLY) tags, we
manually collect the fixed issues that were integrated into those releases using the Firefox
release notes (i.e., 247 fixed issues).17 We add the manually collected fixed issues from ESR
releases within the rapid releases data, since they also represent data from a rapid release
strategy.

15https://hg.mozilla.org/mozilla-central/rev/bd0fdb3585c6.
16https://hg.mozilla.org/mozilla-central/rev/2e06eade69ce.
17https://www.mozilla.org/en-US/firefox/releases/.

Author's personal copy

https://hg.mozilla.org/mozilla-central/rev/bd0fdb3585c6
https://hg.mozilla.org/mozilla-central/rev/2e06eade69ce
https://www.mozilla.org/en-US/firefox/releases/

Empir Software Eng

Table 2 Metrics that are used in our explanatory models (reporter and resolver dimensions)

Family Metrics Value Definition (d)|Rationale (r)

Reporter Experience Numerical d: the number of previously integrated issues that were
reported by the reporter of a particular fixed issue

r: The greater the experience of the reporter the higher the
quality of his/her reports and the solution to his/her reports
might be integrated more quickly (Shihab et al. 2010)

Reporter integration Numerical d: The median in days of the previously integrated fixed
issues that were reported by a particular reporter

r: If a particular reporter usually reports issues that are
integrated quickly, his/her future reported issues might be
integrated quickly as well

Resolver Experience Numerical d: the number of previously integrated fixed issues that
were fixed by the resolver of a particular fixed issue. We
consider the collaborator that changed the status of an
issue to RESOLVED-FIXED as the resolver of that issue

r: The greater the experience of the resolver, the greater
the likelihood that his/her code will be integrated faster
(Shihab et al. 2010)

Resolver integration Numerical d: The median in days of the previously integrated fixed
issues that were fixed by a particular resolver

r: If a particular resolver usually fixes issues that are
integrated quickly, his/her future fixed issues might be
integrated quickly as well

Step 3: Compute Metrics and Perform Analyses We use the data from Step 2 to com-
pute the metrics that we use in our analyses. We select these metrics (which are described in
Section 3.1.4) because we suspect that they share a relationship with integration delay (i.e.,
time delay and release delay). Finally, we use the collected dataset to perform the analyses
of our study.

3.1.3 Research Questions

In our quantitative study, we address three research questions about the shift from a tra-
ditional to a rapid release cycle. The motivation of each research question is detailed
below.

– RQ1: Are fixed issues integrated more quickly in rapid releases? Since there is a
lack of empirical evidence to indicate that rapid release cycles integrate fixed issues
more quickly than traditional release cycles, we compare the integration delay of fixed
issues in traditional releases against the integration delay in rapid releases in RQ1.

– RQ2: Why can traditional releases integrate fixed issues more quickly? In RQ1,
we surprisingly find that traditional releases tend to integrate fixed issues more quickly
than rapid releases. This result raises the following question: why can a traditional
release strategy, which has a longer release cycle, integrate fixed issues more quickly
than a rapid release strategy?

– RQ3: Did the change in the release strategy have an impact on the characteristics
of delayed issues? In RQ1 and RQ2, we study the differences between rapid and tradi-
tional releases with respect to integration delay. We find that although issues tend to be

Author's personal copy

Empir Software Eng

fixed more quickly in rapid releases, they tend to wait longer to be integrated. We also
find that the use of minor releases is the main reason as to why traditional releases may
integrate fixed issues more quickly. In RQ3, we investigate what are the characteris-
tics of each release strategy that are associated with integration delays. This important
investigation sheds light on what may generate integration delays in each release strat-
egy, so that projects are aware of the characteristics of rapid releases versus traditional
releases before choosing to adopt one of these release strategies.

3.1.4 Research Approach

Figure 3 shows a simplified life cycle of an issue, which includes the triaging phase (t1),
the fixing phase (t2), and the integration phase (t3). We compute the time delay in t3. The
lifetime of an issue is composed of all three phases (from new to released). For RQ1, we
first observe the lifetime of the issues of traditional and rapid releases. Next, we look at the
time span of the triaging, fixing, and integration phases within the lifetime of an issue. In
RQ2, we group traditional and rapid releases into major and minor releases and study their
time delay.

Table 3 Metrics that are used in our explanatory models (issue dimension)

Family Metrics Value Definition (d)|Rationale (r)

Issue Stack trace attached Dichotomous d: We verify if the issue report has a stack trace attached
in its description

r: A stack trace attached may provide useful information
regarding the cause of the issue, which may quicken the
integration of the fixed issue (Schroter et al. 2010)

Severity Nominal d: The severity level of the issue report. Issues with higher
severity levels (e.g., blocking) might be integrated faster
than other issues

r: Panjer observed that the severity of an issue has a large
effect on its time to be fixed in the Eclipse project (Panjer
2007)

Priority Nominal d: The priority level of the issue report. Issues with higher
priority levels (e.g., P1) might be integrated faster than
other issues

r: Higher priority issues will likely be integrated before
lower priority issues

Bug type Dichotomous d: A boolean identifying whether an issue is a security
issue. Similar to Zaman et al. (2011), we consult the
Mozilla Foundation Security Advisory to identify whether
an issue is related to security problems.a

r: Since the release history documentation of Firefox
shows that minor releases are usually related to stability
and security issues We investigate whether short delays
are related to security issues

Description size Numerical d: The number of words in the description of the issue

r: Issues that are well described might be more easy to
integrate than issues that are difficult to understand

ahttps://www.mozilla.org/en-US/security/advisories/

Author's personal copy

https://www.mozilla.org/en-US/security/advisories/

Empir Software Eng

Table 4 Metrics that are used in our explanatory models (project dimension)

Family Metrics Value Definition (d)|Rationale (r)

Project Queue rank Numerical d: A rank number that represents the moment at which an
issue is fixed compared to other fixed issues in the back-
log. For instance, in a backlog that contains 500 issues, the
first fixed issue has a rank of 1, while the last fixed issue
has a rank of 500

r: An issue with a high queue rank is a recently fixed
issue. A fixed issue might be integrated faster/slower
depending of its rank

Cycle queue rank Numerical d: A rank number that represents the moment at which an
issue is fixed compared to other fixed issues of the same
release cycle. For example, in a release cycle that contains
300 fixed issues, the first fixed issue has a rank of 1, while
the last one has a rank of 300

r: An issue with a high cycle queue rank is a recently fixed
issue compared to the others of the same release cycle.
An issue fixed close to the upcoming release might be
integrated faster

Queue position Continuous d: queue rank
all fixed issues . The queue rank is divided by all the issues

that are fixed by the end of the next release. A queue posi-
tion close to 1 indicates that the issue was fixed recently
compared to others in the backlog

r: A fixed issue might be integrated faster/slower depend-
ing of its position

Cycle queue position Continuous d: cycle queue rank
fixed issues of the current cycle . The cycle queue rank is

divided by all of the fixed issues of the release cycle. A
cycle queue position close to 1 indicates that the issue was
fixed recently in the release cycle

r: An issue that is fixed close to a upcoming release might
be integrated faster

We use beanplots (Kampstra et al. 2008) to compare the distributions of our data. The ver-
tical curves of beanplots summarize and compare the distributions of different datasets (see
Fig. 10a). The higher the frequency of data within a particular value, the thicker the bean is
plotted at that particular value on the y axis. We also use Mann-Whitney-Wilcoxon (MWW)
tests (Wilks 2011) and Cliff’s delta effect-size measures (Cliff 1993). MWW tests are non-
parametric tests of the null hypothesis that two distributions come from the same population
(α = 0.05). On the other hand, Cliff’s delta is a non-parametric effect-size measure to verify
the difference in magnitude of one distribution compared to another distribution. The higher
the value of the Cliff’s delta, the greater the difference of values between distributions. For
instance, if we obtain a significant p value but a small Cliff’s delta, this means that although
two distributions do not come from the same population their difference is not that large. A
positive Cliff’s delta indicates how much larger the values of the first distribution are, while
a negative Cliff’s delta indicates the inverse. Finally, we use the Median Absolute Deviation
(MAD) (Howell 2005; Leys et al. 2013) as a measure of the variation of our distributions.
The MAD is the median of the absolute deviations from one distribution’s median. The
higher the MAD, the greater is the variation of a distribution with respect to its median.

For RQ3, we build explanatory models (i.e., logistic regression models) for the tradi-
tional and rapid releases data using the metrics that are presented in Tables 2, 3, 4 and 5.

Author's personal copy

Empir Software Eng

Table 5 Metrics that are used in our explanatory models (process dimension)

Family Metrics Value Definition (d)|Rationale (r)

Process Number of Impacted Files Numerical d: The number of files that are linked to an issue report

r: An integration delay might be related to a high number
of impacted files because more effort would be required
to properly integrate the modifications (Jiang et al. 2013)

Churn Numerical d: The sum of added lines plus the sum of deleted lines to
fix the issue

r: A higher churn suggests that a great amount of work
was required to fix the issue, and hence, verifying the
impact of integrating the modifications may also be diffi-
cult (Jiang et al. 2013; Nagappan and Ball 2005)

Fix time Numerical d: Number of days between the date when the issue was
triaged and the date that it was fixed (Giger et al. 2010)

r: If an issue is fixed quickly, it may have a better chance
to be integrated faster

Number of activities Numerical d: An activity is an entry in the issue’s history

r: A high number of activities might indicate that much
work was required to fix the issue, which may impact the
integration of the issue into a release (Jiang et al. 2013)

Number of comments Numerical d: The number of comments of an issue report

r: A large number of comments might indicate the impor-
tance of an issue or the difficulty to understand it Giger
et al. (2010), which might impact the integration delay
(Jiang et al. 2013)

Interval of comments Numerical d: The sum of the time intervals (hour) between com-
ments divided by the total number of comments of an
issue report

r: A short interval of comments indicates that an intense
discussion took place, which suggests that the issue is
important. Hence, such an issue may be integrated faster

Number of tosses Numerical d: The number of times that the assignee has changed

r: Changes in the issue assignee might indicate that more
than one developer have worked on the issue. Such issues
may be more difficult to integrate, since different exper-
tise from different developers might be required (Jeong
et al. 2009; Jiang et al. 2013)

Our metrics are computed based on the date at which a given issue was fixed (i.e., the date
of the last RESOLVED-FIXED status). For example, the resolver experience metric is the
number of integrated fixes by that resolver that were made prior to the analzyed fix date.
We model our response variable Y as Y = 1 for fixed issues that are delayed, i.e., missed at
least one release before integration (da Costa et al. 2014) and Y = 0 otherwise (see release
delay). Hence, our models are intended to explain why a given fixed issue has its integration
delayed (i.e., Y = 1).

We follow the guidelines of Harrell (2001) for building explanatory regression models.
Figure 4 provides an overview of the process that we use to build our models. First, we
estimate the budget of degrees of freedom that we can spend on our models while having
a low risk of overfitting (i.e., producing a model that is too specific to the training data to

Author's personal copy

Empir Software Eng

Traditional
data

Rapid data
Correlation

check

Redundancy
check

Optmism
check

Model fit
check

Explanatory
Power

Assessment

Relationship
Direction
Analysis

Step 1: Preparing
factors

Step 2: Training
Models

Step 3: Analyzing
models

Step 4: Comparing
models

Computing
D.F budget

Fig. 4 Overview of the process that we use to build our explanatory models

be useful when applied to other unseen data). Second, we check for metrics that are highly
correlated using Spearman rank correlation tests (ρ) and we perform a redundancy analysis
to remove any redundant metrics before building our explanatory models.

We then assess the fit of our models using the ROC area and the Brier score. The ROC
area is used to evaluate the degree of discrimination that is achieved by a model. The ROC
values range between 0 (worst) and 1 (best). An area greater than 0.5 indicates that the
explanatory model outperforms naı̈ve random guessing models. The Brier score is used to
evaluate the accuracy of probabilistic predictions. This score measures the mean squared
difference between the probability of delay assigned by our models for a particular issue I

and the actual outcome of I (i.e., whether I is actually delayed or not). Hence, the lower the
Brier score, the more accurate the probabilities that are produced by a model.

Next, we assess the stability of our models by computing the optimism-reduced ROC
area and Brier score (Efron 1986). The optimism of each metric is computed by selecting
a bootstrap sample to fit a model with the same degrees of freedom of the original model.
The model that is trained using the bootstrap sample is applied both on the bootstrap and
original samples (ROC and Brier scores are computed for each sample). The optimism is
the difference in the ROC area and Brier score of the bootstrap sample and original sample.
This process is repeated 1,000 times and the average optimism is computed. Finally, we
obtain the optimism-reduced scores by subtracting the average optimism from the initial
ROC area and Brier score estimates (Efron 1986).

We evaluate the impact of each metric on the fitted models using Wald χ2 maximum
likelihood tests. The larger the χ2 value, the larger the impact that a particular metric has
on our explanatory models’ performance. We also study the relationship that our metrics
share with the likelihood of integration delay. To do so, we plot the change in the estimated
probability of delay against the change in a given metric while holding the other metrics
constant at their median values using the Predict function of the rms package (Harrell
2001).

We also plot nomograms (Iasonos et al. 2008; Harrell 2001) to evaluate the impact of the
metrics in our models. Nomograms are user-friendly charts that visually represent explana-
tory models. For instance, Figure 15 shows the nomogram of the model that we fit for the
rapid release data. The higher the number of points that are assigned to an explanatory met-
ric on the x axis (e.g., 100 points are assigned to comments in rapid releases), the larger
the effect of that metric in the explanatory model. We compare which metrics are more
important in both traditional and rapid releases in order to better understand the differences
between these release strategies.

Author's personal copy

Empir Software Eng

3.2 Qualitative Study (Study II)

In Study II, we qualitatively analyze the integration delay phenomena by surveying and
interviewing the team members of our subject projects.

3.2.1 Subject Projects

We analyze the Firefox, ArgoUML, and Eclipse (JDT) projects. We naturally choose Fire-
fox, since the qualitative part of our study is intended to complement the quantitative
analyses that we performed in the Firefox project. Furthermore, since data sources in qual-
itative studies should be selected with a focus on variation rather than representativeness
(Sandelowski 1995), we also investigate the Eclipse and ArgoUML projects in this study. In
particular, the Eclipse and ArgoUML projects are chosen based on (and to complement) our
prior work (da Costa et al. 2014), in which we study general reasons for integration delay
in these two projects.

ArgoUML is an open source UML modeling tool. ArgoUML provides support for all of
the UML 1.4 diagrams. At the time that we perform this study, ArgoUML was downloaded
80,000 times worldwide.18 ArgoUML uses the IssueZilla ITS to record its issue reports.19

Eclipse is a popular Integrated Development Environment (IDE) that is famous for its
support for the Java programming language.20 We study the Java Development Tools (JDT)
project of the Eclipse Foundation.21 The JDT project provides the Java perspective for the
Eclipse IDE, which includes a number of views, editors, wizards, and builders.

ArgoUML and Eclipse (JDT) adopt a traditional release cycle when compared to the
Firefox project. For instance, the median duration of release cycles that we study for the
ArgoUML and Eclipse (JDT) projects are 180 and 112 days, respectively (da Costa et al.
2014). For these projects, we study the impressions of team members regarding the impact
of a shift to a rapid release cycle on integration delays.

3.2.2 Data Collection

To perform our study, we searched for developers who contributed in the last four years of
the studied projects.22 Inspecting the code commits of the studied projects, we estimate that
the population size of the Firefox, Eclipse (JDT), and ArgoUML projects are respectively of
1,011, 194, and 83 contributors in this time period. We contacted a group of these contribu-
tors who actively participated on the developer mailing lists of their projects in the last four
years. To collect the data, we designed a web-based survey that was sent to 780 developers
of the Firefox, Eclipse (JDT), and ArgoUML projects. We sent our survey to 513 Firefox,
184 Eclipse (JDT), and 62 ArgoUML developers whose e-mails existed on the mailing lists.
To encourage participation, we provided $100 Amazon.com gift cards to a random subset
of the respondents who answered all of the questions of our surveys.

Our survey has two major themes. The first theme is about integration delay in general,
while the second theme is focused on the impact of switching to a rapid release cycle on

18argouml.tigris.org.
19http://argouml.tigris.org/project bugs.html.
20https://eclipse.org/.
21https://projects.eclipse.org/projects/eclipse.jdt.
22From 2013 to 2016 by the time of this study.

Author's personal copy

argouml.tigris.org
http://argouml.tigris.org/project_bugs.html
https://eclipse.org/
https://projects.eclipse.org/projects/eclipse.jdt

Empir Software Eng

the integration delay. Our complete surveys are available in Appendices A, B and C. The
first three questions (#2–#4) collect demographic information. Questions #6–14 belong to
the general integration delay theme, while questions #5, #17–18 belong to the impact of
switching to a rapid release cycle theme. We placed one question of the second theme early
in the survey to mitigate bias in the responses about the motivation to switch to a rapid
release cycle. Finally, questions #17–19 are different for the Firefox project, since the other
projects did not shift from a traditional to a rapid release cycle.

In total, we received 37 responses (5% response rate), of which 25 responses came
from Firefox developers, 9 from Eclipse developers, and 3 from ArgoUML developers. We
also conducted follow-up interviews with four of the Firefox participants to gather deeper
insights into their responses. Our interviews were semi-structured and our goal was to clar-
ify the responses of our survey and collect more details about specific cases of integration
delays for fixed issues. Moreover, we provide our invitation letter and interview script in
Appendices F and G, respectively.

3.2.3 Research Questions

We present the three research questions that are addressed in this qualitative part of the
study below.

– RQ4: What are developers’ perceptions as to why integration delays occur? To the
best of our knowledge, there is no prior work that qualitatively studies integration delay.
Qualitative studies are important to detect phenomena that are difficult to uncover quan-
titatively. Our goal in this RQ is to better understand why integration delays happen.
This investigation is a starting point to reveal new ways of mitigating integration delays.

– RQ5: What are developers’ perceptions of shifting to a rapid release cycle? In
this research question, we intend to complement our quantitative findings about the
comparison between traditional and rapid release cycles regarding integration delays.
This investigation is important to gain deeper explanations as to why fixed issues may
be integrated more quickly in traditional releases. Additionally, we intend to understand
what are the reasons for the perceived success of adopting a rapid release cycle. This
is also important to help projects with their decision of adopting a rapid release cycle
rather than a traditional one.

– RQ6: To what extent do developers agree with our quantitative findings about
integration delay? The main motivation for this research question is to solicit feedback
about our quantitative findings. More specifically, we aim to understand to what extent
our quantitative findings agree with the participants’ perception of integration delays.

3.2.4 Research Approach

Given the exploratory nature of our qualitative analysis, we use methods from Grounded
Theory (Charmaz 2014). The first and third authors independently conducted three sessions
of open coding of the responses to open-ended questions (one session for each RQ). In the
following, the codes that were generated were shared and merged into a new set of codes.
The fourth author reviewed the set of codes and added additional entries to the final set
of codes. At the end of the process, we achieved 175 unique codes. Finally, we used axial
coding to find higher level conceptual themes to answer our RQs.

When reporting the results of RQ4-RQ5, we indicate in superscript the number of
participants that mentioned a particular code that emerged during the qualitative analysis.

Author's personal copy

Empir Software Eng

Table 6 Participant range per
subject project Project Participant range

Firefox F01–F25

Eclipse E26–E34

ArgoUML A35–A37

These numbers do not necessarily indicate the importance of a given code, since they were
coded based on the received responses rather than scored by participants. Also, we mention
quotes from the interviews when necessary to provide more detail about the results. Finally,
Table 6 shows the IDs of the participants that we use while reporting results.

Finally, we also performed quantitative analyses of the responses to Likert-scale ques-
tions. First, we checked whether the factors that are listed in question #13 were significantly
different using the ranks (responses) that were assigned to each factor. In question #13, we
present factors that reflect the metrics that we use to build the statistical models of our quan-
titative study (see Tables 2–5). The goal of this question is to verify whether our metrics are
perceived as useful by the participants of our studied systems. We used a Kruskal Wallis test
(Kruskal and Wallis 1952) to check whether there was a statistically significant difference
between the ranks assigned to the factors. The Kruskal Wallis test is the non-parametric
equivalent of the ANOVA test (Fisher 1925) to check whether there are statistically signif-
icant differences when comparing three or more distributions. Since Kruskal Wallis does
not indicate which factor has statistically different values with respect to others, we use the
Dunn test (Dunn 1964) to perform specific comparisons. For example, the Dunn test indi-
cates whether the ranks that are assigned to the number of comments metric are statistically
different when compared to the ones that are assigned to the number of modified files metric.
We used the Bonferroni-Holm correction (Holm 1979) on the obtained p values to account
for the multiple comparisons that we performed between each of the factors that are listed
in question #13.

Additionally, we correlated the ranks that were assigned to the factors in question #13
with the experience of the participants (question #1). To do that, we used Spearman rank ρ

correlation (Spearman 1904), which is used to measure the statistical dependence between
the ranks of two variables. Finally, we also correlated the experience of the participants with
the perception of the frequency of integration delay (i.e., release delay) that happens in the
studied projects (question #6).

0

5

10

ArgoUML Eclipse Firefox

#
 o

f
p

a
r
ti
c
ip

a
n

ts

0 years

4 years

5 years

6 years

7 years

8 years

9 years

10 or more years

Fig. 5 Software development experience of the participants

Author's personal copy

Empir Software Eng

0

2

4

6

ArgoUML Eclipse Firefox

#
 o

f
p
a
r
ti
c
ip

a
n
ts 0 years

1 year

2 years

3 years

4 years

5 or more years

Fig. 6 Development experience of the participants in the respective project

3.2.5 Exploratory Analysis

We present an exploratory analysis of the data that we collect from the responses of the
participants. Figure 5 shows the experience of the participants. We collect this data from
question #1. The options range from “0 years” to “10 or more years”. We observe that 62%
(23

37) of the participants have “10 or more years” of software development experience. Fur-
thermore, Fig. 6 shows the experience of the participants related to the specific project that
they are representing. We collect this data from question #2 and the options range from “0
years” to “5 or more years”. 51% (19

37) of the participants have 4 or more years of experi-
ence. Moreover, Fig. 7 shows how many participants have experience in working on rapid
release cycles (question #14). We note that 57% (21

37) of the participants have experience
with rapid release cycles. Nevertheless, feedback from participants who do not have expe-
rience with rapid releases is also important, since this group may include prospective future
adopters of a rapid release strategy without prior experience in such a strategy.

Figure 8 shows the team roles that the participants classified themselves as (question #3).
The majority of the participants consider themselves as “developers” and “testers”. Since
one participant can occupy several roles, the numbers that are shown in Fig. 8 represent the
frequency that a role was cited rather than the number of participants. Finally, we observe
that the majority of the participants perceive integration delay as an unusual event rather

0

5

10

ArgoUML Eclipse Firefox

#
 o

f
p

a
r
ti
c
ip

a
n

ts

Yes

No

Fig. 7 Experience of the participants with respect to rapid release cycles

Author's personal copy

Empir Software Eng

0

5

10

15

ArgoUML Eclipse Firefox

#
 o

f
r
o

le
s

Developer

Tester

Code Reviewer

Volunteer Contributor

Project Manager

User

Others

Fig. 8 An overview of the roles of the participants. One participant may have more than one role

than typical (see Fig. 9). For instance, 14 of the Firefox participants think that 90% of the
issues are included in the next possible release.

In our analyses to answer RQ4-RQ6, we attempt to correlate the rating of factors that are
provided in question #13 with the data that is presented in this exploratory analysis.

4 Quantitative Study Results

In this section, we present the results of our quantitative study (RQ1-RQ3).

RQ1: are Fixed Issues Integrated More Quickly in Rapid Releases?

Observation 1—There is no Practical Difference Between Traditional and Rapid
Releases Regarding Issue Lifetimes Figure 10a shows the distributions of the lifetime
of the issues in traditional and rapid releases. We observe a p < 1.03e−14 but a negligible

difference between the distributions (delta = 0.03). We also observe that traditional releases
have a greater MAD (154 days) than rapid releases (29 days), which indicates that rapid
releases are more consistent with respect to the lifetime of the issues. Our results indicate
that the difference in the issues’ lifetime between traditional and rapid releases is not as
obvious as one might expect. We then look at the triaging, fixing, and integration time spans
to better understand the differences between traditional and rapid releases.

0

5

10

ArgoUML Eclipse Firefox

#
 o

f
p
a
r
ti
c
ip

a
n
ts

perception

100%

> 90%

> 75%

> 50%

~ 50%

< 50%

< 25%

< 10%

0%

Fig. 9 Participants’ perception on how frequent is integration delay. The data is grouped by proportions
of how many fixed issues are included in the next possible release. This data refers to the responses to
question #6

Author's personal copy

Empir Software Eng

Fig. 10 Distributions of the
lifetime and integration phase
(time delay) of an issue

1
5

5
0

5
0

0
5

0
0

0

D
e

la
y
 i
n

 d
a

y
s

Traditional

Rapid

(a) Lifetime

1
5

5
0

5
0

0

D
e

la
y
 i
n

 d
a

y
s

Traditional

Rapid

(b) Integration phase

Observation 2—Fixed Issues are Triaged and Fixed More Quickly in Rapid
Releases, but Tend to Wait for a Longer Time Before Being Released Figures 10b
and 11a, b, show the triaging, fixing, and integration time spans, respectively. We observe
that fixed issues take a median time of 54 days to be integrated into traditional releases,
while taking 104 days (median) to be integrated into rapid releases. We observe a p <

2.2e−16 with a small effect-size (delta = −0.25).
Regarding fixing time span, an issue takes 6 days (median) to be fixed in rapid

releases, and 9 days (median) in traditional releases. These results are statistically signifi-
cant p < 2.2e−16, but not practically significant, i.e., the difference in magnitude between
distributions is negligible (delta = 0.13).

Our results complement previous research. Khomh et al. (2012) found that post- and
pre-release bugs that are associated with crash reports are fixed faster in rapid Firefox
releases than in traditional releases. Furthermore, we observe a significant p < 2.2e−16 but
non-practical negligible difference (delta = 0.11) between traditional and rapid releases
regarding triaging time. The median triaging time for rapid and traditional releases are 11
and 18 days, respectively.

When we consider both pre-integration phases together (triaging t1 plus fixing t2 in
Fig. 3), we observe that an issue takes 11 days (median) to be triaged and fixed in rapid
releases, while it takes 19 days (median) in traditional releases. We observe a p < 2.2e−16

with a small effect-size (delta = 0.15). Our results suggest that even though issues have
shorter pre-integration phases in rapid releases, they remain “on the shelf” for a longer time
on average.

Author's personal copy

Empir Software Eng

Fig. 11 Fixing and triaging
phases of an issue’s lifetime

1
5

5
0

5
0
0

5
0
0
0

D
e
la

y

Traditional Rapid

(a) Triaging phase

1
5

5
0

5
0
0

5
0
0
0

D
e
la

y
 i
n
 d

a
y
s

Traditional Rapid

(b) Fixing phase

Finally, we again observe that rapid releases are more consistent than traditional releases
in terms of fixing and integration rate. Rapid releases achieve MADs of 9 and 17 days for
fixing and integration, respectively. The values for traditional releases are 13 and 64 days
for fixing and integration, respectively.

Although issues are triaged and fixed faster in rapid releases, they take a longer time to
be integrated. However, the integration rate of fixed issues is more consistent in rapid
releases than in traditional releases.

1
5

5
0

5
0
0

D
e
la

y
 i
n
 d

a
y
s

Minor−traditional

Major−traditional Major−traditional

Major−rapid

Rapid

Minor−rapid Minor−rapid

Minor−traditional

Fig. 12 Distributions of the time delay of fixed issues grouped by minor and major releases

Author's personal copy

Empir Software Eng

Traditional Rapid

1
0

0
3

0
0

5
0

0

(a) Only Major

Traditional Rapid

1
5

2
0

1
0

0
5

0
0

(b) Major and Minor

Fig. 13 Release frequency (in days). The outliers in figure (b) represent the major-traditional releases

RQ2: Why can Traditional Releases Integrate Fixed Issues More Quickly?

Observation 3—Minor-Traditional Releases Tend to have Less Integration Delay
than Major/Minor-Rapid Releases Figure 12 shows the distributions of integration
delay (i.e., time delay) grouped by (1) major-traditional vs. minor-traditional, (2) major-
traditional vs. rapid, (3) major-rapid vs. minor-rapid, and (4) minor-traditional vs.
minor-rapid. In the comparison of major-traditional vs. minor-traditional, we observe that
minor-traditional releases are mainly associated with a shorter integration delay. Further-
more, in the comparison major-traditional vs. rapid, rapid releases integrate fixed issues
more quickly than major-traditional releases on average (p < 2.2e−16 with a medium

effect-size, i.e., delta = 0.40).
The Firefox rapid release cycle includes ESR releases (see Section 2) and a few minor

stabilization and security releases. These releases also integrate fixed issues more quickly
than major-rapid releases (major-rapid vs. minor-rapid) with a p < 2.2e−16 and a large

effect-size, i.e., delta = 0.92. Furthermore, we do not observe a statistically significant
difference between distributions in the comparison of minor-traditional vs. minor-rapid
(p = 0.68).

Minor-traditional releases have the lowest integration delay (median of 25 days). This is
likely because they are more focused on a particular set of issues that, once fixed, should
be released immediately. For example, the release history documentation of Firefox shows
that minor releases are usually related to stability and security issues.23

Observation 4—When Considering both Minor and Major Releases, the Time
Interval Between Releases in Traditional and Rapid Strategies are Roughly the
Same Since we observe that integration delay is shorter on average in traditional releases,
we also investigate the length of the release cycles to better understand our previous results
(see Observation 2). Figure 13a shows that, at first glance, one may speculate that rapid
releases should deliver fixed issues more quickly because releases are produced more fre-
quently. However, if we consider both major and minor releases—as shown in Fig. 13b—we
observe that both release strategies deliver releases at roughly the same rate on average
(median of 40 and 42 days for traditional and rapid releases, respectively).

23https://www.mozilla.org/en-US/firefox/releases/.

Author's personal copy

https://www.mozilla.org/en-US/firefox/releases/

Empir Software Eng

Minor-traditional releases are a key reason as to why traditional releasesmay integrate
fixed issues more quickly than rapid releases. Furthermore, the time duration of the
release cycles are roughly the same between traditional and rapid releases when minor
and major releases are analyzed.

RQ3: Did the Change in the Release Strategy have an Impact on the
Characteristics of Delayed Issues?

Observation 5—OurModels Achieve a Brier Score of 0.05-0.16 and ROC Areas of
0.81–0.83 The models that we fit to traditional releases achieve a Brier score of 0.16 and
an ROC area of 0.83, while the models that we fit to the rapid release data achieve a Brier
score of 0.05 and an ROC area of 0.81. Our models outperform naı̈ve approaches such as
random guessing and ZeroR—our ZeroR models achieve ROC areas of 0.5 and Brier scores
of 0.06 and 0.45 for rapid and traditional releases, respectively. Moreover, the bootstrap-
calculated optimism is less than 0.01 for both the ROC areas and Brier scores of our models.
This result shows that our regression models are stable enough to perform the statistical
inferences that follow.

Observation 6—Traditional releases prioritize the integration of backlog issues,
while rapid releases prioritize the integration of issues of the current release cycle
Table 7 shows the explanatory power (χ2) of each metric that we use in our models. The
queue rank metric is the most important metric in the models that we fit to the traditional
release data. Queue rank measures the moment when an issue is fixed in the backlog of
the project (see Table 4). Figure 14a shows the relationship that queue rank shares with

Table 7 Overview of the regression model fits. The χ2 of each metric is shown as the proportion in relation
to the total χ2 of the model

Traditional releases Rapid releases

of instances 34,673 37,441

Wald χ2 4,964 2,705

Budgeted Degrees of Freedom 1033 149

Degrees of Freedom Spent 27 26

Reporter experience D.F. 1 1

χ2 2∗∗∗ 2∗∗∗

Reporter integration D.F. 1 1

χ2 5∗∗∗ 4∗∗∗

Resolver Experience D.F. 1 �
χ2 1∗∗∗

Resolver integration D.F. 1 1

χ2 2∗∗∗ 5∗∗∗

Fix time D.F. 1 1

χ2 ≈ 0 ≈ 0

Number of files D.F. 1 1

χ2 1∗∗∗ 1∗∗∗

Number of comments D.F. 1 1

Author's personal copy

Empir Software Eng

Table 7 (continued)

Traditional releases Rapid releases

of instances 34,673 37,441

Wald χ2 4,964 2,705

Budgeted Degrees of Freedom 1033 149

Degrees of Freedom Spent 27 26

χ2 ≈ 0∗ 31∗∗∗

Number of tossing D.F. 1 1

χ2 ≈ 0∗∗∗ ≈ 0

Number of activities D.F. 1 1

χ2 1∗∗∗ 3∗∗∗

Interval of comments D.F. � �
χ2

Code churn D.F. 1 1

χ2 ≈ 0 ≈ 0

Queue position D.F. 1 1

χ2 17∗∗∗ 2∗∗∗

Queue rank D.F. 1 1

χ2 56∗∗∗ 14∗∗∗

Cycle queue rank D.F. 1 1

χ2 ≈ 0 ≈ 0

Number of files D.F. 1 1

χ2 1∗∗∗ 1∗∗∗

Number of comments D.F. 1 1

χ2 ≈ 0∗ 31∗∗∗

Number of tossing D.F. 1 1

χ2 ≈ 0∗∗∗ ≈ 0

Number of activities D.F. 1 1

χ2 1∗∗∗ 3∗∗∗

Interval of comments D.F. � �
χ2

Code churn D.F. 1 1

χ2 ≈ 0 ≈ 0

Queue position D.F. 1 1

χ2 17∗∗∗ 2∗∗∗

Queue rank D.F. 1 1

χ2 56∗∗∗ 14∗∗∗

Cycle queue rank D.F. 1 1

χ2 10∗∗∗ 28∗∗∗

Cycle queue position D.F. ⊕ �
χ2

� discarded during correlation analysis
⊕ discarded during redundancy analysis
∗ p < 0.05; ∗∗ p < 0.01; ∗ ∗ ∗ p < 0.001

Author's personal copy

Empir Software Eng

integration delay (i.e., release delay). Our models reveal that the fixed issues in traditional
releases have a higher likelihood of being delayed if they are fixed later when compared to
other issues in the backlog of the project.

On the other hand, cycle queue rank is the second-most important metric in the models
that we fit to the rapid release data. Cycle queue rank is the moment when an issue is fixed
in a given release cycle. Figure 14b shows the relationship that cycle queue rank shares with
integration delay. Our models reveal that the fixed issues in rapid releases have a higher like-
lihood of being delayed if they were fixed later than other fixed issues in the current release
cycle. Interestingly, we observe that the most important metric in our rapid release models
is the number of comments. Figure 14c shows the relationship that the number of comments
shares with integration delay. We observe that the greater the number of comments of a
fixed issue, the greater the likelihood of integration delay. This result corroborates the intu-
ition that a lengthy discussion might be indicative of a complex issue, which may be more
likely to be delayed.

Moreover, Figs. 15 and 16 show the estimated effect of our metrics using nomograms
(Iasonos et al. 2008). Indeed, our nomograms reiterate the large impact of number of com-
ments (100 points) and cycle queue rank (84 points) in rapid releases, and the large impact
of queue rank (100 points) in traditional releases. We also observe that stack trace attached
has a large impact on traditional releases (68 points) despite not being a significant contrib-
utor to the fit of our models (cf . Table 7). The large impact shown in our nomogram for
stack trace attached is due to the skewness of our data—only 5 instances within the tra-
ditional release data have the stack trace attached set to true. Thus, stack trace attached
cannot significantly contribute to the overall fit of our models.

Another key difference between traditional and rapid releases is how fixed issues are
prioritized for integration. Traditional releases are analogous to a queue in which the earlier
an issue is fixed, the lower its likelihood of delay. On the other hand, rapid releases are
analogous to a stack of cycles, in which the earlier an issue is fixed in the current cycle, the
lower its likelihood of delay.

Issues that are fixed earlier in the project backlog are less likely to be delayed in tra-
ditional releases. On the other hand, issues in rapid releases are queued up on a per
release basis. In rapid releases, issues that are fixed earlier in the current release cycle
are less likely to be delayed.

5 Qualitative Study Results

In this section, we present the results of our qualitative study (RQ4-RQ6).

RQ4: What are developers’ perceptions of why integration delay happens?

Our findings about developers’ perceptions of the causes of integration delay is divided
into the following themes: (i) development activities, (ii) decision making, (iii) risk, (iv)
frustration, and (v) team collaboration. After discussing each theme below, we present a
quantitative analysis of the factors that can impact integration delay using the responses to
question #13 (see Section 3.2.2).

Theme 1—Development activities The number of tests that should be executed was a
recurrent theme among participants. For instance, several participants stated that additional

Author's personal copy

Empir Software Eng

Fig. 14 The relationship
between metrics and the release
delay. The blue line shows the
values of our model fit, whereas
the grey area shows the 95%
confidence interval based on
models fit to 1,000 bootstrap
samples. The parentheses
indicate the release strategy that
the metric is related to

Queue rank (Traditional)

L
o
g
 o

d
d
s
 o

f
d
e
la

y

0.2

0.4

0.6

0.8

0 5000 10000

Cycle queue rank (Rapid)

L
o
g
 o

d
d
s
 o

f
d
e
la

y

0.80

0.85

0.90

0.95

0 500 1000 1500 2000 2500 3000

Number of comments (Rapid)

L
o
g
 o

d
d
s
 o

f
d
e
la

y

0.80

0.85

0.90

0.95

0 200 400 600

Author's personal copy

Empir Software Eng

Points

0 10 20 30 40 50 60 70 80 90 100

reporter_experience

1600

resolver_experience

0

reporter_integration

0 200

queue_position

0 0.3 0.7 1

number_of_impacted_files

0 500

churn

0

number_of_activities

1200 0

number_of_comments

900

description_size

5000

number_of_tosses

0

stacktrace_attached

0

1

fix_time

0

severity

blocker

minor

priority

P2

P4

queue_rank

0 1000 3000 5000 7000 9000 11000 13000

bug_type

general

security

cycle_queue_rank

2800 1400 200

Total Points

0 20 40 60 80 100 120 140 160 180 200 220

Likelihood of Integration Delay

−4 −2 0 2 4 6 8 10 12 14 16 18

Fig. 15 Nomogram of our explanatory models for the traditional release cycle

testing(12) should be executed in order to avoid integration delay. F17 states that the lack
of “actual user testing beyond what QA can provide” can lead to integration delay. Addi-
tionally, according to F15, “the most common reason is that testing was incomplete” and
according to F19, integration delay may happen because “testing has been too narrow”.
Finally, E32 voices concerns about integration testing: “No integration tests has been done.”
Such observations bring us back to a core software engineering problem of when is testing
sufficient? (Beller et al. 2015; AlGhamdi et al. 2016).

Other recurrent themes that emerged during our qualitative analysis are workload(7)

and code review.(7) For example, E30 states that “As the delayed completed issues stack
up, they are harder to integrate (the codebase is constantly changing, merge issues might
emerge).” Interestingly, our statistical models in our prior work (da Costa et al. 2014) indi-
cate workload(7) as a metric that shares a strong relationship with integration delay. As for
code review,(7) the “Unavailability of the lead/reviewer/[Project Management Committee]
(PMC)” is a reason of integration delay that is pointed out by E26, while F08 argues that a
“prompt code reviews [may] help” to avoid integration delays (McIntosh et al. 2016).

Theme 2—Decision making Decision making refers to the activities that are not directly
related to software construction, but can influence the speed at which software is shipped.

Author's personal copy

Empir Software Eng

Points

0 10 20 30 40 50 60 70 80 90 100

reporter_experience

0 200

reporter_integration

1100 0

resolver_integration

0 50

queue_position

1 0.75 0.4

number_of_impacted_files

0 2000

churn

0

number_of_activities

650 200 50 0

number_of_comments

0 100 200 400 800

description_size

3500 0

number_of_tosses

13 0

stacktrace_attached

0

1

fix_time

5000 0

severity

blocker

major

priority

P4

P1 P5

queue_rank

13000 10000 7000 4000 1000

bug_type

general

security

cycle_queue_rank

0 500 1000 1500 2000 2500 3000 3500

Total Points

0 20 40 60 80 100 140 180 220 260

Likelihood of Integration Delay

−3 −1 1 2 3 4 5 6 7 8 9

Fig. 16 Nomogram of our explanatory models for the rapid release cycle

For example, how early a codebase should be “frozen”? Which issues should be prioritized?
The timing(9) and prioritization(9) are the recurrent themes in our survey responses. For
instance, two of the participants stated that issues can be delayed because they are fixed “too
late in the release cycle” (E28) or because they were fixed in a “long release cycle.” Also,
F12’s opinion about how to avoid integration delay is to “test [fixed issues] early using real
users (e.g., on the pre-release channels).” Regarding prioritization,(9) E28 argues that team
members should “try to complete most important things early in the release cycle” to avoid
integration delay. Additionally, F07 points out how re-prioritization of issues is important:
“[...] prioritizing and re-prioritizing tasks to be sure you are building things on time [...].”

Theme 3—Risk The risk that is associated with shipping fixed issues may generate inte-
gration delay according to our participants. Among the risky fixed issues, the ones that have
compatibility(12) concerns are the most recurrent in this theme. For example, when asked
about reasons that may lead to integration delay, F12 calls attention to issues that “break
third-party websites” and that can generate “incompatibility with third-party software that
users install.” Another risk that is associated with integration delay is stability.(9) For
instance, F03 states that “when there are regressions noticed during Aurora/Beta cycles,” a
fixed issue will likely skip the upcoming official release.

Author's personal copy

Empir Software Eng

Fig. 17 Frequency of ranks per
factor

0

10

20

30

R
e
p
o
rt
e
r

R
e
s
o
lv

e
r

P
ri
o
ri
ty

S
e
v
e
ri
ty

#
 o

f
C

o
m

m
e
n
ts

#
 o

f
F
il
e
s

#
 o

f
L
O

C

T
im

in
g

F
r
e

q
u

e
n

c
y
 o

f
r
e

s
p

o
n

s
e

s

Importance

1

2

3

4

5

Theme 4—Frustration Integration delay may generate frustration to both users and
developers of the software. The majority of users’ frustration comes from their expecta-
tion(20) about the fixed issues. F07 makes an interesting analogy to explain user frustration:
“as a user, it’s like when you are waiting your suitcase in the airport to come out on the
belt. You know it has to be there, but you keep waiting.” F14 also provides another anal-
ogy: “it’s like a gift for Christmas, but the day of Christmas is postponed.” On the other
hand, developers may get frustrated for different reasons than users’ reasons. The greatest
frustration source for developers is the feeling of useless/unreleased work.(9) According to
F09, when a fixed issue is delayed, a developer “feels like [their] work is meaningless.”
F04 complements F09 by stating that “it is frustrating to work on something and not see it
shipped.”

Theme 5—Collaboration with other teams Integration delay may also occur due to the
overhead that is introduced when collaboration(10) is needed between teams. For example,
when asked to recall a delayed fixed issue, F23 answers that “sometimes, issues that require
cross-team cooperation may be delayed when the issue is differently prioritized by each
team.” The marketing(5) team is mentioned recurrently when integration delay occurs due
to other teams’ collaboration. For instance, according to F21, integration delay “generally
happens when marketing wants to make a splash.” F08 also corroborates F21 by stating that
“product management [may] change their mind about the desirability of a feature, or would
like to time the release of the feature with certain external events for marketing reasons.”

Observation 7—The time at which an issue is fixed during a release cycle and
the issue severity are the factors that receive the highest ratings of importance In
question #13 of our survey, we ask participants to rate the degree to which a factor is related
to integration delay. The factors that we list are: the reporter, the resolver, the priority, the

Table 8 Rating of factors related to integration delay. The highest ratings are in bold

Factor Average rating (mean)

Time at which an issue is fixed during a release cycle (timing) 4.257

Severity 4.086

Priority 3.629

Number of LOC 3.571

Resolver 3.441

Number of files 3.314

Number of comments 2.657

Reporter 2.629

Author's personal copy

Empir Software Eng

Fig. 18 Distribution of number
of comments normalized by the
number of reported issues

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

(
#

 o
f

c
o

m
m

e
n

ts
)
/(

#
 o

f
r
e

p
o

r
ts

)

severity, the number of comments, the number of modified files, the number of modified
LOC, and the time at which an issue was fixed during a release cycle. The responses to
question #13 are based on a 5-points-Likert scale, i.e., participants rate factors using ranks
from 1 (strongly disagree) to 5 (strongly agree).

In Fig. 17, we show the frequency of each rank per factor, while we show the average
rating of each factor in Table 8. We observe that the factors that receive the highest ranks
are severity and timing. This result is in agreement with our regression models that are
presented in RQ3, in which cycle queue rank is one of the most influential variables (see
Observation 6). Indeed, during the interview, F06 further explains that if an issue that is
risky is fixed in the end of a release cycle, such an issue is likely to be delayed to the next
cycle, so that it can receive additional testing.

On the other hand, the factors with the lowest ranks are reporter, and # of comments. We
also asked our interviewees about these lower ratings. One of our interviewees explained
that the reporter of an issue might influence integration delay only in cases in which the
reporter is also a Firefox employee. In these cases, the reporter will fix the issue her/himself,
which can speed up the shipping process.24 As for the # of comments, another interviewee
clarified that there are several passionate people on bugs that can inflate the number of com-
ments even if the issue is easy to ship. For each reporter, we normalize the number of his/her
comments by the number of his/her reported issues. We plot the distribution of the normal-
ized number of comments in Fig. 18. The median number of comments per reported issue
is 98. Indeed, we observe reporters with a great number of comments (e.g., 500 to 10,000
comments) per reported issue. This result suggest that the perception of our interviewee is
likely to be true.

A Kruskal Wallis test indicates that the difference in ratings between metrics are statis-
tically significant (p = 0.01507). Table 9 shows the Bonferroni-Holm corrected p-values

of the Dunn tests. We observe that the timing factor has significant larger response values
than all the other factors except the severity, priority, and LOC factors (p < 0.05).

We also use Spearman’s ρ to correlate the rating of the factors with (i) general experience
(question #1) and (ii) project experience (question #2). The only statistically significant
correlation that we observe is between the timing factor and general experience. We achieve
a negative correlation of -0.36 (p = 0.03235). This result suggests that less experienced
participants tend to report that the time at which an issue is fixed during a release cycle plays
a more important role in integration delay. One of our interviewees explains this observation
by stating that “when an issue is fixed early in the release cycle, it should have more time to

24We did not observe a statistically significant difference in integration delays between issues that are fixed
by the reporters themselves and issues that are fixed by a different team member.

Author's personal copy

Empir Software Eng

Table 9 Comparisons between factors. The first row for a factor shows the Bonferroni-Holm statistic, while
the second row shows the p − value. We use the ∗ and ∗∗ symbols to denote p − values that are < 0.05 and
< 0.0001, respectively

Factor x Factor (Holm stat.
p-value) Reporter Resolver Priority Severity

Reporter — −2.453397 −3.260129 −4.881387

— 0.1203 0.0134∗ 0.000014∗∗

Resolver −2.453397 — -0.783021 -2.392487

0.1203 — 1 0.1171

Priority −3.260129 −0.783021 — −1.621257

0.0134∗ 1 — 0.4723

Severity -4.881387 -2.392487 -1.621257 —

0.000014∗∗ 0.1171 0.4723 —

of Comments −0.038291 2.415384 3.221838 4.843095

0.4847 0.1179 0.0140∗ 0.000016∗∗

of Files −2.198691 0.270696 1.061437 2.682695

0.1813 0.7866 1 0.0657

of LOC −2.978304 −0.503246 0.281824 1.903082

0.0304∗ 1 1 0.2851

Timing −5.425890 −2.933031 −2.165761 −0.544503

0.0000008∗∗ 0.0319∗ 0.1820 1

Factor x Factor (Holm stat.
p-value) # of Comments # of Files # of LOC Timing

Reporter −0.038291 −2.198691 −2.978304 −5.425890
0.4847 0.1813 0.0304∗ 0.00000081∗∗

Resolver 2.415384 0.270696 −0.503246 −2.933031
0.1179 0.7866 1 0.0319∗

Priority 3.221838 1.061437 0.281824 −2.165761
0.0140∗ 1 1 0.1820

Severity 4.843095 2.682695 1.903082 −0.544503
0.000016∗∗ 0.0657 0.2851 1

of Comments — −2.160400 −2.940013 −5.387599
— 0.1691 0.0328∗ 0.00000096∗∗

of Files −2.160400 — −0.779612 −3.227198
0.1691 — 1 0.0144∗

of LOC −2.940013 −0.779612 — −2.447586
0.0328∗ 1 — 0.1151

Timing −5.387599 −3.227198 −2.447586 —
0.00000096∗∗ 0.0144∗ 0.1151 —

be tested before integration,” which can be helpful for fixes from less experienced resolvers.
Finally, we also correlate the responses to question #6 with general and project experience.
However, no significant correlations were found.

The integration of fixed issues are delayed due to reasons that are associated with
the development activities, decision making, team collaboration, or risk. Moreover,
integration delay lead to user/developer frustration.

Author's personal copy

Empir Software Eng

RQ5: What are developers’ perceptions of shifting to a rapid release cycle?

In this RQ, we study the perceptions of developers about the impact of shifting to a
rapid release cycle. Our findings about these perceptions are organized along the following
themes: management, delivery, and development. We describe each theme below.

Theme 6—Management The shift to a rapid release cycle has a considerable impact on
release cycle management.

The most recurrent theme in this respect is flexibility(4) to plan the scope of the releases
that should be shipped. F01’s opinion is that rapid releases “provide a bit more flexibility,
since if an important issue pushed back a less important change and it misses the release
cycle, it’s not a huge deal with rapid releases.” F01’s observation is supported by our
observation that rapid Firefox releases tend to deliver fixed issues more consistently (see
Observation 2).

Another perceived advantage of rapid release cycles are the risk mitigation(3) and better
prioritization.(3) With respect to risk mitigation,(3) F07 argues that in rapid release cycles,
the team is “able to identify issues sooner. It is easier to identify issues when you have only
deployed 3 new commits than 100.” As for better prioritization,(3) F19 explains that rapid
release cycles “probably decreases unnecessary delays of the releases because deadline
is closer and developers have to react faster for the pressuring issues. Non-critical issues
gets also pushed back and don’t receive useless attention nor create delays.” Still on the
better prioritization(3) matter, F17 adds that rapid releases “provide a time box in which
[the team] must forecast the top priority work to complete within that time frame.”

Theme 7— Delivery The most recurrent perceived advantage of rapid release cycles is
the “faster delivery”(33) of new functionalities. When asked about the motivation to use
rapid release cycles, F05 mentions “increasing speed of getting new features to users,”
while F06 mentions a similar statement: “getting new features to users sooner.”. In fact, the
“faster delivery”(33) motivation is mentioned by participants who have experience with both
release strategies and participants who do not. 48% (10

21) of the participants who have expe-
rience with both release strategies mentioned “faster delivery”(33) as a motivation to adopt
rapid releases, while 56% (9

16) of participants who worked with only one release strategy,
mentioned “faster delivery”(33). Interestingly, not all participants that mentioned the time
to deliver new functionalities report that rapid releases always reduce such time. For F22,
rapid releases “reduce the time to deliver issues to end users in some cases, and lengthen
them in others.” More specifically, F24 says that “Low priority issues (new features) take
less time to be delivered, whereas high priority ones (important bugs) take more time.”

Another recurrent perception about rapid releases is the faster user feedback(17) due to
the constant delivery of new functionalities. For instance, E29 provides an example that
“you don’t find yourself fixing a bug that you introduced two years ago which the field only
discovered on the release.”

Theme 8—Development activities We do not observe a specific theme that is recurrent
with respect to development activities. Instead, we observe a broad range of themes that are
cited by the participants. Among such themes, we observe quality,(3) more functionalities,(2)

better motivation,(2) and better prototyping.(2) Quality should be a measure of success of
using rapid release cycles. According to E26, “quality of delivered code should remain the

Author's personal copy

Empir Software Eng

38%

 30%

 23%

 7%

2%

 8%

 89%

 1%

66%

 14%

 6%

 14%

0

25

50

75

Eclipse Firefox ArgoUML

P
r
o
p
o
r
ti
o
n
 o

f
is

s
u
e
s

Next After−1 After−2 After−3−or−more

Fig. 19 Proportion of fixed issues that have their integration delayed by a given number of releases. For
example, 89% of the fixed issues skip two Firefox stable releases before being shipped to users. This chart
was conceived in our prior work (da Costa et al. 2014)

same or improve” after switching to rapid releases. Another way to measure the success of
a rapid release cycle is the number of functionalities(2) that are completed. E34 states the
following: “I would see if more issues were completely fixed” as a measure of success.

Moreover, rapid releases may also impact team members’ motivation. For instance, F06’s
opinion about why to switch to rapid release cycles is “the need to motivate the community
via more frequent collaboration.” Finally, rapid release cycles may also improve prototyping
activities. For instance, E27 argues that, by adopting rapid releases, a development team can
“fix bugs quickly [and] prototype features, having results in few months.”

The allure of delivering fixed issues more quickly is the most recurrent motivator to
switch to a rapid release cycle. In addition, the allure of improving management flex-
ibility and the quality of fixed issues are other perceived advantages of switching to
rapid release cycles.

RQ6: To what extent do developers agree with our quantitative findings about
integration delay?

In this research question, we investigate how our participants feel about the data that we
collect during our prior quantitative studies (i.e., the Study I of this paper and our prior work
(da Costa et al. 2014)). This research question is divided into two subsections: (i) integration
delay in general and (ii) the impact of rapid release cycles on integration delay.

Theme 9—Integration delay in general In this analysis, we present the data that we
collect in our prior work (da Costa et al. 2014) and investigate if this data resonates with
participants’ experience. We provide the methodology of our data-related questions to
participants through a web page that is mentioned in our surveys (see Appendix D).

Author's personal copy

Empir Software Eng

Figure 19 shows the chart that we presented to participants. For example, 89% of the
fixed issues skip two Firefox stable releases before being shipped to users. The most
recurrent themes among the responses of participants to explain this data are: team work-
load(5) and dependency.(2) Among the responses that are related to team workload,(5) E27
explains that “committers are too busy,” while E26 argues that there might be “delay[s] in
review[s] when the issues [are] completed,” which can generate integration delay. Regard-
ing dependency,(2) E32’s opinion is that integration delay may happen due to “the strong
connection to other Eclipse projects which makes integration more costly (time consum-
ing).” Furthermore, two of our interviewees (F11 and F23) provide us with examples of why
fixed issues may be delayed due to dependency problems. For example, F23 explains dur-
ing the interview that integration delay can happen when there are “dependencies between
projects and one of them gets done, but the other implementation takes a longer while.”
Another example, provided by F23 is when “you release a bug fix but then you realize: Hey!
These users are not able to use these websites anymore because web servers implement the
spec in a wrong way or do some really weird things that are not expected.”

Additionally, we ask participants from the Eclipse and ArgoUML projects about their
opinion of why the data from the Firefox project behaves differently from theirs, i.e., a larger
number of releases being skipped by fixed issues. The most recurrent responses explain that
this difference may be due to the rapid release cycle(4) that is adopted by the Firefox project.
For example, E30’s opinion is that “on a rapid release cycle (e.g. 6 weeks for firefox), a
two-release delay means 12 weeks, less than 3 months, which is still less than no delay for
a fix submitted early in a project with a 6-month release cycle.”

Theme 10—Impact of switching to a rapid release cycle We present the data that
is shown in Fig. 10b to the participants of the Firefox project. Figure 10b compares the
integration delay between traditional and rapid release cycles. We then ask if this result
resonates with the participants’ experience. More details about how we show this data to
participants can be found in Appendix E. From the 14 responses that we received for this
question, 5 participants explicitly disagree with our analysis, while 6 participants explicitly
agree with it.

We interviewed two participant that disagree with the results (F06 and F09). After
providing extra explanation about our methodology and asking them to elaborate on their
responses, we could better understand their reasons. F06 clarifies: “I’m not surprised that
there are things in that bucket” (the short delays due to minor traditional releases), instead
“I’m surprised that there are many of them.” In addition, F09 declared “I misunderstood
[your] question, but now it [(the data)] makes sense.” With respect to the remaining partici-
pants that disagree with our results, they inform us that the data does not resonate with their
experience. For instance, F21 provides the following opinion “this does not resonate with
my experience. I find the traditional model is much much slower than rapid release to get
fixes in users hands.” From the set of participants that agree with our results, two of them
explain that the behaviour that is presented by the traditional release data is due to the inte-
gration rush(2) that happens prior to shipping. F15’s opinion is that “since missing a release
cycle isn’t a big deal, more features are kept from being released until they’re properly pol-
ished instead of being rushed at the end of a long release cycle.” F22 also provides us with
a reasonable explanation when stating that our result “makes perfect sense as issues will,
unless fast-tracked or held back, be released a set quantum of time after they are completed.
This is dominated by the timing of the release schedule, not by the timing of the discovery or
fix.”

Author's personal copy

Empir Software Eng

The dependency of fixed issues on other projects and team workload are major per-
ceived reasons to explain our findings about integration delays. In addition, because (i)
an integration rush is no longer needed in rapid releases and (ii) additional time can
be spent on polishing fixed issues, rapid releases might have a longer integration time.

6 Analysis of Potential Confounding Factors

In this section, we discuss if the difference of integration delay between release strategies
could be due to confounding factors, such as the type and the size of the fixed issues.

Observation 8—The integration delay of fixed issues is not likely to be associated
with the size of an issue One may suspect that the difference in integration delay between
release strategies may be due to the size of an issue. We use the number of files, LOC, and
number of packages that were involved in the fix of an issue to measure the size of an issue.
Figure 20 shows the distributions of the metrics that measure the size of an issue. We observe
that the difference between distributions of LOC is statistically insignificant (p = 0.86).
As for the number of files and the number of packages, although we observe significant
differences (p values of 0.014 and < 2.2e−16, respectively), effect-sizes are negligible

(delta = −0.05 and delta = −0.07, respectively).

Observation 9—The difference between traditional and rapid releases is unlikely
to be related to the differences between enhancements and bug fixes We also inves-
tigate if the observed difference in the integration delay between traditional and rapid
releases is related to the kind of fixed issues. For example, rapid releases could be delivering
more enhancements, which likely require additional integration time in order to ensure that
the new content is of sufficient quality. Figure 21 shows the distributions of delays among
release strategies grouped by bug fixes and enhancements. We observe no clear distinction
between integration delay and the kind of fixed issues being integrated.

7 Discussion

In this section, we discuss suggestions for practitioners and researchers as well as lessons
learned that are based on the results of our empirical studies.

7.1 Practical Suggestions

Small transition The choice of adopting a rapid release cycle is often motivated by the
allure of accelerating the delivery of fixed issues. Such a choice needs to be carefully
rethought. We observe in our empirical study that although issues are fixed faster, they tend
to wait longer to be integrated in the Firefox rapid releases (see Observation 2). One sugges-
tion for software organizations is to begin the transition of release cycles in specific teams
or specific products if possible. The result of such a small transition could be compared
with the current development process to test the impact of a more rapid release cycle on the
delivery of fixed issues.

Consistency of delivering fixed issues Our empirical study suggests that rapid releases
can improve the consistency of the time to deliver fixed issues (see Observation 2). A more

Author's personal copy

Empir Software Eng

Fig. 20 Size of the fixed issues
in the traditional and rapid
release data

1
1
0

1
0
0
0

#
 o

f
fi
le

s
 (

lo
g
)

Traditional vs Rapid

(a) Files

1
e
+

0
0

1
e
+

0
4

L
O

C
 a

d
d
e
d
 +

 L
O

C
 r

e
m

o
v
e
d

Traditional vs Rapid

(b) LOC

0
2

4
6

#
 o

f
p
a
c
k
a
g
e
s

Traditional vs Rapid

(c) Packages

consistent delivery of fixed issues can be an advantage for the software organization, since
end users would have a better understanding as to when issues will be fixed and integrated.

Minor releases We observe that a large contributor to the faster delivery of fixed issues in
the Firefox traditional releases is due to minor releases (see Observation 3). One suggestion
is that more effort should be invested in accommodating minor releases to issues that are
urgent without compromising the quality of the other releases that are being shipped.

8 Threats to Validity & Limitations

In this section we discuss the threats to the validity of our quantitative study and the
limitations of our qualitative study.

Author's personal copy

Empir Software Eng

1
5

5
0

5
0

0

D
e

la
y
 i
n

 d
a

y
s Rapid

Traditional

Rapid

Traditional

Bugs Enhancements

Fig. 21 We group the fixed issues into “bugs” and “enhancements” by using the severity field. However, the
difference in the integration delay between release strategies is unlikely to be related with the kind of the issue

8.1 Threats to Validity

Construct Validity Construct threats to validity are concerned with the degree to which
our analyses are measuring what we are claiming to analyze. Tools were developed to extract
and analyze the integration data in the studied projects. Defects in these tools could have
an influence on our results. However, we carefully tested our tools using manually-curated
subsamples of the studied projects, which produced consistent results.

Moreover, the way that we link issue IDs to releases may not represent the total fixed
issues per release. For example, Firefox developers might not record the issue ID in commit
logs when fixing issues. Nevertheless, we achieve good linkage rates between commit logs
and fixed issues in the studied time period. We link 77% of commit logs for traditional
releases, while we link 97% of the commit logs for rapid releases.

Internal Validity Internal threats to validity are concerned with the ability to draw
conclusions from the relation between the studied independent and dependent variables.

In Section 6, we compare the integration delay between rapid and traditional releases
by grouping the issues as bug fixes or enhancements. We use the severity field of the issue
reports to perform this grouping. We are aware that the severity field is noisy (Herraiz et al.
2008; Tian et al. 2015) (i.e., many values represent the same level of importance). Still, the
enhancement severity is one of the significantly different values of severity according to pre-
vious research (Herraiz et al. 2008). We also use the number of files, packages, and the LOC
to approximate the size of an issue. Although these are widely used metrics to measure the
size of a change, we are aware that this might not represent the true complexity of the fix of
an issue.

External Validity External threats are concerned with our ability to generalize our results.
In the quantitative part of our work, we study Firefox releases, since the Firefox project
shifted from a traditional release cycle to a rapid release cycle. Although we control for
variations using the same studied project in different time periods, we are not able to gener-
alize our conclusions to other projects that adopt a traditional/rapid release cycle. In order to
mitigate the external threat, we also perform a qualitative study of the Firefox, ArgoUML,
and Eclipse projects. By adding two other projects in our qualitative analysis, and analyzing
new sources of data (our participants), we are able to gain insights from other subjects and
better understand why integration delay occurs. Still, we cannot claim that our results are

Author's personal copy

Empir Software Eng

generalizable to other software projects that are not studied in this work. Hence, replication
of this work using other projects is required in order to reach more general conclusions.

8.2 Limitations of our Qualitative Study

The main limitation of our qualitative study is its 5% (37 responses
780 e-mails) response rate. We recog-

nize that the general population of our studied projects might have different characteristics
and opinions than the ones that we present. Nevertheless, the purpose of our qualitative
study is not to achieve generalizability (as in quantitative studies) nor theoretical saturation,
but rather to enrich the explanations of our quantitative results, which does not necessarily
require a large sample size (Sandelowski 1995). Future research is necessary to better under-
stand why some companies decide not to choose rapid releases. We hope that our study
will help decision makers who are considering or dismissing rapid releasing as an efficient
strategy to deliver releases.

In addition, while we aimed to achieve a high response rate by personalizing the survey,
we were not as successful as we hoped. We still believe that personalization is important.
However, it might be worthwhile to present the personalized part of the survey earlier to the
participants (e.g., presenting it as the title of the invitation). For example, focusing on particular
recent issues might produce a higher response rate instead of asking more general questions.

Moreover, a lengthy survey is not desirable as it is associated with lower response rates
(Sheehan 2001). Although we strived to produce a short survey, our response rate is lower
than usual (Smith et al. 2013). We believe that this low response rate might be attributed
to the very targeted nature of survey–our surveys targets a very specific population (i.e.,
mostly senior developers who were part of specific issues) in contrast to many prior surveys
who have a wider population of varying experience (Smith et al. 2013).

Finally, although the coding process is performed by two authors independently and
reviewed by a third author, we cannot claim that we reach all the perspectives that are
possible from our questions.

9 Related Work

In this section, we situate our study with respect to prior work on the impact of adopting
rapid release cycles and the process of integrating and delivering fixed issues.

Traditional vs. Rapid Releases Shifting from traditional releases to rapid releases has
been shown to have an impact on software quality and quality assurance activities. Mäntylä
et al. (2014) found that rapid releases have more tests executed per day but with less cov-
erage. The authors also found that the number of testers decreased in rapid releases, which
increased the test workload. Souza et al. (2014) found that the number of reopened bugs
increased by 7% when Firefox changed to a rapid release cycle. Souza et al. (2015) found
that backout of commits increased when rapid releases were adopted. However, they note
that such results may be due to changes in the development process rather than the rapid
release cycle—the backout culture was not widely adopted during the traditional Firefox
releases. We also investigate the shift from traditional releases to rapid releases in this paper.
However, we analyze integration delay rather than quality and quality assurance activities.

It is not clear yet if rapid releases lead to a faster rate of bugs fixes. Baysal et al. (2011)
found that bugs are fixed faster in Firefox traditional releases when compared to fixes in
the Chrome rapid releases. On the other hand, Khomh et al. (2012) found that bugs that are
associated with crash reports are fixed faster in rapid Firefox releases when compared to

Author's personal copy

Empir Software Eng

Firefox traditional releases. However, fewer bugs are fixed in rapid releases, proportionally.
Our study corroborates that issues are fixed more quickly in rapid release cycles, but tend
to wait longer to be delivered to the end users.

Rapid releases may cause users to adopt new versions of the software earlier. Baysal et al.
(2011) found that users of the Chrome browser are more likely to adopt new versions of the
system when compared to traditional Firefox releases. Khomh et al. (2012) also found that
the new versions of Firefox that were developed using rapid releases were adopted more
quickly than the versions under traditional releases. In this paper, we investigate the impact
that a shift from traditional to rapid releases has on delivering fixed issues to users rather
than user adoption of new releases.

Delays and Software Issues Prior research has studied delays that are related to the inte-
gration and delivery of fixed issues to end users. Jiang et al. (2013) studied the integration
process of the Linux kernel. They found that 33% of the code patches that were submitted
to resolve issues are accepted into an official Linux release after 3 to 6 months. In our prior
work (da Costa et al. 2014), we investigate how many releases a fixed issue may be delayed
before shipment. We found that 98% of fixed issues in the rapid releases of the Firefox
project were delayed by at least one release. Unlike prior work (da Costa et al. 2014), this
paper investigates how the change of release strategy relates to integration delay.

Morakot et al. (2015a, b) study the risk of delaying the resolution of issues. The authors
found that metrics such as the percentage of delayed issues that a developer is involved
with, discussion time, and number of issue reopenings are strongly related to the risk of
postponing the resolution of issues. Rahman and Rigby (2015) found that the period to
stabilize fixed issues can take from 45 to 93 days in the Linux kernel and from 56 to 149
days in Chrome. Jiang and Adams (2014) propose the ISOMO model to measure the cost
of integrating a new patch into a host project. Our work complements the aforementioned
studies by quantitatively and qualitatively investigating the impact that the adoption of a
rapid release cycle may have upon the integration delay of fixed issues.

Finally, the problem of prioritizing which fixed issues should be integrated in the next
release is well known in the requirements engineering field (Paetsch et al. 2003; Regnell and
Brinkkemper 2005; Karlsson and Ryan 1997; Greer and Ruhe 2004). Fixed issues should
be prioritized based on whether they meet the needs of a specific customer or of an open
market with many customers (Regnell and Brinkkemper 2005). To prioritize fixed issues
according to their relative value and cost, Karlsson and Ryan (1997) proposed a Cost-Value
approach. The proposed approach is composed of five steps that involve both customers and
software engineers to estimate the importance of issues and the effort to fix them. Our work
sheds more light on the prioritization problem by quantitatively and qualitatively analyzing
the reasons why fixed issues are delayed to future releases.

10 Conclusions

In this paper, we perform two studies of integration delays and the impact that rapid release
cycles have on such delays. In our quantitative study, we analyze a total of 72,114 issue
reports of 111 traditional releases and 73 rapid releases of the Firefox project. In our qual-
itative study, we survey 37 participants from the Firefox, ArgoUML, and Eclipse projects.
We make the following observations:

– Although issues tend to be fixed more quickly in the rapid release cycle, fixed issues
tend to be integrated into consumer-visible releases more quickly in the traditional

Author's personal copy

Empir Software Eng

release cycle. However, a rapid release cycle may improve the consistency of the
delivery rate of fixed issues (see Observation 2).

– We observe that the faster delivery of fixed issues in the traditional releases is
partly due to minor-traditional releases. One suggestion for practitioners is that more
effort should be invested in accommodating minor releases to issues that are urgent
without compromising the quality of the other releases that are being shipped (see
Observation 3).

– The triaging time of issues is not significantly different among the traditional and rapid
releases (see Observation 2).

– The total time spent from the issue report date to its integration into a release is not
significantly different between traditional and rapid releases (see Observation 1).

– In traditional releases, fixed issues are less likely to be delayed if they are fixed early
in the backlog. On the other hand, in rapid releases, fixed issues are less likely to be
delayed if they are fixed early in the current release cycle (see Observation 6).

– The perceived reasons for integration delay of fixed issues are primarily related to activ-
ities such as development, decision making, team collaboration, and risk management
(see Themes 1, 2, 3, and 5).

– The dependency of issues on other projects and team workload are the main perceived
reasons to explain our data about integration delay in general (see Theme 1).

– The allure of delivering fixed issues more quickly to users is the most recurrent moti-
vator for switching to a rapid release cycle (see Theme 7). In addition, the allure of
improving management flexibility and quality of fixed issues are other advantages that
are perceived by our participants (see Themes 6 and 8).

– Integration rush and the increased time that is spent on polishing fixed issues (during
rapid releases) emerge as one of the main explanations as to why traditional releases
may achieve shorter integration delay values (see Theme 10).

Although the bulk of our analyses comes mainly from the Firefox project given the very
unique nature of this project (and the availability of the data), we believe that the impact
of our findings and work goes well beyond the Firefox project. Today the Firefox project
is often used in support of proposals for moving to a rapid release cycle throughout many
development organizations worldwide. Yet few studies extensively explored the benefits
and challenges of rapid release cycles. In this regard, our quantitative and qualitative obser-
vations may serve any organization that is interested in adopting a rapid release cycle. For
instance, even though the allure of delivering fixed issues more quickly is the most recur-
rent motivator to adopt rapid releases (Theme 7), we observe that this often is not achieved
(Observation 2). In summary, our study provides real observations and offers a wider context
of the dis/advantages of adopting a rapid release strategy.

Moreover, our qualitative study opens new directions for future (quantitative) studies.
For example, one could investigate whether a large proportion of the integration delay is
happening due to code review delays (see Theme 9). Other future research can investigate
the trade-off between software quality and integration delays, since one possible reason for
the slower integration of fixed issues in rapid releases is the increased time that is spent on
validating and verifying such fixes (see Theme 10).

Acknowledgments This work was partially supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the National Institute of Science and Technology for Software Engineer-
ing (INES), CNPq grant 465614/2014-0. We also thank all the participants from the Firefox, Eclipse, and
ArgoUML projects for giving their time to respond our surveys and participate in our interviews.

Author's personal copy

Empir Software Eng

Appendix A: Firefox Survey

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Appendix B: ArgoUML Survey

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Appendix C: Eclipse Survey

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Author's personal copy

Empir Software Eng

Appendix D: Methodology Web Page I

Author's personal copy

Empir Software Eng

Appendix E: Methodology Web Page II

Author's personal copy

Empir Software Eng

Appendix F: Invitation Letter

Dear <Participant>,

We are a group of researchers based out of universities in Brazil, Australia,

and Canada. We are performing an empirical study to understand why

some software functionalities are unexpectedly delayed before reaching

end users. With this study, we intend to help software development teams

to better deliver software with little delay or schedule slippage.

In our opinion, you are a perfect fit to our research, since we observed that

you have participated in the development of the <X> project. Would you

mind sharing your thoughts with us by filling out this survey about the <X>

project? The survey has 19 questions (all of them are optional) and will

take less than 15 minutes to complete.

<Survey URL>

To compensate you for your time, we will have a draw to give away $100

Amazon gift certificates to 5% of all participants that answer all questions.

Please, do not hesitate to contact me if you have any questions. More

information about this study is available at <Link of the paper>

Thank you,

Daniel Alencar da Costa.

PhD student at the Federal University of Rio Grande do Norte, Brazil.

http://danielcalencar.github.io

Author's personal copy

Empir Software Eng

Appendix G: Interview Script

Thank you for participating in our survey about the delay to deliver completed issues!

(Part 1)

Can you tell us about a specific completed issue in one of your projects that was delayed to be

delivered?

Prompts:

Lack of code review?

Workload of integrators?

Changing requirements?

Marketing issues?

Possible side effects?

The need of extra testing? (or any other test strategy)

Integration effort?

Was this a typical situation?

What other reasons can you think of that can lead the delivery of a completed issue to be

delayed?

In our study, the reporter of an issue and the discussion that occurred

to complete an issue received the lowest ranks as possible reasons that lead

to delivery delay. Do you agree? Why?

On the other hand, the time at which an issue is completed in the release

cycle and the severity of an issue received the highest ranks as reasons that

lead to delivery delay. Do you agree? Why?

(Part 2)

Can you tell us about your experience with the shift from a traditional

release cycle to a rapid release cycle?

Prompts:

Regarding with tests

Regarding with feedback

Amount of functionalities that are delivered

Overall quality

Can you tell us your impressions about the time to deliver completed issues

after the shift?

How would you evaluate the success of a shift to a rapid release cycle?

References

Adams B, McIntosh S (2016) Modern release engineering in a nutshell: why researchers should care. In:
Proceedings of the 23rd international conference on software analysis, evolution, and reengineering
(SANER), pp 78–90

AlGhamdi HM, Syer MD, Shang W, Hassan AE (2016) An automated approach for recommending when
to stop performance tests. In: Proceedings of the international conference on software maintenance and
evolution. IEEE, Piscataway, pp 279–289

Antoniol G, Ayari K, Penta MD, Khomh F, Guéhéneuc Y (2008) Is it a bug or an enhancement?: a text-based
approach to classify change requests. In: Proceedings of the 2008 conference of the centre for advanced
studies on collaborative research (CASCON), pp 23–37

Baskerville R, Pries-Heje J (2004) Short cycle time systems development. Inf Syst J 14:237–264
Baysal O, Davis I, Godfrey MW (2011) A tale of two browsers. In: Proceedings of the 8th working conference

on mining software repositories (MSR). ACM, New York, pp 238–241

Author's personal copy

Empir Software Eng

Beck K (2000) Extreme programming explained: embrace change. Addison-Wesley Professional, Reading
Beller M, Gousios G, Zaidman A (2015) How (much) do developers test? In: 2015 IEEE/ACM 37th IEEE

international conference on software engineering, vol 2. IEEE, Piscataway, pp 559–562
Boehm BW (1988) A spiral model of software development and enhancement. Computer 21(5):61–72
Charmaz K (2014) Constructing grounded theory. SAGE, Newbury Park
Cliff N (1993) Dominance statistics: ordinal analyses to answer ordinal questions. Psychol Bull 114:494–509
da Costa DA, Abebe SL, McIntosh S, Kulesza U, Hassan AE (2014) An empirical study of delays in

the integration of addressed issues. In: Proceedings of the 30th international conference on software
maintenance and evolution (ICSME), pp 281–290

da Costa DA, McIntosh S, Kulesza U, Hassan AE (2016) The impact of switching to a rapid release cycle
on the integration delay of addressed issues: an empirical study of the mozilla firefox project. In: Pro-
ceedings of the 13th international workshop on mining software repositories. ACM, New York, pp
374–385

Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6(3):241–252
Efron B (1986) How biased is the apparent error rate of a prediction rule? In: Journal of the american

statistical association, Taylor & Francis, Milton Park, vol 81, pp 461–470
Fisher RA (1925) Statistical methods for research workers. Genesis Publishing Pvt Ltd, New Delhi
Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceedings of the 2nd international

workshop on recommendation systems for software engineering (RSSE). ACM, New York, pp 52–56
Greer D, Ruhe G (2004) Software release planning: an evolutionary and iterative approach. Inf Softw Technol

46:243–253
Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and

survival analysis. Springer, New York
Herraiz I, German DM, Gonzalez-Barahona JM, Robles G (2008) Towards a simplification of the bug

report form in eclipse. In: Proceedings of the 2008 international working conference on mining software
repositories (MSR), pp 145–148

Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Howell DC (2005) Median absolute deviation. In: Encyclopedia of statistics in behavioral science. Wiley

Online Library, Hoboken
Iasonos A, Schrag D, Raj GV, Panageas KS (2008) How to build and interpret a nomogram for cancer

prognosis. In: Journal of clinical oncology, american society of clinical oncology, vol 26, pp 1364–1370
Jeong G, Kim S, Zimmermann T (2009) Improving bug triage with bug tossing graphs. In: Proceedings of the

7th joint meeting of the european software engineering conference and the ACM SIGSOFT symposium
on the foundations of software engineering (ESEC/FSE). ACM, New York, pp 111–120

Jiang Y, Adams B (2014) How much does integrating this commit cost? - a position paper. In: 2nd
International Workshop on Release Engineering (RELENG)

Jiang Y, Adams B, German DM (2013) Will my patch make it? and how fast?: case study on the linux kernel.
In: Proceedings of the 10th working conference on mining software repositories (MSR), pp 101–110

Kampstra P et al. (2008) Beanplot: a boxplot alternative for visual comparison of distributions. J Stat Softw
28:1–9

Karlsson J, Ryan K (1997) A cost-value approach for prioritizing requirements. IEEE Softw 14:67–74
Khomh F, Dhaliwal T, Zou Y, Adams B (2012) Do faster releases improve software quality? an empirical

case study of mozilla firefox. In: Proceedings of the 9th IEEE working conference on mining software
repositories (MSR). IEEE, Piscataway, pp 179–188

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc
47(260):583–621

Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around
the mean, use absolute deviation around the median. J Exp Soc Psychol 49:764-766

Mäntylä MV, Adams B, Khomh F, Engström E, Petersen K (2014) On rapid releases and software testing:
a case study and a semi-systematic literature review. In: Journal of Empirical Software Engineering.
Springer, Berlin, pp 1–42

McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact of modern code review
practices on software quality. Empir Softw Eng 21(5):2146–2189

Morakot C, Hoa Khanh D, Truyen T, Aditya G (2015a) Characterization and prediction of issue-related
risks in software projects. In: 12th international conference on mining software repositories (MSR), pp
280–291

Morakot C, Hoa Khanh D, Truyen T, Aditya G (2015b) Predicting delays in software projects using
networked classification. In: 30th international conference on automated software engineering (ASE)

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In: Pro-
ceedings of the 27th international conference on software engineering (ICSE). IEEE, Piscataway, pp
284–292

Author's personal copy

Empir Software Eng

Paetsch F, Eberlein A, Maurer F (2003) Requirements engineering and agile software development.
In: Twelfth IEEE international workshops on enabling technologies: infrastructure for collaborative
enterprises, pp 308–313

Panjer LD (2007) Predicting eclipse bug lifetimes. In: Proceedings of the 4th international workshop on
mining software repositories (MSR), p 29

Rahman MT, Rigby PC (2015) Release stabilization on linux and chrome. In: IEEE software journal. vol 2.
IEEE, Piscataway, pp 81–88

Regnell B, Brinkkemper S (2005) Market-driven requirements engineering for software products. In:
Engineering and managing software requirements, pp 287–308

Sandelowski M (1995) Sample size in qualitative research. Res Nurs Health 18(2):179–183
Schroter A, Bettenburg N, Premraj R (2010) Do stack traces help developers fix bugs? In: 2010 7th IEEE

working conference on mining software repositories (MSR). IEEE, Piscataway, pp 118–121
Schwaber K (1997) Scrum development process. In: Business object design and implementation. Springer,

Berlin, pp 117–134
Sheehan KB (2001) E-mail survey response rates: a review. J Comput-Mediat Commun 6(2) https://doi.org/

10.1111/j.1083-6101.2001.tb00117.x
Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE, Matsumoto K (2010) Predicting

re-opened bugs: a case study on the eclipse project. In: Proceedings of 17th working conference on
reverse engineering (WCRE). IEEE, Piscataway, pp 249–258

Shimagaki J, Kamei Y, McIntosh S, Pursehouse D, Ubayashi N (2016) Why are commits being reverted?:
a comparative study of industrial and open source projects. In: 2016 IEEE international conference on
software maintenance and evolution (ICSME). IEEE, Piscataway, pp 301–311

Smith E, Loftin R, Murphy-Hill E, Bird C, Zimmermann T (2013) Improving developer participation rates
in surveys. In: 6th international workshop on cooperative and human aspects of software engineering
(CHASE), pp 89–92

Souza R, Chavez C, Bittencourt RA (2014) Do rapid releases affect bug reopening? a case study of firefox. In:
Proceedings of the brazilian symposium on software engineering (SBES). IEEE, Piscataway, pp 31–40

Souza R, Chavez C, Bittencourt R (2015) Rapid releases and patch backouts: a software analytics approach.
In: IEEE software journal, vol 32. IEEE, Piscataway, pp 89–96

Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–
101

Subramaniam C, Sen R, Nelson ML (2009) Determinants of open source software project success: a
longitudinal study. In: Journal of decision support systems, vol 46. Elsevier, Amsterdam, pp 576–585

Tian Y, Ali N, Lo D, Hassan AE (2015) On the unreliability of bug severity data. Empir Softw Eng 21:1–26
Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 100. Academic Press, Cambridge
Zaman S, Adams B, Hassan AE (2011) Security versus performance bugs: a case study on firefox. In:

Proceedings of the 8th working conference on mining software repositories. ACM, New York, pp 93–102

Daniel Alencar da Costa is a Post-doc fellow at the Queen’s University, Canada. He completed his PhD
and his Masters in Computer Science at the Federal University of Rio Grande do Norte (UFRN), Brazil, in
2017 and 2013, respectively. He received his Bachelor’s degree in Computer Science from the University
Centre of Pará (CESUPA), Brazil. His research goal is to advance the body of knowledge of Software Engi-
neering methodologies through empirical studies using statistical and machine learning approaches as well
as consulting and documenting the experience of Software Engineering practitioners.

Author's personal copy

https://doi.org/10.1111/j.1083-6101.2001.tb00117.x
https://doi.org/10.1111/j.1083-6101.2001.tb00117.x

Empir Software Eng

ShaneMcIntosh received the bachelor’s degree from the University of Guelph and the MSc and PhD degrees
from Queen’s University. He is an assistant professor in the Department of Electrical and Computer Engi-
neering, McGill University, where he leads the Software Repository Excavation and Build Engineering Labs
(Software REBELs). During his PhD, he held an NSERC Vanier Scholarship and received the Governor
General’s Academic Gold Medal. In his research, he uses empirical software engineering techniques to study
software build systems, release engineering, and software quality. He actively collaborates with academics
in Canada, the Netherlands, Singapore, Brazil, and Japan, as well as industrial practitioners in Germany and
the USA. More about him and his work is available online at http://rebels.ece.mcgill.ca/.

Christoph Treude is a Senior Lecturer in the School of Computer Science at the University of Adelaide,
Australia. He completed his PhD in Computer Science at the University of Victoria, Canada, in 2012 and
received his Diplom degree in Computer Science / Management Information Systems from the University of
Siegen, Germany, in 2007. The goal of his research is to advance collaborative software engineering through
empirical studies and the innovation of processes and tools that explicitly take the wide variety of artifacts
available in a software repository into account.

Author's personal copy

http://rebels.ece.mcgill.ca/

Empir Software Eng

Uirá Kulesza received the bachelor’s degree in computer science from Federal University of Campina
Grande, the MSc degree in computer science from the University of São Paulo, and the PhD degree in com-
puter science from Pontifical Catholic University of Rio de Janeiro (PUC-Rio). He is an associate professor
in the Department of Informatics and Applied Mathematics (DIMAp), Federal University of Rio Grande
do Norte (UFRN), Brazil. His main research interests include software evolution, software architecture, and
software analytics. He has published at several top-tier software engineering venues, such as the International
Conference on Software Engineering (ICSE), the International Symposium on the Foundations of Software
Engineering (FSE), and the European Conference on Object-Oriented Programming (ECOOP). More about
him and his work is available online at http://www.dimap.ufrn.br/∼uira.

Ahmed E. Hassan received the PhD degree in computer science from the University of Waterloo. He is
the Canada Research Chair (CRC) in Software Analytics, and the NSERC/BlackBerry Software Engineering
Chair in the School of Computing, Queens University, Canada. His research interests include mining software
repositories, empirical software engineering, load testing, and log mining. He spearheaded the creation of the
Mining Software Repositories (MSR) conference and its research community. He also serves on the editorial
boards of the IEEE Transactions on Software Engineering, the Springer Journal of Empirical Software Engi-
neering, the Springer Journal of Computing, and PeerJ Computer Science. Contact ahmed@cs.queensu.ca.
More information at: http://sail.cs.queensu.ca/.

Author's personal copy

http://www.dimap.ufrn.br/~uira
http://sail.cs.queensu.ca/

	The impact of rapid release cycles on the integration delay of fixed issues
	Citation

	The impact of rapid release cycles on the integration delay of fixed issues
	Abstract
	Introduction
	Quantitative Study
	Qualitative Study
	Paper Organization

	Background & Definitions
	Issue Reports
	Release Cycles
	Firefox Traditional Releases
	Firefox Rapid Releases

	Major and Minor Releases
	Integration Delay
	Definition 1—Time Delay
	Definition 2—Release Delay

	Empirical Study Design
	Quantitative Study (Study I)
	The Firefox Subject Project
	Data Collection
	Step 1: Collect Release Information
	Step 2: Link Issues to Releases
	Step 3: Compute Metrics and Perform Analyses

	Research Questions
	Research Approach

	Qualitative Study (Study II)
	Subject Projects
	Data Collection
	Research Questions
	Research Approach
	Exploratory Analysis

	Quantitative Study Results
	RQ1: are Fixed Issues Integrated More Quickly in Rapid Releases?
	Observation 1—There is no Practical Difference Between Traditional and Rapid Releases Regarding Issue Lifetimes
	Observation 2—Fixed Issues are Triaged and Fixed More Quickly in Rapid Releases, but Tend to Wait for a Longer Time Before Being Released

	RQ2: Why can Traditional Releases Integrate Fixed Issues More Quickly?
	Observation 3—Minor-Traditional Releases Tend to have Less Integration Delay than Major/Minor-Rapid Releases
	Observation 4—When Considering both Minor and Major Releases, the Time Interval Between Releases in Traditional and Rapid Strategies are Roughly the Same

	RQ3: Did the Change in the Release Strategy have an Impact on the Characteristics of Delayed Issues?
	Observation 5—Our Models Achieve a Brier Score of 0.05-0.16 and ROC Areas of 0.81–0.83
	Observation 6—Traditional releases prioritize the integration of backlog issues, while rapid releases prioritize the integration of issues of the current release cycle

	Qualitative Study Results
	RQ4: What are developers' perceptions of why integration delay happens?
	Theme 1—Development activities
	Theme 2—Decision making
	Theme 3—Risk
	Theme 4—Frustration
	Theme 5—Collaboration with other teams
	Observation 7—The time at which an issue is fixed during a release cycle and the issue severity are the factors that receive the highest ratings of importance

	RQ5: What are developers' perceptions of shifting to a rapid release cycle?
	Theme 6—Management
	Theme 7— Delivery
	Theme 8—Development activities

	RQ6: To what extent do developers agree with our quantitative findings about integration delay?
	Theme 9—Integration delay in general
	Theme 10—Impact of switching to a rapid release cycle

	Analysis of Potential Confounding Factors
	Observation 8—The integration delay of fixed issues is not likely to be associated with the size of an issue
	Observation 9—The difference between traditional and rapid releases is unlikely to be related to the differences between enhancements and bug fixes

	Discussion
	Practical Suggestions
	Small transition
	Consistency of delivering fixed issues
	Minor releases

	Threats to Validity & Limitations
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Limitations of our Qualitative Study

	Related Work
	Traditional vs. Rapid Releases
	Delays and Software Issues

	Conclusions
	Acknowledgments
	Appendix A A: Firefox Survey
	 B: ArgoUML Survey
	Appendix B B: ArgoUML Survey
	 C: Eclipse Survey
	Appendix C C: Eclipse Survey
	 D: Methodology Web Page I
	Appendix D D: Methodology Web Page I
	 E: Methodology Web Page II
	Appendix E E: Methodology Web Page II
	 F: Invitation Letter
	Appendix F F: Invitation Letter
	 G: Interview Script
	Appendix G G: Interview Script
	References

