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a b s t r a c t

Code representation is a fundamental problem in many software engineering tasks. Despite the effort
made by many researchers, it is still hard for existing methods to fully extract syntactic, structural
and sequential features of source code, which form the hierarchical semantics of the program and
are necessary to achieve a deeper code understanding. To alleviate this difficulty, we propose a
new supervised approach based on the novel use of Tree-LSTM to incorporate the sequential and
the global semantic features of programs explicitly into the representation model. Unlike previous
techniques, our proposed model can not only learn low-level syntactic information within each
statement but also the high-level semantic information between statements over the constructed
semantic graph. Besides, considering that the sequential semantics is also critical for developers
to understand the dependency path and data flow transmission, we propose a DFS-based method
to generate the topological order of statements being processed, and then feed them as well as
their in-neighboring information and syntactic embeddings into the proposed model to learn richer
statement-level semantic features. Extensive experiments on multiple program comprehension tasks,
e.g., code clone detection, demonstrate that our method achieves promising performance compared
with other existing baselines.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The application of deep learning in software engineering has
achieved significant success, such as program classification (Mou
et al., 2016; Zhang et al., 2019a), clone detection (White et al.,
2016; Wei and Li, 2017; Fang et al., 2020), code completion (Liu
et al., 2016b; Li et al., 2017) and code summarization (Hu et al.,
2018a; Alon et al., 2018; Wan et al., 2018), which have been
widely used in various types of software development and main-
tenance processes to assist human beings in reducing time and
labor costs. For these tasks, it may be beneficial or even neces-
sary to learn a rich semantic representation to understand the
code snippet. Therefore, the deep code representation methods
have attracted increasing attention due to the fact that they may
achieve significantly better performance than the traditional code
analysis methods.

Most work on code representation focuses on capturing local
semantic information by processing the code directly or using a
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syntactic tree representation, treating it like sentences written in
human-readable language (Ben-Nun et al., 2018). For example,
several studies (Huo et al., 2016; Russell et al., 2018; Allamanis
et al., 2016; Iyer et al., 2016) first directly lexed source code into
a token sequence of variable length, and then encoded the entire
sequence using two types of neural networks known as Long
Short-Term Memory (LSTM Hochreiter and Schmidhuber, 1997)
Networks and Convolutional Neural Networks (CNNs LeCun et al.,
1998). There are also some studies (Wei and Li, 2017; Wan et al.,
2018; Dam et al., 2018) that transformed code into tree-based
abstract data (e.g., Abstract Syntax Trees (AST)) and applied re-
current neural network (RNN) variant Tree-LSTM (Tai et al., 2015)
to construct code representation. Recent work (Dam et al., 2016;
Hellendoorn and Devanbu, 2017) also demonstrates that LSTM
and Tree-LSTM can achieve fairly satisfactory results for source
code, similar to natural language. However, even so, these net-
works are still not competent enough to comprehend deep code
semantics robustly due to the fact that source code usually con-
tains richer and more explicit structural features (e.g., function
calls, loops, control jumps between basic blocks, and interchange-
able order of statements) than natural language text (Karmakar,
2019). Therefore, several advanced networks (Mou et al., 2016;
Zhao and Huang, 2018; Allamanis et al., 2017; Fang et al., 2020;
Zhang et al., 2019a; Feng et al., 2020; Guo et al., 2020) targeting
the programming language domain have been proposed recently
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to attempt to facilitate deep semantic understanding of the source
code.

Inspired by the linguistic distributional hypothesis (Harris,
1954; Pantel, 2005) that semantically similar words tend to
co-occur in the same contexts, a lot of researchers, like Ben-
Nun (Ben-Nun et al., 2018) believed that this hypothesis holds in
source code and reinterpreted it as ‘‘Two statements that occur in
the same contexts tend to have similar semantics’’ for source code,
where context is defined as a bag of semantically related state-
ments which may be non-adjacent but are usually dependent on
each other in terms of control or data flow. For example, if a vari-
able is defined in the first line of a function but only used in the
last line, there exists a ‘‘context ’’ that is composed of the two lines
of source code. Directly learning from consecutive statements in
their appearance order in source code does not adequately satisfy
this definition, as it only captures local sequential features of code
at the statement level, while deep semantic features existing in
‘‘context ’’ cannot be understood well enough.

To meet this need, one solution is to propose a context graph
that incorporates structural information from both data- and
control-flow of the code and then generate neighboring state-
ment pairs with a fixed size of context, which is used for train-
ing statement embeddings using the skip-gram model (Ben-Nun
et al., 2018). However, this method used unsupervised language
modeling objectives to learn vector representation of each state-
ment. Although the unsupervised training shows effectiveness
and robustness on the final performance, it does not optimize the
desired task directly; thus the improvement is limited (Liu et al.,
2016a). Another solution is to employ graph neural networks
(GNNs) to encode the semantic or syntactic information available
with the Program Dependence Graphs (PDG Ferrante et al., 1987
for short) or augmented AST (Allamanis et al., 2017). However,
as depicted in the previous work, each node in PDG represents a
basic code block (i.e., a straight-line piece of code Wotawa and
Krenn, 2007 that is at least a statement), which is too coarse-
grained compared with other code representations (e.g., AST or
token sequence) (Fang et al., 2020; Wagner et al., 1994). There-
fore, the fine-grained semantic information located in a statement
cannot be well learned from PDG combined with GNNs. In con-
trast, each node in augmented AST represents an element (e.g., a
token) in the program, which is too fine-grained compared with
other semantic-based representations (e.g., CFG and PDG). There-
fore, the higher-level semantics based on dependencies between
statements cannot be well captured from the augmented ASTs
combined with GNNs.

In addition, current graph-based methods focus on captur-
ing the structural information over the given graph (PDG or
augmented AST), while neglecting the sequential semantics of
statements. However, we believe the order of statements being
processed is also critical for code understanding (Shido et al.,
2019) since it specifies how statements interact with previous
ones along the dependency path and data flow transmission (Huo
and Li, 2017).

To tackle these challenges, in this paper, we propose a new
approach to learn the program representation based on the novel
use of Tree-LSTM. The key steps of our approach include a new
scheme to embed the syntax and semantics of each statement
contained in PDG nodes into a low dimensional vector space, and
a DFS (Depth-First Search) based algorithm to map graph units
into unit sequences to enable our model to capture additional
sequential information. More specifically, given a code fragment,
we first perform program dependency parsing to construct the
PDG as the global context and then replace the nodes in PDG
with the corresponding sub-ASTs to represent the local context.
Next, we learn the syntactic embedding for each statement and
employ a DFS-based approach to generate the sequences of state-
ments being processed. Then, the syntactic embeddings and the

neighboring information of statements as well as the statement
sequences are used as input to our proposed model to learn the
global statement-level semantic features. We make modifications
to the Tree-LSTM model (named Graph-LSTM in this paper) to
accommodate inputs from both the syntactic representation of
each statement as well as its in-neighborhood information. Fi-
nally, we apply a max-pooling to condense the information of
a variable length sequence of statement vectors into a single
program vector.

Through the above process, our model is able to capture all the
syntax, semantic, and long-range sequential dependencies from
the AST and PDG as well as the order of statements being pro-
cessed. Hence, the proposed method combines the advantages of
previously proposed graph-based and sequence-based methods,
and exhibits strong representative power for programs.

The main contributions of this paper include:

• Semantic graph. We introduce a novel representation
named semantic graph to integrate syntactic and semantic
information of source code.
• Graph-LSTM. We propose Graph-LSTM, a new code repre-

sentation model based on deep learning, which embeds both
low-level syntactic information and high-level semantic in-
formation over the constructed semantic graph of source
code into a comprehensive code representation. The design
of Graph-LSTM is based on a key insight that by matching
the shape and structure of program graph traversals, the
model can focus on learning the essence of program se-
mantics at different levels of granularity, which is expected
to alleviate the weaknesses (e.g., low efficiency and low
effectiveness problems) introduced by the message-passing
procedure in the standard GNN.
• New method. We design a novel method based on DFS- and

topological sort algorithms to incorporate sequential infor-
mation of source code into the code representation learn-
ing process, which can improve the feature representation
capability of the proposed model.
• Extensive experiments. Evaluation results on multiple pro-

gram comprehension tasks show that our strategies to ac-
count for capturing comprehensive semantic information
improve the performance of the two tasks, and achieve the
state-of-the-art performance on each.

Our paper is structured as follows. Section 2 presents a brief
background on code representation and fundamental concepts
about deep learning. Section 3 describes the overall framework
of our method. Section 4 presents the details of the proposed
network. Section 5 describes our experimental setting and the
evaluation results. Section 6 presents a discussion and threats to
validity. Finally, Section 7 introduces related work, and Section 8
concludes.

2. Background and motivations

2.1. Code representation

Various program analysis techniques have been proposed to
explore the properties or behaviors of programs. According to
prior research, the three most common representations, i.e., AST,
control flow graphs (CFG for short) and PDG, are often chosen for
the analysis of syntactic and semantic information of programs.
To understand these techniques intuitively, the straightforward
notions are outlined below.

(1) AST: represents the structure of program code. An AST
of a program is an ordered tree where internal nodes represent
operators or statements, and leaf nodes correspond to constants,
identifiers or operands.
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Fig. 1. C code example to compute the greatest common divisor (GCD) of two
positive integers a, b assuming a > b for simplicity.

(2) CFG (Tip, 1994): explicitly describes the possible decisions
of predicates and the possible sequences of execution of state-
ments (Yamaguchi et al., 2014). A CFG of a program is a graph G =
(N, E), where N is the set of nodes that represent statements or
control predicates of the program and E is a set of directed edges
that represent the transfer of the control between two nodes.
In particular, two distinguished nodes entry ∈ N and exit ∈ N
represent the beginning (i.e., entry) and end (i.e., exist) of the
control flow of the program, respectively.

(3) PDG (Tip, 1994): explicitly represents the dependencies
among different statements and control predicates. A PDG of a
program is a graph G = (N, E), where N is the set of nodes that
are the same as those of the CFG, and the edges in E denote the
data and control dependencies between nodes.

As described in previous studies (Fang et al., 2020), AST is one
of the commonly used syntax-based code representations which
can represent the syntax of the program, while CFG and PDG are
semantics-based representations which can store semantic infor-
mation of the program, e.g., program execution and dependency
information. To make it more clear, we give a simple code exam-
ple of C language as shown in Fig. 1 to illustrate the differences
of the above three types of representations. The corresponding
representations of code for the example in Fig. 1 are shown in
Fig. 2.

As can be seen from Fig. 2, AST gives us very useful information
about the structure of the source code, which can detect some
programming patterns for the same functionality from diverse
forms of codes. For example, the statements ‘‘int a, b;’’ and ‘‘int
a; int b;’’ are not quite same in the token sequences but have the
same AST structure to implement the same functionality. How-
ever, there are also substantial code fragments that implement
the same functionality, but their AST structures are noticeably
different. For example, ‘‘for’’ and ‘‘while’’, with different syntax
structures, are semantically similar because they are both loop
statements. It is obvious from the aforementioned analysis that
AST can well capture the local and structure information of the
source code but cannot capture the functionality semantics of
code fragments. To exploit the syntactic knowledge in AST, neural
network-based methods, e.g., Tree-LSTM (Tai et al., 2015; Wei
and Li, 2017), Tree-based CNN (Mou et al., 2016) and Recursive
Neural Network (RvNN) (White et al., 2016) have been proposed
recently, and used for modeling source code. These methods have
proven to be quite powerful in many software engineering tasks,
e.g., program classification, clone detection and code completion.
But, there are some disadvantages that are not solved as of now.
For example, keeping the original tree structure of the source
code unchanged, AST’s elements are much longer than those of
raw source code, which makes it difficult for the neural network-
based models to learn long-distance correlations in a much bigger
tree due to the Vanishing Gradient (VG) problem and a bounded
network memory given a fixed number of parameters. Moreover,

some important semantic features cannot be well captured by
these methods when modeling source code at the AST level as
described above.

Due to the limitations of syntax-based representation in cap-
turing code semantics, more and more researchers have drawn
increasing attention in modeling source code at the CFG or PDG
level. Since both CFG and PDG can be seen as a typical graph,
it is natural to consider graph embedding techniques for code
representation. For example, Fang et al. (2020) presented a fusion
approach for simultaneously learning the syntactic and semantic
features based on AST and CFG using word2vec and graph2vec
respectively. Currently, for most of the existing graph embedding
techniques (e.g., Graph2vec Narayanan et al., 2017, HOPE Ou
et al., 2016, SDNE Wang et al., 2016 and Node2vec Grover and
Leskovec, 2016), they aim to transform each node of the graph
into a vector with fixed length. However, each node in CFG and
PDG is a basic code block (i.e., a straight-line piece of code with at
least a statement), which may be so coarse (Wagner et al., 1994)
that some useful semantic information inside the code block
could be lost (Fang et al., 2020). For example, following standard
practice, the initialized feature of the statement ‘‘b = temp’’ is
generated by taking the mean across all its tokens’ embedding,
which is identical to another statement ‘‘temp = b’’ consisting of
the same tokens with the former (i.e., temp, =, b). That means
if we replace the node ‘‘b = temp’’ of the PDG (see the right of
Fig. 2) with ‘‘temp= b’’, we can obtain the same graph embedding
since the replacement has no effect on both the initialized node
features and the graph structure. This is not in agreement with
actual practice, because the replacement changes the semantic
meaning of the program.

Because of these limitations and shortcomings of the current
syntax-based and semantics-based representations, some recent
researches made attempts to mitigate the above mentioned chal-
lenges by carefully combining different types of representations.
For example, Allamanis et al. (2017) proposed to augment ASTs
by adding extra edges among tree nodes to represent a vari-
ety of code dependencies. Taking the code snippet in Fig. 1 as
an example, the augmented AST generated by their method is
shown in Fig. 3. As can be seen, the structure of the augmented
AST might reflect data flow and control flow between variables.
However, this approach also has its downsides, i.e., (1) it would
still fail to identify the similar semantic units that implement
the same functionality but have different forms (e.g., for and
while statements mentioned above); (2) it may contain some
redundant information and noisy data, and thus adversely hurt
the generalization of the representation model (Jayasundara et al.,
2019). In addition, considering that the constructed graph is much
more complicated than the AST of the same program, it may also
suffer from the VG problem and then cause ineffective model
training of GNNs (Bieber et al., 2020).

Inspired by limitations in existing program representation
techniques, our goal is to produce a new way of representing
code to capture more comprehensive code semantics from both
the syntactic information inside each statement and program
dependencies among statements.

2.2. Neural networks for code representation

Deep Learning is based on neural networks which connect
many small neurons into a complex network structure, enabling
them to extract richer features of training data. So they can fully
utilize the extracted features to accomplish specific tasks, which
have proven to generally perform better than purely traditional
machine learning algorithms (Kumar et al., 2016). The application
of deep learning in software engineering has also achieved signif-
icant success, e.g., using CNN variant tree-based CNN (Mou et al.,
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Fig. 2. Representations of code for the example in Fig. 1. Control flow is indicated by orange lines in the control flow graph. Control and data dependencies are
indicated by red and blue lines in the program dependence graph. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 3. The augmented AST with data and control-flow edges. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

2016) to construct the program representation according to the
abstract syntax tree.

However, with the increasing number of layers, the RNN and
CNN may suffer from the VG problem, which can lead to in-
effective and inefficient model training (Bengio et al., 2009).
Therefore, variants such as LSTM (Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) networks
are often deployed in practice to learn long-term dependen-
cies (Zhang et al., 2019b). These networks have shown massive
success in many NLP tasks, but there has been limited work
in applying LSTM and GRU in representing source code. This is
because source code involves too much structural information
(e.g., CFG, and PDG) which is hardly captured by these networks
due to the fact that they are especially designed for sequential
data. To address this limitation, various graph-based neural net-
works (e.g., GGNN Li et al., 2015; Allamanis et al., 2017) have
been recently employed for the code representation task and
have achieved state-of-the-art results. However, these models
also have their drawbacks: (1) they focus only on capturing infor-
mation related to the graph structure of programs, and ignore the
sequential semantics between statements; (2) they cannot handle
the local syntactic information inside each node (e.g., a basic code

block in PDG) well, as we detailed in Section 1. Thus, there is still
room for improvement.

In this work, to overcome the above-mentioned limitations,
we develop a novel neural network based on Tree-LSTM, called
Graph-LSTM that is designed for representing the syntactic infor-
mation within each statement and the global structural informa-
tion as well as the sequential naturalness among statements.

2.3. Downstream tasks of code representation model

Our work focus on two common prediction tasks in software
engineering: program classification and code clone detection,
following previous studies.

Program classification aims to classify newly added source
files into different categories according to their functionalities
in the software development process (Mou et al., 2016), which
is an important research area as orderly management of code
resources makes code easier to reuse and then helps with speed-
ing up coding. More formally, given the representation r ∈ Rk

of code fragment Xi, and a set of categories of length M, the
program classification task is defined as finding the M-dimension
predicted result ŷ, such that:

ŷ = sigmoid(Wr + b) (1)

where W ∈ RM∗k is the weight matrix and b ∈ RM is the
bias item. In this paper, we explore the use of deep learning
techniques to address the program classification task. During
training, we employ the widely used cross entropy as the loss
function for optimization.

L = −
1
N

N∑
i=1

M∑
j=1

[
p(yj|Xi)log(p̂(yj|Xi))

]
+ γ ∥θ∥2 (2)

where N is the total number of training instances, M is the
number of program categories, p̂(yj|Xi) is the output of the neural
network model and p(yj|Xi) is the desired output whose value is
1 if yj is the ground truth, and otherwise is 0. The last term of the
formula is the sum of squares of all parameters in the network,
which can effectively alleviate the overfitting and slow updating
problems.

Clone detection aims to look for exact or similar code pairs
or groups, called clones, in given code corpora by measuring the
similarity between two code fragments, which can help to reduce
the cost of software maintenance and prevent faults (Sheneamer
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Fig. 4. An overview of the proposed deep learning framework for code representation. The left subplot describes the process of the semantic graph construction,
where the input code fragment is first represented as a PDG, which can be further combined with the corresponding AST to obtain an integrated program graph. Next,
the semantic graph can be constructed by removing cycles in the integrated program graph. The right subplot illustrates the detailed architecture of the proposed
code representation framework, where the syntactic encoder first learns statement syntactic representation from the local syntax tree, and then the semantic encoder
learns the global statement-level semantic features by taking the syntactic embedding of statements as well as the statement sequences as inputs.

and Kalita, 2016; Wang et al., 2020a; Yu et al., 2019). Given a pair
of code clones, they may be semantically similar (in terms of their
target functionality) but differ syntactically to various degrees.
Therefore, following a common taxonomy (Sajnani et al., 2016;
White et al., 2016; Zhang et al., 2019a; Fang et al., 2020; Wang
et al., 2020a), code clones can be classified into four categories
based upon the syntactical dissimilarity.

• Type 1: Identical code fragments except for differences in
whitespace, blanks, comments, and layout.
• Type 2: In addition to clone differences in Type 1, syn-

tactically identical code fragments except for differences
in variable names, type names, literal values and function
names.
• Type 3: Syntactically similar code fragments except for sev-

eral statements added, modified, or removed with respect
to each other.
• Type 4: Syntactically dissimilar code fragments that imple-

ment the same functionality.

Suppose there are two code fragments and let v1 and v2 be the
corresponding vector representations. The semantic relevance be-
tween v1 and v2 is measured according to their distance, i.e., r =
v1−v2 (Tai et al., 2015; Zhang et al., 2019a). Then their similarity
score can be calculated by ŷ = sigmoid(Wr+b), whereW ∈ R2∗k is
the weight matrix and b ∈ R2 is the bias item. Similar to program
classification task, we use the cross-entropy as loss function for
optimization.

3. Our approach

In this paper, we propose a novel framework which first
constructs a semantic graph for the input of source code and then
encodes the semantic graph by introducing a novel Graph-LSTM.
Fig. 4 shows the overview of the proposed approach, contain-
ing the stages of (1) semantic graph construction, and (2) code
representation.

3.1. Semantic graph construction

We introduce a new code representation, which we refer to as
semantic graph, to integrate syntax and semantics of source code.
For clarity, the semantic graph is defined as follows:

Definition 1. A semantic graph is defined as G = (S, E), which is a
directed, acyclic graph with a set of sub-trees, S = {s1, s2, . . . , sn}
and a set of edges, E = {ei,j}. Each sub-tree si ∈ S represents
the syntax tree rooted at each PDG node (i.e., a statement). Each
edge ei,j is an ordered pair, connecting si to sj, which represents
the control or data dependencies between two sub-trees.

In this phase, we parse the source code to generate a semantic
graph in the following steps:

Step 1. Extracting dependencies among statements. To cap-
ture the data and control dependencies among statements, we
parse each method in source code to create its PDG. To this end,
there are some standard algorithms (e.g., Ferrante et al. (1987)).
As a running example, the second column of Fig. 5 shows the
PDG corresponding to the code snippet in the first column, where
each number represents the node id whose value is generated
according to the order of statements appearing in code. Since the
PDG represents source code at the statement level, it is a higher
level of abstraction than token-based representations or ASTs, and
thus only serves as a skeleton in representing source code.

Step 2. Substituting PDG nodes with sub-ASTs. To capture
the syntactic features within statements contained in the PDG
nodes, we firstly parse the source code into AST. Then we estab-
lish correspondence between AST nodes and PDG nodes based
on their locations in source code. Finally, we replace the PDG
nodes with sub-trees accordingly to generate an integrated pro-
gram graph which can not only represent the syntax information
within statements but also the data- and control-dependence
information among statements. Taking the code snippet in Fig. 1
as an example, the generated integrated program graph is shown
in the third column of Fig. 5, where the syntactic sub-trees are
outlined in green dashed line while the semantic relationships
are annotated in blue line and red line.

Step 3. Breaking cycles in the constructed graph. This step
aims to break cycles from a directed integrated program graph,
while preserving the underlying dependencies between state-
ments as much as possible. In this paper, we utilize the most com-
monly used DFS-based approach to simplify a directed integrated
program graph modeling syntactic information and dependency
relationships into a directed acyclic semantic graph, which only
includes acyclic relationships and has a hierarchical structure.
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Fig. 5. A running example to illustrate the process of semantic graph construction, which consists of three steps: (1) Extracting dependencies among statements; (2)
Substituting PDG nodes with sub-ASTs; (3) Breaking cycles in the constructed graph. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Afterwards, we can perform a topological sort of statements
(i.e., sub-trees) in the constructed graph and then recursively ap-
ply our proposed code representation model along the sequences
of sub-trees to capture the deep sequential and structural seman-
tics in the following steps. Note that the breaking cycle process
is inevitable since our approach requires the topological order of
statement processing as input, and topological-sort can only be
performed on graphs with no cycles.

3.2. Code representation model

Both syntax-based and semantics-based code representation
approaches have their own limitations as we discussed in Sec-
tion 2.1. Therefore, different from others directly learning the
code representation at the token level (e.g., token-based or AST-
based methods) or statement level (e.g., CFG-based or PDG-based
methods), we propose a novel code representation framework
which first learns the low-level syntactic information from the
local context, and then learns the high-level semantic information
from the global context.

To obtain more accurate statement representations, we con-
duct the following steps.

Step 1. Learning statement representation from the local
syntax sub-tree. To better capture the semantics in the local
context, we employ Tree-LSTM as the Syntactic Encoder, which
takes the AST of each statement as input and outputs a continu-
ous, real-valued vector for each statement, to generate a highly
non-linear semantic feature for each minimal unit of semantic
information (i.e., statement). Since syntactic encoder (SynEncoder
for short) learns from local contexts, it cannot capture the global
characteristics associated with program execution or dependency
information between statements, and thus only serve as the pre-
vious step in producing feature vectors that represent the deep
semantics of source code.

Step 2. Enriching statement representation with structural
and sequential semantics. Encoding global semantic features for
statements written in high-level programming languages (e.g.,
C/C++) can be nontrivial, precisely because of a lack of modeling

the sequential and structural information simultaneously. To en-
rich the local semantic features of statements, which have been
represented by continuous vectors in the first step of this phase,
we propose a graph-based LSTM (Graph-LSTM) approach to learn
the global features of a statement from its in-neighbor units over
a given graph structure in topological order. Fig. 6 shows the
general overview of our framework to model the global context.

Our method for capturing the structural semantics is moti-
vated by the following observation.

Observation 1: When humans comprehend a program, they
particularly focus on the program structure besides the syntax
information. This is because the program structure specifies how
different statements interact with each other to accomplish cer-
tain functionality, and thus conveys insights into the semantics
of source code (Huo et al., 2016).

Therefore, for a statement s, it is important to capture the
structural information from its direct neighbors. To this end, we
make modifications to the Tree-LSTM model to accommodate
inputs from both the syntactic representation of each statement
and its in-neighborhood information. In this paper, we refer to
the modified Tree-LSTM as the graph-based LSTM (Graph-LSTM)
since it is designed for graph data. Different time steps in Graph-
LSTM generate the global representation of different statements.
For example, the second time step is to enrich the 5th state-
ment features (i.e., s52 where the subscript and superscript in-
dicate the time step and the id of sub-trees in the semantic
graph, respectively) according to its in-neighbors (i.e., s11, s

2
1 and

s31) and its syntax representation (i.e., s51). Obviously, the afore-
mentioned learning process for statement si considers both the
global context semantic information (i.e., dependencies between
statements) and its local context syntax information.

In addition to the structural semantics described above, we
also consider the sequential semantics in our proposed method.
This is inspired by the following observation.

Observation 2: When humans comprehend a program, they
generally do it in an incremental and sequential manner (Hen-
drix et al., 2002; Sneed and Dombovari, 1999). That means the
order of statements being processed in source code is critical to
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Fig. 6. The overall architecture of our proposed Graph-LSTM. The input code fragment is first represented as a semantic graph as we described in Section 4. Then each
sub-tree in the semantic graph is encoded into a fixed-length vector via the Syntax Encoder. Next, the syntactic embedding of each statement and its in-neighborhood
information as well as the statement sequences are used as input for the proposed Graph-LSTM model (i.e., Semantic Encoder) to learn the global statement-level
semantic features. Finally, a max-pooling operation is used to condense the information of a variable length sequence of global statement vectors into a single
program vector. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

deep semantic understanding of the source code since it spec-
ifies how statements interact with previous ones along the de-
pendency path and data flow transmission, and hence provides
additional semantics to program functionality aside from syntax
and structural information (Huo and Li, 2017).

Therefore, it is important to determine an appropriate order-
ing of the sub-trees. To this end, in this paper, we propose to
leverage the DFS-based method to generate a reasonable topolog-
ical ordering of the subtrees and then recursively apply Graph-
LSTM along the sequences of sub-trees to capture both the se-
quential and structural semantic features.

Overall, in the first step (i.e., step 1), we treat each sub-tree
as an independent unit, we can use Tree-LSTM to compute the
‘‘local’’ feature of each statement w.r.t. the sub-tree itself. Then,
in the second step (i.e., step 2), these local features can be used
to construct the final ‘‘global’’ features of statements by further
considering their semantic relations and sequential information.

The main advantages of our proposed method are: (1) com-
pared to traditional ones (e.g., CNN and LSTM), it naturally deals
with extracting features from non-consecutive but semantically
related statements by leveraging program dependency informa-
tion; (2) compared to those only considering graph-structure, it
can better capture both sequential and structural information
through the proposed Graph-LSTM; (3) compared to previous
methods based on ASTs or PDGs, it first learns the low-level
syntax information over sub-trees within each statement, and
then learns the high-level semantic information based on the
dependencies between statements. All these advantages enable
our approach to learn more accurate code representations.

The specific network architecture and learning procedure are
described in Section 4.

4. Detailed model architecture

In this section, we will provide details for the key steps of our
proposed code representation method.

4.1. Breaking cycles when constructing semantic graphs

Currently, owing to its simplicity and efficiency, the Depth-
First search (DFS) method has been widely used to remove cycles
in the directed graph. Specifically, supposing that the DFS method
starts at sub-Tree s, we traverse the integrated program graph
(detailed in Section 3.1) in a depth-first manner from s and then
remove the back edges (dependencies) between sub-trees. Note
that removing cycles from the integrated program graph is equiv-
alent to that from the PDG since the cycle (or loop) structure only
occurs in the PDGs and not in sub-trees of statements. Therefore,
in what follows, we denote the sub-tree of each statement by
using the corresponding PDG node’s id for simplicity in represen-
tation. The detailed procedure is shown in Algorithm 1, where G
stands for the integrated program graph of the source code and
E represents the removed edges that are obtained during the DFS
traversal. First, for each sub-tree s, we assign a property symbol
‘‘color’’, whose value is initialized to ‘‘white’’, to indicate its state
during the search (Line 1–2). Second, we initialize an empty set
E to store the removed edges (Line 3) and reset the global time
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counter time in order to record the discovery timestamp d and the
finished timestamp f for each sub-tree in the next steps (Line 4).
Thirdly, we loop over the sub-trees in S and check if the color
of the sub-tree is ‘‘white’’ (Line 5–6). If so, we visit it using DFS-
VISIT (Algorithm 2). Whenever DFS-VISIT(G, s, E) is called in line 7,
sub-tree s becomes the root of a new tree in the depth-first forest.
When DFS-VISIT returns, the removed edges have been added into
E, and the current sub-tree s has been assigned a discovery time
s.d and a finishing time s.f .

Algorithm 1: Breaking cycles in the integrated program
graph using the deep first search

Input: Semantic graph G
Output: Edges E need to be removed

1 for each sub-tree s ∈ G.S do
2 s.color = WHITE ;
3 E← ∅ {Initialize a set to store the removed edges } ;
4 time = 0 ;
5 for each sub-tree s ∈ G.S do
6 if s.color = WHITE then
7 DFS-VISIT(G, s, E)

8 return E

Algorithm 2 shows pseudocode for the process of DFS-VISIT(G,
s, E). At every call to DFS-VISIT, the ‘‘color’’ attribute of sub-tree
s is changed from ‘‘white’’ to ‘‘gray’’ (Line 1). Next, the global
variable time is increased by 1, whose value is treated as the
discovery time s.d of s (Line 2–3). Finally, we examine each sub-
tree v adjacent to s and then recursively visit v if it is marked as
‘‘white’’ (Line 4–6), otherwise we add the edge (s, v) to the set of
edges E if v is marked as ‘‘GRAY’’ (Line 7–8). It can be seen that all
edges (s, v) connected with s is explored by the depth-first search
since each neighboring sub-tree v ∈ G : Adj[s] is considered in the
loop of line 4. Finally, after every edge starting from s has been
explored, we change the ‘‘color’’ of s from ‘‘gray’’ to ‘‘black’’ and
then record the finishing time (i.e., time +1) in s.f (Line 11–13).

Algorithm 2: DFS-VISIT
Input: Semantic graph G, sub-tree s, edges to be removed

E
Output: Edges E need to be removed

1 s.color = GRAY ;
2 time = time+ 1;
3 s.d = time;
4 for each sub-tree v ∈ G : Adj[s] do
5 if v.color = WHITE then
6 DFS-VISIT(G, s, E)
7 else if v.color = GRAY then
8 E ∪ edge(s, v);
9 else

10 continue;

11 s.color = BLACK ;
12 time = time+ 1;
13 s.f = time;

Taking the integrated program graph in the second columns
of Fig. 5 as an example, assuming that a DFS starts from a sub-
tree s1, the method will remove cycle edges (s6, s5), (s7, s5), (s4,
s7) and (s4, s5). The detailed traverse and removing processes are
depicted in Fig. 7.

4.2. Topological sort

After applying the DFS-based method to remove cycle edges
in the integrated program graph, we can obtain a semantic graph

with no cycles. Next, we perform a topological sort to order
all sub-trees such that si appears before sj when the depen-
dency (si, sj) holds. The advantage of this is that it provides
intuitive insights into which statements should be processed first
when the sj is processed. More importantly, indicating prece-
dence among statements can provide an opportunity for the code
representation model to encode the sequential and structural
information simultaneously, which will be depicted in Section 4.4.
The topological-based ordering process can be accomplished by
sorting the vertices (or sub-trees) chronologically by their fin-
ished timestamps. In particular, since the semantic graph is a
directed acyclic graph, it must have a topological-sort in which
all sub-trees are ordered along a horizontal line and their de-
pendency relations go from left to right. Fig. 8 presents the
topologically sorted semantic graph of code snippet in the first
column of Fig. 5, where all dependency relations are from the
left to the right. The ordering result is quite sensible because it is
consistent with the human understanding of programs.

4.3. Syntactic encoder

Each statement of source code in the proposed semantic graph
is represented in a tree structure, which provides opportunities to
capture syntax information of programs. In this paper, we adopt
the child-sum Tree-LSTM as the syntactic Encoder (i.e., SynEn-
coder) for modeling the tree structures of statements since it can
be built on arbitrary tree structures. Formally, given a sub-tree,
the encoder learns distributed representations of the AST nodes.
At each node j in the sub-tree, let xj denote the corresponding
token and let the hidden state and memory cell of its lth child be
hjl and cjl respectively. The hidden state of xj is generated based
on the states of its children in the sub-tree, which is calculated
in the Tree-LSTM cell as follows:

ĥj =
∑
l∈C(j)

hjl

fjl = σ (W f
· xj + U f

· hjl + bf )

ij = σ (W i
· xj + U i

· ĥj + bi)

uj = tanh(W u
· xj + Uu

· ĥj + bu)

cj =
∑
l∈C(j)

fjl ⊙ cjl + ij ⊙ uj

oj = σ (W o
· xj + Uo

· ĥj + bo)
hj = oj ⊙ tanh(cj)

(3)

where ij, fj(∗), oj represent the input, forget and output gates at
the jth step respectively, while cj and hj represent the memory
cell and output vector respectively. uj denotes a state for updating
the memory cell and xj represents the embedded vector of node
j. σ denotes the sigmoid function and ⊙ denotes element-wise
multiplication. W. ∈ Re×d are weight matrices and b. ∈ Rd

are bias terms. Through the iterative procedure of computing
hidden states of all nodes, the syntax information within the
sub-tree structure can be obtained. Note that, in this paper, bold
and normal text are used to distinguish between a vector and a
symbol, respectively, e.g., xj represents an embedded vector and
xj represents a token symbol.

4.4. Semantic encoder

As the statements contained in PDG nodes are represented in
the form of AST sub-trees, the SynEncoder can capture the syntac-
tic information of code via the Tree-LSTM network. However, it is
not sufficient to extract the semantics of global context since the
SynEncoder does not consider the relations (i.e., data and control
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Fig. 7. The process of removing cycle edges in the integrated program graph by applying the DFS-based method. For simplicity in presentation, we denote the
sub-tree of each statement by using the corresponding PDG node’s id. The background color of each node (i.e., sub-tree) represents its state during the search.
Timestamps surrounding vertices are marked as green, which indicates discovery and finishing times. As vertices are explored by the algorithm, the removing edges
are plotted as red ‘‘X’’. As can be seen on the last subplot, the removed cycle edges are (s6 , s5), (s7 , s5), (s4 , s7) and (s4 , s5). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The topologically sorted semantic graph, in which all vertices (sub-trees)
are sorted along a horizontal line in the descending order of their finishing
timestamps, and all edges are coming from the left vertices and pointing to the
right.

dependencies) among statements. Therefore, we can define the
goal of this phase as follows: Given a semantic graph G = (S, E),

where each statement in the form of sub-tree si has been encoded
into a fixed-length vectorial representation via the SynEncoder,
the semantic encoder module enriches statement representation
with neighbor information derived from the graph structures.

Specifically, given a sub-tree si ∈ S with a hidden represen-
tation hi learned by SynEncoder and its in-neighbors N−G (i) as
well as their hidden representations hN−G (i) = {hk|k ∈ N−G (i)}, the
Graph-LSTM updates the node’s hidden representation using the
following equation.

he
i = f (xi, hi, hN−G (i)) (4)

where xi is the type of the root node of si (e.g., x6 in the semantic
graph shown in the first column of Fig. 6 is ‘‘ExpressionStatement ’’)
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and f (·) is the composite function made up of a series of cascade-
operations, most of which have the same formulation with the
Tree-LSTM model as we detailed in Eq. (3). The main difference
between the Graph-LSTM and Tree-LSTM is that, in the Tree-
LSTM, the internal gates (i.e., the input, output and intermediate
cell states) are calculated based on the hidden states of the
children of the node in the given tree, while in the Graph-LSTM,
these gates are calculated using the hidden states of in-neighbors
N−G (i) and the hidden state of the current sub-tree. In this paper,
the formula of ĥ in Graph-LSTM is defined as follows:

ĥi = hi +
∑

k∈N−G (i)

hik (5)

Next, using this modified hidden state ĥi, the internal gates,
intermediate cell state and the updated hidden state he

i are cal-
culated using the same formula described in Eq. (3). In addition,
we can use the same network parameters as in the SynEncoder
and thus reduce the total parameters of the entire model.

4.5. Program encoder

The obtained hidden vector he
i that is output in the previous

phase can be regarded as the semantic feature of each statement.
Then, an aggregation operation is required to condense the infor-
mation of a variable-length sequence of statement vectors into a
single vector. To this end, we utilize the max pooling operation
on top of the hidden states to obtain the final program vector
representation.

As we detailed in Section 2.3, the program vector can be used
for the downstream target-specific tasks. For example, according
to the program vector, we can use the logistic regression with
sigmoid function, i.e., y = sigmoid(W1r + b1) as shown in the
formula (1) to predict the probability of the program X belonging
to the mth class.

5. Evaluation setting

5.1. Research questions

In order to show the performance of our method1 clearly, in
our experiments, we are interested in the following questions.

RQ1: How does our approach perform in program classifica-
tion compared with the state-of-the-art approaches?

RQ2: How does our approach perform in code clone detection
compared with the state-of-the-art approaches?

RQ3: What is the effectiveness of the proposed semantic graph
and Graph-LSTM in our method?

RQ4: How efficient is our approach during the training and
testing phases?

5.2. Dataset preparation

We evaluate the proposed method on OJ and BigCloneBench
datasets, and demonstrate its efficacy at program classification
and code clone detection tasks. The OJ benchmark (named OJ-
Data-1) is collected from a pedagogic program online judge (OJ)
system and made public by Mou et al. (2016), which mainly in-
cludes C/C++ programs for 104 programming tasks, and each task
has 500 programs submitted by different students. Considering
the relatively small size of the OJ benchmark, we collect more
labeled data samples of other programming tasks from the OJ
system.2 Our collected dataset (named OJ-Data-2) has the same

1 https://github.com/YuanJiangGit/Code-Representation-Graph-LSTM.git.
2 https://sse.hit.edu.cn/train/login.aspx.

number of programming tasks as the OJ Benchmark, in which
each programming task consists of 500 programs. Thus, we can
merge the two datasets (i.e., OJ-Data-1 and OJ-Data-2) to create
a large-scale one for our experimental evaluation. The merged
dataset (named OJ-All) studied in this paper is accessible through
the following link.3

For the program classification task, following previous work
(Zhang et al., 2019a; Mou et al., 2016), we perform an extensive
evaluation of our proposed method on OJ datasets. The target
label of a program in OJ dataset is the id of the programming
problem to which the program belongs. Experimental results on
three datasets (i.e., OJ-Data-1, OJ-Data-2 and the merged dataset
OJ-All) are provided. For each dataset, we randomly shuffle it, use
the first 60% of the programs to train our model, and split the rest
equally for validation (20%) and testing (20%).

For the code clone detection task, both OJ benchmark and Big-
CloneBench dataset are employed for an overall assessment of the
proposed method. As the previous work in Zhang et al. (2019a),
for the OJ benchmark, we choose the first 15 class labels. Each of
them corresponds to a programming problem and consists of 500
instances (i.e., source programs). Since two programs that solve
the same problem (i.e., implement the same functionality) form
a clone pair, a huge number of pairs (i.e., more than 28 million
clone pairs) are generated by randomly pairing two programs
drawn from the same target class, which will result in a large
consumption of resources and times for comparison. Thus, a com-
mon practice is to sample fewer program pairs (e.g., 50 thousand
samples in Zhang et al. (2019a) and in this paper) instead. Note
that the dataset of clone pairs sampled from the OJ benchmark is
also called the OJClone dataset in the literature (Fang et al., 2020).
Similarly, we randomly divide the OJClone datasets in a ratio
of approximately 60%/20%/20% (training/validating/evaluating) to
perform extensive experiments.

The BigCloneBench dataset is published by Svajlenko et al.
(2014) and widely used for evaluating code clone detection tools,
which is mined from the big data inter-project repository IJa-
Dataset 2.0 (Ambient Software Evoluton Group, 2013) and con-
sists of 6 million true positive clones of different clone types:
Type-1, Type-2, Type-3 and Type-4, as well as 260 thousand
false clone pairs. The similarity of clone pairs is defined as the
minimum ratio of the lines one code fragment shares with an-
other after normalization (Svajlenko et al., 2014). Concretely, the
similarity of two fragments of Type-1 and Type-2 is 1 since their
lexical sequences are the same after the appropriate code normal-
ization step. Type-3 can be further divided into strongly Type-3
and moderately Type-3 according to the degree of syntactical
similarity: strongly Type-3 with [0.7, 1) similarity and moderately
Type-3 with [0.5, 0.7) similarity. Following the same similarity
measure, the clone pairs in Type-4 are annotated on a range of
similarity scores from 0 to 0.5, and these pairs account for more
than 98% of total clone types. In our experiment, we use the
same training, validating and evaluating sets as the state-of-the-
art method (Guo et al., 2020; Wang et al., 2020a) to train and
evaluate the models. The benefit is twofold: (1) we use exactly the
same training/validating/evaluating from Guo et al. (2020) for fair
comparison; (2) the dataset contains 1,731,860 code pairs in total,
which is sufficient for estimating the performance of large-scale
neural network models.

3 https://github.com/YuanJiangGit/Code-Representation-Graph-LSTM/blob/
master/resources/dataset/OJ-All/programs.pkl.
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5.3. Experiment settings

In this work, we adopt Progex4 and Joern5 to generate the
PDGs for Java and C programs respectively, and employ tree-
sitter-java6 and tree-sitter-c7 to parse Java and C programs into
ASTs respectively. For both tasks, the token embedding matrix
M in the syntactic encoder was initialized by word2vec (Mikolov
et al., 2013), a word embedding technique, trained on respective
training sets to capture the semantic relations between tokens.
For convenience of implementation, we use gensim package (ver-
sion 3.0.1) for word2vec embedding with all default settings.
The embedding size of each token vector is set to 128. The
syntactic encoder and semantic encoder adopt the exactly same
architectures and parameters to reduce the complexity of the
model. That is, any changes to one encoder will affect the other
one. The hidden layer dimension of the two encoders is set to 256.
The task-specific classifier is a feed-forward and fully-connected
network with a single, 100-dimensional hidden layer and the
ReLU activation function. In addition, to train the model, we use
the Adam optimizer (Kingma and Ba, 2014) with a learning rate of
0.001 and a batch size of 64. Our approach is implemented with
the Pytorch library in Python with an Intel(R) Core i7@3.2 GHz,
64 GB DDR4-RAM and 1 GeForce RTX 2080Ti GPU.

5.4. Evaluation metrics

Code clone detection and program classification tasks can
be converted into binary and multi-class classification problems
respectively, as illustrated in Section 2.3. Therefore, we use accu-
racy, precision, recall and F-measure to evaluate the effectiveness
of our proposed method. These metrics are defined as follows:
Accuracy = TP+TN

TP+FP+TN+FN , Precision = TP
TP+FP , Recall = TP

TP+FN ,
F − measure = 2 ∗ precision∗recall

precision+recall , where TP is true positives, FP
is false positives, FN is false negatives and TN is true negatives.

Note that, to maintain consistency in evaluation metrics with
previous approaches (Zhang et al., 2019a; Fang et al., 2020), we
report the test accuracy metric on program classification task,
while, on code clone detection task, we report the precision, recall
and F-measure value.

5.5. RQ1: How does our approach perform in program classification
compared with the state-of-the-art approaches?

In this section, experiments are conducted to demonstrate the
effectiveness of the proposed approach on the program classifi-
cation task. To achieve this, we compare our approach with the
following existing baseline methods:

• TextCNN and LSTM are the standard models for text clas-
sification in NLP. Since one simple way to model source
code is to just view it as plain text (Hu et al., 2018a; Dam
et al., 2016; Hellendoorn and Devanbu, 2017), we can use
the same language models (e.g., TextCNN and LSTM) as used
in NLP to extract code semantics directly from the ‘‘token
sequences’’ of a program.
• TBCNN (Mou et al., 2016) and ASTNN (Zhang et al., 2019a)

are popular tree-based methods. The former uses the cus-
tom convolutional neural network to learn program repre-
sentations on the entire ASTs, while the latter first splits
each large AST into a sequence of small tree structures, and
then encodes these structures to vectors via the augmented

4 https://github.com/ghaffarian/progex.git.
5 https://github.com/octopus-platform/joern.git.
6 https://github.com/tree-sitter/tree-sitter-java.
7 https://github.com/tree-sitter/tree-sitter-c.

Table 1
Test accuracy between our method and other methods on the program
classification task.
Groups Model OJ-Data-1 OJ-Data-2 OJ-All

Lexical-based TextCNN 0.882 0.891 0.835
LSTM 0.905 0.864 0.869

TBCNN 0.949 0.838 0.886
Tree-based ASTNN 0.980 0.928 0.953

Graph-based PDG+GGNN 0.908 0.876 0.885
Augmented AST+GGNN 0.925 0.908 0.919

CodeBert 0.927 0.879 0.90
Transformer-based GraphCodeBert 0.982 0.914 0.947

Our method 0.987 0.951 0.966

recurrent neural network recursively. The two methods can
capture both the lexical and syntactical semantic of state-
ments.
• (PDG or augmented AST Allamanis et al., 2017)+GGNN are

two graph-based methods, where the former uses PDGs
to represent the semantic structure of source code while
the latter introduces a new graph representation (i.e., aug-
mented AST) to represent both the syntactic and semantic
information of source code. Both methods employ a graph-
based neural network (i.e., Gated Graph Neural Network
(GGNN) Li et al., 2015) to learn code semantics over program
structures.
• Transformer based methods are a set of transfer learn-

ing methods based on the transformer architecture, which
firstly pre-trained on a large-scale general-purpose dataset
by using a self-supervised task, and then fine-tuned on
specialized datasets to achieve better generalization (Mas-
tropaolo et al., 2021). In this paper, we compare our ap-
proach with two strong transformer baselines: (1) Code-
Bert (Feng et al., 2020) and (2) GraphCodeBert (Guo et al.,
2020). Note that we use the encoder part of these methods
as the feature extractor, followed by a classifier for the
program classification task.

To make a fair comparison, we use 128 as the embedding
size, 256 for hidden size and 64 for batch size for all base-
lines except for transformer based methods. As for the trans-
former based methods, we use the default architecture and hid-
den size in order to reuse their pre-trained models. In addition,
if some baselines (e.g., TBCNN, ASTNN and transformer based
methods) are open-sourced, we employ the default settings for
other hyper-parameters including the learning rate and optimizer
in our experiments, otherwise, we use the same configuration as
our method. More detailed discussions on the number of model
parameters are presented in Section 6.2.

Since the OJ datasets used in the program classification task is
quite balanced: among all programming programs, each of them
corresponds to 500 programs. We can use the accuracy metric for
different evaluation models on the testing dataset to make a fair
comparison. The experimental results are shown in Table 1.

Table 1 shows that the transformer based models outperform
the other DL-based methods by a clear margin. This is not sur-
prising, since these models have a large number of parameters
and thus show powerful learning capabilities in extracting a rich
variety of information from code data. Our observation is also
in line with Guo et al. (2020) and can be further confirmed
by rigorous statistics about the model parameters as discussed
in Section 6.2 (See Table 6 for details). In addition, as seen in
Table 1, GraphCodeBert is the winner among the transformer
based models since it provides several ways of communicating
the code structure to the transformer instead of treating source
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code as simple sequence data as in the CodeBert. Among DL based
methods, AST-based methods (e.g., ASTNN) perform better than
the token-based methods (e.g., TextCNN and LSTM) on almost
all OJ datasets. This is because these token-based methods fail
to consider the structural information of source code which car-
ries additional semantics beyond the lexical terms. In addition,
although TBCNN and ASTNN have been designed based on ASTs,
these approaches have a large variance in performances on the
program classification task. Our results show that ASTNN per-
forms better than the TBCNN, which indicates the tree-based
LSTM is more effective than the tree-based CNN in capturing code
semantics (Yu et al., 2019). A possible explanation of this phe-
nomenon is that most real-world programs’ AST can be very large
in syntax nodes and deep in tree layers due to the complexity
of programs, which results in the failures for TBCNN to model
the long-distance context information from the raw ASTs. In an
attempt to tackle this problem of tree-based CNN in dealing with
complex programs, ASTNN, a recent approach to AST embedding
proposed by Zhang et al. (2019a), firstly splits a large AST into
a sequence of small tree structures, and encodes these small
trees into statement vectors that are then aggregated into the
program-level feature.

In addition to comparing the performance difference between
tree-based CNN (i.e., TBCNN) and tree-based LSTM (i.e., ASTNN),
we also compare tree-based methods with the graph-based meth-
ods (i.e., PDG+GGNN and Augmented AST (Allamanis et al., 2017)
+ GGNN). As can be seen from Table 1, the graph-based meth-
ods perform worse than the state-of-the-art Tree-based method
ASTNN. This may be due to the following reasons: (1) for the
PDG+GGNN, it uses an average embedding vector of all tokens
in each PDG node as its initial embedding (Allamanis et al., 2017)
in GGNN (Li et al., 2015), which causes the loss of local semantic
information in the source code; (2) for the Augmented AST (Al-
lamanis et al., 2017) + GGNN, it integrates a lot of additional
edges among tree nodes to the AST, which may contain some
redundant information and noisy data, and thus leads to lower
performance. These observations are consistent with the previous
studies (Jayasundara et al., 2019; Fang et al., 2020).

In addition, the results shown in Table 1 reveal that our
approach outperforms all baseline methods, achieving a much
higher accuracy on the three OJ datasets, which is the best result
that can be achieved. This demonstrates the superiority of our ap-
proach in capturing both the structural and sequential semantic
information using the proposed representation framework.

Conclusions: The experimental results demonstrate that the
proposed approach outperforms the state-of-the-art code
representation methods on the program classification task, which
indicates its superiority in capturing more accurate and compre-
hensive semantic information from source code than the token-
based, tree-based and graph-based and existing transformer-
based methods.

5.6. RQ2: How does our approach perform in code clone detection
compared with the state-of-the-art approaches?

To validate the effectiveness and generalizability of our
method on the code clone detection task, we compare our pro-
posed method with the following eight baseline methods con-
ducted on the same datasets:

• SourcererCC (Sajnani et al., 2016) is a state-of-the-art
token-based clone detector for large inter-project reposito-
ries, which can detect multiple types of clones (e.g., from
Type-1 to Type-3 clones), albeit with a bag-of-tokens repre-
sentation.

Table 2
Comparisons between our method and other methods on the clone detection
task.
Methods BigCloneBench OJClone

Precision Recall F1 Precision Recall F1

SourcererCC 0.88 0.02 0.03 0.07 0.74 0.14
Deckard 0.93 0.02 0.03 0.99 0.05 0.10
DLC 0.95 0.01 0.01 0.71 0.00 0.00
CDLH 0.92 0.74 0.82 0.47 0.73 0.57
FCCD – – – 0.97 0.95 0.96
ASTNN 0.92 0.94 0.93 0.99 0.93 0.96

CodeBert 0.947 0.934 0.941 0.999 0.961 0.979
GraphCodeBert 0.948 0.952 0.950 1.0 0.977 0.988

Our method 0.985 0.972 0.979 0.994 0.995 0.994

• Deckard (Jiang et al., 2007) is an AST-based approach, which
represents the syntactic level of source code from the aspect
of discrete AST embedding and measures code similarity
between two code fragments using Euclidean distance.
• DLC (White et al., 2016) explores the use of deep learning

techniques to address code clone detection, which uses a re-
cursive autoencoder to extract unsupervised deep features.
• CDLH (Wei and Li, 2017) leverages AST-based neural net-

work for code clone detection, which can detect a pair of
code fragments with semantic similarity but differing in
both lexical and syntactical levels.
• FCCD (Fang et al., 2020) is an approach recently proposed

for Functional Code Clone Detection, which identifies the sim-
ilar functionality of different code snippets at functionality
granularity by analyzing the call graph, and simultaneously
learns the syntactic and semantic features from ASTs and
CFGs using fusion embedding technique.
• ASTNN (Zhang et al., 2019a), similar to that described in

Section 5.5, learns the code semantics from a sequence
of smaller AST-trees, i.e., the code representation learning
using ASTNN on code clone detection task is the same as
that on the program classification. The differences between
the two tasks lie in the specific layers, aiming for achieving
different tasks.
• CodeBert (Feng et al., 2020) and GraphCodeBert (Guo et al.,

2020) are based on the use of pre-trained transformer based
models, which leverage a fully attention-based approach to
capture the contextual information of source code. More
importantly, GraphCodeBert extends the CodeBert by incor-
porating the semantic structure of source code to learn code
representation. From the output of the encoder of CodeBert
or GraphCodeBert, we get the vector representations for a
code pair, and then measure the similarity between them
to determine whether the code pair belongs to a clone.

For each baseline method, we follow the same settings as de-
scribed in Section 5.5 to make a fair comparison. Table 2 sum-
marizes the experimental results evaluated via standard metrics,
such as precision, recall, and F-measure.

It can be seen from Table 2, our approach consistently outper-
forms the state-of-the-art baselines on the very different datasets
(i.e., from C based dataset (i.e., OJClone) to Java based dataset
(i.e., BigCloneBench)) in all evaluation metrics. For example, our
approach achieves a 2.9% improvement in F-measure and a 2.0%
improvement in Recall compared to the state-of-the-art method
GraphCodeBert on the BigCloneBench dataset. More importantly,
our approach achieves an F-measure performance of 99.4%, which
is the best that can be achieved on the OJClone dataset. This
illustrates that our approach is proven to be very effective in
extracting high-level representations from the raw source code
in the code clone detection task.
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Table 2 shows that the deep learning based methods (e.g.,
GraphCodeBert, DLC, CDLH, FCCD and ASTNN) outperform tradi-
tional ones (e.g., SourcererCC and Deckard) by a clear margin. We
argue that this is due to the fact that traditional approaches utilize
discrete representations (e.g., token-based method SourcererCC
and AST-based method Deckard) to extract low-level grammat-
ical (i.e., syntactic) information from source code, not capturing
high-level syntactic and semantic information; the lack of deep
understanding of programs makes it difficult to find all code
clone pairs, or easy to report many false positives, and thus
produces fairly low recall or low precision. In contrast, as we can
see deep learning based methods demonstrate a much powerful
performance compared to traditional work.

Among deep learning based methods, DLC performs much
worse than the other five deep learning based methods. This
is because DLC is an unsupervised learning approach based on
recursive autoencoder networks to learn program representa-
tions, which cannot directly optimize the training process of
the desired task (i.e., clone detection task) and thus unable to
improve the performance of detection models. Apart from un-
supervised detection methods (e.g., DLC), we notice that the
performance difference between supervised methods (e.g., CDLH,
FCCD and ASTNN) is considerable. In these techniques, the detec-
tion process usually has two steps: (1) feature extraction, where
representative (i.e., lexical, syntactic or semantic) features are
extracted to capture the essential characteristics of the program
under analysis; and (2) categorization, where intelligent tech-
niques (e.g., mapping function) are used to automatically group
a pair of programs into different classes (i.e., clone pairs or none-
clone pairs) based on computational distances of their feature
representations. Obviously, a key to achieving high performance
of clone detection is feature representation methods designed
for capturing deep code semantics in Step 1. For example, the
method CDLH (Wei and Li, 2017) proposed to leverage Tree-based
LSTM to learn both the lexical and syntactical aspects of source
code. Although this method shows promising results on the code
clone detection task (e.g., CDLH achieves an F-measure of 82%
on BigCloneBench), it still faces serious limitations, such as the
lack of capability to capture the program’s semantic information
(i.e., control and data dependencies between statements) and no
support for learning long-distance correlations in a much bigger
tree due to the vanishing gradient problem in Tree-based LSTM.
To alleviate these issues, FCCD focuses on better characteriz-
ing both the semantic and syntactic features of programs by
combining structural embedding based on CFG and the syntac-
tic embedding based on AST, while ASTNN strives to efficiently
learn lexical and syntactical knowledge between statements by
separating the large AST of the program into several small sub-
trees. These improvements of FCCD and ASTNN to CDLH are
the main reasons that the performance increases significantly.
Specifically, compared to the DLC, FCCD and ASTNN improve the
clone detection performance in terms of F-measure by nearly
68.4% for the OJClone dataset.

We also notice that there are only slight differences between
the results obtained by FCCD and ASTNN, even if the code se-
mantics are considered in FCCD. This could be due to the fact that
FCCD adopts a simple strategy to concatenate the learned seman-
tic and syntactic feature vectors of one program into one feature
vector. This concatenating strategy is so simple to force some
information loss, e.g., it breaks up the connection between the
syntax of a single statement and the associated semantic mean-
ing, and it is not suitable to concatenate different feature vectors
learned by different methods together in a single vector space.
However, the proposed network in this paper first learns the low-
level syntactic information from the local context (i.e., sub-tree)
for each statement and then combines dependencies between

statements to learn the high-level semantic information from
the global context. The experimental results also show the su-
periority of the proposed network on benchmark datasets. More
concretely, on the OJClone dataset, our method improves the
performance by about 3% in F-measure compared to FCCD.

Compare to the above DL-based methods, the transformer
based models generally exhibit an overall better performance on
the code detection task. This is because they can capture global
or long distance relationships in a sequence via the multi-layer,
multi-head attention mechanism. However, this technique has its
drawback: running transformer based models is computationally
expensive since they contain a large number of trained param-
eters. More detailed discussions on the model’s parameters are
presented in Section 6.2.

Conclusions: The deep representation learned from the pro-
gram provides useful semantic information for the code clone de-
tection task. The experimental results also demonstrate that our
proposed method can further capture the complicated semantic
correlations between and within statements and achieve a sig-
nificant performance boost on code clone detection benchmarks
(i.e., BigCloneBench and OJClone).

5.7. RQ3: What’s the effectiveness of the proposed semantic graph
and Graph-LSTM in our method?

In the previous sections (Sections 5.5 and 5.6), we have
demonstrated the effectiveness of our approach on two common
program comprehension tasks (i.e., program classification and
code clone detection). To better understand where the perfor-
mance improvements of our proposed approach come from, in
this section, we conduct further experiments to analyze the
effectiveness of the main component (i.e., the semantic graph and
Graph-LSTM) in our proposed model.

For this purpose, we evaluate the following three types of
variants of our approach on the program classification task using
the combined OJ dataset (i.e., OJ-All).

• (PDG or Augmented AST)+(GCN, GAT or GGNN): To verify
the effectiveness of the proposed method, we replace se-
mantic graph and Graph-LSTM in our method with other
semantic-based representation (i.e., PDG or augmented AST)
and the commonly used graph neural network (i.e., GCN Kipf
and Welling, 2016, GAT Veličković et al., 2017 or GGNN Li
et al., 2015) respectively, and then compare their perfor-
mance difference on the program classification task.
• Semantic graph+(GCN, GAT or GGNN): To verify the effec-

tiveness of our proposed Graph-LSTM, We replace it in our
method with other graph neural networks (i.e., GCN, GAT
and GGNN) and then conduct comparison experiments to
confirm the usefulness of Graph-LSTM in extracting both
global semantic and sequential features.
• (PDG or Augmented AST)+Graph-LSTM: To verify the ef-

fectiveness of our proposed semantic graph, we replace it in
our method with the most commonly used semantic-based
code representation (i.e., PDG) or other recently proposed
code representation (i.e., Augmented AST), and then con-
duct comparison experiments to confirm the usefulness of
semantic graph in integrating the syntactic and semantic
information. Note that when Graph-LSTM is applied to PDG
or Augmented AST, breaking cycles and topological-sort for
these graphs need to be performed beforehand.

The evaluation is done under the same dataset (i.e., OJ-All)
and experimental settings. Concretely, we train all GNNs and our
model for 100 epochs with a learning rate of 0.001 and a batch
size of 64. The embedding size is set to 128 and the hidden
dimensions in each layer for all neural networks are set to 256 to
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Table 3
Test accuracy between our method and two groups of variants on the OJ-All
datasets.
Groups Model Accuracy

(PDG or Augmented AST)
+

(GCN, GAT or GGNN)

PDG + GCN 0.782
PDG + GAT 0.864
PDG + GGNN 0.885
Augmented AST + GCN 0.849
Augmented AST + GAT 0.870
Augmented AST + GGNN 0.919

Semantic graph + GNN
Semantic graph + GCN 0.928
Semantic graph + GAT 0.936
Semantic graph + GGNN 0.941

PDG or Augmented AST
+ Graph-LSTM

PDG + Graph-LSTM 0.932
Augmented AST + Graph-LSTM 0.952

Our method Semantic graph +Graph-LSTM 0.966

make a fair comparison. In addition, to optimize the performance
of GNNs, we vary the number of layers in {3, 6, 9, 12} for GCN,
GAT and GGNN, and set the number of time steps for GGNN
among {3, 6, 9, 12}. The best experimental results for each variant
and our method are given in Table 3, where the bold values
indicate those with the highest accuracy.

As can be seen from Table 3, the best performance with an
accuracy of 96.6% is acquired when two components (semantic
graph and Graph-LSTM) are included. That means our method
combining semantic graph and Graph-LSTM is advantageous over
the variants using only one. The satisfactory result demonstrates
that the proposed method can be successfully employed for rep-
resenting deep semantic features of programs, which is crucial for
the good performance of many downstream software engineering
tasks (e.g., program classification). In addition, the experiments
uncovered the effectiveness of the individual components. Con-
cretely, compared to the other representations (i.e., PDG and
Augmented AST), the proposed semantic graph improves the
accuracy of GNNs (e.g., GCN, GAT or GGNN) on the program
classification task by a clear margin. This illustrates the semantic
graph is capable of preserving both the syntax and semantic
structures of a program and thus is more suitable as input for the
GNNs to capture the structural semantic information. Similarly,
the proposed Graph-LSTM is much more superior than other
GNNs. For example, compared to GCN, GAT and GGNN, Graph-
LSTM offers an average improvement of 8.8% and 7.2% on the PDG
and augmented AST respectively, which shows that the sequential
information of the source code is of great help to obtain better
representations besides the structural information.

Overall, our proposed Graph-LSTM performs better than GNN-
based baselines when given the same input representation of
programs (e.g., PDG, Augmented AST or semantic graph), and our
proposed semantic graph allows a model (e.g., GCN, GAT, GGNN
or Graph-LSTM) to learn a deeper understanding of code seman-
tics more effectively than other code representations (e.g., PDG
or Augmented AST). To provide some intuition on how the se-
mantic graph and Graph-LSTM contribute to different degrees of
performance improvement, we present the test accuracy curves
for different types of variants in 100 epochs (One epoch is an
iteration over the OJ dataset) as shown in Fig. 9, where X-axis
is for epoch iteration and y-axis is for accuracy computed on the
test dataset.

As can be seen from Fig. 9, our proposed model can be trained
faster and more effectively as expected, showing that it indeed
has the ability to capture deep semantic and sequential infor-
mation in programs and can abstract high-level features spon-
taneously, thus benefiting downstream tasks. Another important
finding is that the variants of our proposed method with the

Table 4
Running time comparisons between our method and other baselines on the clone
detection task using OJClone dataset.
Methods Training time Prediction time

SourcererCC – 30 s
Deckard – 32 s
DLC 120 s 67 s
CDLH 8307 s 82 s
FCCD 8043 s 63 s
ASTNN 9902 s 72 s
CodeBert 10807 64 s
GraphCodeBert 18389 s 165 s

Our method 7420 s 89 s

semantic graph or Graph-LSTM significantly perform better than
the variants without it, which highlight the importance of (1) a
high-level representation of source code that is suitable for deep
learning, (2) a robust neural network that is capable of effectively
capturing both the structural and sequential information. Fur-
thermore, we note that the proposed model with both semantic
graph and Graph-LSTM has higher performance than the variant
using only one. This is consistent with our previous experimental
observation in Table 3.

Conclusions: We evaluate the effectiveness of the individual
components proposed in this paper by analyzing the performance
of possible combinations of them. Our experimental results show
the proposed semantic graph and Graph-LSTM are greatly benefi-
cial for learning more accurate code representation and bringing
substantially faster convergence.

5.8. RQ4: How efficient is our approach during the training and
testing phase?

In this section, we compare the time performance between our
proposed method and the baselines in the clone detection task.
We run each method to detect code clones on the OJClone dataset
with the optimal parameters. Also we perform our experiment
multiple (e.g., five) times and report the average over the multiple
runs.

Table 4 reports the training and predicting time of each
method. We can see that, on the OJClone dataset, our approach
takes about 7420 s for training model. For prediction, our ap-
proach takes 89 s for all testing samples. That is, 0.247 s and
0.009 s for each sample in the training and testing dataset,
respectively. Compared with state-of-the-art approaches except
for DLC, the proposed method offers a better efficiency in training
detection model.

Also note SourcererCC and Deckard do not require training
the model and perform clone detection on the source code of
the project directly. Therefore, they do not have corresponding
training time, which are padded with ‘‘–’’ in Table 4. Additionally,
we found that the supervised deep learning methods (e.g., CDLH,
FCCD, ASTNN) take more actual training time to yield satisfactory
results than the unsupervised detection method DLC. This is
because for these methods, a deep encoder of the full AST of the
program is generally developed to generate a fixed-length vector
that represents the syntactic information of the program. How-
ever, due to the large shapes and sizes of the ASTs, the encoder
process needs a lot of time to recursively traverse the parse trees
to perform vector computations for children’s and parent’s nodes,
which takes up the most part of total training time overhead. The
unsupervised detection method (i.e., DLC) adopts a simple net-
work to learn feature representation of programs automatically
from source code, which consumes much less time (Fang et al.,
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Fig. 9. Comparison of Accuracy for our variants using their best configurations. Semantic graph+Graph-LSTM achieves the best performance, i.e., the highest test
Accuracy, compared to the other variants.

2020). Unsurprisingly, the transformer based models (e.g., Code-
Bert and GraphCodeBert) take the longest time to train since they
use much more complex architectures and often consist of over
100 million parameters. Moreover, in order to leverage the graph
structure of code to learn code representation, GraphCodeBert
introduces a complex graph-guided masked attention to encode
the dependency relation between variables and thus requires
longer time to train in contrast to BERT. In addition, there are
no noticeable differences in the prediction time for most exist-
ing DL-based methods. Furthermore, the prediction time could
be amortized for all testing samples. Therefore, a few seconds
varying for the entire testing dataset is almost negligible.

Conclusions: From the results, we observe that the proposed
approach achieves promising and competitive training efficiency
when compared with the state-of-the-art methods. The main
reason is that our method does not perform time-consuming
learning on full ASTs. However, even so, the proposed method
outperforms the state-of-the-arts by a large margin as shown in
Section 5.6.

6. Discussion

In this section, we first discuss the different behaviors and
the major benefits of our proposed approach over the baseline
methods. Then we understand the embeddings computed by the
proposed method through visualization. Finally, we discuss the
potential threats to the validity of our study at this point.

6.1. Investigating whether breaking cycles forces some semantic in-
formation loss during learning

As we stated in Section 3.2, the sequential information of
statements being processed is important to deep semantic under-
standing of the source code. In determining the topological order
of statement processing, breaking cycle process is inevitable. To
this end, we propose a way of removing cycles in the constructed
program graph via the DFS-based method. Although we have
given experimental evidence that our proposed model learned
over the acyclic semantic graph in topological order can give
better results than existing state-of-the-art graph-based methods,
more investigations are needed to understand whether or not
removing cycles from the constructed program graph forces some
semantic information loss during learning. To achieve this, we
conduct the following experiments using the combined OJ dataset
(i.e., OJ-All).

First, we parse each program to construct an integrated pro-
gram graph. Second, we remove the cycles in the integrated
program graph to generate the corresponding semantic graph.
Third, we apply the GNNs on the integrated program graph and
semantic graph, separately to compute the graph embedding, and
obtain a feature vector for each program, thus fulfilling the pro-
gram classification task. The most commonly used graph neural
networks GCN, GAT and GGNN are the chosen techniques for our
study. The experimental results are shown in Table 5.

As seen from the results, there is no significant difference
between the two groups of performances when applying GNNs
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Table 5
Test accuracy when applying GNNs to the integrated program graph or semantic
graph on the program classification task using the combined OJ dataset (i.e.,
OJ-All).
Model Integrated program graph Semantic graph

GCN 0.931 0.928
GAT 0.935 0.936
GGNN 0.927 0.941

Table 6
Comparison of model capacity for the program classification task.
Model Layers Parameters

TextCNN 2 0.39M
Bi-LSTM 2 2.79M

TBCNN 2 2.42M
ASTNN – 2.13M

PDG+GGNN 3 2.94M
Augmented AST+GGNN 6 4.32M

CodeBert 12 124.72M
GraphCodeBert 12 125.31M

Our method – 1.92M

to the integrated program graph or semantic graph. This is most
likely due to the fact that many dependence edges among sub-
trees in the integrated program graph may be redundant or not
be highly correlated with class labels, therefore removing them
has less impact on the model performance.

6.2. Comparison of the model capacity between different methods

Previous research work has documented that model capacity
is a potential threat to any comparison between different types
of models (Guo et al., 2020). Therefore, to get a fair comparison,
the selected baselines should span a similar parameter count
range with the proposed model. However, evaluating the perfor-
mance of these models with such experimental settings might
severely underestimate their true ability because the impressive
effectiveness of most state-of-the-art models (e.g., CodeBert and
GraphCodeBert) can be partially attributed to their large number
of parameters (Soldaini and Moschitti, 2020). To avoid underesti-
mating the performance of baselines, we use the experimental
setting as we detailed in Sections 5.5 and 5.6 to conduct the
experiments in this study. As can be seen in Tables 1 and 2, our
proposed method outperforms the baselines and get satisfactory
improvement on two program understanding tasks. The high
performance of our method may be due to the fact that it can
capture the information related to not only syntax and depen-
dency relations, but also the sequential semantics of statements
being processed. However, we still have no insight on whether
or not the relatively higher performance of our method is due to
the fact that it has more trainable parameters than the state-of-
the-art methods. Therefore, in this section, we seek to answer the
following question: Is the proposed model benefiting from more
parameters than other baselines. To investigate this, we give the
statistics on the amount of parameters that have to be estimated
for all baselines and our method as shown in Table 6.

As can be seen from the table, most baselines except for
TextCNN have more trainable parameters than our method. This
indicates that the improvement in performance might not only
owe to a greater number of parameters but also benefit from
suitable architectures of neural networks. Thus, it is fair to say
that our method offers the competitive performance but uses less
parameters compared to many larger DL-based models. In addi-
tion, some researchers have pointed out that training models with
one hundred million (M) parameters is not feasible and practical

Table 7
Performance comparisons between our method and other methods on the
vulnerability detection task.
Method Accuracy Precision Recall F1

Flawfinder 0.698 0.228 0.296 0.257
RATS 0.672 0.128 0.147 0.137
Checkmarx 0.729 0.309 0.432 0.361
VUDDY 0.712 0.980 0.099 0.164
VulDeePecker 0.922 0.582 0.876 0.666
SySeVR 0.954 0.921 0.927 0.924
Devign 0.960 0.930 0.928 0.929

Our method 0.972 0.952 0.947 0.950

for most users (Bhargava, 2020). Therefore, it is of interest to
study models that not only achieve satisfactory performance but
also rely on simpler model architecture.

6.3. Investigating whether the proposed model is effective on a more
difficult task

As described in previous sections, our evaluation on two
widely used benchmark datasets (OJ-Data and BigCloneBench)
shows the effectiveness of our method in achieving state-of-
the-art performance in both program classification and clone
detection tasks. However, the majority of the instances in both
datasets are of shorter length and thus may be easier to un-
derstand by code representation models. In this section, we
would like to investigate whether our approach can be effectively
applied to a more difficult task. To this end, we choose the
vulnerability detection task with a public dataset released by Li
et al. (2021b) to further evaluate the generalization ability of our
model. The overall procedure for applying our approach to vul-
nerability detection can be simply summarized in the following
three steps. First, we preprocess program representations into
semantic graphs. Second, we learn vulnerability features directly
from the constructed semantic graph by means of the proposed
Graph-LSTM. Third, we train a one-layer fully-connected feed-
forward neural network to predict the vulnerability-proneness of
code. More details of the above steps can be seen in the supple-
mental materials.8 We choose several state-of-the-art baselines
for comparison and use the default parameters in the literature by
the authors for their assessment experiments. The experimental
results on four evaluation metrics (i.e., Accuracy, Precision, Recall,
F-measure) are shown in Table 7, where the best result is shown
in bold face.

From the results, we can make the following key obser-
vations. (1) The open-source rule-based vulnerability detection
tools (e.g., Flawfinder Wheeler, 2006, RATS Fortify, 2014 and
Checkmark SecureSoftware, 2018) perform worse on average
(i.e., lower recall and precision) than the DL-based baselines,
which can be attributed to the limited expressiveness of human-
written rules and thus fail to deal with complex or novel vulner-
able cases; (2) The DL-based methods (e.g., VulDeePecker Li et al.,
2016 and SySeVR Li et al., 2021b) shows significant performance
improvement over the previous rule-based methods, which may
be due to the powerful capability of deep learning on auto-
matic feature characterization (Li et al., 2021a); (3) Among these
baselines, Devign performs the best in all four metrics, which
demonstrates the effectiveness of graph neural networks for bet-
ter encoding code structural semantics than the regular recurrent
neural networks on the task of vulnerability detection (Zhou et al.,
2019); (4) Our method achieves a state-of-the-art performance
with the overall F1 score of 0.95, which indicates our proposed
semantic graph and Graph-LSTM are effective to characterize
vulnerabilities with high diversity and complexity in real-world
source code by learning comprehensive program semantics.

8 https://1drv.ms/b/s!As5Z1c5DW_I-nEp0FL8xwa2_CXiU.

16

https://1drv.ms/b/s!As5Z1c5DW_I-nEp0FL8xwa2_CXiU


Y. Jiang, X. Su, C. Treude et al. The Journal of Systems & Software 191 (2022) 111355

Fig. 10. A 2D visualization of code embeddings of testing programs produced by
our method on the program classification task using t-SNE. The legend presents
the functional categories of projected programs.

6.4. Understanding the embeddings

We visualize the embeddings of testing programs produced by
our method to understand why the proposed model is effective
to make accurate predictions. In particular, we choose the first
15 class labels, each of which corresponds to a programming
problem and consists of around 100 source programs from the
testing dataset of OJ benchmark. Next, we compute the embed-
dings of these programs using the proposed network trained on
the corresponding training dataset. Then, we project the high-
dimensional embeddings onto 2- and 3-dimensional spaces using
t-SNE (Van Der Maaten, 2014). Finally, we plot the 2- and 3-D
projected points in Figs. 10 and 11 respectively, where source
programs with the same functionality (i.e., aiming to solve the
same programming problem) are presented in the same color. We
can find out that (1) for programs with the same functionality,
their embeddings are close to each other; and (2) for programs
with different functionalities, their embeddings are far from each
other, i.e., the boundaries between programming problems are
clear. Therefore, this visualization illustrates that our proposed
framework learns a robust code representation network that can
generate low-dimensional representations of previously unseen
programs and preserve the semantic information of the target
functionalities in their embeddings.

6.5. Threats to validity

6.5.1. Threats to internal validity
Threats to internal validity are related to our implementa-

tion or experimental bias. To help avoid experimental bias in
this regard, many performance metrics were provided, including
accuracy, precision, recall and F-measure. In addition, to ensure
that our implementations of baseline models reflect the origi-
nal performance, we tested our implementation using the same
dataset and evaluation metrics. We report the results of our
experiments with these implementations if they produce almost
similar or consistent results, otherwise we choose to adopt previ-
ously published baseline results compared to ours. Also, to avoid

Fig. 11. A 3D visualization of code embeddings of testing programs produced by
our method on the program classification task using t-SNE. The legend presents
the functional categories of projected programs.

implementation bias of our method, we have double checked our
implementation and experiments to reduce this risk to the extent
possible.

6.5.2. Threats to external validity
External threats are related to the generalizability of our

findings. Firstly, to expediently evaluate the results, we em-
ploy two widely-used tasks, i.e., program classification and code
clone detection tasks, to demonstrate the effectiveness of the
proposed approach compared to the state-of-the-art methods,
such as ASTNN and GraphCodeBert. However, we still have no
insight on whether the proposed method is valid targeting other
software engineering tasks, e.g., code summarization, code com-
pletion, code search, code generation and bug detection. Sec-
ondly, in terms of datasets, we evaluate our model on OJ and
BigCloneBench datasets, which consist of C++ and Java programs
respectively. Thus, we have no insight on whether the proposed
method performs well on other programming languages as well
(e.g., C#).

7. Related work

7.1. Source code representation

Source code representation is critical for machine to auto-
matically understand the program. Therefore, developing efficient
and effective code representation models to capture the deep
semantics of source code is an important line of research in soft-
ware engineering. This section highlights previous studies into
lexical-based, syntactic-based and semantic-based source code
representation methods.

7.1.1. Lexical-based source code representation
In the lexical-based representation, a program is transformed

into a sequence of ‘‘tokens’’ via performing lexical analysis, and
then the sequence is fed into the code representation model
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to get the corresponding feature vector. Traditional Information
Retrieval (IR) and Machine learning (ML) based methods have
been actively adopted to the lexical-based code representation
and have shown good performance in some downstream tasks
(e.g., code clone detection). For example, SourcererCC (Sajnani
et al., 2016) exploited an optimized inverted-index for ordering
token blocks, to quickly scan for duplicated token subsequences
that indicate potential code clones with a given code block. Alla-
manis and Sutton (2013) built an n-gram probabilistic language
model of source code from a software corpus with more than
one billion tokens. Raychev et al. (2014) employed the language
model (e.g., n-gram or RNN) to learn patterns of API method calls
from a large number of historical code snippets and use them
to synthesize code completions for the holes. Although n-grams
have proven promising for various program analysis tasks, their
effectiveness has been limited due to simply learning models
and algorithms that may not have enough capability to learn
representations that express some latent syntactic information
and semantic feature in a training corpus (Morin and Bengio,
2005; White et al., 2015).

Recently, some studies try making full use of information
embedded in token sequences by deep learning approaches. More
concretely, Bhoopchand et al. (2016) proposed a neural lan-
guage model with a sparse pointer network to capture long
dependencies that exist in the token sequences, which was used
successfully in code suggestion. Allamanis et al. (2016) employed
an attention-based convolutional neural network for source code
summarization, where the attention mechanism is used to ex-
tract time-invariant and long-range topical features of token
sequences. Hu et al. (2018b) improved code summarization by
adding an additional API sequences encoder to leverage the
learned API knowledge from the related task. For code search,
Gu et al. (2018) proposed a novel deep learning network called
CODEnn to jointly embed code fragments and natural language
queries into the same high-dimensional vector space. Addition-
ally, Li et al. (2021b, 2018, 2021a) proposed a new code repre-
sentation framework for vulnerability detection that represents
code snippets consisting of a sequence of tokens as vectors which
accommodate syntactic and semantic information pertinent to
vulnerabilities.

Due to the good results of transformer based models in various
NLP tasks, Feng et al. (2020), developed the first large NL-PL pre-
trained Bert model (named CodeBert) for multiple programming
languages, and conducts extensive experiments on the tasks of
code search and code-to-text generation, showing impressive
improvements over the prior DL-based methods. Similar to the
above study, Mastropaolo et al. (2021) empirically investigated
whether the famous Text-To-Text Transfer Transformer (T5) ar-
chitecture can yield better performance for Text-To-Text software
engineering tasks than previous methods when pre-trained and
fine-tuned. Although the transformer based models can achieve
satisfactory performance, they suffer from the high cost of train-
ing due to the large number of parameters in their model archi-
tecture, and thus may not be feasible for most users (Bhargava,
2020). However, the proposed model has comparable perfor-
mance but with far fewer parameters and a simpler architecture
than transformer based methods.

7.1.2. Syntax-based source code representation
Besides the lexical information, syntax-structured information

has attracted increasing interest in the field of source code rep-
resentation. For example, Deckard (Jiang et al., 2007) leveraged
discrete numerical vectors to characterize the syntactic features
of the program’s ASTs, and presented an efficient algorithm to
cluster these vectors to find potential code clones. Due to the lim-
itation of the discrete feature representation, the method Deckard

can capture little semantic correlation between AST’s nodes. To
address this, deep learning techniques are increasingly being used
to learn code embeddings, continuous distributed vectors for
representing the ASTs of programs. The representative works here
are Mou’s TBCNN (Mou et al., 2016) and Wei’s Tree-LSTM (Wei
and Li, 2017) where the former leverages a novel tree-based CNN
while the latter uses the improved LSTM to capture programs’
abstract syntax information. To address the vanishing gradient
problem of Tree-LSTM, Zhang et al. (2019a) proposed a novel
neural source code representation model ASTNN, which splits
each large AST into a sequence of smaller sub-trees, and then
learns syntactic knowledge from each sub-tree separately. The
above syntax-based models and these variations have been suc-
cessfully applied in many real-world applications, such as code
clone detection (Wei and Li, 2017; Zhang et al., 2019a; Yu et al.,
2019), code completion (Liu et al., 2016b; Li et al., 2017), code
generation (Rabinovich et al., 2017; Parisotto et al., 2016), code
summarization (Hu et al., 2018a; Alon et al., 2018; Wan et al.,
2018) and software defect prediction (Dam et al., 2018).

7.1.3. Semantic-based source code representation
Despite the compelling success achieved by these models

based on lexical or syntactic representation of source code, they
still suffer from problems, such as paying little attention to deep
semantic information of source code. Therefore, more and more
research focus has been directed towards designing new models
or algorithms aiming to capture more real and complex semantics
between program elements. Zhao and Huang (2018) proposed a
novel network named DeepSim to encode data- and control-flow
into a semantic matrix for detecting functionally similar code.
Fang et al. (2020) proposed a novel joint code representation
model that can simultaneously learn syntactic and semantic fea-
tures of source code by applying fusion embedding techniques.
Ben-Nun et al. (2018) defined a new kind of code representation
(i.e., contextual flow) based on both code control flow and data
flow to represent the dynamic behavior of a program, and then
proposed an unsupervised approach inst2vec to learn the repre-
sentation for each statement. Allamanis et al. (2017) proposed to
convert ASTs to graphs by adding extra edges among tree nodes
to represent a variety of code dependencies, and then leveraged
GGNNs to capture code semantics in the constructed graph.
Tufano et al. (2018) leveraged neural networks to automatically
learn code similarities from four different code representations of
source code (such as identifiers, AST, CFG and bytecodes) for the
code clone detection task. The final similarity between a pair of
code fragments is defined as the weighted average of these four
similarities. Although in Tufano et al. (2018), extracting features
from a variety of source code representations could prove useful
for code clone detection, the simplest fusion strategy to combine
the learned features at the program level may cause information
loss of the correspondence between different types of abstraction
representation at the statement level and result in failure to
fully and precisely understand program semantics. Different from
the study by Tufano et al. (2018), we make the learned local
features of statements well aligned with the corresponding global
structural and sequential features, since the latter is calculated
based on the extracted features of the former. Recently, Guo
et al. (2020) developed a new transformer based model named
GraphCodeBert to learn the structural information of source code,
which is a pre-trained model and gets satisfactory improvement
on many SE tasks. However, like any transformer based model
(e.g., CodeBert), it has a clear limitation in that it has a large
number of parameters and increases the computational cost of
training. In addition, a handful of recent studies (Li et al., 2019;
Zhou et al., 2019; Wang et al., 2020b) designed new graph-based
code representation specializing towards vulnerability (or bug)
detection to capture the deep semantics of source code.
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For semantic-based code representation, most previous work
first represents programs as graphs, which enable code semantics
modeling for the downstream tasks using graph neural networks.
Although these methods have achieved promising results, they
still have challenges, e.g., relying heavily upon the capability
of graph neural network techniques and thus resulting in the
loss of some useful sequential semantic information. Unlike pre-
vious studies, we propose a novel code representation frame-
work to capture both low-level syntactic and high-level semantic
knowledge as well as the sequential naturalness of statements.

7.2. Deep learning in software engineering

Recently, deep learning has attracted a great deal of atten-
tion in software engineering. Apart from its clear application in
program comprehension, this technique can be useful in other
research directions, e.g., duplicate bug report detection (Desh-
mukh et al., 2017), bug localization (Lam et al., 2017; Huo et al.,
2016; Huo and Li, 2017), API usage sequences generation (Gu
et al., 2016), and commit message generation (Jiang et al., 2017).
The aforesaid related work mainly us es deep learning-based
neural network techniques to help understand software-related
natural language texts for various development and maintenance
activities in software engineering, while we focus on the deep
semantic representation of source code.

8. Conclusion and future work

In this paper, we highlight the issues and challenges asso-
ciated with current methods of capturing both the low-level
syntactic and high-level semantics of source code. To meet the
challenge, in this paper, we first propose a novel code repre-
sentation (i.e., semantic graph) to represent both the syntactic
information and dependency relations of statements and then
extend the Tree-LSTM model named Graph-LSTM to learn state-
ment representations over the constructed semantic graph of
source code. Next, considering that the sequential semantics is
also critical for code understanding, we design a novel way to
incorporate sequential information of source code into the code
representation learning process. Finally, we conduct extensive
performance evaluations to demonstrate the effectiveness of the
proposed approach compared to previous work, and discuss it
more in-depth about model size.

Our future work involves: (1) applying the proposed approach
to other programming languages (e.g., C#); (2) applying the pro-
posed approach to other program comprehension tasks (e.g., code
summarization and code completion); (3) expanding the cur-
rent dataset by mining large open source software repositories
(e.g., github).

CRediT authorship contribution statement

Yuan Jiang: Conceptualization, Data curation, Methodology,
Software, Writing – original draft, Writing – review & editing, For-
mal analysis. Xiaohong Su: Supervision, Project administration,
Resources, Funding acquisition, Writing – original draft, Writing
– review & editing. Christoph Treude: Investigation, Software,
Writing – original draft, Visualization. Tiantian Wang: Validation,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant Nos.61672191) and ‘‘the 13th Five-
Year’’ National Science and Technology Major Project of China
(Grant No. 2017YFC0702204).

Appendix A. Automated vulnerability detection with hierar-
chical semantic-aware code representation

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jss.2022.111355.

References

Allamanis, M., Brockschmidt, M., Khademi, M., 2017. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740.

Allamanis, M., Peng, H., Sutton, C., 2016. A convolutional attention network
for extreme summarization of source code. In: International Conference on
Machine Learning. PMLR, pp. 2091–2100.

Allamanis, M., Sutton, C., 2013. Mining source code repositories at massive scale
using language modeling. In: 2013 10th Working Conference on Mining
Software Repositories (MSR). IEEE, pp. 207–216.

Alon, U., Brody, S., Levy, O., Yahav, E., 2018. Code2seq: Generating sequences
from structured representations of code. arXiv preprint arXiv:1808.01400.

Ambient Software Evoluton Group, 2013. Ijadataset 2.0. http://secold.org/
projects/seclone.

Ben-Nun, T., Jakobovits, A.S., Hoefler, T., 2018. Neural code comprehension:
A learnable representation of code semantics. In: Advances in Neural
Information Processing Systems. pp. 3585–3597.

Bengio, Y., et al., 2009. Learning deep architectures for AI. Found. Trends
®

Mach.
Learn. 2 (1), 1–127.

Bhargava, P., 2020. Adaptive transformers for learning multimodal representa-
tions. arXiv preprint arXiv:2005.07486.

Bhoopchand, A., Rocktäschel, T., Barr, E., Riedel, S., 2016. Learning python code
suggestion with a sparse pointer network. arXiv preprint arXiv:1611.08307.

Bieber, D., Sutton, C., Larochelle, H., Tarlow, D., 2020. Learning to execute
programs with instruction pointer attention graph neural networks. Adv.
Neural Inf. Process. Syst. 33, 8626–8637.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., Bengio, Y., 2014. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. arXiv preprint arXiv:
1406.1078.

Dam, H.K., Pham, T., Ng, S.W., Tran, T., Grundy, J., Ghose, A., Kim, T., Kim, C.-J.,
2018. A deep tree-based model for software defect prediction. arXiv preprint
arXiv:1802.00921.

Dam, H.K., Tran, T., Pham, T., 2016. A deep language model for software code.
arXiv preprint arXiv:1608.02715.

Deshmukh, J., Podder, S., Sengupta, S., Dubash, N., et al., 2017. Towards accurate
duplicate bug retrieval using deep learning techniques. In: 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). IEEE,
pp. 115–124.

Fang, C., Liu, Z., Shi, Y., Huang, J., Shi, Q., 2020. Functional code clone detection
with syntax and semantics fusion learning. In: Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp.
516–527.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., et al., 2020. Codebert: A pre-trained model for programming and
natural languages. arXiv preprint arXiv:2002.08155.

Ferrante, J., Ottenstein, K.J., Warren, J.D., 1987. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst. (TOPLAS) 9 (3),
319–349.

Fortify, H., 2014. Rough audit tool for security. https://code.google.com/archive/
p/rough-auditing-tool-for-security/.

Grover, A., Leskovec, J., 2016. node2vec: Scalable feature learning for networks.
In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 855–864.

Gu, X., Zhang, H., Kim, S., 2018. Deep code search. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, pp. 933–944.

Gu, X., Zhang, H., Zhang, D., Kim, S., 2016. Deep API learning. In: Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 631–642.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N.,
Svyatkovskiy, A., Fu, S., et al., 2020. Graphcodebert: Pre-training code
representations with data flow. arXiv preprint arXiv:2009.08366.

Harris, Z.S., 1954. Distributional structure. Word 10 (2–3), 146–162.

19

https://doi.org/10.1016/j.jss.2022.111355
http://arxiv.org/abs/1711.00740
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb3
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb3
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb3
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb3
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb3
http://arxiv.org/abs/1808.01400
http://secold.org/projects/seclone
http://secold.org/projects/seclone
http://secold.org/projects/seclone
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb7
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb7
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb7
http://arxiv.org/abs/2005.07486
http://arxiv.org/abs/1611.08307
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb10
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb10
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb10
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb10
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb10
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1802.00921
http://arxiv.org/abs/1608.02715
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb14
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb14
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb14
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb14
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb14
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb14
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb14
http://arxiv.org/abs/2002.08155
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb17
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb17
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb17
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb17
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb17
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb20
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb20
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb20
http://arxiv.org/abs/2009.08366
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb23


Y. Jiang, X. Su, C. Treude et al. The Journal of Systems & Software 191 (2022) 111355

Hellendoorn, V.J., Devanbu, P., 2017. Are deep neural networks the best choice
for modeling source code?. In: Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pp. 763–773.

Hendrix, D., Cross, J.H., Maghsoodloo, S., 2002. The effectiveness of control
structure diagrams in source code comprehension activities. IEEE Trans.
Softw. Eng. 28 (5), 463–477.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput.
9 (8), 1735–1780.

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z., 2018a. Deep code comment generation. In:
2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, pp. 200–20010.

Hu, X., Li, G., Xia, X., Lo, D., Lu, S., Jin, Z., 2018b. Summarizing source code
with transferred api knowledge.(2018). In: Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelli-Gence (IJCAI 2018),
Stockholm, Sweden, 2018 July 13, Vol. 19, pp. 2269–2275.

Huo, X., Li, M., 2017. Enhancing the unified features to locate buggy files by
exploiting the sequential nature of source code. In: IJCAI. pp. 1909–1915.

Huo, X., Li, M., Zhou, Z.-H., et al., 2016. Learning unified features from natural
and programming languages for locating buggy source code. In: IJCAI, Vol.
16. pp. 1606–1612.

Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L., 2016. Summarizing source code
using a neural attention model. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2073–2083.

Jayasundara, V., Bui, N.D.Q., Jiang, L., Lo, D., 2019. Treecaps: Tree-structured
capsule networks for program source code processing. arXiv preprint arXiv:
1910.12306.

Jiang, S., Armaly, A., McMillan, C., 2017. Automatically generating commit mes-
sages from diffs using neural machine translation. In: 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE,
pp. 135–146.

Jiang, L., Misherghi, G., Su, Z., Glondu, S., 2007. Deckard: Scalable and accurate
tree-based detection of code clones. In: 29th International Conference on
Software Engineering (ICSE’07). IEEE, pp. 96–105.

Karmakar, A., 2019. Establishing benchmarks for learning program representa-
tions. In: SATToSE.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong, V.,
Paulus, R., Socher, R., 2016. Ask me anything: Dynamic memory networks
for natural language processing. In: International Conference on Machine
Learning. PMLR, pp. 1378–1387.

Lam, A.N., Nguyen, A.T., Nguyen, H.A., Nguyen, T.N., 2017. Bug localization with
combination of deep learning and information retrieval. In: 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC). IEEE,
pp. 218–229.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied
to document recognition. Proc. IEEE 86 (11), 2278–2324.

Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R., 2015. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493.

Li, J., Wang, Y., Lyu, M.R., King, I., 2017. Code completion with neural attention
and pointer networks. arXiv preprint arXiv:1711.09573.

Li, Y., Wang, S., Nguyen, T.N., Van Nguyen, S., 2019. Improving bug detection
via context-based code representation learning and attention-based neural
networks. Proc. ACM Program. Lang. 3 (OOPSLA), 1–30.

Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, Y., Jin, H., 2021a. Vuldeelocator: a deep
learning-based fine-grained vulnerability detector. IEEE Trans. Dependable
Secure Comput..

Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., Hu, J., 2016. VulPecker: an automated
vulnerability detection system based on code similarity analysis. In: Pro-
ceedings of the 32nd Annual Conference on Computer Security Applications,
pp. 201–213.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., 2021b. Sysevr: A framework for us-
ing deep learning to detect software vulnerabilities. IEEE Trans. Dependable
Secure Comput..

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y., 2018.
Vuldeepecker: A deep learning-based system for vulnerability detection.
arXiv preprint arXiv:1801.01681.

Liu, P., Qiu, X., Huang, X., 2016a. Recurrent neural network for text classification
with multi-task learning. arXiv preprint arXiv:1605.05101.

Liu, C., Wang, X., Shin, R., Gonzalez, J.E., Song, D., 2016b. Neural code completion.
Mastropaolo, A., Scalabrino, S., Cooper, N., Palacio, D.N., Poshyvanyk, D.,

Oliveto, R., Bavota, G., 2021. Studying the usage of text-to-text transfer trans-
former to support code-related tasks. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, pp. 336–347.

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Morin, F., Bengio, Y., 2005. Hierarchical probabilistic neural network language
model. In: Aistats, Vol. 5. Citeseer, pp. 246–252.

Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z., 2016. Convolutional neural networks
over tree structures for programming language processing. In: Thirtieth AAAI
Conference on Artificial Intelligence.

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.,
2017. Graph2vec: Learning distributed representations of graphs. arXiv
preprint arXiv:1707.05005.

Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W., 2016. Asymmetric transitivity preserving
graph embedding. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1105–1114.

Pantel, P., 2005. Inducing ontological co-occurrence vectors. In: Proceedings of
the 43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05), pp. 125–132.

Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D., Kohli, P., 2016.
Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855.

Rabinovich, M., Stern, M., Klein, D., 2017. Abstract syntax networks for code
generation and semantic parsing. arXiv preprint arXiv:1704.07535.

Raychev, V., Vechev, M., Yahav, E., 2014. Code completion with statistical
language models. In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 419–428.

Russell, R.L., Kim, L., Hamilton, L.H., Lazovich, T., Harer, J.A., Ozdemir, O., Elling-
wood, P.M., Mcconley, M.W., 2018. Automated vulnerability detection in
source code using deep representation learning, arXiv:arXiv:1807.04320v1.

Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V., 2016. SourcererCC:
Scaling code clone detection to big-code. In: Proceedings of the 38th
International Conference on Software Engineering, pp. 1157–1168.

SecureSoftware, 2018. Checkmarx. https://www.checkmarx.com/.
Sheneamer, A., Kalita, J., 2016. A survey of software clone detection techniques.

Int. J. Comput. Appl. 137 (10), 1–21.
Shido, Y., Kobayashi, Y., Yamamoto, A., Miyamoto, A., Matsumura, T., 2019.

Automatic source code summarization with extended tree-lstm. In: 2019
International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8.

Sneed, H.M., Dombovari, T., 1999. Comprehending a complex, distributed, object-
oriented software system: A report from the field. In: Proceedings Seventh
International Workshop on Program Comprehension. IEEE, pp. 218–225.

Soldaini, L., Moschitti, A., 2020. The cascade transformer: an application for
efficient answer sentence selection. arXiv preprint arXiv:2005.02534.

Svajlenko, J., Islam, J.F., Keivanloo, I., Roy, C.K., Mia, M.M., 2014. Towards a
big data curated benchmark of inter-project code clones. In: 2014 IEEE
International Conference on Software Maintenance and Evolution. IEEE,
pp. 476–480.

Tai, K.S., Socher, R., Manning, C.D., 2015. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint
arXiv:1503.00075.

Tip, F., 1994. A Survey of Program Slicing Techniques. Centrum voor Wiskunde
en Informatica Amsterdam.

Tufano, M., Watson, C., Bavota, G., Di Penta, M., White, M., Poshyvanyk, D.,
2018. Deep learning similarities from different representations of source
code. In: 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). IEEE, pp. 542–553.

Van Der Maaten, L., 2014. Accelerating t-SNE using tree-based algorithms. J.
Mach. Learn. Res. 15 (1), 3221–3245.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017.
Graph attention networks. arXiv preprint arXiv:1710.10903.

Wagner, T.A., Maverick, V., Graham, S.L., Harrison, M.A., 1994. Accurate static
estimators for program optimization. In: Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation,
pp. 85–96.

Wan, Y., Zhao, Z., Yang, M., Xu, G., Ying, H., Wu, J., Yu, P.S., 2018. Improving
automatic source code summarization via deep reinforcement learning. In:
Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 397–407.

Wang, D., Cui, P., Zhu, W., 2016. Structural deep network embedding. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1225–1234.

Wang, W., Li, G., Ma, B., Xia, X., Jin, Z., 2020a. Detecting code clones with graph
neural network and flow-augmented abstract syntax tree. In: 2020 IEEE 27th
International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, pp. 261–271.

Wang, Y., Wang, K., Gao, F., Wang, L., 2020b. Learning semantic program
embeddings with graph interval neural network. Proc. ACM Program. Lang.
4 (OOPSLA), 1–27.

Wei, H., Li, M., 2017. Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source code..
In: IJCAI. pp. 3034–3040.

Wheeler, D., 2006. Flawfinder home page. Web Page: http://www.dwheeler.com/
flawfinder.

White, M., Tufano, M., Vendome, C., Poshyvanyk, D., 2016. Deep learning code
fragments for code clone detection. In: 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, pp. 87–98.

20

http://refhub.elsevier.com/S0164-1212(22)00088-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb26
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb26
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb26
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb27
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb27
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb27
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb27
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb27
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb29
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb29
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb29
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb30
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb30
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb30
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb30
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb30
http://arxiv.org/abs/1910.12306
http://arxiv.org/abs/1910.12306
http://arxiv.org/abs/1910.12306
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb34
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb34
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb34
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb34
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb34
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb35
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb35
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb35
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb38
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb38
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb38
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb38
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb38
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb38
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb38
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb40
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb40
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb40
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1711.09573
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb44
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb44
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb44
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb44
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb44
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb46
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb46
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb46
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb46
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb46
http://arxiv.org/abs/1801.01681
http://arxiv.org/abs/1605.05101
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb49
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb50
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb50
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb50
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb50
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb50
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb50
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb50
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb53
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb53
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb53
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb53
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb53
http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1611.01855
http://arxiv.org/abs/1704.07535
http://arXiv:1807.04320v1
https://www.checkmarx.com/
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb63
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb63
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb63
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb65
http://arxiv.org/abs/2005.02534
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb67
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb67
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb67
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb67
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb67
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb67
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb67
http://arxiv.org/abs/1503.00075
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb69
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb69
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb69
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb71
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb71
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb71
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb77
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb77
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb77
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb77
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb77
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb78
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb78
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb78
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb78
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb78
http://www.dwheeler.com/flawfinder
http://www.dwheeler.com/flawfinder
http://www.dwheeler.com/flawfinder
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb80
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb80
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb80
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb80
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb80


Y. Jiang, X. Su, C. Treude et al. The Journal of Systems & Software 191 (2022) 111355

White, M., Vendome, C., Linares-Vásquez, M., Poshyvanyk, D., 2015. Toward deep
learning software repositories. In: 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories. IEEE, pp. 334–345.

Wotawa, F., Krenn, W., 2007. Knowledge extraction from c-code. In: 2007
Fifth Workshop on Intelligent Solutions in Embedded Systems. IEEE,
pp. 49–60.

Yamaguchi, F., Golde, N., Arp, D., Rieck, K., 2014. Modeling and discovering
vulnerabilities with code property graphs. Proceedings - IEEE Symposium
on Security and Privacy 590–604. http://dx.doi.org/10.1109/SP.2014.44.

Yu, H., Lam, W., Chen, L., Li, G., Xie, T., Wang, Q., 2019. Neural detection
of semantic code clones via tree-based convolution. In: 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC). IEEE,
pp. 70–80.

Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X., 2019a. A novel neural
source code representation based on abstract syntax tree. In: 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE,
pp. 783–794.

Zhang, S., Yao, L., Sun, A., Tay, Y., 2019b. Deep learning based recommender
system: A survey and new perspectives. ACM Comput. Surv. 52 (1),
1–38.

Zhao, G., Huang, J., 2018. Deepsim: deep learning code functional similarity.
In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 141–151.

Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y., 2019. Devign: Effective vulnerability iden-
tification by learning comprehensive program semantics via graph neural
networks. arXiv preprint arXiv:1909.03496.

Yuan Jiang, is a Ph.D. candidate at the School of
Computer Science and Technology, Harbin Institute of
Technology. His main research interests are in the areas
of mining software repository, software vulnerabilities
detection, source code representation.

E-mail: jiangyuan@hit.edu.cn

Xiaohong Su, is a professor at the School of Computer
Science and Technology, Harbin Institute of Technol-
ogy. Her research interests include Intelligent software
engineering, software vulnerability identification, code
representation learning, bug triaging and localization,
clone detection, and code search.

E-mail: sxh@hit.edu.cn

Christoph Treude, is a Senior Lecturer in the School
of Computing and Information Systems at the Uni-
versity of Melbourne, Australia. He received his Ph.D.
in computer science from the University of Victoria,
Canada in 2012. The goal of his research is to advance
collaborative software engineering through empirical
studies and the innovation of tools and processes that
explicitly take the wide variety of artifacts available
in a software repository into account. He currently
serves on the editorial board of the Empirical Software
Engineering journal and was general co-chair for the

IEEE International Conference on Software Maintenance and Evolution 2020.
E-mail: christoph.treude@unimelb.edu.au

Tiantian Wang, born in 1980. Received the Doctor’s
degree from Harbin Institute of Technology, Harbin,
Heilongjiang, China, in 2009. Since 2013, she has been
an Associate Professor in computer science department
of Harbin Institute of Technology. Her current research
interests are software engineering, program analysis
and computer aided education.

E-mail: wangtiantian@hit.edu.cn

21

http://refhub.elsevier.com/S0164-1212(22)00088-7/sb81
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb81
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb81
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb81
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb81
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb82
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb82
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb82
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb82
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb82
http://dx.doi.org/10.1109/SP.2014.44
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00088-7/sb86
http://arxiv.org/abs/1909.03496
mailto:jiangyuan@hit.edu.cn
mailto:sxh@hit.edu.cn
mailto:christoph.treude@unimelb.edu.au
mailto:wangtiantian@hit.edu.cn

	Hierarchical semantic-aware neural code representation
	Citation

	Hierarchical semantic-aware neural code representation
	Introduction
	Background and motivations
	Code representation
	Neural networks for code representation
	Downstream tasks of code representation model

	Our approach
	Semantic graph construction
	Code representation model

	Detailed model architecture 
	Breaking cycles when constructing semantic graphs
	Topological sort
	Syntactic encoder
	Semantic encoder
	Program encoder

	Evaluation setting
	Research questions
	Dataset preparation
	Experiment settings
	Evaluation metrics
	RQ1: How does our approach perform in program classification compared with the state-of-the-art approaches?
	RQ2: How does our approach perform in code clone detection compared with the state-of-the-art approaches?
	RQ3: What's the effectiveness of the proposed semantic graph and Graph-LSTM in our method?
	RQ4: How efficient is our approach during the training and testing phase? 

	Discussion
	Investigating whether breaking cycles forces some semantic information loss during learning
	Comparison of the model capacity between different methods
	Investigating whether the proposed model is effective on a more difficult task
	Understanding the embeddings
	Threats to validity
	Threats to internal validity
	Threats to external validity


	Related work
	Source code representation
	Lexical-based source code representation
	Syntax-based source code representation
	Semantic-based source code representation

	Deep learning in software engineering

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Automated vulnerability detection with hierarchical semantic-aware code representation
	References


