
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

6-2024 

Ethical considerations toward protestware Ethical considerations toward protestware 

Marc CHEONG 

Raula KULA 

Christoph TREUDE 
Singapore Management University, ctreude@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
CHEONG, Marc; KULA, Raula; and TREUDE, Christoph. Ethical considerations toward protestware. (2024). 
IEEE Software. 41, (3), 1-9. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8760 

This Magazine Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8760&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


ar
X

iv
:2

30
6.

10
01

9v
2 

 [
cs

.C
Y

] 
 5

 J
an

 2
02

4
1

Ethical Considerations Towards Protestware
Marc Cheong†, Raula Gaikovina Kula∗, and Christoph Treude†

†University of Melbourne, Australia, ∗Nara Institute of Science and Technology, Japan

marc.cheong@unimelb.edu.au, christoph.treude@unimelb.edu.au, raula-k@is.naist.jp

Abstract—A key drawback to using a free and open source
software (FOSS) third-party library is the threat that it opens
up a doorway to deliver malicious attacks. In recent times, these
threats have taken a new form, when the library maintainers
themselves turn their FOSS libraries into protestware. This
is defined as software containing political messages delivered
through these libraries, which can either be malicious or benign.
Since developers readily adopt these libraries into their software,
much trust and responsibility are placed on the maintainers to
ensure that the library does what it promises to do. This paper
takes a look into the possible scenarios where developers might
consider turning their FOSS into protestware, using an ethico-
philosophical lens. Using different frameworks commonly used
in AI ethics, we extend the applications of the ethics of AI to the
study of protestware, paying attention to its multi-perspectival
nature, involving stakeholders – or moral agents – of varying
degrees of involvement and participation, cognisant of the fact
that ethical reasoning is complex. Additionally, we illustrate how
an open-source maintainer’s decision to protest is influenced
by different stakeholders (viz., their membership in the FOSS
community, their personal views, financial motivations, social
status, and moral viewpoints), making protestware a multifaceted
and intricate matter. We also explore potential perspectives from
the other stakeholders in the FOSS ecosystem, vis-à-vis the
negative and positive effects of protestware and consider their
status as moral agents in the community.

“When people feel they are not being heard, they may
resort to different measures to get their message across.
In the case of programmers, they have the unique
ability to protest through their code.”

Kula & Treude (2022) [1]

“Consequently, he found himself confronted by two
very different modes of action; the one concrete,
immediate, but directed towards only one individual;
and the other an action addressed to an end infinitely
greater... but for that very reason ambiguous... He had
to choose between those two. What could help him to
choose?”

Sartre (1946)
Existentialism Is a Humanism (trans.: Mairet) [2]

I. INTRODUCTION

In this article, we articulate the motivations behind main-

tainers who turn their free and open source software (FOSS)

into protestware. There have been cases of self-sabotage

with apolitical angles, such as for one’s personal1, economic2,

or advertising3 gain. However, in this paper, we focus on

1https://www.theregister.com/2016/03/23/npm left pad chaos/
2https://github.com/zloirock/core-js/issues/548
3ttps://www.zdnet.com/article/popular-javascript-library-starts-showing-ads-in-its-terminal/

protestware, as it surpasses an individual’s needs, and be-

comes an ethical issue that has larger societal ramifications.

Protestware, especially in the context of FOSS, creates such a

shift from traditional forms of protest, into the digital world

that has the power to impact millions by ruining a single

piece of code. Although ethics in computing is not new, the

phenomenon of Protestware is unique, in that the power of

responsibility is placed on individuals (i.e., sometimes a single

library maintainer).

In this work, we carefully examine Protestware under the

lens of three ethical frameworks (Duty, Consequentialism,

and Principlism). For each framework, we then explore the

dilemmas that a library maintainer may face vis-à-vis the other

FOSS community members; and frame their actions from each

lens, guided by lessons in the extant field of applied ethics,

drawing upon its modern use in evaluating AI technologies and

their humanistic impacts. We also discuss potential guidelines

and larger ethical implications for the open source, industry,

research, and education sectors, while bearing in mind the

multi-perspectival nature of ethical analysis which has both

harmful and beneficial implications.

II. BACKGROUND

A. Context

In March 2022, the maintainer of node-ipc,4 a widely used

software library, intentionally introduced a vulnerability into

their code. If the code was run within Russia or Belarus, it

would attempt to replace all files on the user’s device with

a heart emoji.5 This critical security flaw (i.e., CVE-2022-

23812 [3]) highlights the trend of programmers intentionally

sabotaging their code for political purposes, a practice known

as “protestware” [1].

The malicious code was intended to overwrite arbitrary files

depending upon the geolocation of the user’s IP address: in

essence, attacking software in specific locations. Specifically,

the affected versions 10.1.1 and 10.1.2 of the library check

whether the host machine has an IP address in Russia or

Belarus, and if so, overwrites every file it could with a heart

symbol. Version 10.1.3 was released soon after without this

destructive functionality, while Versions 10.1.1 and 10.1.2

were removed from the NPM registry.

Responses from the community varied, including frustra-

tions that led to insightful discussions. One example from

a contributor on the GitHub Discussions channel is shown

below [4]:

4https://github.com/RIAEvangelist/node-ipc
5https://techcrunch.com/2022/07/27/protestware-code-sabotage/

http://arxiv.org/abs/2306.10019v2
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://github.com/zloirock/core-js/issues/548
ttps://www.zdnet.com/article/popular-javascript-library-starts-showing-ads-in-its-terminal/
https://github.com/RIAEvangelist/node-ipc
https://techcrunch.com/2022/07/27/protestware-code-sabotage/


2

I’m very happy to see that the principles and char-

acter of many in tech (FOSS especially) remain

clear enough to recognize how completely wrong this

was. Of course, if the marketplace of current things

keeps hammering away at this, it will benefit a small

number of corporate giants (misplaced trust/safety).

I hope we all start seeing these patterns as we

grapple with a general blurring of lines between

tools for marketing and weaponry. It’s essential

to ask: what’s the outcome and who benefits? I

like to ask the faux ideologues “who agrees with

you?” “Isn’t it strange how well aligned you are

with a small number of very visible, influential, and

powerful organizations?” “What’s the fight and who

is on which side, again?” It’s about competency,

not power. Power feeds and is fueled by egocentrism

(plainly, weak vanity). Competency comes from dis-

covering your natural gifts and applying them. (sic.)

Another user from that GitHub Discussion explained how

this affected the open source community [4]:

The trust factor of open source, which was based on

goodwill of the developers is now practically gone,

and now, more and more people are realizing that

one day, their library/application can possibly be

exploited to do/say whatever some random dev on

the internet thought was ‘the right thing to do’. (sic.)

The maintainer in question defended his module on GitHub,

saying that “this is all public, documented, licensed and open

source” [1]. Earlier, there were more than 20 issues flagged

against node-ipc about its behavior. Some of the comments

referred to the creation as “protestware, while others might

call it malware” [1].

We present another case where the protestware does not

have malicious intent, but aims at increasing awareness. The

same maintainer of the node-ipc library then created the

peacenotwar library.6 As explained by the maintainer, it serves

as a non-violent protest against Russia’s aggression. Instead

of malicious deletion of files, the module adds a message of

peace on users’ desktops [5]. The maintainer was quoted in

the README file:

I pledge that this module, to the best of my knowl-

edge and skills, does not do any damage to anyone’s

data. If you do not like what this module does, please

just lock your dependencies to any of my work or

other’s which includes this module, to a version you

have code reviewed and deemed acceptable for your

needs. Also, please code-review your other modules

for vulnerabilities.

B. Characterization

Protestware represents a paradigm shift from traditional

forms of protest, such as strikes or demonstrations. Pro-

grammers have the unique power to embed their dissent

directly within code. A small tweak to a widely-used soft-

ware application can spread a protest message globally at

6https://github.com/RIAEvangelist/peacenotwar

an unprecedented speed. Whereas traditional protests usually

need mass mobilisation to be effective, a single individual

can make a significant impact with protestware. Traditional

protests are typically confined to specific legal jurisdictions,

but protestware’s cross-border nature makes its legal status

ambiguous.

The fundamental ethical principles and frameworks guid-

ing activists remain consistent across both protestware and

traditional forms of protest. In this paper, we discuss these

principles and frameworks specifically in the context of this

emerging form of activism: protestware.

Protestware can take two forms (based on [1]):

malignant protestware which intentionally damages or takes

control of a user’s device without their knowledge or

consent; and

benign protestware which raises awareness about a social

or political issue without causing harm (e.g., changes to

license files7).

These two forms of protestware can manifest in various

ways, such as project documentation (e.g., README banner),

communication (e.g., log messages), environment (e.g., in-

jected code on target machines), or output (e.g., file deletions).

In this study, we focus on protestware manifested in the

environment (i.e., manifested in the source code), which, even

if benign, tends to draw more attention of the user. Protestware

can have a wide-ranging impact on numerous stakeholders,

including other contributors to the same project, direct and

indirect users of the project, and even the entire open-source

community and its newcomers.

On one hand, the rise of protestware raises the question

of whether it is ethical to intentionally worsen something to

make a point. On the other hand, protestware draws attention

to current issues with the potential for social change. This issue

is particularly significant in software ecosystems where code is

frequently reused [6], as these ecosystems rely on the trust and

reliability of the code being used. If a programmer introduces

protestware into their code, it can introduce a ripple effect:

compromising the security and stability of the software for

all users who reuse that code, potentially affecting individuals

and businesses that rely on the software, as well as further

dependencies.

C. Protestware: Beyond Computing Ethics?

The literature for computing and AI ethics is rapidly grow-

ing, predominantly on sociotechnical systems and “artificial

moral agents” [7] such as algorithmic recommender systems,

self-driving cars, algorithmic policing and law enforcement,

and AI-based person recognition.

In the same way that ‘traditional’ AI ethics adapts and

contextualises applied ethics [7, 8] to AI systems, protestware

ethics similarly extends ‘traditional’ AI ethics by recognizing

the various stakeholders in the open source ecosystem. For

starters, AI ethics issues typically focus on major actors such

as technology providers or adopters [9]. What sets our pro-

posed analysis of protestware apart from existing computing

7https://github.com/terraform-aws-modules/terraform-aws-ec2-instance/commit/686778841

https://github.com/RIAEvangelist/peacenotwar
https://github.com/terraform-aws-modules/terraform-aws-ec2-instance/commit/6867788411a202b61187f9935e9eaa72a18f0bbe


3

ethics studies is that the stakeholders involved have a more per-

sonal, direct, and explicit involvement. To illustrate: consider

a company (BigCorp) whose self-driving car who has injured

a pedestrian: it is hard to see which individual programmer or

engineer is responsible for the injury, based on the ‘diffusion’

of responsibility through BigCorp’s organisational structure.8

Contrast this with an individual volunteer (Violet), of an open

source software library, who exhibits a form of activism by

adding a few lines of code to prevent her software library

from working in certain regions.

In order to think about new guidelines for deciding ethical

actions and consequences for Violet, we will need to briefly

explore the landscape of applied ethics.

III. ETHICS: A PRIMER

There exist various ethical theories, each with their own pros

and cons [10], which sometimes even conflict with each other

in terms of their application and evaluation. Ethics, simply put,

is about doing the “right” things. However, there is no clear

answer to what makes things “right” or “moral”. Enter applied

ethics – the application of “one moral theory or [an]other

... upon the applied ethics problem at hand, in the hopes of

producing a resolution” [11].

The field of medicine was one of the forerunners of this

(e.g., by asking, Using common principles of medical ethics,

how do we do no harm to patients under our care?). This

idea was quickly adapted into — and gained traction within —

research in AI and computing in recent years (e.g., by similarly

asking, How do self-driving cars do no harm to pedestrians

and drivers we are responsible for, if those same principles of

medical ethics are adopted and adapted?). Philosophers from

Immanuel Kant and Jeremy Bentham in the 18th century, to

Tom Beauchamp and James Childress in the 20th century, have

proposed different approaches to the question of how to do

so. Herein, we discuss three popular approaches, taking a leaf

from the current state of computing ethics [7].

A. Duty Ethics

The ethical theory of deontology – or ‘duty ethics’ –

basically posits that a moral agent9 has a “sense of duty” or

requirement to do the right thing, which guides their actions.

Immanuel Kant’s ‘Categorical Imperative’ offers a beautiful

application of this, as summarised succinctly by Rachels:

“When you are thinking about doing something, ask what

rule you would be following if you actually did it... Then

ask whether you would be willing for your [rule]... to become

a universal law” [10]. In our example for Violet, she ought to

think about what would happen if all programmers did the way

she did, with no exception: would she be able to live with the

consequences on a universal level? We could quickly see that

there are exceptions to this: what happens if, say, by following

8We recognise that, in some instances, this ‘diffusion’ resembles collec-

tive actions such as blackouts in protest of the 2012 Stop Online Piracy
Act (https://en.wikipedia.org/wiki/Protests against SOPA and PIPA). How-
ever, we emphasise the dynamic nature of protestware in the FOSS ecosystem,
which can involve different levels of ‘diffusion’ and collective action, per se.

9Simply put, a ‘moral agent’ is usually a person who has agency to decide
how to act.

her hypothetical universal law, one programmer’s actions end

up disabling life support machines in hospitals?

Following this maxim, hypothetically, if all 2,215,398 pack-

ages in the npmjs ecosystem decided to inject protestware code

into their systems, it would affect all libraries in the ecosystem

– with differing levels of severity, impact, and time needed to

revert changes, based on the nature of their payloads – as well

as all the potential applications that adopt the libraries into

the ecosystem. Since JavaScript is the top-ranked language on

GitHub, this is a significant portion of GitHub projects as well.

Although her intent was to protest against persons or groups,

this would disqualify the code from being safely distributed.

Beyond moral harm, protestware will also disqualify the

FOSS license, which has implications in the existing IT

infrastructure. For instance, a market report in 201910 shows

that FOSS IT infrastructure is used by 53% of organisations,

43% integrations, and 42% in digital transformation. While

we recognise the possibility of “ethical” licenses such as the

DoNoHarm license and others11, we would like to underscore

that duty ethics a la Kant is a moral framework that reasons in

terms of how “a rational being [who] decides to treat people

in a certain way... decrees that this is the way people [i.e., as

a whole] are to be treated” [10] (emphases ours).

Duty Ethics: An example of applying the Kantian

Categorical Imperative to the dilemma would be, e.g.,

What if all programmers regard malicious code in-

jection as ethically imperative? One can argue that

the library will ultimately violate the tenets of FOSS,

leading to a ban on the library. Hence, by implication,

malicious code injection is not ethical. However, in

the same vein, one could argue that, under the right

circumstances, if all programmers added a benign

notice that affirms solidarity with a particular social

cause, there might be a momentum for large-scale

social change.

B. Consequentialist ethics

Next, another ethical theory which appeals to many com-

puting professionals, due to its ‘mathematical’ nature, is utili-

tarianism - under the broad banner of consequentialist ethics.

Simply put, it is the consequences that are to be the yardstick

by which to measure one’s initial actions; and it is one’s

responsibility to maximise the overall happiness (or ‘utiles’

if you wish, mathematically speaking) across all stakeholders,

and to minimise any unhappiness [10]. First proposed by

philosophers such as Jeremy Bentham, it is thus easy to

understand the attractiveness of this theory, as it boils down

to an optimisation problem of ‘utiles’. However, translating

it into practice is much harder than it looks on the surface:

for starters, how could Violet measure the overall net gain

of her activism? When the ‘utiles’ are divided across the

10https://www.fortunebusinessinsights.com/open-source-services-market-
106469

11See e.g., https://ethicalsource.dev/licenses/ and
https://github.com/raisely/NoHarm for examples.

https://en.wikipedia.org/wiki/Protests_against_SOPA_and_PIPA
https://ethicalsource.dev/licenses/
https://github.com/raisely/NoHarm


4

entire population, does an individual merely get an infinitesmal

+0.0001? Also, who gets to be the arbiter of the quantity of the

individual utiles? Most crucially, how would she quantify the

overall net loss of unintended consequences? (Again with our

life support machine example from before: is the unintended

death of a person worth −10, 000? −100, 000? Some might

decide that is is simply unquantifiable12!)

In terms of consequences, the risk of losing any of the users

of the library, potential community of contributors, and also

their standing in the FOSS community, are all net losses that

need to be quantified.

Unfortunately, there is no clear answer: and as is the case of

many ethical evaluations, what might be an acceptable solution

(or tolerable trade-off) in one case might not be for another.

For starters, benign protestware might only require, say, an

hour for maintainers to revert the changes to the last stable

version (and nothing more); whereas malignant protestware

would require substantially more time to undo the damage

caused (i.e., a large difference in negative utiles levied on

different members of the community).

Consequentialist Ethics: An example of a utilitarian’s

reasoning would take the form of, e.g., Potentially

risking the ban of the library might be a bigger

consequence (higher nett negative ‘utiles’) than trying

to target a subset of users to send a message (smaller

nett positive ‘utiles’), leading to an overall negative in

the balance of probabilities. To put this reasoning in

plain language: although the damage might have short

term benefits, the long term effects and consequences

are much larger. A counterargument can also be made

if the potential advantages – again, e.g., lasting social

change – outweighs, e.g., a cosmetic change to a UI

with no lasting repercussions.

C. Principlism

A more pragmatic approach will be to follow a set of fixed

principles, in the namesake philosophical framework of prin-

ciplism. Here, we draw inspiration from Beauchamp and Chil-

dress’ landmark Principles of Biomedical Ethics, which posits

four key principles: respect for autonomy; nonmaleficence

(doing no harm); beneficence (doing good); and justice [12].

All these principles have been in use in biomedical ethics, and

have seen promise in evaluating issues in technological ethics,

such as in deployment in AI-based solutions in education [9].

Principle 1 — Respect for autonomy: This prin-

ciple involves respecting the freedom and autonomy

between users, maintainer, and the broader FOSS

community. This lies at the heart of FOSS, per e.g.,

the Free Software Foundation [13].

12The value of a human life is a nuanced topic, with different philosophical
considerations and perspectives. Further explication is provided in ethics
textbooks, such as [10].

Respect for autonomy: In considering this principle, we

have identified at least four parties involved: the users of

a library; the maintainer; the contributor; and finally the

ecosystem as a community of FOSS developers. Since FOSS is

driven by volunteer contributions, would curtailing any party’s

autonomy – from denying them use of the software, to, say,

causing them to work on weekends in order to revert changes

to repositories or fix production code (again, depending on

severity and malignancy of protestware) – impact their free-

dom, or worse, change any of the parties’ motivations? Overall

considerations will involve respecting the freedom of choice

for all parties involved.

Principle 2 — Nonmaleficence: This principle re-

quires that harm should not be caused to stakeholders.

This includes indirect harm caused to others in the

FOSS community based on their “assumed belief,

group membership, or behavior” [9].

Nonmaleficence: This, we reason, would only apply to

the benign form of protestware. To recap, these forms will

not cause undue impact, when compared to their malignant

counterparts which may lead to security vulnerabilities. Crit-

ical questions when evaluating this principle includes, say,

How does a protester manage to send a message, while not

causing harm to any of the stakeholders. There are examples of

README placements of protestware13: while delicate, this is

a strategy to use documentation and communication channels,

as opposed to modification of the actual code.

Principle 3 — Beneficence: This principle stipulates

that consequence of an action should result in good

or benefit. Note that this does not just consider the

provision of benefits, but also, “balancing benefits

against risks and costs” [12].

Beneficence: As we have seen in our treatise on utili-

tarianism, the benefits of protestware could be difficult to

quantify at this stage. Nonetheless, an argument can be made

for the benefits of fund-raising efforts such as sponsors or ad

campaigns to create awareness on the political situation. This

could be in the form of incentives to users, and to contributors

of the source code. For historical context, however, a common

incentive in sabotaging-one’s-own-code was to help sponsor

struggling maintainers who wanted to protest against their

software being used by large corporations.14

Principle 4 — Justice: The effects of actions must be

just and fair in terms of the distribution of “benefits,

risks, and costs” [12].

Justice: Finally, the argument for justice requires not just

fairness of outcomes, but also its distribution, which includes

13https://github.com/vshymanskyy/StandWithUkraine
14https://www.independent.co.uk/tech/developer-sabotages-code-protest-

github-colors-faker-b1990161.html

https://github.com/vshymanskyy/StandWithUkraine


5

the risks and costs [12]. In a historical context, it is prudent

to consider the protest against usage of FOSS by the industry

(which precedes protestware) which some developers consider

to be unfair, raised in Beneficence above. The original raison

d’être involves getting justice against the actual corporations

that use the library. However, at the heart of this principle,

other users and stakeholders may be disproportionately af-

fected by this maneuver which leads it into question.

Think of these as valuable heuristics for which we could

evaluate the fitness of an action we are taking. As seen

earlier, particularly in the quote in our epigraph, philosophers

recognise the difficulty of doing the right thing or knowing

what in fact is the right thing [10] which is the difficulty

faced by a moral agent when confronted with a difficult choice.

Despite our best intentions, we might run into trouble fairly

quickly. For example, what do we do when we do not satisfy

all the listed heuristics; Violet might (indirectly) cause harm

and deny autonomy to innocent users who are affected by her

code destruction, while still advocating for perceived justice

and beneficence, based on the cause of her activism? The

next section will provide us with some guidance as to how

to proceed.

IV. GUIDELINES FOR PROMOTING ETHICAL

RESPONSIBILITY

Assessing the ethical implications of an open source main-

tainer’s decision to convert their software into protestware is

a multifaceted and intricate matter. For starters, the ethical

frameworks may not agree with each other: as we have seen,

the Kantian Categorical Imperative (duty ethics) might be a

straightforward “don’t do it”.15

Drawing upon principlism, however, the nuance is visible.

From the standpoint of autonomy, maintainers possess the

right to make choices regarding their own creations. However,

this decision may conflict with end users’ autonomy, as it

could restrict their ability to utilize the software without

unforeseen — or disastrous — consequences. The principles of

beneficence and non-maleficence are also crucial to consider:

although protestware might advance a greater good by raising

awareness or advocating change, it could simultaneously inflict

harm upon users who depend on the software for essential

functions (again, with our life support machine example

raised several times before). The justice principle underlines

the importance of examining the fairness and equitability of

deploying protestware as a protest method. Hence, it is vital

to evaluate whether such actions disproportionately impact

specific groups (including, e.g., time and effort to rectify

deleterious code behavior) or inadvertently create disparities

in software resource access. Bearing these ethical principles in

mind, determining the suitability of transforming FOSS into

protestware necessitates a thorough analysis of the potential

benefits, drawbacks, and broader societal ramifications of such

a decision.

In this section, we present various initiatives which can

be implemented to promote a more balanced perspective on

15It is important to note that the focus of the paper is separate from the
assumptions and trust of FOSS components.

protestware — with an emphasis on its potential risks — and

encouraging maintainers to consider alternative methods for

expressing their concerns. We also suggest directions for future

work, including examining the role of FOSS governance,

policy, and the ‘social license to operate’, before finally

identifying ways to protect users from protestware threats.

a) Responsibility in the FOSS Community: To minimize

the moral dilemmas (and concrete implications) associated

with protestware, maintainers should be encouraged to pri-

oritize the needs of their users and contribute to the greater

good of the FOSS community (as a start), with a view towards

the common good in the broader community of adopters and

users. Cultivating a sense of community and fostering strong

relationships with stakeholders — from end users to fellow

developers — can help maintainers understand the potential

consequences of their actions and work together to develop

ethical guidelines. Establishing communication channels and

fora for discussion allows maintainers to express their concerns

without resorting to protestware in the first instance, ensuring

the well-being of both the community and its users. Future

work should investigate how the community can cultivate a

culture of care16 and moral responsibility and explore existing

channels that allow maintainers to voice their protests in a

non-jeopardizing way.

b) Safeguards against Protestware: Future work could

also explore the use of machine learning techniques, partic-

ularly natural language processing and code analysis algo-

rithms, to detect early indicators of potential protestware in

software repositories. Such techniques, in the same vein as,

e.g., automated auditing for privacy and security issues, could

better equip end users or developers to protect themselves from

potential threats, ultimately enhancing the overall security and

trustworthiness of the open-source ecosystem.

c) Enabling Healthy Channels for Protest: It is important

for maintainers to feel that their concerns are being addressed

through appropriate channels. Good governance and a fair

system of representation can alleviate the need for protestware

by offering maintainers alternative avenues to voice their

opinions and effect change within the FOSS community.

Future research should explore how existing channels for

maintainers to voice their protests or grievances can be im-

proved or expanded. Beyond the avenues of open dialogue

and representation, licensing plays a pivotal role in shaping the

use and dissemination of open-source software. The choice of

license can serve as a proactive mechanism for maintainers

and contributors who wish to place constraints on the use

of their software. For example, choosing the Affero General

Public License (AGPL) may dissuade certain corporate entities

from using the software due to its strong copyleft provisions.

Alternatively, maintainers can adopt licenses that impose direct

usage restrictions to specific entities or purposes, although this

would deviate from the standard open source definitions. Such

licensing strategies can provide maintainers with a means to

set boundaries and expectations, reducing the perceived need

for more confrontational approaches like protestware.

16Other frameworks of ethics, including care ethics, are also considered in
current research into technology.



6

d) Education of Ethical Responsibility: While this article

is a good first step to foster awareness, ethics educational

programs, focusing on ethical responsibility and social im-

pact, can help maintainers better understand the potential

consequences of using protestware and foster a more nu-

anced perspective on this issue. By providing guidance on

ethical decision making and highlighting alternative methods

for expressing concerns, ethics education can play a vital

role in promoting a more balanced and responsible approach

to protestware within the FOSS community. Future work

should examine why some developers might feel far removed

from ethical considerations and how educational programs can

effectively address this issue.

V. IMPLICATIONS WITH FUTURE DIRECTIONS

Taking into account the positives and negatives with the

emergence of protestware, we depict the diverse ethical chal-

lenges for various stakeholders , each with their own perspec-

tives and priorities. In the following paragraphs, we discuss

the implications for different stakeholders, emphasizing the

importance of awareness and providing examples of ethical

frameworks that could be applied in these situations.

Maintainers of the code, when confronted with protestware,

play a pivotal role in shaping the FOSS landscape. It is crucial

that they clearly communicate the intended use and restrictions

of their software in the documentation and/or terms of service

while adhering to applicable laws and regulations. As an

example, duty ethics highlights the importance of maintainers’

moral obligations, such as transparency, honesty, and legal

compliance.

Contributors who contribute but are not maintainers of the

code, as creators of public goods, must exercise responsibility,

consideration, and ethics in their actions, particularly when

engaging with FOSS projects. It is essential for contributors

to be aware that any project they contribute to could potentially

transform into protestware, and they may have limited control

over the project’s direction despite their contributions. Conse-

quentialist ethics, for instance, emphasize the need to assess

the potential consequences of one’s actions, urging contrib-

utors to be mindful of the projects they engage with, max-

imizing positive outcomes, and minimizing potential harm.

Awareness of protestware’s implications and the potential risks

of contributing to projects that may adopt such a stance is key

to making informed decisions.

Newcomers to the FOSS community should familiarize

themselves with its principles, values, and ethical implications

of protestware. FOSS relies on community-driven efforts, mak-

ing it essential for newcomers to be respectful, collaborative,

and helpful. Awareness of the presence of protestware and

potential consequences is critical. As an example, the principle

of autonomy in biomedical ethics underscores the importance

of respecting the choices and values of other members of the

community.

End users and industry must be vigilant about the po-

tential risks and benefits associated with using FOSS tools,

acknowledging that any project could potentially transform

into protestware. A key ethical implication for end users and

industry is understanding that an FOSS project’s maintainer

might have different ethical priorities, which in extreme cases

could lead to the creation of protestware. The risk is especially

pronounced if end users or industry already rely on the soft-

ware, and then it turns into protestware. Industry, in particular,

must be cautious when using FOSS in a professional setting,

ensuring compliance with company policies and regulations.

By assessing risks, addressing potential security vulnerabil-

ities, and contributing back to projects when possible, the

industry can apply ethical principles like beneficence and

non-maleficence from biomedical ethics, as an example, to

promote positive outcomes and minimize harm to stakeholders.

Awareness of the potential impact of protestware and the

varying ethical priorities of project maintainers is crucial for

responsible decision-making within the industry.

Educators have a responsibility to discuss the implications

and risks of FOSS, including protestware and its legal and

ethical consequences. Duty ethics, as an example, encourages

educators to impart knowledge of moral obligations and duties

as software creators and users. Guided by consequentialist

ethics and biomedical principles, students should be encour-

aged to consider the long-term impacts and ethical implica-

tions of their work, particularly with regard to protestware. The

promotion of awareness among students is a key educational

goal.

Researchers play a vital role in identifying and mitigating

protestware risks by developing methods to analyze code for

vulnerabilities or detect patterns in malicious software behav-

ior. By investigating the pros and cons of protestware as a

political protest tool, researchers can apply ethical frameworks

such as consequentialist ethics and biomedical principles to

balance potential benefits and harms while considering justice

and fairness within the FOSS community.

REFERENCES

[1] R. G. Kula and C. Treude, “In war and peace: The

impact of world politics on software ecosystems,” in

Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Founda-

tions of Software Engineering, 2022, pp. 1600–1604.

[2] J.-P. Sartre, Existentialism and humanism / translation

and introduction by Philip Mairet. London: Methuen,

1948.

[3] “Cve-2022-23812,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

May 2022, (Accessed on 05/11/2022).

[4] “Discussion on node-ipc,”

https://github.com/RIAEvangelist/node-ipc/discussions/505,

May 2022, (Accessed on 05/11/2022).

[5] “peacenotwar message,”

https://github.com/medikoo/es5-ext/commit/28de285ed433b45113f01

May 2022, (Accessed on 05/11/2022).

[6] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy,

C. Maddila, and L. Williams, “What are weak links in

the npm supply chain?” in Proceedings of the 44th Inter-

national Conference on Software Engineering: Software

Engineering in Practice, 2022, pp. 331–340.

[7] J. Zoshak and K. Dew, “Beyond kant and bentham:

How ethical theories are being used in artificial

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23812
https://github.com/RIAEvangelist/node-ipc/discussions/505
https://github.com/medikoo/es5-ext/commit/28de285ed433b45113f01e4ce7c74e9a356b2af2


7

moral agents,” in Proceedings of the 2021 CHI

Conference on Human Factors in Computing Systems,

ser. CHI ’21. New York, NY, USA: Association

for Computing Machinery, 2021. [Online]. Available:

https://doi.org/10.1145/3411764.3445102

[8] V. C. Müller, Ethics of Artificial Intelligence and

Robotics, fall 2020 ed. Metaphysics Research

Lab, Stanford University, 2020. [Online]. Available:

https://plato.stanford.edu/archives/fall2020/entries/ethics-ai/

[9] S. Coghlan, T. Miller, and J. Paterson, “Good

proctor or “big brother”? ethics of online exam

supervision technologies,” Philos. Technol., vol. 34,

no. 4, pp. 1581–1606, Aug. 2021. [Online]. Available:

http://dx.doi.org/10.1007/s13347-021-00476-1

[10] S. Rachels and J. Rachels, The Elements of Moral Phi-

losophy. McGraw-Hill Education, 2015.

[11] J. Flynn, “Theory and Bioethics,” in The Stanford Ency-

clopedia of Philosophy, Winter 2022 ed., E. N. Zalta and

U. Nodelman, Eds. Metaphysics Research Lab, Stanford

University, 2022.

[12] T. L. Beauchamp and J. F. Childress, Principles of

Biomedical Ethics. Oxford University Press, 1994.

[13] Free Software Foundation, Inc., “What is free software?”

https://www.gnu.org/philosophy/free-sw.en.html, 2022.

https://doi.org/10.1145/3411764.3445102
https://plato.stanford.edu/archives/fall2020/entries/ethics-ai/
http://dx.doi.org/10.1007/s13347-021-00476-1
https://www.gnu.org/philosophy/free-sw.en.html


This figure "Raula.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/2306.10019v2

http://arxiv.org/ps/2306.10019v2


This figure "christoph.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/2306.10019v2

http://arxiv.org/ps/2306.10019v2


This figure "marc.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/2306.10019v2

http://arxiv.org/ps/2306.10019v2

	Ethical considerations toward protestware
	Citation

	Introduction
	Background
	Context
	Characterization
	Protestware: Beyond Computing Ethics?

	Ethics: A Primer
	Duty Ethics
	Consequentialist ethics
	Principlism

	 Guidelines for Promoting Ethical Responsibility
	 Implications with Future Directions

