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Abstract—Sentiment analysis plays an indispensable part in
human-computer interaction. Multimodal sentiment analysis can
overcome the shortcomings of unimodal sentiment analysis by
fusing multimodal data. However, how to extracte improved feature
representations and how to execute effective modality fusion are
two crucial problems in multimodal sentiment analysis. Traditional
work uses simple sub-models for feature extraction, and they ignore
features of different scales and fuse different modalities of data
equally, making it easier to incorporate extraneous information and
affect analysis accuracy. In this paper, we propose a Multimodal
Sentiment Analysis model based on Multi-scale feature extraction
and Multi-task learning (M3SA). First, we propose a multi-scale
feature extraction method that models the outputs of different
hidden layers with the method of channel attention. Second, a
multimodal fusion strategy based on the key modality is proposed,
which utilizes the attention mechanism to raise the proportion of the
key modality and mines the relationship between the key modality
and other modalities. Finally, we use the multi-task learning ap-
proach to train the proposed model, ensuring that the model can
learn better feature representations. Experimental results on two
publicly available multimodal sentiment analysis datasets demon-
strate that the proposed method is effective and that the proposed
model outperforms baselines.

Index Terms—Multimodal sentiment analysis, multi-scale
feature extraction, multi-task learning, multimodal data fusion.

I. INTRODUCTION

THE sentiment is essentially important in human decision-
making, social activities, and creativity. Sentiment analysis
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is an indispensable part of human-computer interaction [1]. The
earliest systematic research in sentiment analysis with machine
learning dates back to 2002. Pang et al. [2] utilized three machine
learning algorithms to analyze the sentiment of movie reviews
and verified the feasibility of employing computers to analyze
human sentiment. Subsequently, many machine learning algo-
rithms, such as Naive Bayes [3] and support vector machine [4],
had been exploited for sentiment analysis. Human sentiments are
generally composed of multiple modalities, and different modal-
ities may express opposite sentiments, which results in less
accuracy if we analyze the sentiment with only unimodal data.

It is a crucial way to improve the accuracy of sentiment
analysis and overcome the limitations of unimodal by exploiting
the complementarity of multimodal data [5]. Zadeh et al. [6]
proposed a Tensor Fusion Network (TFN) to calculate a high-
dimensional tensor (based on the outer product operation) to fuse
bimodal and trimodal. Tsai et al. [7] proposed a Multimodal
Transformer (MuLT) that utilizes the cross-modal attention
mechanism to fuse two modality data and does not need mul-
timodal data alignment operation. Hazarika et al. [8] projected
each modality into two subspaces. The first one learns similar
features of the modalities, and the latter captures the individual
independent characteristics.

The current multimodal sentiment analysis works can be
improved in two aspects. Firstly, the previous multimodal sen-
timent analysis works only utilized a simple feature extraction
sub-network to extract a single scale feature for each modality
without considering the influence of the features with different
scales on sentiment analysis. Secondly, The previous multi-
modal sentiment analysis works adopted an equal strategy to fuse
multimodal data and ignored the impact of different modalities
on the sentiment analysis results.

In the paper, we propose a multi-scale feature extraction
method with the channel attention mechanism to address the first
problem above. The method is carried out with two steps. a) we
use the channel attention mechanism to model the different scale
features of each hidden layer and assign weights to each feature
in the feature extraction process. b) we dynamically adjust the
weights of features of different scales according to the accuracy
of sentiment analysis results so that the model can extract more
valuable features in the model training process. We also propose
a novel multimodal fusion strategy based on the key modality to
solve the second problem. Firstly, we sort the result accuracy of
unimodal sentiment analysis and select the one with the highest
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value as the key modality. Secondly, we use the key modality to
strengthen the remaining in the process of multimodal fusion,
which makes the amount of helpful information more abundant.
Finally, we adjust the proportion of the key modality according
to the accuracy of sentiment analysis in model training.

The main contributions are summarized as follows:
� We propose a multi-scale feature extraction method with

the channel attention to model different scale features. The
weights of those different-scale features are dynamically
adjusted according to the accuracy of sentiment analysis
results during the training process.

� We propose a novel multimodal fusion strategy based on
the key modality. During the fusion process, using the key
modality enhances the information of the other modalities
and enriches the fused helpful information.

� We carry out extensive experiments on the two publicly
available datasets, CMU-MOSI and CH-SIMS. The ex-
perimental results demonstrate that our proposed method
surpasses the baselines.

II. RELATED WORK

A. Multi-Scale Features Extraction

Multi-scale feature extraction is a widespread technique in
deep learning [9-11], which can extract different scales of fea-
tures by performing multiple convolution and pooling operations
for the input data, enabling a more helpful feature representa-
tion. Lin et al. [12] have developed a feature pyramid network
with a laterally connected top-down architecture that aggregates
different scale image features extracted from different convo-
lutional kernels for target detection. Li et al. [13] proposed a
novel multi-scale residual network that utilizes convolutional
kernels of different sizes to detect image features for the most
meaningful image information adaptively. Sun et al. [14] pro-
posed a multi-scale feature extraction network for decoding
electromyographic signals, which uses channel attention and
spatial attention to capture more critical features for gesture
recognition.

Besides, many researchers also introduced multi-scale feature
extraction into the sentiment analysis problem. Lei et al. [15]
proposed a multi-scale emotional speech synthesis framework
that can generate speech with emotion in three approaches. Cao
et al. [16] proposed a multi-label sentiment analysis model with
multi-scale CNNs by fusing different scales of text features to
predict text sentiment. Guo et al. [17] proposed a multi-scale
transformer by introducing prior knowledge and multi-scale
structure into the self-attentive module. They designed a strategy
to control the scale distribution of each layer. Song et al. [18]
proposed a sentiment network with visual attention, which joins
several scaled features extracted from different network layers
to predict image sentiment.

B. Multi-Task Learning

Multi-task learning refers to fusing training data from differ-
ent tasks and jointly optimizing model parameters to enhance
the model’s learning ability and generalization performance. Jin

et al. [19] proposed a multi-task and multi-scale text sentiment
analysis model. The model enhances the encoder’s performance
and improves sentiment classification accuracy by introducing
multi-task learning. Yang et al. [20] proposed a two-phase multi-
task sentiment analysis framework, which applies a two-phase
training strategy to fully utilize the pre-trained model and multi-
task learning strategy to improve the sentiment analysis accu-
racy. Yang et al. [21] proposed a multi-task learning framework
called cross-modal multi-task transformer, which unites two
unimodal assistance tasks to learn different intrinsic representa-
tions of modality. Majumder et al. [22] proposed a framework
based on multi-task learning. The framework uses deep neural
networks to model the correlation between sentiment classifica-
tion tasks and sarcasm detection tasks to improve performance.
Li et al. [23] propose a multi-task learning-based approach to
multimodal sentiment analysis and emotion recognition. This
approach employs a shared and private model to separately
and jointly process sentiment and emotion features and utilizes
the attention mechanism and BI-LSTM network for feature
fusion. Experiments on the CMU-MOSEI dataset demonstrate
the model’s effectiveness and the potential of multi-task learning
in enhancing multimodal sentiment analysis performancey.

C. Multimodal Sentiment Analysis

Cambria et al. [24] proposed a multimodal sentiment analysis
framework based on deep learning and proved that multimodal
data could result in more accurate sentiment analysis than uni-
modal data. Xu et al. [25] designed a novel multi-interactive
memory network with two interactive memory networks to
capture the interaction information between text and visual. Chu
et al. [26] designed a novel deeply-fused audio-text bi-modal
transformer with a cross-modal fusion and a staged cross-modal
pre-training scheme to judge sentiment accurately. Han et al. [27]
proposed a bi-bimodal fusion network by exploring the impor-
tance of text, audio, and visual modality. They introduced a
gating mechanism to control the optimal weight of each modality
in the fusion.

In addition to text, vision, and audio, physiological signals
are also frequently used in sentiment analysis. The physiological
signals that are often used for sentiment analysis. [28]. Zheng
et al. [29] studied how to utilize eye movement and EEG for
sentiment analysis. The results showed that the accuracy of
sentiment analysis with EEG was 2.51% higher than that with
eye movement, and the accuracy after fusion was 5.55% and
8.06% higher compared with EEG and eye movement separately.
Zhu et al. [30] explored the use of EEG, peripheral physiological
signals, and facial expressions for sentiment analysis. The results
showed that facial expression achieved the best arousal (about
71%) in unimodal sentiment analysis. After fusing the facial
expression with peripheral physiological signals, the arousal
is increased by 0.52%. After further fusing EEG signals, the
arousal is increased by 0.68% again. Zhong et al. [31] studied
the fusion between facial expressions and physiological signals.
They reported a classification accuracy of 50.57% for valence
and 53.64% for arousal when only facial expressions were
used. The classification accuracy for valence and valence was



Fig. 1. Framework of the M3SA in which Modality β is selected as the key modality.

improved by about 19.96% and 19.89% after fusing the two
modalities. In addition to physiological signals, body movement
also plays an important role in sentiment analysis problems.

In addition to physiological signals, body movement also
plays an important role in sentiment analysis problems. Gunes
et al. [32] presented a multimodal sentiment analysis approach
to analyzing sentiment by fusing expressive face and upper-body
gestures. Their experimental results show that the emotion clas-
sification using the two modalities combined achieves better
recognition accuracy in general, outperforming the classification
using the face or body alone. Castellano et al. [33] studied
the effect of information from facial expressions, body move-
ments, and speech. The results showed that the body movement
achieved the highest accuracy (about 67.1%) in unimodal sen-
timent analysis. These studies show that physiological signals
and body data help improve the accuracy of sentiment analysis.

Inspired by the prior works, In this paper, we propose a
multimodal sentiment analysis model based on multi-scale fea-
ture extraction and multi-task learning. The model uses channel
attention to model multi-scale unimodal features and dynami-
cally adjusts the weights of different scale features according to
sentiment analysis results in the training phase. A multimodal
fusion strategy based on key modality is also proposed. The key
modality is used to reinforce the information contained in the
other modalities during multimodal fusion, making the amount
of helpful information richer.

III. THE PROPOSED METHOD

In this section, we present the overall framework of the M3SA
model and describe multi-scale feature extraction, key modality
selection, multimodal fusion, and multi-task learning in the
following sections. The overall structure of M3SA is shown in
Fig. 1.

A. Multi-Scale Feature Extraction

Multi-scale feature extraction can enhance a model’s ability
to understand multimedia data, such as images or text, and thus
improve its performance on the task. We introduce a multi-scale
feature extraction method to extract features at different scales
for any modality data, as shown in Fig. 2.

Fig. 2. Multi-scale feature extraction for modality α.

Suppose that a multimodal dataset contains N data samples
U = {U1, . . ., UN}, each sample Ui contains three different
modality data Ui = (Uα, Uβ , Uγ), where Uα = {u1

α, u
2
α, . . .,

uTα
α }, Uα ∈ R

Tα×Dα ; Uβ = {u1
β , u

2
β , . . ., u

Tβ

β }, Uβ ∈ R
Tβ×Dβ ;

Uγ = {u1
γ , u

2
γ , . . ., u

Tγ
γ }, Uγ ∈ R

Tγ×Dγ , in which Tm donotes
sequence length for modality m; Dm is the low-level feature di-
mensions for modality m; utm is the low-level feature at timestep
t; m∈ {α, β, γ}.

For low-level feature Uα, we use the LSTM network to extract
the temporal features of modality α. LSTM is a temporal re-
current neural network that can solve the long-term dependence
problem of traditional recurrent neural networks. It is suitable for
processing and predicting events with long intervals and delays.
The temporal feature of the modality α is extracted as shown:

F 1
α = LSTM(Uα). (1)

After the temporal processing with the LSTM network, the
first feature F1

α ∈ R
Tα×dα of modality α is obtained, where dα

denotes the dimensional size of the temporal feature.
We use (n− 1) linear layers to extract (n− 1) different scales

of features for F1
α, as described in (2):

F k+1
α = LinearLayer

(
NormLayer

(
Relu

(
Fk
α

)))
, (2)

where k = 1, 2,..., n− 1.
We stack all the scale features of modality α and obtain the

multi-scale feature Fα:

Fα = stack
(
F1
α,F

2
α, . . . ,F

n
α

)
, (3)

  



Fig. 3. Architecture of channel attention module.

where Fα ∈ R
Tα×dα×n.

The attention mechanism can automatically learn and calcu-
late the contribution of the input data to the final result and assign
different weights to different input data to concern task-relevant
data. We use the channel attention proposed in [34] to model
the degree of influence of features at different scales on the
results of sentiment analysis and adjust the weight coefficients
of each feature. The channel attention module consists of three
operations, Squeeze, Excitation, and Scale, as shown in Fig. 3.

The Squeeze operation calculates the global spatial informa-
tion by compressing and aggregating the data of the channels,
in which the spatial information of the k-th channel is calculated
according to the following equation:

zkα = Squeeze
(
F k
α

)
=

1

Tα × dα

Tα∑
i=1

dα∑
j=1

F k
α(i, j), (4)

where k = 1, 2,..., n. By executing the Squeeze operation on all
channels, we obtain the global spatial information Zα = {z1α,
z2α,..., znα}, Zα ∈ R

1×1×n.
Similar to the gate mechanism in LSTM, the Excitation

operation uses two fully connected layers to learn the weight
parameter sα:

sα = Excitation (Zα,Wα) = Relu (g (Zα,Wα))

= Relu
(
W 2

αδ
(
W 1

αZα

))
, (5)

where sα ∈ R
1×1×n, W1

α ∈ R
(n×r)×n, W2

α ∈ R
n×(n×r) and r is

the channel transformation ratio.
The Scale operation controls the output of the different chan-

nels with the learned weight parameter sα:

m̃k
α = Scale (Fα, sα) = skαF

k
α . (6)

By executing the Scale operation on all channels, we obtain
M̃α = {m̃1

α, m̃
2
α, . . ., m̃

n
α}. Then we use a 1 × 1 size convolu-

tion kernel to integrate the information of all channels to obtain
the modality α high-level features Xα:

Xα = Conv1×1

(
M̃α

)
. (7)

B. Key Modality Selection

It shows that the useful information related to sentiment
analysis is not evenly distributed among different modalities.
An equal fusion strategy may bring in unnecessary information,
which in turn impacts the accuracy of sentiment analysis. We

address the above problem by selecting one modality as the key
modality and adopting an unbalanced fusion strategy.

First, we perform sentiment analysis with unimodal data. In
Fig. 2, we feed the features Fn

m,m ∈ {α, β, γ} extracted from
(2) into the respective sentiment analysis classifier to obtain the
sentiment analysis results for each modality:

ỹα = classifierα (Fn
α ) , (8)

ỹβ = classifierβ
(
Fn
β

)
, (9)

ỹγ = classifierγ
(
Fn
γ

)
. (10)

Subsequently, we rank the accuracy of unimodal sentiment
analysis and select the modality with the highest accuracy as the
key modality.

C. Multimodal Fusion Based on Key Modality

A good multimodal fusion strategy should be able to extract
and integrate meaningful information from multiple modalities
to improve the accuracy of sentiment analysis. If we adopt
an equal fusion strategy for multimodal data fusion without
considering the relative importance of different modalities, this
may introduce non-essential information and thus reduce the
accuracy of sentiment analysis. In this paper, we propose a
fusion strategy based on key modality to balance the contribu-
tions of different modalities to sentiment analysis. The strategy
consists mainly of key modality multi-head self-attention and
cross-modal multi-head attention.

In [35], the authors proposed a method to calculate the atten-
tion value of the input data by dot product:

head = Attention(Q,K, V )

= softmax

(
QKτ

√
dh

)
V, (11)

where Q, K, and V mean the query, key, and value vectors.
Multi-head attention transforms query, key, and value by

utilizing different projection matrices, and these metrics will
be sent to the attention aggregation layer in a parallel manner:

MutiHead(Q,K, V ) = Concat
(
head1, . . ., headh

)
. (12)

1) Key Modality Multi-Head Self-Attention: Suppose the key
modality is β, we transform the high-level features Xβ by
matrix projection and obtaining the Qk

β , Kk
β , and Vk

β vectors,

  



respectively. As shown in the following:

Qk
β = XβW

k
Q,β , (13)

Kk
β = XβW

k
K,β , (14)

V k
β = XβW

k
V,β . (15)

where W k
Q,β ,W

k
K,β , andW

k
V,β are projection matrices; k means

for the k-th head.
Subsequently, the self-attentive value of the k-th head is

calculated with (16):

headk = Attention
(
Qk

β ,K
k
β , V

k
β

)
= softmax

(
Qk

βK
kτ
β√

dh

)
V k
β , (16)

Based on the multi-head attention described above, the high-
level feature Xβ is mapped with h different projection matri-
ces to obtain h different sets of query, key, and value vectors
{Qk

β ,Qk
β ,Qk

β}, k = 1, 2,..., h. Then, we perform the self-attentive
operations, according to (16), in parallel for each set of query,
key, and value vectors to obtain h different heads. Finally, all
these heads are concatenated together to obtain the enhanced
feature Xβ,β :

Xβ,β = MutiHead(Qβ ,Kβ , Vβ)

= Concat
(
head1, . . ., headh

)
. (17)

2) Cross-Modal Multi-Head Attention: Cross-modal multi-
head attention is an extension of the traditional attention mecha-
nism, which can capture the interaction information between
different modality data. In this paper, we need to attach the
meaningful information from key modalityβ to other modalities,
such as modality α, thus fusing the features of key modality β
and modalityα. Therefore, the cross-modal multi-head attention
in this paper is focused on the key modality and another modality.
The following is a detailed description with modality α as
the example.

First, we project the high-level feature Xβ of the key modality
β to obtain the Qk

β vector and the high-level feature Xα of the
modality α to obtain Kk

α and Vk
α vectors.

Qk
β = XβW

k
Q,β , (18)

Kk
α = XαW

k
K,α, (19)

V k
α = XαW

k
V,α. (20)

Secondly, we calculate the cross-modal attention value be-
tween modality β and α, which attaches the meaningful infor-
mation from key modality β to the modality α:

Cross_headk
β,α = softmax

(
Qk

βK
kτ
α√

dh

)
V k
α . (21)

We also project the features Xβ and Xα by utilizing h different
projection matrices to obtain h different sets of query, key and
value vectors {Qk

β ,Qk
α,Qk

α}, k = 1, 2,..., h. Then cross-modal
attention operations are performed in parallel for each set to get
h different heads. Finally, all these heads are collocated together

to obtain the fusion feature Xβ,α between key modality β and
modality α:

Xβ,α = MutiHead (Qβ ,Kα, Vα)

= Concat
(
Cross_head1

β,α, . . .,Cross_headh
β,α

)
. (22)

Given key modality β and modality γ, we can use the same
operation to obtain fusion feature Xβ,γ .

Finally, we concatenate the fusion feature Xβ,α, Xβ,γ and the
key modality reinforcement feature Xβ,β to obtain the multi-
modal fusion features Xf :

Xf = Concat (Xβ,α, Xβ,γ , Xβ,β) . (23)

D. Multi-Task Learning

Multi-task learning can improve model performance by min-
ing the relationships between different tasks to jointly optimize
the model parameters, which can preserves the independent
features of each task data. In the process of experiments, we
found that the distributions of the features of each modality in
the potential high-dimensional feature space are very similar,
which leads to the model not being able to fully utilize the
difference information between the multimodal data, thus reduc-
ing the sentiment analysis precision. We set multiple different
subtasks for M3SA to solve the problem and obtain the loss
function of M3SA by weighted summation of the loss function of
each subtask.

We feed the multimodal fusion features Xf extracted from
(23) into the multimodal sentiment analysis classifier to obtain
the multimodal sentiment analysis score ỹf :

ỹf = classifierf (Xf ). (24)

As shown in (8), (9), (10), and (24), M3SA has four sentiment
analysis subtasks, i.e., sentiment analysis with modality α, β,
γ, and multimodal fusion feature Xf , respectively, and each
subtask predicts an independent sentiment analysis result. We
calculate the loss values between the predicted sentiment results
and the true sentiment results for each subtask and then weigh
the sum of them to gain the loss values of the M3SA model. The
loss function of M3SA is shown in (25):

L =
1

N

N∑
1

{α,β,γ,f}∑
i

∂iLi (ỹi, yi) , (25)

where Li(ỹi, yi) is the loss function for each subtask; N is the
number of training samples; ∂i is the weight used to balance the
loss function for each subtask; yi is the true sentiment scores.
The weights of each subtask are gradually reduced with dynamic
weight decay in the training process so that each subtask can be
fully trained.

Comparative learning can extract discriminative features with
incomplete scores by identifying the differences between the
data. There are no unimodal sentiment scores in some cases.
For example, we only have true sentiment score yf , and don’t
have labels for each modality such as yα, yβ , and yγ . In this case,
we can choose comparative learning to carry out the multitask
training process.

  



The first step is to construct positive sample pairs and negative
sample pairs. Let U1 and U2 represent the two multimodal
samples, U1 = {U1

α, U1
β , U1

γ}, U2 = {U2
α, U2

β , U2
γ}. A positive

sample pair is pair of two different modalities of data from the
same sample. For example, there are three positive sample pairs
with U1, i.e., {U1

α, U1
β}, {U1

α, U1
γ} and {U1

β , U1
γ}. We can also

construct three positive sample pairs withU2. A negative sample
pair is pair of distinct modalities of data from two samples. Given
two samples U1 and U2, there are six negative sample pairs,
namely, {U1

α, U2
β}, {U1

α, U2
γ}, {U1

β , U2
α}, {U1

β , U2
γ}, {U1

γ , U2
α}

and {U1
γ , U2

β}.
The second step is to define the comparative loss function.

Here, we show an example to illustrate how it is defined with
sample pairs of modality α and modality β. Assuming the batch
size is N, there are totally N positive sample pairs and (N2 −N )
negative sample pairs. Given a positive or negative sample pair,
we use a dot product to calculate the similarity between the
different modalities. For a positive sample, following the idea
of the InfoNCE loss function [36], we choose the similarity of
the positive sample as the numerator and choose the sum of the
similarity of all negative sample pairs and the similarity of this
positive sample as the denominator. The comparative loss of one
positive sample is the value after a logarithmic operation. The
comparative loss of all positive samples is the sum of pairs:

Lα,β = −
∑

{Ui
α,Ui

β}∈N

× log

⎛
⎝ exp(U iT

α U i
β/τ)

exp(U iT
α U i

β/τ) +
∑

{Uj
α,Uk

β }∈N ′ exp
(
U jT
α Uk

β/τ
)
⎞
⎠ ,

(26)

where N and N′ denote the set of positive and negative sample
pairs in the batch, and τ is a temperature parameter used to
control the smoothness of probability distribution.

We also can calculate the comparative loss for modalityα and
γ, modality β and γ in a similar way, i.e., Lα,γ , Lβ,γ .

Finally, we define the multi-task learning loss function. It is
described as follows.

L =
1

N

(
∂α,βLα,β + ∂α,γLα,γ + ∂β,γLβ,γ +

N∑
1

∂fLf

)
,

(27)
where ∂α,β , ∂α,γ , ∂β,γ , and ∂f are hyper-parameters used to
balance the losses of different sub-tasks.

IV. EXPERIMENT AND ANALYSIS

A. Datasets

In this section, we test and analyze the model’s performance
with the CMU-MOSI [37] and CH-SIMS [38]. Both datasets
provide three different modality data for sentiment analysis: text
(T), audio (A), and vision (V).

CMU-MOSI: The CMU-MOSI dataset contains 2199 video
clips. These clips were mainly taken by segmenting 93 videos of
89 speakers by sentences that describe the speaker’s comments
on a movie. The CMU-MOSI manually labeled each video

clip with a sentiment score ranging from −3 to 3, indicating
positive sentiment (sentiment score > 0) or negative sentiment
(sentiment score < 0). The larger the absolute value of the
sentiment score, the stronger the sentiment.

CH-SIMS: The CH-SIMS dataset contains 2281 video clips.
These clips are mainly taken by segmenting 61 videos from dif-
ferent movies, TV series, and variety shows, which is a Chinese
multimodal video sentiment analysis dataset. Compared with
CMU-MOSI, CH-SIMS not only provides the sentiment scores
of each video clip but also annotates the sentiment scores for
text, audio, and vision modalities, respectively. The sentiment
score ranges from−1 (strongly negative) to 1 (strongly positive).

1) Text feature: BERT [39] is a pre-trained deep learning
model developed by Google that has already learned rich lin-
guistic features on large-scale text datasets, including lexical
semantics, sentence structure, and contextual relationships. It
means that BERT has powerful language understanding ability.
In our experiments, we utilize BERT to extract the text modal-
ity high-level features Xt of the CMU-MOSI and CH-SIMS
datasets, and the dimension of Xt is 768.

2) Audio feature: We use different tools to extract low-level
audio features Ua for each dataset. On the CMU-MOSI dataset,
we use the COVAREP [40] to extract 74-dimensional low-level
audio features with frame rates of 1000 Hz. The Features in-
clude pitch, energy, NAQ, MFCCs, peak, and energy slopes.
On the CH-SIMS dataset, the LibROSA [41] is used to extract
33-dimensional low-level audio features such as log F0, MFCCs,
and Constant-Q chromatograms, with a frequency of 22050 Hz.

3) Vision feature: We extract low-level vision features Uv

with different tools. On the CMU-MOSI dataset, we utilize the
Facet [42] to extract 47-dimensional low-level vision features,
including facial action units, facial pose, head pose, and ori-
entation with a 30 Hz sampling frequency. On the CH-SIMS
dataset, we align faces with MTCNN [43] models and use the
OpenFace2.0 [44] tool to extract facial action unit, head pose,
head orientation, eye movements, and so on 709-dimensional
low-level vision features, which are also sampled at a frequency
of 30 Hz.

B. Baselines
� Early Fusion LSTM (EF-LSTM) [45]. LSTM concatenates

the initial inputs of the three modalities and utilizes the
LSTM network to capture temporal information in each
sequence.

� Later Fusion Deep Neural Network (LF-DNN) [45]. LF-
DNN first extracts three modality features with three sep-
arate DNNs, then concatenates them for sentiment predic-
tion.

� Tensor Fusion Network (TFN) [6]. TFN captures bimodal
and trimodal information through the outer product op-
eration and uses the output of the tensor fusion layer for
sentiment analysis.

� The Modality-Invariant and -Specific Representations for
Multimodal Sentiment Analysis (MISA) [8]. MISA uses
an encoder to decompose each modality into modality-
invariant and modality-specific representations. Also, the

  



Fig. 4. Impact of different hidden layers n and channel transformation ratio r. (a) Acc 2. (b) Acc 3. (c) F1. (d) MAE. (e) Corr.

loss function of MISA includes similarity loss, orthogonal
loss, reconstruction loss, and prediction loss.

� The Low-rank Multimodal Fusion (LMF) [8]. LMF pro-
poses a low-rank fusion method, which decreases the com-
putational complexity and improves the efficiency of model
training by decomposing a high-rank tensor into a low-rank
tensor.

� Multi-task Later Fusion Deep Neural Network (MLF-
DNN) [38]. MLF-DNN is an extension of LF-DNN. MLF-
DNN first extracts features of each modality with three
separate DNNs and concatenates the extracted features for
sentiment prediction through multi-task learning.

� Multi-task Tensor Fusion Network (MTFN) [38]. MTFN
is an extension of TFN. MTFN first models bi-modality
and tri-modality information through the outer product
operation and uses the output of the tensor fusion layer
for sentiment analysis through multi-task learning.

In this paper, we use five evaluation metrics to evaluate the
performances of each sentiment analysis model, which include
binary classification accuracy (Acc_2), triple classification ac-
curacy (Acc_3), F1 score (F1), Mean Absolute Error (MAE) and
Pearson Correlation (Corr). For all metrics, a higher value means
better performance, except MAE. In the binary classification,
we classify sentiment types into negative and positive, in which
sentiment score < 0 is negative, and sentiment score ≥ is
positive. In triple classification, we classify sentiment types into
negative, neutral, and positive, in which sentiment score < 0 is
negative, sentiment score = 0 is neutral, and sentiment score >
0 is positive.

TABLE I
HYPERPARAMETER SETTINGS OF THE DATASETS

C. Experimental Setup

We reproduce all baselines in the same experimental platform
for a fair comparison. The experimental platform is built with
Python 3.6.13 and Pytorch 1.2.0 + Cuda9.2 framework, and all
models are trained on Intel Xeon E5-2620V4 CPU + NVIDIA
Tesla P100 16 GB GPU. Considering the differences between
the CMU-MOSI and CH-SIMS datasets, we set different hyper-
parameters for each dataset, respectively, as shown in Table I.

D. Impact of Different Hidden Layers and Channel
Transformation Ratio

To explore the impact of the different number of hidden layers
n and channel transformation ratio r on the results of sentiment
analysis, we have carried out a set of experiments on the CMU-
MOSI dataset, in which n is changed from 2 to 7 and r is changed
from 1 to 7.

1) Impact of the Number of Hidden Layers: In Fig. 4, it
can be seen that with the number of hidden layers increasing,

  



Fig. 5. Impact of modality number. (a) CMU-MOSI. (b) CH-SIMS.

the performance measured with these five metrics shows a
tendency of first increasing and then decreasing. In case n =
2, Acc_2, Acc_3, F1 and Corr have low values and MAE has a
high value, which indicates that the neural network has a weak
learning ability with only two hidden layers. In case n = 3, the
performance shown with these different metrics is improved. In
case n = 4, the performance is further improved and tends to
stabilize. The metrics, Acc_2, F1, Corr, and MAE, have reached
the best value with n= 5, while Acc_3 reached the best with n=
6. After that, the model performance decreases instead with the
number of layers increasing. Especially in case n = 7, the model
performance suffers a severe decline. Compared with the best
ones, the values of Acc_2, Acc_3, F1, and Corr have decreased
by about 3.5%, 5.1%, 4.690, and 0.0375, respectively, and MAE
has increased by 0.1099.

The experimental results show that adding a certain number
of hidden layers appropriately can help the model to efficiently
learn the features from training data, and finally improve the
performance. However, the model complexity will increase with
too many hidden layers, and it will lead to issues such as over-
learning of the noise and details of the training data, which finally
results in a drop in the sentiment analysis accuracy. Therefore,
in the subsequent experiments, we choose the number of hidden
layers n to be 5.

2) Impact of the Channel Transformation Ratio: The channel
dimension of the channel attention mechanism can be changed
by adjustment of channel transformation ratio r. In this way,
the learning ability of the model can be influenced by adding
or reducing the number of parameters in the model. In Fig. 4,
it can be seen that the best r varies with the number of hidden
layers. For example, in case n = 2, the value of F1 increases
firstly and then decreases as r increases. This conclusion may
be explained by noticing that the learning ability of the model is
poor, with fewer hidden layers. With r increasing from 2 to 5, the
metric F1 increases accordingly because additional parameters
can increase the learning ability of the model. However, in case n
= 5, the tendency of F1 change is not so obvious. The reason may
be that the model has enough parameters to learn the sentimental
information in the data, while more parameters won’t help to
improve the model’s learning ability.

In Fig. 4, it can also be seen that the values of F1 and Acc_2
are optimal in case r = 4, and Acc_3 and MAE are optimal
in case r = 5. The sub-optimal value is achieved at r = 4 for
MAE, about 0.0038 behind the optimal one. The optimal value
is attained at n = 5 and r = 4 for Corr, indicating that the model
can adapt well to the data. According to the experimental results,
we choose the number of hidden layers n to be 5 and the channel
change ratio r to 4.

E. Impact of Modality Number

To evaluate the impact of modality number on sentiment
analysis results, we perform comparative experiments on CMU-
MOSI and CH-SIMS datasets for unimodal sentiment analysis,
bimodal sentiment analysis, and trimodal sentiment analysis,
respectively. The experimental results are shown in Fig. 5, in
which A, V, and T indicate the sentiment analysis with audio,
vision, and text modality; “+” means the fusion operation. For
example, T+V means fusing the text and vision.

It can be seen that the performance obtained with different
modalities varies greatly, with the lowest performance for the
audio and the highest for the text modality according to the
experimental result of unimodal. That is because text data
usually contains more sentiment-related information, such as
sentiment words, emojis, etc. Compared with audio and vision
modality, the improvement in the performance of text modality is
significant, about 20% for Acc_2 and 30% for Acc_3, and other
evaluation metrics also improve considerably on CMU-MOSI
and CH-SIMS datasets. The experimental results prove that the
helpful information relevant to sentiment analysis is not equally
distributed among the different modalities, in which the text
modality makes the most significant contribution to sentiment
analysis. Based on the experimental results of unimodal senti-
ment analysis on both datasets, we select the text modality with
the highest accuracy of unimodal sentiment analysis as the key
modality.

The bimodal sentiment analysis has a higher accuracy rate
than that of unimodal sentiment analysis. The sentiment analysis
accuracies are higher for T+A and T+V than that for T, A, and
V. The experimental results on the CMU-MOSI dataset show

  



Fig. 6. Impact of transfer learning. (a) CMU-MOSI. (b) CH-SIMS.

that Acc_2 of T+A and T+V significantly improved by about
20% compared to modality A and V. However, there is only a
slight performance improvement for modality A+V compared to
modality A and V. From the above analysis. We can conclude that
fused text modality is the most effective for sentiment analysis.

The trimodal sentiment analysis is not always better than
the bimodal. Comparing the results of T+A+V, T+A, T+V,
and A+V on the CMU-MOSI dataset, the highest accuracy has
been obtained when all three modalities are involved, which
is because when multiple modalities are fused, the model can
utilize the complementary information from between different
modalities to get more accurate sentiment analysis. However,
The experimental results on the CH-SIMS dataset show that
trimodals are not always better than bimodals. For example,
modality T+A has higher Acc_3 than T+A+V, and modality T+V
has higher Corr and F1 than T+A+V, which indicates that the
performance of sentiment analysis does not increase singularly
with the number of modalities.

There are two possible reasons for this issue. a) The fea-
ture extraction method is not appropriate. Data from different
modalities need to extract features before they can be input into
the model for training and prediction. If the feature extraction
method is unsuitable, it may lead to insufficient feature extrac-
tion, which affects the performance of sentiment analysis. b)
The fusion strategy is not appropriate. Multimodal sentiment
analysis needs to fuse information from different modalities, but
various fusion methods may lead to diverse sentiment analysis
results, and if an inappropriate fusion strategy is chosen, it may
also hurt the results of sentiment analysis. Therefore, finding a
suitable feature extraction method and fusion strategy is key to
achieving a more accurate multimodal sentiment analysis.

F. Impact of Transfer Learning

To verify whether transfer learning helps improve the accu-
racy of sentiment analysis, we have added a set of experiments
on CMU-MOSI and CH-SIMS datasets, respectively. In the
experiments, we deleted the BERT model and directly converted
the raw text into word vectors with the GloVe model, and then
extracted the feature with the LSTM network. The results of the

experiments are shown as follows, in which M3SA (GloVe) and
M3SA (BERT) represent the results with the GloVe model and
BERT, respectively.

Fig. 6(a) shows the results on CMU-MOSI, and a similar
conclusion can be found except that there is a little decrease
with Acc_3 (about −2.21%). Fig. 6(b) shows the results of CH-
SIMS. The performance of BERT is better than GloVe with all
metrics, in which F1 is the most significant. It demonstrates that
transfer learning helps improve the performance of sentiment
analysis. Especially, BERT has been pre-trained on large-scale
datasets and has learned rich representations of language. These
representations can capture the deep semantic information of
words and provide richer and more complex contextual features
when compared with the traditional word embedding technique
GloVe. Note that sentiment often depends heavily on the context,
and this advantage is particularly important for the model to un-
derstand the text sentiment. BERT can transfer knowledge from
large datasets to specific multimodal sentiment analysis tasks.
Even in relatively small datasets, it is possible to significantly
improve the performance of the model with this pre-training and
fine-tuning approach.

G. Impact of Multi-Scale Feature Extraction

The impact on the model’s performance after introducing
multi-scale feature extraction on the CMU-MOSI is shown
in Fig. 7(a), where MS indicates that the model uses multi-
scale feature extraction. Comparing the experimental results of
T+A+V with T+A+V (MS), we can see that Acc_2, Acc_3, F1,
and MAE are improved after introducing multi-scale feature
extraction, and only Corr has a slight decrease. The model’s
performance is significantly improved after introducing the
multi-scale feature extraction method on CH-SIMS. As shown
in Fig. 7(b), comparing the experimental results of T+A+V and
T+A+V (MS), five evaluation metrics are improved after the
introduction of multi-scale feature extraction. Comparing the
experimental results of T+A and T+A+V (MS), Acc_3, MAE,
and Corr are improved after introducing the multi-scale feature
extraction. It indicates that multi-scale feature extraction can
relieve the problem of decreasing the accuracy of sentiment

  



Fig. 7. Impact of multi-scale feature extraction. (a) CMU-MOSI. (b) CH-SIMS.

Fig. 8. Impact of different fusion strategies. (a) CMU-MOSI. (b) CH-SIMS.

analysis due to the increase in the number of modalities. Based
on the experimental results of the two datasets, we can conclude
that our proposed multi-scale feature extraction method can
improve the accuracy of sentiment analysis.

H. Impact of Fusion Strategy

To explore the impact of different fusion strategies for sen-
timent analysis, we carried out four sets of experiments on
CMU-MOSI and CH-SIMS, respectively. The experimental
results are shown in Fig. 8, in which Equal represents the
attention-based fusion strategy; Early and Late represent the
early fusion strategy and late fusion strategy; T∗, A∗, and V∗

represent selecting audio, vision, and text modality as the key
modality. In the attention-based fusion strategy, multi-head self-
attentive operations are performed on high-level features of text,
vision, and audio modality to get (Xt,t, Xa,a, Xv,v) according
to (18)–(22), and then collocate them to obtain the fused feature
Xf = Concat(Xt,t, Xa,a, Xv,v).

First, from Fig. 8, we can see that the result of late fusion is
similar to that of early fusion with four metrics (such as Acc_2,
F1, MAE, and Corr) on CMU-MOSI, while the former performs
significantly better than the latter with some metrics (especially

Acc_2, Acc_3, and F1) on CH-SIMS. In general, the sentiment
analysis results with the late fusion strategy are more accurate
than those with early fusion. The reason is probably that late
fusion requires extraction of the independent features of different
modalities before decision fusion, which helps to retain the
unique information of each modality, while early fusion directly
combines the features of different modalities at the extraction
stage and information of some modalities might be lost during
the fusion process. The difference in fusion stage results in better
performance when late fusion is compared with early fusion.

Then, we analyze the effect of the attention mechanism.
On CMU-MOSI, the performance of the attention-based fusion
strategy has the best results with all metrics compared with the
early fusion and late fusion. On CH-SIMS, the performance of
the attention-based fusion strategy was similar to that of the
late fusion. The fusion based on attention usually automatically
learns the importance of different modalities, which may explain
why it outperforms the late fusion with some evaluation metrics.
However, the attention mechanism makes it difficult to capture
the long-time dependencies among the training dataset because
the attention weights will decay with increasing distance, and
thus the model is hard to learn the relationship between se-
quences of elements that are far away from each other.

  



Fig. 9. Impact of different feature extraction methods. (a) CMU-MOSI. (b) CH-SIMS.

Finally, we analyze the impact of different key modalities
on the final result of sentiment analysis. In Fig. 8, we can see
that the fusion strategy with T as the key modality is better
than the Equal strategy in all metrics except for Corr on the
CMU-MOSI dataset. On CH-SIMS, the attention-based fusion
strategy is worse than those with the strategies of A∗, V∗, and T∗

in all metrics except for Acc_3. It demonstrates that the fusion
strategy based on key modality is effective and can improve
the performance of sentiment analysis. Moreover, comparing
the experimental results of Equal strategy with A∗ and V∗ on
CMU-MOSI, we find that the choice of key modality is very
important. By comparing the experimental results of A∗, V∗, and
T∗ on two datasets, we find that the performance of sentiment
analysis with A as the key modality is the lowest, and the one with
T as the key modality is the highest. Therefore, it is reasonable to
select the modality with the highest unimodal sentiment analysis
accuracy as the key modality. The experimental results on both
datasets demonstrate the effectiveness of our proposed fusion
strategy based on key modality.

I. Impact of Different Feature Extraction Methods

In the paper, we use the pre-trained BERT from Google to
extract the text feature. For audio and vision modalities feature
extract, we tested four different neural network layers, namely,
linear layer, LSTM, RNN, and GRN, to explore the impact of
different feature extraction methods on the sentiment analysis
results. The experimental results are shown in Fig. 9.

As shown in the figure, the feature extraction with LSTM and
GRU performs better than the linear layer and the RNN with the
metrics Acc_2 and Acc_3. It shows that a complex recurrent net-
work structure is more effective in capturing sentiment-relevant
features. The metric F1, as a combination of precision and recall,
is usually a better indicator of the overall performance of a
model. LSTM achieves the best performance in both datasets
with metric F1. In addition, the MAE with LSTM is also lower
than Linear, RNN, and GRU. It can be concluded that feature
extraction using recurrent neural networks (RNN) and its vari-
ants (LSTM and GRU) is usually more effective than Linear. In
particular, LSTM can obtain more accurate results for feature
extraction.

TABLE II
RESULT OF MULTIMODAL SENTIMENT ANALYSIS ON CH-SIMS DATASET

TABLE III
RESULT OF MULTIMODAL SENTIMENT ANALYSIS ON CMU-MOSI DATASET

J. Multimodal Sentiment Analysis

We perform experiments comparing the performance of the
M3SA model with other popular multimodal sentiment analy-
sis models on the CMU-MOSI and CH-SIMS datasets. Since
unimodal sentiment scores are not provided on CMU-MOSI,
we adopt comparative learning to perform multi-task learning
on this dataset. The sentiment analysis results are shown in
Table III, in which TLF-DNN, MTFN, and M3SA have adopted
comparative learning. The loss function is shown in (27). The
experimental results with baselines on two datasets are listed in
Tables II and III, in which the bolded data means the best results
and the added underlined data means the second best.

From Table II, we can find that M3SA significantly outper-
forms other baselines in all metrics except the MTFN model
from the comparative experimental results. Compared with the
MLF-DNN modal, Acc_2, Acc_3, F1, and Corr improve by

  



2.63%, 2.54%, 2.27%, and 0.0291, respectively, and MAE de-
creases by 0.0279. This result indicates that the performance
of the M3SA model reaches the top level. Compared with the
MTFN model, M3SA have progressed in Acc_2, F1, and MAE,
while Acc_3 and Corr do not do as well as the MTFN model.
However, the performance of M3SA is still better. First, M3SA
outperforms all baseline models in Acc_2, F1, and MAE and
achieved the second-best rankings in Acc_2 and Corr. Second,
M3SA only decreases by 0.19% and 0.0102 in Acc_3 and
Corr, respectively, which is not unacceptable compared to the
improvement in model performance in Acc_2, F1, and MAE.
The above data and analysis can prove that the performance of
M3SA is better on the CH-SIMS dataset.

From Table III, compared with the traditional models, i.e.,
TFN and MTFN, the performance of the model is improved
after introducing multi-task learning on CMU-MOSI. All the
evaluation metrics are better than those without multi-task learn-
ing. In particular, the binary classification accuracy (Acc_2)
is improved by 3.38%, and the triple classification accuracy
(Acc_3), improves by 2.41%, which is a larger improvement. It
shows the efficiency of multi-task learning in sentiment analysis.
The proposed M3SA achieves the best performance. Compared
with MTFN, the Acc_2, and Corr are increased by 1.75% and
0.24, and MAE is reduced by 0.044. Compared with MISA,
Acc_3 is improved by 1.64%. While compared with MLF-DNN,
F1 is increased by 1.8. It shows that M3SA outperforms all
baseline models. The experimental results demonstrate that our
proposed multi-scale feature extraction and multi-task learning
strategy helps understand different modality data and improving
sentiment analysis accuracy.

V. DISCUSSION

In this section, we have discussed the adaptability of the
sentiment model, the fusion of potential modalities, and the
fusion strategy for real-time or streaming data.

A. Adaptability Model for Multimodal Sentiment Analysis

It is a challenging issue to develop a sentiment analysis
model that is general and robust across different domains and
languages. The final accuracy of one model trained on one
dataset may fall outside expectation when used in another dataset
due to some observations.

1) Complicated Dataset Background: For example, the hu-
mor elements on UR-FUNNY [46] are highly culturally relevant
and contain a much more comprehensive range of topics, while
the data on CMU-MOSI focuses only on movie reviews and is
just concerned with individuals’ opinions on the movie plots,
the actor’s performance, and the director’s work, etc.

2) Directness of Emotional Expression: The CMU-MOSI
trends to describe direct sentiments, such as happiness, sadness,
anger, and so on, and this information can be easily reflected
in speech, voice, and facial expressions. In contrast, the UR-
FUNNY involves subtler / complex affective and cognitive
processes, including puns, sarcasm, hyperbole, or metaphors.

3) Differences in Feature Engineering: Feature extraction
methods depend heavily on the modality in the dataset, and

thus we cannot directly adopt the method from one dataset to
another. The CMU-MOSI and CH-SIMS provide the raw textual
modality data, and thus we can directly use BERT to extract the
appropriate features. However, the UR-FUNNY provides only
the word vectors extracted from the GloVe model but not the
raw textual data.

B. Fusion of Additional Modalities

In addition to text, vision, and audio, physiological signals
are also frequently used in sentiment analysis. The physiological
signals that are often used for sentiment analysis include elec-
tromyogram, electroencephalogram, electrocardiogram, elec-
trodermal activity, blood volume pulse, respiratory volume, skin
temperature, heart rate, etc. [28] It might be helpful to improve
the accuracy of sentiment analysis by utilizing more modalities
in the model.

There are still a lot of constraints that limit the applications of
physiological signals in sentiment analysis, such as privacy and
ethical issues, complexity and cost of data collection, challenges
of data processing and analysis, and difficulty of data annotation.
If we consider the cost, complexity, and universality of models
simultaneously, the text, vision and audio, can already satisfy
the current sentiment analysis requirement. However, it is still
interesting to investigate the impact of additional modalities on
sentiment analysis.

C. Multimodal Fusion in Real-Time or Streaming Data

Our manuscript focuses on designing an accurate multimodal
sentiment analysis model with stable modality data. We aim
to mine the correlation and independence features between
modalities and propose a multi-scale feature extraction method
based on the channel attention mechanism. It is an important
and perspective issue on how to perform sentiment analysis
on real-time or streaming data. This idea shall face entirely
new challenges, such as variable input modalities and dynamic
variations in the time series. There are some feasible ideas for
this issue.

1) Adaptive Learning: The data features and distributions
may change with time in real-time situations. Online learning or
incremental learning can be used to solve this problem.

2) Real-time Data Processing: The key is to quickly react
and adapt to variable data in real time and adjust the fusion
strategy. Feasible strategies to solve this problem include data
window technology and rapid feature extraction.

3) Multimodal Dynamic Fusion: It means exploring fusion
methods for multiple data sources and different types of inputs
and real-time fusion strategies to provide model adaptability in
the dynamic environment.

VI. CONCLUSION

In this paper, we present a novel multimodal sentiment anal-
ysis model called Multimodal Sentiment Analysis based on
Multi-scale feature extraction and Multi-task learning (M3SA).
The model extracts multi-scale features with a channel attention
mechanism to model the output of different hidden layers, which

  



allows the model to extract more helpful features. We have
proposed a novel multimodal fusion strategy based on the key
modality. During the fusion process, the key modality enhances
the other modality’s information and enriches the fused helpful
information. Furthermore, multi-task learning is introduced to
ensure that the model learns different modality’s correlation
features while preserving independence features. Experimental
results on two datasets demonstrate that M3SA outperforms
baseline models.

In current multimodal sentiment analysis research, it is a
common assumption that data from different modalities, such as
text, audio, and visual, are complete. However, this assumption
does not hold in real-world applications. Data from various
sources may be lost or corrupted for various reasons. For in-
stance, audio data may be degraded due to noise interference
or interruptions during transmission. These issues significantly
limit the practicality of multimodal sentiment analysis models.
We are currently engaged in researching and addressing this
challenge. Our next objective is to develop a model capable
of handling incomplete modality data more effectively, and
enhance its performance in real-world applications. It involves
exploring methods for efficiently integrating data from various
modalities and adjusting the model to maintain its performance
when specific modality data is missing.
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