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Temporal Implicit Multimodal Networks for Investment and

Risk Management

GARY ANG and EE-PENG LIM, Singapore Management University, Singapore, Singapore

Many deep learning works on financial time-series forecasting focus on predicting future prices/returns of
individual assets with numerical price-related information for trading, and hence propose models designed
for univariate, single-task, and/or unimodal settings. Forecasting for investment and risk management
involves multiple tasks in multivariate settings: forecasts of expected returns and risks of assets in portfolios,
and correlations between these assets. As different sources/types of time-series influence future returns, risks,
and correlations of assets in different ways, it is also important to capture time-series from different modal-
ities. Hence, this article addresses financial time-series forecasting for investment and risk management in
a multivariate, multitask, and multimodal setting. Financial time-series forecasting, however, is challenging
due to the low signal-to-noise ratios typical in financial time-series, and as intra-series and inter-series
relationships of assets evolve across time. To address these challenges, our proposed Temporal Implicit
Multimodal Network (TIME) model learns implicit inter-series relationship networks between assets from
multimodal financial time-series at multiple time-steps adaptively. TIME then uses dynamic network and
temporal encoding modules to jointly capture such evolving relationships, multimodal financial time-series,
and temporal representations. Our experiments show that TIME outperforms other state-of-the-art models
on multiple forecasting tasks and investment and risk management applications.

CCS Concepts: • Computing methodologies → Neural networks; Artificial intelligence; Knowledge

representation and reasoning; Information extraction;

Additional Key Words and Phrases: Time-series, forecasting, graphs, graph neural networks, finance,
multi-modality
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1 INTRODUCTION

Prior works on financial time-series forecasting with deep learning methods [19, 32, 64] mostly
focus on predicting asset (e.g., stock) prices or returns at a future time-step based on time-series
information from a single modality (usually numerical price-related information) to support
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38:2 G. Ang and E.-Peng Lim

trading decisions and applications. The models proposed in these works are usually designed for
univariate, single task, and/or uni-modal settings.
Investment and risk managers make investment and risk management decisions over time

horizons for portfolios comprising multiple assets. To support such decisions, there is a need
to forecast expected returns and risks (volatilities) of multiple assets in portfolios, as well as
correlations between these assets over a selected time horizon. Capturing the interactions between
expected returns, risks, and correlations of multiple assets in portfolios in a multitask setting is
important as these target variables may evolve in a related manner. For example, risk (volatility)
in equity asset prices is known to be asymmetric as volatility tends to be higher when returns
decline than when returns rise [9]. Correlations between different assets may also increase during
periods of high volatility and steep declines in returns and come back down when volatility is
low and returns are stable or rising [34].
As multiple sources and types of information can influence future returns, risks, and corre-

lations of multiple assets in a future time horizon in different ways, there is a need to capture
information from multiple modalities, e.g., numerical price-related information and textual media
information [39]. Therefore, financial forecasting for investment and risk management naturally
involves a multivariate, multitask, and multimodal setting—forecasting expected returns and
risks of multiple assets, and correlations between these assets in portfolios over a future time
horizon, based on information from multiple modalities. Such forecasts are also necessary for
important investment and risk management applications: portfolio allocation optimization [52]
and Value-at-Risk (VaR) [45] forecasting. Aside from supporting investment and risk management
decisions and applications, capturing information from multiple variables (corresponding to
different assets) and modalities across multiple tasks may also improve forecasting performance
as it enables the forecasting model to leverage information across different variables, modalities,
and tasks and prevents overfitting on any one variable, modality, or task.
For either univariate-unimodal-single task or multivariate-multimodal-multitask settings,

financial time-series forecasting is challenging due to the inherently low signal-to-noise ratios
and the non-stationary nature of financial time-series distributions and their relationships [26].
Figure 1 illustrates the non-stationary nature of such inter-series relationships between multiple
assets over time. We see that the inter-series relationships between assets over the window period
[0,3t] (see Figure 1(b)) differ from inter-series relationships in three different sub-window periods
(see Figures 1(c)–1(e)), [0,t], [t ,2t], and [2t ,3t], highlighting the importance of modeling evolving
inter-series relationships. In this article, we address investment and risk management require-
ments and the challenges in financial time-series forecasting by designing a model that can (1) be
used in multivariate, multitask, and multimodal settings, which can enable complementary signals

from different variables, tasks, and modalities to be used to improve overall forecasting performance,
and (2) adaptively capture both evolving intra-series patterns and inter-series relationships to address
the non-stationary nature of financial time-series information.
Different classical methods [10, 21, 75] have been used to forecast financial returns, risks of

financial returns, and financial correlations. These methods, however, are not designed for multi-
task settings and cannot capture information from multiple modalities, particularly unstructured
information such as text. Classical models also typically adopt fixed distributional assumptions
based on domain knowledge, which may not be suitable for modeling evolving intra-series
patterns and inter-series relationships. Various deep learning architectures, such as convolutional
and recurrent neural networks and transformers, have been applied to time-series forecasting
[23, 33, 43, 57, 61, 74]. However, most of these models are designed for univariate, unimodal set-
tings and/or single forecasting tasks. They also do not model evolving inter-series relationships in
a multivariate setting. The aforementioned works on models for time-series forecasting focus on
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Temporal Implicit Multimodal Networks for Investment and Risk Management 38:3

Fig. 1. Non-stationary inter-series relationships/correlations between assets. (a) shows the evolution of stock

prices for Facebook (FB), Apple (AAPL), Netflix (NFLX), and Google (GOOG) over a window period, along

with key news events that could potentially affect the returns, volatilities, and correlations of stock prices.

Inter-series relationships/correlations over the whole window period shown in (b) differ from that in the

three sub-window periods shown in (c), (d), and (e), illustrating the need to capture such evolving inter-series

relationships.

the batch learning setting, which assume that training data are available a priori [63]. There have
also been works on models for time-series forecasting that focus on the online learning setting,
designed for time-series data that arrive in a stream over time [2, 46, 49, 62, 63], but such works
generally do not focus on modeling evolving inter-series relationships in a multivariate setting.
Spatio-temporal network models [15, 41, 89, 93] capture relationships between different time
series but require explicit spatial relationship networks as input and assume that such networks
are static. Dynamic network models [29, 30, 59, 84, 85] can be used for networks that evolve across
time but similarly require explicit networks as inputs. Recently, spatio-temporal network models
that infer implicit networks have been proposed [5, 12, 16, 38, 82, 96], but they do not infer implicit
networks at multiple time-steps to address the non-stationary nature of inter-series relationships.
Such spatio-temporal and dynamic network models are also not designed for networks where
nodes have multimodal financial time-series as attributes. Some works adopt a multimodal mul-
titask approach to forecast financial time-series for trading [67, 87]. However, such works do not
address investment and risk management requirements as they either forecast the same variable
over different time horizons, i.e., homogeneous forecasting tasks, or only forecast prices and
volatilities. Furthermore, these works do not adaptively capture both evolving intra-series patterns
and inter-series relationships.

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 2, Article 38. Publication date: March 2024.
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Fig. 2. Framework for multivariate, multitask, andmultimodal setting: The proposed TIMEmodel is designed

to capture information from multiple variables (N companies) and modalities (M sources), e.g., information

from numerical price-related and textual news modalities, as shown on the left-hand side of the figure. To

adaptively address the evolving temporal characteristics of time-series information and the non-stationary

nature of inter-series relationships, the TIME model learns temporal representations for intra-time-series

patterns and discovers underlying implicit networks across multiple time-steps for different modalities. The

heterogeneous multitask approach of the TIME model generates different types of forecasts: company stock

(i) mean returns, (ii) risks (volatilities), and inter-company (iii) correlations over a future horizon to support

investment and risk management decision-making, as well as industry applications, as shown on the right-

hand side of the figure.

Hence, in this article, we propose the Temporal Implicit Multimodal Network (TIME) model
framework, as shown in Figure 2. TIME uses multivariate time-series information from different
modalities to adaptively discover dynamic implicit relationship networks at different time- steps.
It then uses both the multivariate time-series information from different modalities and the
discovered implicit networks as input for heterogeneous but related forecasting tasks. These
tasks include forecasts of the means, volatilities, and correlations of returns of multiple assets.
Modeling implicit relationship networks well in a multivariate setting not only supports the
correlation forecasting task but also improves other forecasting tasks across time-series as such
relationships influence the evolution of individual time-series. Beyond investment and risk
management decisions, forecasts of means, volatilities, and correlations over a future horizon can
be used for important industry applications such as portfolio allocation (deciding how to allocate
capital between different investment assets) and portfolio risk management (forecasting portfolio
VaR) [45]. Our key contributions are as follows:

— To our knowledge, this is the first work to propose the adaptive discovery of implicit

inter-series relationship networks from multivariate and multimodal financial time-series for
multiple financial forecasting tasks to support investment and risk management.

—We design an attention-based module that adaptively discovers implicit relationship net-
works at multiple time-steps from multimodal financial time-series, which we also leverage
to forecast inter-series correlations over a selected future time horizon, and propose the
use of a temporal vectorization module with multiple functional forms to adaptively capture
temporal patterns that are utilized for time-sensitive dot-product attention sequential
encoding.

—We train the model on multiple related tasks to leverage complementary information for
improving overall forecasting performance and lowering the risk of over-fitting.

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 2, Article 38. Publication date: March 2024.
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—We design a generalizable model that can be applied to time-series information from different
numbers and types of modalities and generate representations in a shared embedding space.

—We demonstrate the effectiveness of TIME on multiple forecasting tasks against state-
of-the-art baselines on real-world datasets. We also show that TIME out-performs these
baselines on real-world investment and risk management applications and interpret the
implicit relationship networks learned by TIME.

2 RELATEDWORK

As this work involves financial time-series forecasting and network learning, we review key related
works in these areas.

2.1 Financial Time-series Forecasting

ARIMA [75] is a well-studied classical method for time-series forecasting. It assumes a specific
structure for the mean of the underlying stochastic process and is commonly used to forecast
financial returns. To forecast risks (i.e., volatility of financial returns), Generalized AutoRegressive

Conditional Heteroskedastic (GARCH) [10] assumes a specific structure for the variance of the
underlying stochastic process. Multivariate versions of these models, e.g., VAR [50], which extends
AR, and DCC-GARCH [21], which extends GARCH, have been proposed. In general, classical
methods adopt fixed distributional assumptions, which may not always be suitable for evolving
intra-series patterns and inter-series relationships. These methods are also not designed for mul-
titask settings, nor information from multiple modalities, particularly unstructured information
such as text. To learn temporal patterns in a data-driven manner, deep learning models have
been applied to time-series forecasting. They include feed-forward networks [14, 17, 19, 56, 88],
convolutional neural networks [6, 11, 58, 78], recurrent neural networks [25, 44, 48, 64, 65], and
transformers [42, 55, 73, 79, 80, 90, 91, 95]. A detailed review of these works can be found in
[23, 33, 43, 57, 61, 74]. Deep learning models can be designed for univariate or multivariate settings.
Models designed for univariate settings [13, 56, 60, 66, 92] model each time-series independently,
while multivariate models [25, 35, 40, 41, 65, 69, 83, 89] learn multiple time-series together. Most
of these models capture numerical information but not unstructured textual information or
information from multiple modalities. [40] captures information from two numeric modalities
(media sentiment and price-related data) for financial forecasting. NBEATS [56] is an example
of a univariate time-series forecasting model designed for numerical time-series information
that demonstrated good performance when benchmarked against top classical, deep learning,
and classical–deep learning hybrid models from the M4 Competition [51]. NBEATS comprises
stacks of fully connected layers with residual connections that can be constrained to decompose
forecasts into specific time-series patterns. Dual-stage attention-based recurrent neural network

(DARNN) [64] is designed for numerical time-series information in a multivariate setting and has
shown good performance on financial time-series forecasting. DARNN applies an input attention
stage, followed by a temporal attention stage. Time-series Transformer (TST) [91] is a recent model
based on the transformer encoder architecture designed for numerical time-series information
that can be utilized in either univariate or multivariate settings. However, DARNN and most
other multivariate models [25, 41, 65, 69, 83, 89] do not address the non-stationary nature of
inter-series relationships and are not designed to capture multimodal information. Recent works
have studied the use of textual news information [3, 19, 20, 32, 39, 68, 70] for financial forecasting.
FAST [68] uses time-aware LSTMs [8] to encode textual news information, while StockEmbed (SE)

[20] uses bidirectional GRUs to encode textual news information. Neither FAST nor SE captures
multimodal information or evolving inter-series relationships. As financial time-series forecasting
models can be used for quantitative trading applications, an orthogonal but important field is
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38:6 G. Ang and E.-Peng Lim

the application of reinforcement learning for quantitative trading [1, 47, 71, 72]. A number of
such works utilize neural networks as function approximators [72], which can include neural
networks designed for time-series forecasting. In this article, we focus on the more general setting
of evaluating TIME for investment and risk management applications, rather than the typical
end-to-end setting for reinforcement learning, which involves the use of neural networks within
reinforcement learning methods.

2.2 Network Learning for Financial Time-series

Graph neural networks (GNNs) compose messages based on network features and propagate them
to update the embeddings of nodes and/or edges over multiple neural network layers [7, 27]. Sev-
eral GNN-based models have been developed. In particular, Graph Convolutional Network [37]
aggregates features of neighboring nodes and normalizes the aggregated representations by the
node degrees. GraphSAGE [31] considers mean, LSTM, or pooling aggregation methods and sam-
ples a fixed number of neighbors for representation aggregation. Graph Attention Network [77]
assigns neighboring nodes with different importance weights during aggregation. Such GNNs are
designed for static networks with static node attributes and cannot be applied to networks where
the attributes are time-series. They also cannot be used for dynamic networks. A few recent works
[3, 4, 24, 53] apply GNNs to prediction tasks on financial time-series data, but they are designed for
pre-defined static networks. A number of GNN models have been designed for dynamic networks
[29, 30, 59, 84, 85], e.g., by encoding network snapshots and applying a recurrent neural network to
the sequence of network snapshot representations. However, they are not designed for networks
where the attributes are financial time-series that evolve alongside dynamic networks. They also
require network snapshots to be explicitly given as input. Spatio-temporal network models [15, 18,
41, 89, 93, 94], primarily used for traffic forecasting, can handle networks where the node attributes
are time-series, e.g., traffic flows at road junctions, but are designed for pre-defined static spatial
networks, and hence not able to model evolving inter-series relationships. Some recent spatio-
temporal network models [5, 12, 16, 38, 82, 96] infer relationships between time-series for forecast-
ing. MTGNN [82] uses a graph learning layer to learn the underlying network, before applying
interleaved temporal convolution modules and graph convolution modules to capture temporal
and spatial dependencies. However, MTGNN and these other works assume that a single set of
relationships applies across the window period, and they are also not designed for multimodal set-
tings. They are also not designed to capture intra-series temporal patterns of financial time-series.
In general, existing methods in financial time-series forecasting models often rely on fixed

distributional assumptions, which may not hold due to dynamic market conditions and shifts in
intra-series patterns. While deep learning time-series forecasting models can address this issue,
most of these models are not designed for multitask or multimodal settings, limiting their utility
in the financial domain (as well as other real-world domains), which involves various types of
structured and unstructured data. While there have been more recent works in time-series fore-
casting that focus on multimodal settings, such works are not designed for network information.
In the field of network learning, most models are designed for static networks and static attributes.
Most dynamic network models require pre-defined network snapshots and do not capture the
effects of time-series attributes on network relationships. Recent network learning models that
infer and learn network relationships do not capture evolving relationships across time, which is
crucial in many domains.

3 TEMPORAL IMPLICIT MULTIMODAL NETWORK MODEL

We formulate the problem as multiple multivariate financial time-series forecasting tasks on
dynamic implicit networks. The dynamic implicit networks are sequences of inter-series implicit

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 2, Article 38. Publication date: March 2024.
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relationship networks discovered by the proposed TIME model, where the attributes of
the asset nodes in the networks are multimodal financial time-series. We denote Xm

t =

[xm(t −K), . . . ,xm(t − 1)], where Xm
t ∈ R |V |×K×dm , as a sequence of financial time-series informa-

tion frommodalitym (out ofM different modalities), which could be of numerical, textual, or other
type, of dimensiondm over a window ofK time-steps for a set of assetsV . In the dynamic implicit

network learning and encoding step for each modality, we first discover temporal sequences of
inter-series implicit relationship networks and apply a sparsification step, which enables informa-
tion propagation between different nodes to be based on the most important implicit relationships
and serves as a regularization step to prevent overfitting. This results in inter-series implicit rela-
tionship networks Gm

t = [дm(t − K), . . . ,дm(t − 1)] for each modalitym, where Gm
t ∈ R |V |× |V |×K .

For each modalitym,дm(t−k) denotes a network (V , em(t−k),hm(t−k),am(t−k)), where em(t−k)
represents the most important relational edges between assets discovered at time-step t − k ;
hm(t −k) (∈ R |V |×d ) represents the encoded representations of the assets’ time-series information
at time-step t −k ; and am(t −k) (∈ R |V |× |V |) represents the weights of the edges em(t −k) at time-
step t−k . Thereafter, for each time-step t−k in the window, TIME uses the encoded representations
hm(t − k) of the assets’ time-series information and the discovered network дm(t − k) as inputs to
a dynamic graph convolution step to generate the assets’ network representations h̃m(t − k) of di-
mension d . The dynamic graph convolution step is undertaken for each modality separately as the
implicit relationships between asset nodes may differ for information from different modalities.
In the temporal encoding step, the sequence of network representations H̃m

t = [h̃m(t −
K), . . . , h̃m(t − 1)] (H̃m

t ∈ R |V |×K×d ) are combined with the temporal representations Pt = [p(t −
K), . . . ,p(t − 1)] (Pt ∈ R |V |×K×d ) learned by a time vectorization module from the corresponding
timestampsTt ∈ R |V |×K×d t ime

in the window based on the timestamps’ day, day of week, and week
of year, and projected to the same dimensiond as the assets’ network representations. The temporal
representations Pt capture time-series patterns such as linear and non-linear trends and periodicity,
which enable the subsequent time-sensitive attention-based sequential encoding of the sequence
of network representations, resulting inZm

t = [zm(t−K), . . . , zm(t−1)] (Zm
t ∈ R |V |×K×d ). Similarly,

the temporal encoding step is undertaken for each modality separately as the time-series patterns
may differ for information from different modalities. TIME then uses attention mechanisms in the
late-stagemultimodal fusionmodule to fuse the resultant representations for each of the modal-
itiesm based on learned importances. After fusing representations acrossM modalities, we obtain
Zt = [z(t − K), . . . , z(t − 1)] (Zt ∈ R |V |×K×d ). The last hidden state z(t − 1) is used to generate
the backcast of the financial price-related input data and forecasts of the means, volatilities, and
correlations of financial returns over a selected horizon of L time-steps, i.e., means, volatilities, and
correlations ofY returns

t = [yreturns (t), . . . ,yreturns (t+L)], whereyreturns (t) = (price(t)−price(t−
1))/price(t − 1) are the percentage returns, and price(t) is the stock price at time-step t . Figure 3
provides an overview of the architecture of TIME. We elaborate on the steps and modules below.

3.1 Temporal Implicit Network Learning

The temporal implicit network learning module discovers implicit relationship networks using the
dot-product attention mechanism [76]. Unlike MTGNN [82] and other related works [96], which
return a single network for the entire window period of length K , our network discovery module
returns multiple implicit relationship networks д(t −k)s, one for each time-step t −k . Discovering
multiple implicit networks is important as it allows TIME to model the non-stationary nature of
evolving inter-series relationships. We first encode the sequence of financial time-series informa-
tion from modalitym: Xm

t with a modality-specific Gated Recurrent Unit (SeqEncm) to obtain the
hidden representations Hm

t ∈ R |V |×K×d . We then apply shared linear layers to generate queries

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 2, Article 38. Publication date: March 2024.



38:8 G. Ang and E.-Peng Lim

Fig. 3. Model architecture: The proposed model captures time-series features from M different modalities

(Xm
t ), say numerical or textual as shown in the figure, with their associated timestamps (Tt ). We first encode

features from a specific modality with a modality-specific sequence encoder (SeqEncm ). The dynamic implicit

network learning and encoding step then adaptively discovers implicit networksGm
t = [дm (t −K), . . . ,дm (t −

1)] between multiple variables V at different time-steps from the encoded sequential representations to

address the multivariate setting and the non-stationary nature of inter-series relationships. The temporal

encoding step then adaptively learns temporal representations from Tt and uses self-attention to jointly

encode the implicit network and feature representations in a time-sensitive manner. The dynamic implicit

network learning and encoding and temporal encoding steps are repeated with shared parameters for each

modality to generate modality-specific representations in a shared embedding space. The representations

are then fused with attention mechanisms in themultimodal fusionmodule and used for multiple forecasting

tasks.

Qm
t and keys Km

t from the hidden representations Hm
t :

Qm
t = LinearQ−T IM

(
Hm
t

)
(1)

Km
t = LinearK−T IM

(
Hm
t

)
. (2)

A |V | × |V | ×K attention weight tensorAWm
t can then be computed as the dot-product ofQm

t and
Km
t . To allow richer inter-series interactions to be learned across time-steps [54], we further add

a modality-specific learnable inner weight tensorWm ∈ RK×d×d :

AWm
t = tanh

(
Qm
t ·Wm · Kmᵀ

t√
d

)
. (3)

To emphasize the most important relationships at each time-step, we apply a sparsification step
and take the top R relational edges with the highestAWm

t for each time-step in [t −K ,t −1]. In this
article, we empirically set R = 20% in our experiments, which works well, and consider other R
settings in our ablation study (see Section 5). We shall leave alternative sparsification methods to
future work. We then obtain a sequence of sparse inter-series relationship networks, one for each
time-step in the window [t − K , t − 1]. Specifically, the inter-series relationship network is

дm(t − k) = (V , em(t − k),hm(t − k),am(t − k)) (4)

for k ∈ {1, . . . ,K}, where:
— em(t − k) represents the top-R (vi ,vj ) edges with the largest AWm

t [vi ,vj , t − k] values at
time-step t − k ;

—hm(t − k) represents the assets encoded by SeqEncm , hm(t − k) = Hm
t [∗, t − k]; and

— am(t − k) are either the AWm
t of the top R edges at time-step t − k or set to zero, i.e.,

am(t − k)[vi ,vj ]

=

{
AWm

t [vi ,vj , t − k] if (vi ,vj ) ∈ em(t − k)
0 otherwise.

(5)
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We stack the sequence of am(t − k)’s in Gm
t to obtain the corresponding weighted adjacency

tensor:

Am
t ∈ R |V |× |V |×K , (6)

with Am
t,i j ∈ RK representing the weighted relational edges between asset vi and vj across the

window [t − K , t − 1] for modalitym, i.e.,

Am
t,i j = [am(t − K)[vi ,vj ], . . . ,am(t − 1)[vi ,vj ]]. (7)

3.2 Dynamic Network Encoding

Next, we utilize the sequential encodings of the time-series information from SeqEncm , i.e., Hm
t ,

and the weighted adjacency tensorAm
t as inputs to a weighted dynamic graph convolution step to

generate the dynamic network representations of each of the assets. For an assetvi , we compute its
network representations H̃m

t,i ∈ RK×d across time-steps in the [t −K , t −1]window by aggregating
representations from its neighbors Nt (vi ) based on Am

t,i j as follows:

H̃m
t,i =

∑
vj ∈Nt (vi )

exp(Am
t,i j )∑

vj′ ∈Nt (vi ) exp(Am
t,i j′ )

· Hm
t, j . (8)

We denote the network representations for all assets by H̃m
t ∈ R |V |×K×d . Other GNN variants

can also be utilized for this graph convolution step, but we adopt this approach for computational
efficiency as it allows us to apply the graph convolution on the Hm

t and weighted Am
t tensors

across multiple time-steps in parallel. Using other common GNNs did not yield any improvement
in performance.

3.3 Temporal Encoding

Inspired by [28, 36], which proposed general frameworks for learning temporal representations, we
introduce a time vectorizer (TimeVect ) within TIME that is shared across the different modalities.
TimeVect takes as input the timestamps from the time-steps in [t−K , t−1] and learns the temporal
representations for them. The input timestamps are represented asTt ∈ R |V |×K×d t ime

, where dt ime

denotes the number of dimensions required for capturing the day of week and week and month
of the year of a timestamp. The temporal representations learned by TimeVect are denoted by
Pt ∈ R |V |×K×d . Functional forms are combined with learnable weights to adaptively learn and
combine periodic and non-periodic components within the multivariate financial time-series. This
could also be viewed as a time-sensitive version of positional encodings used in transformers that
only deal with sequential positions ofword tokens [76]. For each component, we apply linear layers
and selected activation functions to Tt . For TIME, the empirically chosen components are Φ1 =

Linear (Tt ); Φ2 = cos(Linear (Tt )); Φ3 = Siдmoid(Linear (Tt )); Φ4 = So f tplus(Linear (Tt )), which
enable the model to extract linear and non-linear trends, as well as seasonality-based temporal
patterns. We then concatenate these components and project them:

Pt = Linear ([Φ1 | |Φ2 | |Φ3 | |Φ4]). (9)

In the subsequent transformer-based attention-based sequential encoding step [76], we add the
learned temporal representations Pt to the dynamic network representations H̃m

t and then apply
linear layers shared across different modalities to generate queries, keys, and values:

Q̃m
t = LinearQ

(
H̃m
t + Pt

)
(10)

K̃m
t = LinearK

(
H̃m
t + Pt

)
(11)
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Ṽm
t = LinearV

(
H̃m
t + Pt

)
. (12)

We then apply scaled dot-product attention:

H̃ ′m
t = so f tmax

(
Q̃m
t · K̃mᵀ

t√
d

)
Ṽm
t , (13)

followed by a residual connection with layer normalization (LayerNorm) and finally a feed-forward
network (FFN) shared across different modalities:

Zm
t = FFN (LayerNorm

(
H̃ ′m
t + H̃

m
t

)
. (14)

The output of this step is hence

Zm
t = [zm(t − K), . . . , zm(t − 1)] ∈ R |V |×K×d . (15)

3.4 Multimodal Fusion

To learn the importance of different modalities, we use attention-based fusion to fuse Zm
t across

M modalities. A non-linear transformation is applied to the representations to obtain scalars

smt =W
(1)tanh

(
W (0)Zm

t + b
)
, (16)

whereW (0) andW (1) are learnable weight matrices and b is the non-modality-specific bias vector.
Parameters are shared across modalities. We normalize the scalars with a softmax function to
obtain the weights βmt s, which are used to fuse representations across modalities:

βmt =
exp(smt )∑

1≤m≤M exp(smt ) (17)

Zt =
∑

1≤m≤M
βmt Z

m
t . (18)

The output of this step is Zt = [z(t − K), . . . , z(t − 1)] ∈ R |V |×K×d . We use the last hidden state
in the sequence, i.e., z(t − 1), for the forecasting step.

3.5 Forecasting and Loss Functions

In the forecasting step, we use fully connected layers to generate the backcast of the numerical
price-related input data (say, modalityp) and forecasts of the means and volatilities of asset returns
over the selected horizon period L:

X̂
p
t = BC(z(t − 1)) (19)

Ŷ returns
mean,t = FCM (z(t − 1)) (20)

Ŷ returns
vol,t = FCV (z(t − 1)). (21)

TIME can backcast time-series information from multiple modalities. However, we backcast
numerical price-related information but not textual information as the multiple tasks in this article
focus on forecasts of numerical targets.
To forecast the correlations of asset returns over the horizon period L, we use the weights from

the linear layers in the temporal implicit network learning module:

Qcorr,t = LinearQ−T IM (z(t − 1)) (22)

Kcorr,t = LinearK−T IM (z(t − 1)). (23)
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This allows what was learned when discovering the inter-series relationships to be leveraged
for correlation forecasts:

Ŷ returns
corr,t = FCC

(
tanh

(
Qcorr,t · Kᵀcorr,t√

d

))
. (24)

For Y returns
t = [yreturns (t), . . . ,yreturns (t +L)] over a horizon of L time-steps, the ground-truth

labels for means and volatilities are defined as follows:

Y returns
mean,t =

1

L

L∑
l=0

yreturns (t + l) (25)

Y returns
vol,t =

√√√
1

L

L∑
l=0

(yreturns (t + l) − μ)2, (26)

where μ = Y returns
mean,t . For correlations between any two assets vi and vj :

Y returns
corr,t,i j =

∑L
l=0(xi (t + l) − μi )(x j (t + l) − μ j )√∑L

l=0(xi (t + l) − μi )2
√∑L

l=0(x j (t + l) − μ j )2
, (27)

where xi (t + l) = yreturnsi (t + l), x j (t + l) = yreturnsj (t + l). We compute the loss between the
forecasts and the respective ground truths defined above with root mean squared error (RMSE) and
use the total loss as the training objective:

Ltotal = Lbackcast

(
X
p
t , X̂

p
t

)
+ Lmean

(
Y returns
mean,t , Ŷ

returns
mean,t

)
+ Lvol

(
Y returns
vol,t , Ŷ returns

vol,t

)
+ Lcorr

(
Y returns
corr,t , Ŷ

returns
corr,t

)
.

(28)

4 EXPERIMENTS

4.1 Datasets

We conduct experiments with four datasets, comprising textual information of online news articles
from two popular financial news portals and numerical information of daily stock market price-
related information of two stock markets—NYSE and NASDAQ—from 2015 to 2019.

Textual News Data. The two online news article sources are (1) Investing (IN)1 and (2) Benzinga
(BE)2 news datasets. The datasets contain news articles and commentaries collected from IN
and BE investment news portals, which are drawn from a wide range of mainstream providers,
analysts, and blogs, such as Seeking Alpha. We do not combine the two news datasets as
they differ in their coverage of financial news. This also allows us to check the validity of our
experimental results across different news datasets. Following [3], we use the Wikipedia2Vec [86]
embedding model to pre-encode textual news to capture the rich knowledge present within the
Wikipedia knowledge base while offering a relatively compact representation with dimension
of 100. Wikipedia2Vec, pretrained with Wikipedia pages of entities and words in these pages,
is designed to return representations of similar words and entities close to one another in the
representational space. The representation of each news article is the average of Wikipedia2Vec
embeddings of words in each news article. It turns out that the Wikipedia2Vec word embedding
model produces reasonably good performance compared to other pre-trained text encoders.

1Subset extracted from https://www.kaggle.com/gennadiyr/us-equities-news-data
2Subset extracted from https://www.kaggle.com/miguelaenlle/massive-stock-news-analysis-db-for-nlpbacktests
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Table 1. Overview of Datasets

IN-NY IN-NA BE-NY BE-NA

No. articles 221,513 1,377,098

No. assets (stocks) 374 402 2,240 2,514

No. data points 470,118 505,314 2,815,680 3,160,098
Each data point is a set of price information for one stock in a time-step that
corresponds to a sliding window [t − K, t − 1] and forecasting window
[t, t + L] pair as shown in Figure 4.

Fig. 4. We adopt a fixed sliding window to extract input numerical stock price and textual news features in

the window [t −K , t −1] and return, volatility, and correlation labels in the horizon [t , t +L] to obtain labelled
data points, and split these into non-overlapping training, validation, and testing sets.

Numerical Stock Price Data. For the local numerical information, we collected daily stock mar-
ket price-related information—returns, opening, closing, low and high prices, trading volumes,
volume-weighted average prices, and shares outstanding—of the two stock markets, NYSE (NY)

and NASDAQ (NA), from the Center for Research in Security Prices. We filter out stocks from NY
and NA that were not traded in the respective time periods and whose stock symbols were not
mentioned in any articles for the respective news article sources.
We combine them into four datasets (two news article sources and two stock markets), covering

a different number of assets and news articles as depicted in Table 1. These datasets, spanning 5
years, with more than 1.5 million articles and 2,000 companies, are relatively large and provide
strong assurance to our experiment findings, e.g., when compared to recent works [20, 40, 68],
which cover fewer than 100 companies. To obtain labelled data samples, we adopt a sliding win-
dow approach [81] to extract numerical and textual input features in the window [t − K , t − 1]
and returns-related labels, i.e., ground-truth means, volatilities, and correlations of returns in the
horizon [t , t + L], as shown in Figure 4. For each of the four datasets, we obtain data across 1,257
time-steps, leading to a total number of data points ranging from 470,118 to 3,160,098 across the
four datasets, and divide these samples into non-overlapping training/validation/testing sets in the
ratios 0.6/0.2/0.2 for all experiments.

4.2 Tasks and Metrics

We compare TIME with state-of-the-art baselines on three predictive tasks: forecasting of (1)

means, (2) volatilities, and (3) correlations of asset price percentage returns. We use
RMSE, mean absolute error (MAE), and symmetric mean absolute percentage error (SMAPE) as
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metrics. RMSE and MAE are common scale-dependent metrics used to evaluate forecasting per-
formance, with RMSE being more sensitive to outliers than MAE. SMAPE is a commonly used
scale-independent metric. These metrics are computed as follows:

RMSE =

√∑ |V |
i=1(Y returns

t [i] − Ŷ returns
t [i])2

|V | (29)

MAE =

∑ |V |
i=1 |Y returns

t [i] − Ŷ returns
t [i]|

|V | (30)

SMAPE =
100%

|V |
|V |∑
i=1

|Y returns
t [i] − Ŷ returns

t [i]|
(|Y returns

t [i]| + |Ŷ returns
t [i]|)/2

. (31)

We choose SMAPE instead of mean absolute percentage error (MAPE) as SMAPE gives equal
importance to both under- and over-forecasts required in this evaluation context, while MAPE
favors under-forecast.

4.3 Baselines and Settings

We compare TIME againstGRUmodels and the following state-of-the-art baselines (see Section 2):
NBEATS [56], DARNN [64],MTGNN [82], TST [91], FAST, and SE [20]. NBEATS, DARNN, and
MTGNN are designed specifically for numerical information, while FAST and SE are designed for
textual information. For the more general GRU and TSTmodels, we compare against GRU and TST
models with just numerical information as inputs (GRU-Num and TST-Num) and with concate-
nated numerical and textual information as inputs (GRU-NumTxt and TST-NumTxt). We did
not compare against classical models as they cannot be adapted to the multitask setting required
in our experiments. Instead, NBEATS, a recent state-of-the-art model that already demonstrated
good performance when benchmarked against top classical models, is included as one of the base-
line models. We add fully connected layers to all baselines for them to forecast means, volatilities,
and correlations of asset price percentage returns.
We set the window period K=20 days and horizon period L=10 based on empirical experiments.

K=20 corresponds to a trading month, and L=10 days corresponds to a global regulatory require-
ment for VaR computations, which we will examine in an application case study (see Section 6).
Dimensions of hidden representations are fixed at 64 across all models. An Adam optimizer with a
learning rate of 1e-3 with a cosine annealing scheduler is used. Models are implemented in Pytorch
and trained for a maximum of 50 epochs with early stopping (patience of 5 epochs). We run each
experiment 10 times with different random seeds to initialize model parameters and report the
averages and standard deviations of results across 10 runs. The TIME model has 3.5e5 parameters
and takes around 1 to 3 minutes per training epoch on a 3.60 GHz AMD Ryzen 7Windows desktop
with NVIDIA RTX 3090 GPU and 64 GB RAM.

4.4 Results

Table 2 sets out the results, averaged over 10 runs, of the forecasting experiments on the IN and BE
datasets, respectively. In general, across all tasks and datasets, TIME out-performs baselines accord-
ing tomost metrics. Other than the narrower performance differences between TIME and baselines
on the task of forecasting means for the RMSE metric, the performance differences between TIME
and baselines for other tasks (i.e., based on the MAE and SMAPEmetric for forecasting means, and
all three metrics for forecasting volatilities and correlations) are relatively clear. This suggests that
the tasks of forecasting volatilities and correlations are harder than the task of forecasting means,
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Table 2. Forecasting Results

IN-NY IN-NA BE-NY BE-NA

RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

Mean Forecasting

GRU-1 0.0653 0.0136 1.2705 0.0259 0.0147 1.2744 0.0768 0.0194 1.3169 0.1937 0.0385 1.3380

TST-1 0.0657 0.0145 1.4798 0.0319 0.0156 1.4492 0.0753 0.0193 1.4898 0.1968 0.0362 1.3724

NBEATS 0.0651 0.0136 1.3847 0.0261 0.0155 1.2794 0.0700 0.0185 1.4031 0.1904 0.0326 1.3555

DARNN 0.0651 0.0137 1.3871 0.0262 0.0148 1.3678 0.0724 0.0179 1.3645 0.1950 0.0322 1.3634

MTGNN 0.0652 0.0156 1.2493 0.0428 0.0169 1.3234 0.0703 0.0179 1.3801 0.2323 0.0451 1.3826

FAST 0.0680 0.0148 1.4507 0.0347 0.0174 1.3350 0.0825 0.0199 1.4007 0.1985 0.0395 1.3669

SE 0.0706 0.0201 1.3244 0.0429 0.0233 1.3208 0.0869 0.0226 1.3520 0.1980 0.0410 1.3363

GRU-2 0.0652 0.0140 1.2695 0.0257 0.0146 1.2547 0.0756 0.0192 1.3016 0.1973 0.0368 1.3296

TST-2 0.0656 0.0143 1.4014 0.0329 0.0165 1.2910 0.0768 0.0199 1.4064 0.1962 0.0377 1.3634

TIME 0.0652 0.0115 1.0424 0.0231 0.0115 1.0520 0.0703 0.0164 1.2696 0.1929 0.0320 1.2796

Volatility Forecasting

GRU-1 0.1957 0.0437 0.5357 0.0820 0.0463 0.5517 0.2256 0.0556 0.6336 0.5977 0.1137 0.7841

TST-1 0.1909 0.0442 0.5231 0.1012 0.0499 0.5583 0.2383 0.0629 0.6098 0.5928 0.1181 0.6897

NBEATS 0.1571 0.0363 0.4879 0.0722 0.0397 0.4921 0.2250 0.0556 0.5917 0.5926 0.1099 0.6862

DARNN 0.1848 0.0381 0.4696 0.0754 0.0409 0.4941 0.2294 0.0594 0.5925 0.5963 0.1171 0.6851

MTGNN 0.1551 0.0414 0.6033 0.1157 0.0577 0.6244 0.2275 0.0561 0.5937 0.5963 0.1189 0.7110

FAST 0.2125 0.0479 0.5623 0.1170 0.0574 0.6272 0.2722 0.0747 0.7218 0.6018 0.1327 0.7737

SE 0.2129 0.0488 0.5758 0.1213 0.0585 0.6270 0.2703 0.0742 0.7044 0.6018 0.1317 0.7102

GRU-2 0.1946 0.0443 0.5595 0.0806 0.0458 0.5484 0.2234 0.0588 0.6453 0.5995 0.1145 0.7672

TST-2 0.1957 0.0450 0.5389 0.1063 0.0541 0.5970 0.2443 0.0662 0.6487 0.5963 0.1282 0.7532

TIME 0.1550 0.0327 0.4080 0.0722 0.0364 0.4271 0.2200 0.0546 0.5840 0.5922 0.1093 0.6805

Correlation Forecasting

GRU-1 0.5054 0.4383 1.3498 0.4999 0.4326 1.4708 0.5083 0.4391 1.4381 0.4905 0.4210 1.5441

TST-1 0.5069 0.4414 1.3748 0.4987 0.4319 1.4460 0.5068 0.4391 1.4410 0.4891 0.4205 1.5678

NBEATS 0.5064 0.4395 1.3507 0.4986 0.4322 1.4571 0.5074 0.4387 1.4339 0.4890 0.4202 1.5550

DARNN 0.5069 0.4419 1.3761 0.4991 0.4327 1.4602 0.5083 0.4399 1.4372 0.4897 0.4213 1.5773

MTGNN 0.5110 0.4435 1.3740 0.5002 0.4329 1.4533 0.5085 0.4405 1.4483 0.5035 0.4238 1.5704

FAST 0.5086 0.4436 1.3888 0.4992 0.4328 1.4640 0.5085 0.4407 1.4541 0.4893 0.4207 1.5661

SE 0.5126 0.4431 1.3985 0.5047 0.4348 1.4746 0.5161 0.4433 1.4416 0.4902 0.4198 1.5630

GRU-2 0.5060 0.4391 1.3670 0.5003 0.4321 1.4609 0.5088 0.4387 1.4224 0.4898 0.4209 1.5598

TST-2 0.5063 0.4408 1.3673 0.4989 0.4329 1.4624 0.5068 0.4393 1.4439 0.4894 0.4209 1.5675

TIME 0.4167 0.3396 1.0260 0.4197 0.3472 1.1291 0.4781 0.4075 1.3107 0.4778 0.4062 1.4731

Lower average is better for all metrics. Best and second-best performing models are boldfaced and underlined,
respectively.

and that TIME performs better on such harder tasks. Among the baselines, NBEATS, which models
specific time-series patterns, and MTGNN, which learns the underlying relationships between as-
set nodes, generally perform better, highlighting the importance of such model features. NBEATS,
a univariate model, generally performs better on the means forecasting task when compared to
multivariate models such as DARNN andMTGNN, but this difference between the NBEATS model
and the DARNN and MTGNN models is less consistent for the volatility and correlation forecast-
ing tasks. This suggests that capturing multivariate information is important for the harder tasks
of forecasting volatilities and correlations.
On forecasting means, we see that the performance differences between models are the least

dispersed, particularly for the RMSE metric. Nonetheless, the differences between TIME and
baselines on the MAE and SMAPE metrics are clear, even after taking into account the standard
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deviations. In particular, TIME enjoys a 16.6% and 16.2% improvement in SMAPE compared with
the second-best-performing models on IN-NY and IN-NA, respectively. Among the baselines,
NBEATS, DARNN, MTGNN, and GRU-2 show relatively better performance across the four
datasets. While the GRU-2 model is a relatively simpler model, its good performance on the
task of forecasting means could be due to its use of multimodal (i.e., both numerical and textual)
information.
On the task of forecasting volatilities, the performance differences between models are more

dispersed and the differences in performance between TIME and baselines are more consistent as
compared with the task of forecasting means. This could be due to the difficulties that baselines
have in adjusting to changes in volatility regimes for differentmarkets, which TIME is able to adjust
to due to its ability to capture multivariate and multimodal information and adapt to evolving
intra-series patterns and inter-series relationships between assets. Among the baselines, NBEATS,
DARNN, and MTGNN again show relatively better performance, similar to what we observed
for the task of forecasting means. GRU-2 in this case does not perform as well, possibly due to
forecasting volatility being a harder task.
On the task of forecasting correlations, the difference in performance between TIME and the

baselines is the clearest, as compared to the mean and volatility forecasting tasks. For example,
TIME shows 17.5% and 15.8% smaller RMSE compared with the second-best models on IN-NY
and IN-NA datasets, respectively. TIME also achieves at least 20% smaller SMAPE than the
second-best models on the two datasets. This demonstrates the usefulness of capturing implicit
inter-series/asset relationship networks at multiple time-steps—a novel feature of TIME. Among
the baselines, NBEATS, TST, and GRU models show relatively better performance, but the gap
between these models and the TIME model on the task of forecasting correlations is large relative
to other tasks. The performance of these models is also not consistent across the four datasets as
we see them performing well only on one or two datasets.

While there are variations in forecasting performances between TIME and baselines across
different tasks and datasets, TIME generally achieves consistently good performance across
all tasks and datasets. In contrast, the baselines can be seen to perform well on one or two
tasks/datasets but perform poorly on other tasks/datasets. For example, while NBEATS performs
consistently well on the task of forecasting means, its performance on the tasks of forecasting
volatilities and correlations is poorer and less consistent. Performing consistently well on all three
tasks is important for investment and risk management, which involves portfolios comprising
multiple assets, e.g., a decision on whether to buy or sell a stock in a portfolio depends not
only on its mean return in the future but also on how volatile (or risky) the stock will be in the
future, and how correlated the stock will be to other stocks in the portfolio in the future (due to
diversification considerations). TIME is hence more suited for such applications based on its more
consistent and good performance across multiple tasks and datasets as it captures multivariate and
multimodal information, as well as implicit inter-series/asset relationship networks at multiple
time-steps.

5 ABLATION STUDIES

We conduct ablation studies to evaluate the performance impact on TIME when some model
features are removed or simplified or hyper-parameters changed. These include:

—w/o. TimeVect: We remove the TimeVect module so that no temporal representation is
added to the dynamic network representations H̃m

t .
—w. single net: We take the average of weights across the window [t − K , t − 1] to obtain a
single implicit network.
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Table 3. Ablation Studies on IN-NY Datasets

RMSE MAE SMAPE

Mean Forecasting

w/o. TimeVect 0.0716 0.0120 1.0633
w. single net. 0.0653 0.0116 1.0545
w/o. inner wt. 0.0655 0.0116 1.0510
R = 10% 0.0656 0.0117 1.0787
R = 80% 0.0662 0.0117 1.0507
no backcast loss 0.0662 0.0117 1.0573
no mean loss 0.0994 0.0653 1.7131
no vol. loss 0.0656 0.0119 1.1032
no corr. Loss 0.0694 0.0121 1.0813
TIME 0.0652 0.0115 1.0424

Volatility Forecasting

w/o. TimeVect 0.1617 0.0341 0.4187
w. single net. 0.1553 0.0338 0.4266
w/o. inner wt. 0.1560 0.0328 0.4137
R = 10% 0.1555 0.0347 0.4416
R = 80% 0.1622 0.0332 0.4185
no backcast loss 0.1558 0.0333 0.4268
no mean loss 0.1561 0.0363 0.4633
no vol. loss 0.2419 0.1051 1.6133
no corr. Loss 0.1599 0.0327 0.4096
TIME 0.1550 0.0327 0.4080

Correlation Forecasting

w/o. TimeVect 0.4230 0.3475 1.0550
w. single net. 0.4233 0.3465 1.0480
w/o. inner wt. 0.4184 0.3414 1.0328
R = 10% 0.4355 0.3608 1.0913
R = 80% 0.4227 0.3463 1.0440
no backcast loss 0.4223 0.3462 1.0505
no mean loss 0.4422 0.3674 1.1086
no vol. loss 0.4478 0.3733 1.1267
no corr. Loss 0.5467 0.4833 1.9203
TIME 0.4167 0.3396 1.0260

Lower is better for all metrics. Best model(s) are in bold;
second-best model(s) are underlined.

—R=10%/R=80%: Recall that the degree of sparsification R is used for selecting inter-series
relationship edges. Instead of the default choice R = 20%, we study the impact of adopting
sparser and denser degrees.

— no backcast loss: Removal of backcast of numeric price-related input data Lbackcast from
Equation (28).

— nomean loss, no vol. loss, no corr. loss: Removal ofLmean ,Lvol , andLcorr , respectively,
from Equation (28).

Table 3 shows the results, averaged across 10 runs, of the ablation studies for TIME on the
IN-NY datasets. We observe similar sensitivities for the other three datasets. Not utilizing the
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temporal representation, i.e., w/o. TimeVect, shows a significant drop in performance on a num-
ber of metrics, demonstrating the importance of capturing intra-series patterns using temporal
representations. When we use a single implicit network across the window, i.e., w. single net.,
we observe poorer performance across all metrics, particularly for the volatility and correlation
forecasts, demonstrating the importance of capturing evolving inter-series relationships. When
we vary the degree of sparsification, with R = 10% and R = 80% (instead of R = 20% used in our
experiments), we see significant variations in performance, particularly for volatility and corre-
lation forecasts, which indicates the importance of the implicit network structural information.
When we vary the training objective by either excluding backcast, mean, volatility, or correlation
forecast losses (i.e., no backcast loss, no mean loss, no vol. loss, no corr. loss, respectively),
we see significant drops in performance, even for tasks whose losses were not excluded in the
training objective, demonstrating the importance of the multitask setting in improving overall
forecasting performance. This suggests that overfitting can be an issue when training on a single
task for such financial time-series. The multitask setting that we adopt with these heterogeneous
but related forecasting tasks can help to improve overall performance across tasks as it serves as
a regularization process to prevent overfitting, and also enables complementary information from
other related tasks to be used to improve performance across tasks.

6 CASE STUDIES

In this section, following [4], we apply the model forecasts for two important investment and
risk management applications—portfolio allocation and VaR forecasting—to evaluate the quality
of TIME’s forecasts against the baselines.

6.1 Portfolio Allocation

Portfolio allocation is an important task for many financial institutions. The aim of portfolio allo-
cation is to optimize the proportion of capital invested in each asset in a portfolio by finding an
optimal set of weights W that determine how much capital to invest in each asset, so that port-
folio returns can be maximized while minimizing portfolio risk. In this article, we adopt the risk
aversion formulation [22] of the mean-variance risk minimization model by [52], which models
both portfolio return and risk expressed as mean (μ) and co-variances (Σ) of return, respectively.
Under the risk aversion formulation, the classical mean-variance risk minimization model by [52]
is re-formulated to maximize the risk-adjusted portfolio return by optimizing the asset allocation
W, a |V | dimensional vector:

maxW (Wᵀμ − λWᵀΣW), (32)

subject to Wᵀ1 = 1. λ, known as the Arrow-Pratt risk aversion index, is used to express an in-
vestor’s risk preferences and is typically in the range of 2 to 4 [22]. In our experiments, we set
λ = 2. We observe that higher λ values reduce returns across all models, but the relative differ-
ences in returns between models generally remain consistent. In this article, we use the forecasted
means of asset returns for μ and compute Σ with the forecasted volatilities and correlations of
asset returns for the selected horizon period [t , t + L] defined as follows:

μ̃ = Ŷ returns
mean,t (33)

Σ̃ = Dt · Ŷ returns
corr,t · Dt , (34)

where Dt is the |V | × |V | diagonal (and thus symmetric) matrix filled with Ŷ returns
vol,t

along the
diagonals and 0 otherwise. We choose to forecast correlations of asset returns over the selected
horizon period [t , t +L] instead of directly forecasting co-variances as the co-variances need to be
positive semi-definite (PSD) so that the matrix is invertible [21], which is important for applications
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such as portfolio optimization. Forecasting co-variances directly does not guarantee PSD. We in-
stead forecast volatilities and correlations separately and compute the co-variance matrix using
the forecasted volatilities and correlations.
This application can be viewed as a predictive task as we use the input information from the

window period [t −K , t − 1] to make forecasts of the mean (μ) and correlation (Σ) of asset returns
over the future horizon [t , t + L], which are in turn used to determine the asset allocation weights
W

f orecast . The realized returns of the investment portfolio constructed according to Wf orecast

are computed as Ef orecast =Wf orecastᵀRr eal , where Rr eal is a vector of realized percentage asset
returns over the future horizon.
Instead of model forecasts, the classical approach, which we use as a naive approach in this

article, uses the mean of percentage asset returns based on historical returns over a selected period
μ, and the historical co-variances of the same set of historical returns Σ as inputs to Equation (32)
to obtain the asset allocation weights (Wnaive ), which we can use to compute the portfolio returns
Enaive =WnaiveᵀRr eal . Actual returns of a portfolio of assets depend on the time-series and time
periods under consideration. Hence, for better comparability, we evaluate the performance of TIME
and baselines relative to the classical/naive approach by computing the ratio R = Ef orecast /Enaive .
Given that the aim is to maximize portfolio returns while minimizing portfolio risk (volatility), we
also compute the respective risk-adjusted realized portfolio returns over the future horizon [t , t+L]:
Ef orecast ′ = E f orecast

σ f orecast , where σ
f orecast is the corresponding volatility of the portfolio constructed

using Wf orecast in the future horizon [t , t + L], Enaive ′ = Enaive

σnaive
, and σnaive is similarly the

volatility of the portfolio constructed usingWnaive in the future horizon [t , t + L]. These are used
to compute the risk-adjusted ratio R′ = Ef orecast ′/Enaive ′ to further evaluate the performance of
TIME and baselines. In both cases, portfolio return volatility (i.e., σ f orecast and σnaive ) is defined
as one standard deviation of the respective portfolio returns over the future horizon [t , t + L] and
is computed as σ =

√
WᵀΣW, where Σ are the co-variances of realized percentage asset returns of

the respective portfolios over the same future horizon.
For this application, the datasets are similarly divided into non-overlapping train-

ing/validation/testing sets in the ratios 0.6/0.2/0.2 as described in Section 4.1, and we evaluate
performance based on the averages of R and R′ across the testing set.

6.2 Value-at-Risk

VaR [45] is a key measure of risk used in financial institutions for the measurement, monitoring,
and management of financial risk. Financial regulators require important financial institutions
such as banks to measure and monitor their VaR over a L=10 day horizon and maintain capital
based on this VaR as loss buffers. VaR measures the loss that an institution may face in the pre-
defined horizon with a probability of p%. For example, if the 10-day 95% VaR is $1,000,000, it means
that there is a p = 5% probability of losses exceeding $1,000,000 over a 10-day horizon.

VaR can be computed as a multiple of the portfolio’s volatility:

VaR(p) = −ϕ−1(p) × σ , (35)

where σ is the portfolio volatility, and ϕ is the inverse cumulative distribution function of the
standard normal distribution, for example, if p = 5%, then ϕ−1(p) = 1.645. Whenever realized
portfolio losses (i.e., negative realized portfolio returns Er ealized ) are greater than the forecasted
VaR, it is regarded as a VaR breach, i.e., Er ealized ≤ VaR(p).

For this application, the portfolio is constructed based on the approach described for the
portfolio allocation application at each time-step. This mimics a real-world scenario where
financial institutions continually update their portfolios based on market conditions. To evaluate
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Table 4. Applications: Higher Is Better for R/R′; Lower
Is Better for % Br

IN-NY IN-NA

% Br. R R′ % Br. R R′

GRU-1 5.1% 1.7 1.2 3.4% 1.9 0.9
TST-1 11.7% 1.2 1.1 3.4% 1.0 1.0
NBEATS 5.1% 1.4 1.5 2.4% 1.7 0.8
DARNN 8.5% 1.7 1.1 4.7% 1.3 0.8
MTGNN 6.3% 1.8 1.1 9.4% 0.6 0.4
FAST 17.9% 0.1 0.1 13.7% 0.3 0.4
SE 12.6% 0.1 0.1 5.7% 0.3 0.5
GRU-2 6.3% 2.5 1.7 3.4% 1.8 0.6
TST-2 13.5% 1.3 1.2 5.3% 0.8 1.1
TIME 4.3% 2.5 2.2 2.2% 2.7 2.9

the baseline models, we use the forecasted portfolio volatility σ̃ =
√
Σ̃, where Σ̃ is computed using

the forecasted volatilities and correlations of asset returns as defined in Equation (34). Similar to
the portfolio allocation application, this can also be viewed as a predictive task as we are using
input information from the window period [t −K , t − 1] to make forecasts over the future horizon
[t , t + L] and using these forecasts to determine the VaR in the future horizon. We evaluate
model performances based on percentage of VaR breaches (% Br.), i.e., the percentage of losses
in the testing set that led to 95% VaR breaches (using the same training/validation/testing sets as
described in Section 4.1). Models that are able to make accurate forecasts of VaR should have a
lower percentage of VaR breaches (% Br.). We choose the 95% threshold for our experiments as it
is a common confidence level used by banks to monitor their risks.
We run each of these portfolio allocation and VaR measurement experiments 10 times with the

models trained earlier for the forecasting tasks and report the averages of results across the 10
runs. We conduct and report experiments on the IN-NY and IN-NA datasets with fewer assets as
a smaller pool of potential assets usually presents a greater challenge for these two applications
by limiting potential returns and risk diversification.

6.3 Experiment Results

Table 4 depicts results for the IN-NY and IN-NA datasets for the VaR application. On the portfo-
lio allocation application, portfolios constructed using the forecasts from TIME achieve better
relative performance on the return ratio (R) and risk-adjusted return ratio (R′) for both datasets.
Similarly, on the VaR application, TIME also out-performs the baselines, with a lower percentage
of VaR breaches (% Br.). For both applications, we observe significant variance in performance for
the baselines, with a number of baselines showing ratios of less than 1 (i.e., performing worse than
the naive approach) or high levels of percentage of VaR breaches, demonstrating the difficulty of
these applications. The performances of NBEATS, MTGNN, and GRU-2 are the closest to TIME, in-
dicating the importance of capturing intra-series patterns, implicit inter-series relationships, and
multimodality, respectively.

7 INTERPRETABILITY

Being able to interpret underlying implicit relationship networks discovered by TIME and utilized
for forecasting can support further analysis by investment and risk managers. In this section, we
show how implicit relationship networks across multiple modalities discovered by TIME can be
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Fig. 5. (i) is a sequence of heatmaps visualizing the dynamic networks, representing inter-series relationships

between assets, learned by TIME. (ii) contextualizes these dynamic networks by mapping them to changes in

market prices and news sentiment in the lead-up to and after the announcement of the Brexit referendum on

June 23, 2016. (iii) visualizes the overall correlations between assets over the entire window period. As shown

in the legend on the right, pink indicates more positive attention weights (more correlated or similar), while

cyan indicates more negative attention weights (less correlated or dissimilar). We can see that TIME captures

rich evolving inter-series relationships between assets at multiple time-steps as shown in (i), which would

not have been captured with the usual approach of modeling a single implicit network or overall correlations

over the entire window period as shown in (iii).

extracted and demonstrate the importance of capturing evolving inter-series relationships with a
case study. As described in Section 3.1, TIME learnsmodality-specificAWm

t from the encoded finan-
cial time-series information. AWm

t represent weighted inter-series relationships between assets
learned by TIME for modalitym. To visualizeAWm

t acrossM modalities, we utilize the multimodal
fusion weights βmt learned by TIME, as described in Section 3.4, to obtain AWt =

∑
m∈M βmt AW

m
t .

The resultantAWt ∈ R |V |× |V |×K represents fused inter-series relationships between assets learned
by TIME in an adaptive fashion, which we can analyze to interpret how underlying relationships
between assets evolved in different window periods.
To illustrate the inter-series relationships learned by TIME, we use a case study of a period in

June 2016 leading up to and after the announcement of the Brexit referendum, i.e., the results of
the vote on whether the United Kingdom would exit the European Union. There were significant
swings in market and public sentiment during that short period, corresponding to changes in
numerical price-related and textual news information, respectively. Hence, it allows us to observe
the evolving inter-series relationships between assets due to these changes that were learned
by TIME. Figure 5(i) visualizes the dynamic networks representing inter-series relationships
between assets learned by TIME. Figure 5(ii) shows a context of changes in market prices and
news sentiment in the lead-up to and after the announcement of the Brexit referendum on June
23, 2016. Figure 5(iii) shows the overall correlations between assets over the whole window
period. We observe that the marked swings in market prices and news sentiment due to changes
in expectations on the outcome of the Brexit referendum were reflected clearly in the dynamic
networks learned by TIME. Periods of fear due to heightened expectations of Brexit happening
(June 14–16, 2016) and when Brexit materialized (June 22–27, 2016) correspond to high inter-series
relationship weights in the dynamic networks learned by TIME. TIME was also sensitive to the
easing of such fears in the intervening period (June 17–21, 2016), as we see lower inter-series
relationship weights in the dynamic networks learned by TIME during that period. In contrast,
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the usual approach of modeling a single implicit network or overall correlations over the entire
window period, as shown in Figure 5(iii), would not have captured such rich evolving inter-series
relationships.

8 CONCLUSION AND FUTURE WORK

In this article, we proposed TIME, a novel model that self-discovers implicit inter-series rela-
tionship networks at multiple time-steps from multimodal time-series data and applies dynamic
network learning on such networks for multivariate time-series forecasting on multiple tasks.
Based on extensive experiments on three forecasting tasks and two important real-world financial
applications across real-world datasets, we show the value of learning implicit inter-series
networks at multiple time-steps from time-series data and combining these with learned temporal
representations for multiple forecasting tasks.
In future work, we intend to explore combining such learned implicit relationship networks to-

gether with pre-defined explicit networks (e.g., from knowledge graphs extracted fromWikidata or
economic/financial transaction networks purchased from data providers) on other tasks that could
benefit from such information, such as forecasting events, stock returns, and credit ratings of com-
panies, and providing stock recommendations. Further work could also be conducted on learning
important implicit relationships to improve model explainability and interpretability. Aside from
focusing on designing deep learning models for such dynamic time-series and network informa-
tion, further work could also focus on how such models could be integrated within end-to-end
reinforcement learning frameworks for quantitative trading such as TradeMaster [71].
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