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Abstract—Federated Learning (FL) suffers from low conver-
gence and significant accuracy loss due to local biases caused by
non-Independent and Identically Distributed (non-IID) data. To
enhance the non-IID FL performance, a straightforward idea is
to leverage the Generative Adversarial Network (GAN) to miti-
gate local biases using synthesized samples. Unfortunately, existing
GAN-based solutions have inherent limitations, which do not sup-
port non-IID data and even compromise user privacy. To tackle the
above issues, we propose a GAN-based unbiased FL scheme, called
FLGAN, to mitigate local biases using synthesized samples gener-
ated by GAN while preserving user-level privacy in the FL setting.
Specifically, FLGAN first presents a federated GAN algorithm using
the divide-and-conquer strategy that eliminates the problem of
model collapse in non-IID settings. To guarantee user-level privacy,
FLGAN then exploits Fully Homomorphic Encryption (FHE) to
design the privacy-preserving GAN augmentation method for the
unbiased FL. Extensive experiments show that FLGAN achieves
unbiased FL with 10% − 60% accuracy improvement compared
with two state-of-the-art FL baselines (i.e., FedAvg and FedSGD)
trained under different non-IID settings. The FHE-based privacy
guarantees only cost about 0.53% of the total overhead in FLGAN.

Index Terms—Federated learning, fully homomorphic
encryption, GAN, non-IID, user-level privacy.
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I. INTRODUCTION

F EDERATED Learning (FL) [1], [2] is one of the most
promising distributed learning paradigms, especially for

privacy-sensitive applications. Instead of directly collecting
user-held data, FL aims to protect user-level privacy [3] by
implementing model training with sub-updates uploaded by
users. It has been shown that the aggregated update of FL
is an unbiased estimator of local updates under Independent
and Identically Distributed (IID) settings [4]. Unfortunately,
the uncontrollability and complexity of real applications always
result in an uneven distribution of user-held data, which is
hard to be ideally IID [5]. With ubiquitous non-IID data, FL
generally brings various concerns, such as slow convergence
and poor performance of the global model [6], [7]. As observed
in Fig. 1(a), the most striking feature of non-IID FL is that the
local data distribution of each user differs dramatically. If local
updates are trained on user-held non-IID data, the aggregated
parameter x(t) strays towards a local optimum xi∈[1,n], away
from the true global optimum x∗. Therefore, how to ensure FL
performance with non-IID data poses a pervasive challenge for
FL [8].

To eliminate local biases in a non-IID setting, a direct ap-
proach is to add proper data samples that can smooth out the
biased local data distribution caused by non-IID data. However,
determining what is “deficient” in each user’s data to fulfill the
IID requirement would require learning the distribution of each
user’s data, which violates the privacy requirement in FL. To
circumvent the privacy barrier and eliminate local biases in
a non-IID setting, this paper designs a novel federated GAN
model, called FLGAN, which enables Generative Adversarial
Networks (GANs) to be privately trained to synthesize training
samples. As depicted in Fig. 1(b), each user collaboratively
trains a federated GAN model (containing a discriminator and
a generator) to synthesize global IID data. The objective of
the discriminator is to assess how likely the generated global
samples are real or fake, which in turn trains the generator to
improve its performance. The learned generator mimics IID
samples to augment local non-IID data. In this way, FLGAN

ensures the consistency of the objectives of both local and global
convergence and eliminates locally biased updates, resulting in
an unbiased FL aggregation.

Unfortunately, FLGAN must dive to the bottom to fix the fol-
lowing issues, which inhibit the development of federated GAN
training. The first issue is that existing GAN solutions [9] face
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Fig. 1. Non-IID FL approach, black squares denote the global convergence,
and red, yellow and green triangles denote the local convergences. .

difficulties in constructing a global GAN in the non-IID setting.
Mathematically, the objectives of local GAN and federated GAN
remain biased in non-IID settings. As a result, it is easy to
incur the model collapse, since the biased local model/update
trained on non-IID data causes a biased estimator of the global
GAN model. To address this issue, existing approaches [10],
[11] swap the trained discriminator in a user-by-user manner to
access massive data for constructing the global GAN. However,
the computation overhead increases as users grow in number,
which is too time-consuming and unsuited to a federated ar-
chitecture. The second issue is that existing solutions ignore
data privacy. The GAN training [12], [13] compromises data
privacy as realistic-looking synthetic data containing sensitive
information are transmitted between the server and users [3],
[14]. Fully Homomorphic Encryption (FHE) is a promising
solution for privacy guarantee. However, GAN training involves
complicated non-linear activations such as ReLU and Sigmoid,
which leads to the burdensome overhead by using FHE to
implement secure computations. Therefore, it is challenging to
design a federated GAN that is supportive of the non-IID setting
and the federated architecture, while ensuring user-level privacy
with a lightweight overhead.

To address the above challenges, we first design a federated
GAN approach for diverse non-IID settings, which relies on local
GAN training without data transmission in the FL architecture.
We then propose a privacy-preserving mechanism to ensure
user-level privacy with lightweight overhead in FLGAN. More
importantly, FLGAN can be embedded in existing FL schemes
to optimize non-IID FL training performance. Specifically, the
main contributions of FLGAN are summarized as follows:
� We propose a novel federated GAN framework for the un-

biased FL, which mitigates local biases by using the GAN
augmentation approach, and counterbalances local non-
IID data with generated samples. Besides, the federated
GAN is constructed with a divide-and-conquer strategy,
i.e., dividing the global data distribution estimation of the
federated GAN into local training and global training.

� We propose a FHE-based GAN selection scheme to ensure
user-level privacy for the federated GAN training without
incurring high overheads, and also provides theoretical
guarantees for user-level privacy.

� We deploy FLGAN into two state-of-the-art FL algorithms
including FedSGD and FedAvg. We conduct extensive
experiments using various datasets to show its performance

by comparing with the FL model without FLGAN, and
demonstrates the high performance of FLGAN in terms of
test accuracy, fast convergence, compatibility and compu-
tation overheads.

The rest of the paper is organized as follows. We discuss
the existing related work and some background knowledge in
Section II. A set of machine learning and security primitives
that are utilized in FLGAN are provided in Section III. We define
the system model, threat model and design goals in Section IV.
The FLGAN framework is explained in details in Section V.
Sections VI and VII discuss the theoretical and performance
analysis. We conclude the paper in Section IX.

II. RELATED WORK

Our work is closely related to FL schemes with non-IID and
federated GAN training.

A. Federated Learning With Non-IID

Existing FL schemes can be divided into two categories, i.e.,
FedSGD [15] and FedAvg [2]. FedSGD is based on averaging
local gradients, while FedAvg is built on averaging local model
weights. Specifically, FedAvg outperforms FedSGD in non-IID
scenarios. However, compared with the IID scenario, the perfor-
mance of FedAvg is also unstable and slides down significantly
in the non-IID scenario, which brings an averaged model with
low accuracy and incurs high communication burdens [16]. The
non-IID scenario still has detrimental effects on the accuracy of
FL.

To address the challenge, many solutions are proposed to opti-
mize FL with non-IID data. Re-parameterized FL schemes [17],
[18] are proposed to improve the performance of FedAvg in
non-IID scenarios. Zhang et al. [17] proposed a federated primal-
dual (FedPD) scheme with non-IID data, which addresses the
non-convex objective functions to achieve optimization and re-
duce the communication complexity. FedProx [18] extended the
FedAvg method to the non-IID setting by using a generalization
and re-parametrization in local training. However, the above
schemes rely on strong assumptions for solving linear FL system
under non-IID settings [19]. Especially in FedProx [18], the
value of a introduced parameter in the local training significantly
affects the performance of FL, which should vary with different
levels of non-IID scenarios. As we cannot learn the level of
non-IID data, the value of the introduced parameter is difficult
to adapt diverse non-IID scenarios. With the similar motivation,
clustered FL schemes are proposed in order to alleviate the
skewed distribution under non-IID scenarios. Ghosh et al. [20]
proposed a iterative clustered FL scheme (IFCA), which esti-
mates the cluster identities and minimizes the loss functions for
the user clusters via gradient descent. Huang et al. [5] designed a
federated attentive message passing scheme (FedAMP) by using
similarity values among local personalized models, which aims
to facilitate pairwise collaborations between clients with similar
data. However, the clustered FL schemes are limited with a
statistical estimation, which are not general for different non-IID
scenarios, especially for an extreme non-IID scenario (i.e., 1
class, 1 device). FedMA [21] extended FedAvg to the non-IID
scenario, which matches and averages hidden elements in local



TABLE I
FUNCTIONALITIES, SECURITIES AND TECHNIQUES IN VARIOUS SCHEMES: A

COMPARATIVE SUMMARY

models with similar feature extraction signatures. Unfortunately,
FedMA still has the same issue of the above schemes, where
the correlation degree of data distribution among users will
directly affect the performance of the clustered FL schemes.
Wang et al. [8] optimized FedAvg with non-IID data by using
reinforcement learning, where the deep reinforcement learning
agent selects k users in each training round for implementing
the aggregation in FL. However, experimental results show that
the above scheme cannot always outperform FedAvg, as the
selection of k devices may introduce more bias to FL than
devices selected randomly in FedAvg. Consequently, the skewed
bias introduced by non-IID data remains a major barrier in FL,
resulting in accuracy loss and slow convergence. Therefore, it
is urgent to propose a solution to improve FL performance with
non-IID data. By eliminating the bias caused by non-IID data,
GAN is expected to be an effective solution for improving the
performance of non-IID FL.

B. Federated Learning With GAN

GAN has already achieved success in the field of generating
realistic “fake” data. Thus, GAN has been applied in FL in
existing schemes. However, limited user-held data cannot be
used to train a GAN model in the federated setting. To solve
the issue, some federated GAN schemes are built in a FL
architecture. Mohammad et al. [9] presented a federated GAN
for federated settings (FedGAN), which can aggregate local dis-
criminators and generators in a center server by using the weight
average method. Unfortunately, FedGAN has an unacceptable
performance in the non-IID scenario. Hardy et al. [11] proposed
a multi-discriminator method to train a GAN in a federated
fashion, but this scheme is required to swap discriminators
among data devices in a peer-to-peer fashion. Xin et al. [10]
proposed the private FL-GAN scheme, which uses differential
privacy to protect the federated GAN scheme [11]. However,
the global GAN is trained among local devices in order, which
violates the FL framework. To adapt the FL architecture, Zhang
et al. [12] designed a universal aggregation approach for training
a federated GAN, which aggregates the mixture of all local
discriminators for a centralized discriminator. Unfortunately,
the trained federated GAN located on the server can generate
realistic-looking synthetic data and infer the original data distri-
bution, which undermines the purpose of FL to protect user-level
privacy. As demonstrated in Table I, how to construct a federated

TABLE II
NOTATION DESCRIPTIONS

GAN scheme with acceptable privacy budgets becomes a major
challenge under the non-IID scenario.

III. TECHNICAL BACKGROUND

This section first presents the FL framework and the Condi-
tional GAN (CGAN) scheme, then introduces Fully Homomor-
phic Encryption (FHE). The notation descriptions are demon-
strated in Table II.

A. Federated Learning

Based on a statistical analysis of the divide-and-conquer strat-
egy, each data userUi∈[1,n] first learns a local model min

Wi
Fi(Wi),

and only communicates these local updates. The server then
aggregates local updates to return the aggregated model update
to each user. The non-convex FL objective is defined as

min
W

F (W ) =
1

n

∑
Fi(Wi), (1)

where Fi(Wi) is the local objective function, and F (W ) is the
global objective function in FL.

In the t-th training iteration, each user first downloads the
current FL model W , trainsW on local data and communicates
local updates to a center server for aggregation. Given n users,
we consider two following FL algorithms:
� FedAvg [2]: Each user communicates local weight updates
W

(t)
i to the server. Then, the server implements the FedAvg

aggregation to update the FL model such that

W (t+1) ← 1

n

∑
W

(t)
i . (2)

� FedSGD [15]: Each user communicates local gradients
μ
(t)
i , then the server implements FedSGD aggregation to

update the FL model

W (t+1) ←W (t) − η 1
n

∑
μ
(t)
i , (3)

where η is the learning rate.



Fig. 2. CKKS algorithms.

B. Conditional Generative Adversarial Network

Conditional Generative Adversarial Network (CGAN) [22],
[23] is one of the most popular GAN schemes, which comprises
of a discriminator D and a generator G. G captures the data
distribution pdata, and D estimates the probability of a data
sample came from true data rather than synthetic data by G.
The model parameters Wd, Wg from D and G are trained
simultaneously. The class labels y are auxiliary information
provided to D and G. Let x ∼ pdata(x) denote a random sample
x drawn from pdata, and let z ∼ pz(z) denote a random variable
z drawn from pz . The objective function of GAN is defined as a
two-player min-max game with a value function V (D,G) such
that

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]

+ Ez∼pz(z)[log(1− D(G(z|y))]. (4)

C. Fully Homomorphic Encryption

Given a plaintext message x, a ciphertext [[c]] is yielded
with FHE. FHE schemes can support secure addition “⊕′′ and
multiplication “⊗′′ operations over ciphertexts, whose results
are the same as the plaintext operations such that

[[ca]]⊕[[cb]] = [[ca + cb]],

[[ca]]⊗ [[cb]] = [[ca × cb]]. (5)

FLGAN exploits Cheon-Kim-Kim-Song (CKKS) cryptosys-
tem [24], [25], which is a leveled FHE scheme based on the learn-
ing with errors problem [26]. Besides, CKKS scheme supports
Single Instruction Multiple Data (SIMD) operations by packing
plaintext messages into different slots in the ciphertext, with
which the secure addition and multiplication can be operated
in parallel. As demonstrated in Fig. 2, CKKS cryptosystem
contains the following five algorithms, i.e., KeyGen, Enc, Dec,
FHE.Add and FHE.Mul. For the pure presentation, Enc and Dec
algorithms support encoding/decoding techniques for parallel

computation. FHE.Mul supports the re-linearization to reduce
the size of ciphertexts.

CKKS Primitive: Let Z,Q,R,C be sets of integers, rational
numbers, real numbers, and complex numbers, respectively. For
a power-of-two integerN , the plaintext spaceR = Z[x]/(xN +
1) and the ciphertext space Rq = Zq[x]/(x

N + 1) are denoted
as a ring of integers of the (2˜N)-th cyclotomic field, q is the
modulus in the ciphertext space. E means the error distribution
which is a truncated discrete Gaussian distribution. HWT (h)
is a subset of vector in {0, 1}N with Hamming weight h. The
canonical embedding σ embeds a ∈ Q = Q[x]/(xN + 1) into
an element ofCN whose elements are values ofa evaluated at the
distinct roots of xN + 1. CKKS can encrypt a complex vector
with (l ≤ N/2) entries as a ciphertext. Let Δ be the scaling
factor, σ be the standard deviation of E ,H = {(zj)j∈Z∗2˜N : zj =

z−j}, and π be a nature projection from H to CN/2.

IV. PROBLEM FORMULATION

In this section, we discuss the system model, threat model and
design goals in FLGAN.

A. System Model

As depicted in Fig. 3, the system model consists of a central
server S and multiple users U = {U1, . . . , Un} (n ≥ 2). Each
role of the entity is defined as follows:
� User: Ui∈[1,n] takes charge of generating and distributing

system keys (Step 1©). Besides, Ui∈[1,n] holds a localized
dataset Xi, and trains a local GAN model. The local data
distribution and local generator parameters are sent to the
server (Step 2©).

� Central server: To achieve the goal of learning the global
data distribution pdata with privacy guarantees,S performs
the privacy-preserving GAN selection process. During the
process, S selects the appropriate local generators ac-
cording to encrypted local data distribution to build the
federated GAN on Ui∈[1,n] (Step 3©).



Fig. 3. System model.

B. Threat Model

In general, users inU are fully trusted as the goal of FLGAN is
to protect user-level privacy. Consider the prevalence of privacy
leakage in servers [27], S is viewed as honest-but-curious that
rigidly executes the predefined protocol but aims to reconstruct
local private distribution for prying user-level privacy. Without
loss of generality,U andS are assumed to be non-colluding. The
collusion between users inU and S is highly unlikely due toU ’s
unwillingness. The reason is that the collusion would harm U ’s
own interests by revealing user-level privacy [28].

We consider the external adversaries. The potential threats
caused by these adversaries are shown as follows:
� The adversary strictly follows the honest-but-curious

model [29] and tries to learn user-level privacy, which is
restricted from probabilistic polynomial-time computation
capacity.

� The adversary can observe encrypted local updates and
encrypted aggregated updates, with which the adversary
tries to reconstruct user-level data [3], [14].

C. Design Goals

FLGAN is designed to achieve two following design goals.
Before that, we give a definition of User-level privacy
(Definition 1). Without loss of generality, all local data are
treated as non-IID. Specifically, we give a formal definition of
IID and non-IID data in Definition 2 [12], [16]. In a non-IID
scenario, the global distribution is composed of distinct local
data distributions pi∈[1,n]. The biased data distribution pi of Ui

is considered as user-level privacy [3].
Definition 1 (User-Level Privacy): Let the local data distri-

bution pi, local training data Xi, local FL model, and locally-
trained GAN model (i.e., Di and Gi) be private information of
Ui∈[1,n], with which local data can be observed and inferred by
the adversary.

Definition 2 (IID versus Non-IID): Give the global data dis-
tribution pdata and local distributions p∀i∈[1,n], the federated
setting is IID if pi = pdata, ∀i ∈ [1, n]. The federated setting
is non-IID if ∃x, pi(x) �= pj(x), ∃i, j ∈ [1, n], where pi rep-
resents the empirical distribution of the local data Xi, and
pdata =

∑
i∈[1,n]pi.

Formally, these two goals are outlined as follows.
Goal 1 (User-Level Privacy Guarantee): FLGAN should

strictly follow the federated architecture, which ensures the
construction of the federated GAN without accessing user-held
training data. Besides, the adversary should fall to observe and
infer any user-level privacy from locally-submitted parameters.

Goal 2 (Unbiased FL With non-IID Data): FLGAN should
construct the federated GAN under non-IID data without affect-
ing the FL process. The federated GAN is adopted to implement
the fine-grained data augmentation according to diverse local
distributions of user-held training data, which can use the global
generator to generate “true” data with the labels lacking in local
non-IID data. These generated data are added to user-held data
to convert the local non-IID data into IID data, implementing
the unbiased non-IID FL.

V. PROPOSED SCHEME

In this section, we first show the technique overview about
how to design FLGAN, then demonstrate the concrete construc-
tion of FLGAN.

A. Technique Overview

The overall structure of FLGAN is illustrated in Fig. 4. The goal
of FLGAN is to construct a federated GAN to generate IID data
for the unbiased non-IID FL, which strictly follows the federated
architecture and ensures user-level privacy. To achieve this, we
first design the divide-and-conquer strategy, which divides the
federated GAN training problem into local training (Phase 1)
and conquers the problem through global training. Instead of
transmitting local training data, each user shares local generator
and local data distribution in FLGAN. Then, S selects a subset
of local generators trained from dissimilar data distributions for
each user. To protect user-level privacy, FHE is exploited to pro-
vide the privacy-preserving generator selection method (Phase
2), with which local updates and intermediate parameters are
indistinguishable in S. Eventually, the federated GAN engages
to implement the fine-grained GAN augmentation (Phase 3) to
convert local non-IID data into IID data, thereby implementing
the unbiased non-IID FL.

In the divide-and-conquer strategy, we define the local loss
and global loss for training a federated GAN in FLGAN. Under
the non-IID setting, true data distributions of U are presented as
pdata(x) = {p1(x), . . . , pn(x)}. Ui locally trains his/her local
GAN models (Gi,Di).

Local loss. Given true training samples x ∈ Xi and true local
data distribution pi(x),Ui optimizes (Gi,Di) by minimizing the
local loss LUi

LUi
= min

Gi

max
Di

VUi
(Di,Gi) = Ex∼pdata

[logDi(x|y)]

+ Ez∼pz
[log(1− Di(Gi(z|y))]. (6)

To reach the local optimum, we divide VUi
(Di,Gi) into two

sub-objective functions based on (4):
� Di is trained to discriminate generated samples from true

data by maxVUi
(Di,Gi).



Fig. 4. Overview of FLGAN.

� The feedbacks of a local optimum Di guide Gi to flow the
data regions that are more likely to be classified as “true”
data. Gi is updated to minVUi

(Di,Gi).
Global loss. Since (Di, Gi) is trained on the local distribution

pi, we redefine a global lossLΩ to train the federated GAN (DΩ,
GΩ) as

LΩ = min
Gi

max
Di

VΩ(VU1
(D1,G1), . . . , VUn

(Dn,Gn)). (7)

In practice, the locally-trained G∗i cannot generate any IID
samples with the standards of local optimum D∗i , as a local D∗i
is inferior to impede the GΩ training. Our goal is to construct
the global optimum pg(x) = pdata(x). To guide Gi toward
amassing pg(x) in approximately correct region of the global
data X , it is necessary to introduce all local distributions by
using generators G∗j(x) [30]. Thus, we reformulate the global
loss LΩ as

LΩ = min
Gi

max
Di

VΩ(VU1
(DΩ,GΩ), . . . , VUn

(DΩ,GΩ)). (8)

B. Construction of FLGAN

The concrete construction of FLGAN consists of four al-
gorithms, namely initialization, local GAN training, privacy-
preserving generator selection, and GAN augmentation, which
are defined as follows.

1) Initialization: As described in Algorithm 1, U imple-
ments KeyGen with the security parameter ψ to generate pk for
all entities (i.e., Ui∈[1,n] and S), sk for Ui∈[1,n], and evk for S.
The public keypk is used to encrypt local parameters forUi∈[1,n],
and the secret key sk is used to decrypt encrypted parameters.
The evaluation key evk is used to relinearize the multiplication
result inFHE.Mul forS. Then,Ui∈[1,n] downloads and initializes

Algorithm 1: Initialization.

a common GAN model weights (W
(0)
d ,W

(0)
g ) of (D(0),G(0))

and a common FL model W (0) from S.
2) Local GAN Training: At the t-th training round, Ui∈[1,n]

trains the local GAN (D
(t)
i ,G

(t)
i ) over individual non-IID data

Xi. The details are demonstrated in Algorithm 2. In advance,Ui

agrees on the label size κ of global training data. Then, Ui sam-
ples a mini-batch of noise from the prior noise distribution pz(z)
as a seed vector seed = {z1, . . . , zm} ∼ pz(z). After that, D(t)

i

obtains the generated “fake” data X
(t)
fake = {x̃1, . . . , x̃m} ∼

G
(t)
i (seed) from the generated samples G

(t)
i (seed). Subse-

quently, Ui samples a mini-batch of true data samples X(t)
true =

{x1, . . . , xm} ∼ pi(x) from the local distribution of training
data pi(x). The generated data X(t)

fake are labeled as “fake”, the

original training data X(t)
true are labeled as “true”. To minimize

(6), these dataX
(t)
i = X

(t)
true ∪X

(t)
fake are fed into the local GAN

(D
(t)
i ,G

(t)
i ) with the following phases.



Algorithm 2: Local GAN Training.

Local discriminator training. Ui inputs the generated “fake”
dataX(t)

fake and true dataX(t)
true intoDi to maximize the objective

function max
Di
VUi

(Di,Gi). Then, the local discriminator weight

W
(t)
di

is updated to maximize VUi
such that

max
Di

VUi
(Di,Gi)

=
1

m

m∑
i=1

logD
(t−1)
i (xi) +

1

m

m∑
i=1

log(1− D
(t−1)
i (x̃i)),

Local generator training. Ui updates the local generator W (t)
gi

to minimize VUi
. Note that gradient-based updates can use

any standard gradient-based learning methods, e.g., Stochastic
Gradient Descent (SGD) and momentum.

Local feedbacks. After reaching the local optimization, Ui

constructs a κ-dimensional vector Yi ∈ Cκ that contains local
distribution information, κ� N/2. The element ρk ∈ Yi is set
as ρk = |�k |

|Xi| , where |�k| is the size of samples of the k ∈ [1, κ]-
th label yk. The local distribution pi is denoted as

pi = ρ1 · Plabel1 + ρ2 · Plabel2 + · · ·+ ρκ · Plabelκ

=
∑

k∈[1,κ]
ρk · Plabelk ,

where Plabelk is the global distribution of data samples belong-
ing to the k-th label. To implement secure outsourcing, we use
the SIMD technique, with which the number of slots is N/2.
Note that a slot can encode a real number. Ui∈[1,n] outsources

Algorithm 3: Privacy-Preserving Generator Selection.

weights [[W (t)
gi ]] of G(t)

i by using the Enc algorithm such that

[[W (t)
gi

]] = (c0, c1) = (x, 0) + pk = (b+ x, a) ∈ R2
q,

x = δ−1(�Δ · π−1(W (t)
gi

)�δ(R)) ∈ R, (9)

where W (t)
gi ∈ CN/2 is represented as a vector, and the size is

|W (t)
gi | < N/2. Finally, Ui uploads [[W (t)

gi ]] and [[Yi]] to S, where
Yi is normalized as ‖Yi‖ = 1.

3) PRIVACY-PRESERVING GENERATOR SELECTION: FLGAN

should guarantee user-level privacy. Ui∈[1,n] needs to submit
sensitive parameters (i.e., local generators and local labels)
to S, in which local data are easily reconstructed with local
parameters. To keep these user-level parameters secret from
S, FLGAN designs the privacy-preserving generator selection
method based on FHE, which is depicted in Algorithm 3.

Secure cosine similarity. S receives encrypted label vectors
[[Yi∈[1,n]]]. Then, S executes a secure cosine similarity among
[[Yi∈[1,n]]] to calculate the cosine similarity cosi,j between [[Yi]]
and [[Yj ]] as

cosi,j =
Yi · Y T

j

‖Yi‖ · ‖Yj‖
= Yi · Y T

j ,

s.t. ‖Yi‖ = ‖Yj‖ = 1. (10)

We approximate the cosine similarity to the secure in-
ner product [31] between two vectors, which calls FHE.Mul
and FHE.Add algorithms. Finally, S returns the (n− 1)-
dimensional encrypted set [[CSi]] to Ui for a fine-grained se-
lection over encrypted local generators [[W (t)

gi ]].
Local Selection. Once receiving [[CSi]], Ui obtains CSi by

calling Dec. To train FLGAN, it is crucial to learn the global data
distribution, which means capturing the underlying patterns and
structures present across the global dataset in FL. The GAN
training starts harshly for the standard max

Di
VUi

(Di,Gi) with
limited training knowledge. To obtain constructive feedbacks
to Gi, local generators can capture different aspects of local



training data, and the combination of these generators can pro-
vide a complete representation of the global data distribution.
It is necessary for Ui to select local generators from distinct
data distributions. Ui sets a threshold value tvi to select local
generators in S, where tvi is the similarity threshold of label
distribution (tvi > 0.5). If cosi,j < tvi, then [[W

(t)
gj ]] is selected

for Ui. The lower cosi,j is, the lower similarity of data distribu-
tion between local data Xi and Xj is. The bigger possibility of

G
(t)
j can be selected by Ui. Thus, it is more important to select

Uj’s generator G(t)
j to construct DΩ forUi. Therefore, S is more

likely to select the local generator [[W (t)
gj ]] to Ui.

Remark. As GAN training improves, tvi needs to be more
critical of the local training of Gi with the growth of tvi. To
construct FLGAN, it is highly recommended to prioritize the
inclusion of diverse generators with distinct data distributions in
order to maximize the model’s potential for capturing the global
data distribution and producing high-quality outputs. Thus, Ui

adaptively sets the threshold value of tvi closer to 0, which grows
with the training rounds. tvi is obtained as

tvi =
1

1 + e(t−φ)
, (11)

where 0 < tvi < 1, t is training rounds and φ is the threshold
rounds. Without loss of generality, we set φ = 10 in FLGAN.

4) GAN Augmentation: To train the federated GAN
(DΩ,GΩ), Ui executes the GAN augmentation process with
selected generators to minimize (7), which is shown in
Algorithm 4.

Fine-grained augmentation. Upon receiving selected gener-
ators [[W (t)

gj ]] and according local label vectors [[Yj ]], Ui obtains

G
(t)
j and Yj = {ρ0, ρ1 . . . , ρκ} by calling the Dec algorithm.

Since Yj includes the labels of local training data Xj , Ui

identifies the target label vector Ytar = {y1, . . . , yk} lacked in
individual true training data Xi and fed in selected generators
G

(t)
j . Given the selected generators [[W (t)

gj ]], Ui uploads the data
seed z of the label vector Ytar. Ui replenishes the local data
Xi with the generated “true” data Xtrue of target labels being
lacking labels in Xi. Finally, Ui balances the local non-IID
training data Xi to IID training data Xi.

Local GAN Tuning. With generated “true” data Xtrue and
original local data Xi, Ui trains the local GAN by sampling
a mini-batch of true data samples from Xi. These true data
samples fromXtrue are labeled as “true”.Ui labels the generated
“fake” data Xfake as “fake”. These data Xi are all fed into the
local GAN to train Di and Gi.

FL Training. FLGAN supports different FL strategies, e.g.,
FedAvg and FedSGD. U∀i∈[1,n] locally trains local updates (i.e.,

local FL weights W (t)
i or local gradients μ(t)

i ) on true data Xi

(Xi = Xtrue ∪Xi), which is demonstrated in Section III-A.
Upon receiving encrypted inputs, S implements the aggregation
process on local updates by calling FedAvg or FedSGD algo-
rithms.

Algorithm 4: GAN Augmentation.

VI. THEORETICAL ANALYSIS

In this section, we theoretically prove the security and unbi-
asedness of FLGAN.

A. Privacy Analysis

The security goal of FLGAN is to ensure that user-level privacy
cannot be leaked to S. As the only process implemented in S
is the privacy-preserving generator selection phase, we give a
following theorem of the security goal of FLGAN. Our privacy
analysis is based on the proofs from the CKKS cryptosys-
tem [24], [25].

Theorem 1 (User-Level Security of FLGAN): FLGAN can guar-
antee user-level security, if S cannot distinguish an executed
functionality Σ in the real-world REALΣ

ADV(λ) from an execution
in the ideal-world IDEALΣ

ADV,SIM(λ) for all polynomial-time-
bounded adversaries ADV on a polynomial parameter λ, there



exists a straight-line simulator SIM such that

|Pr[REALΣ
ADV = 1]− Pr[IDEALΣ

ADV,SIM = 1]| ≤ negl(λ).

Proof: The REALΣ
ADV(λ) and IDEALΣ

ADV,SIM(λ) are defined as
follows.
� REALΣ

ADV(λ): ADV performs the privacy-preserving gener-
ator selection on local label vectors [[Yi∈[1,n]]] by calling
FHE.Add and FHE.Mul algorithms. ADV then observes
encrypted inputs [[Yi]], and finally outputs n encrypted sets
[[CSi]] = {[[cosi,1]], . . . [[cosi,n]]}.

� IDEALΣ
ADV,SIM(λ): ADV performs the privacy-preserving

generator selection on simulated local label vectors
SIM([[Ỹi∈[1,n]]]) by calling FHE.Add and FHE.Mul algo-
rithms. Finally, ADV observes all simulated parameters
[[Ỹi∈[1,n]]], and outputs n encrypted sets [[C̃Si]].

Let [[W (t)
gi ]] and [[Yi]] be the uploaded local parameters that

include the user-level privacy of local data distribution pi. We
define the real-world REALΣ

ADV(W
(t)
gi , Yi) and the simulated

world IDEALΣ
ADV,SIM(W

(t)
gi , Yi), aiming to prove that the user-

level sensitive information is computationally indistinguishable
on S. The security proof in FLGAN mainly focuses on the
privacy-preserving generator selection phase.
S knows nothing about local parameters [[W (t)

gi ]], [[Yi]] and the
secure cosine similarity cosi,j . As illustrated in (9), these param-
eters are encrypted withpk. The original values are unlikely to be
leaked toS, unlessS acquires sk. During the privacy-preserving
generator selection process, the adversary ADV can only hold
evk for FHE.Mul and FHE.Add. Following the security defi-
nition of CKKS, the securities of FHE.Mul and FHE.Add are
also captured using the real-world versus ideal-world game. We
refer readers to [24], [25] for formal analysis. Based on com-
putationally indistinguishable algorithms (i.e., FHE.Mul and
FHE.Add), ADV cannot observe any sensitive information with-
out sk. Hence, the adversary ADV cannot distinguish between the
experiments REALΣ

ADV(W
(t)
gi , Yi) and IDEALΣ

ADV,SIM(W
(t)
gi , Yi).

Because we exclude the possibility of privacy leakage among
U , FLGAN is secure if the user-level privacy cannot be leaked
to S. By combining contributions from all games, FLGAN can
guarantee user-level privacy against polynomial-time-bounded
adversaries, without leaking user-level privacy to S. �

B. Convergence Analysis

The goal of FLGAN is to guarantee the unbiasedness of FLGAN

under the non-IID setting, wherein the federated GAN learns the
global data distribution. We prove the convergence of FLGAN

with the following theorem and lemma.
Theorem 2 (Convergence of FLGAN): Let pgi be the local

optimum of data generated by Gi∈[1,n], and p∗g be the optimal
generated distribution of the federated GAN. FLGAN has p∗g
equals to the true global data distribution pdata. Formally, the
global minimum of LDi

given the federated discriminator Di is
achieved if and only if p∗g = pdata.

Proof: Assume all local generators Gi∈[1,n] are locally op-
timal. i.e., they learn to generate realistic-looking data that are

distinguished as “true” by local discriminators Di∈[1,n]. A local
generator Gi∈[1,n] is optimal if pgi = pi.

Lemma 1: Each local discriminator Di is trained optimally
from true data distribution pi(x) and the generated distribution
pgi of local generator Gi. The global minimum of LDi

given Di

is achieved if and only if Di(x) =
pi(x)

pi(x)+pgi
(x) .

To update local generators Gi under different non-IID levels,
we augmentLGi

with selected generators Gj . Thus, the selected
generators Gj∈[1,n]/i synthesize the optimally generated dis-
tributions pgj , which can augment the local data distribution
pi as

p∗i = pi +
∑

j∈[1,n]/i
pgj = pi +

∑
j∈[1,n]/i

pj ≈ pdata. (12)

These generated data from selected generators Gj∈[1,n]/i and
local training data are fed into the local discriminator Di

for a local optimum D∗i (x). Ui inputs generated “fake” data
and true data into Di to maximize the objective function
VUi

as

max
Di

VUi
(Di,Gi)

= Ex∼pi(x)[logDi(x)] + Ez∼pz(z)[log(1− Di(Gi(z))]

=

∫
x

pi(x) logDi(x)dx+

∫
x

pgi(x) log(1− Di(x))dx

=

∫
x

[
pi(x) logDi(x) + pgi(x) log(1− Di(x))

]
dx.

We define a function F (Di(x)) as

F (Di(x)) = pi(x) logDi(x) + pgi(x) log(1− Di(x)).

Thus, the optimally local D∗i (x) is obtained as

∂F

∂Di(x)
= pi(x)×

1

Di(x)
− pgi(x)×

1

1− Di(x)
= 0,

⇒ D∗i (x) =
pi(x)

pi(x) + pgi(x)
.

Hence, D∗i (x) is obtained as

D∗i (x) =
p∗i (x)

p∗i (x) + pgi(x)
≈ pdata(x)

pdata(x) + pgi(x)
.

Given a local optimum D∗i (x), G
∗
i (x) is optimized by mini-

mizing VUi
as

min
Gi

VUi
(Di,Gi)

= Ex∼pi(x)[logD
∗
i (x)] + Ez∼pz(z)[log(1− D∗i (Gi(z))]

= Ex∼pi
[log

pi(x)

pi(x) + pgi(x)
] + Ez∼pz

[log
pgi(x)

pi(x) + pgi(x)
]

= −2 log 2 +KL(pi(x)||
pi(x) + pgi(x)

2
)

= −2 log 2 + 2JSD(pi(x)||pgi(x)).
KL means the Kullback-Leibler divergence [32], JSD

means the Jensen-Shannon divergence [33], which are used to
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measure the similarity between two probability distributions.
More detailed proofs are shown in [22]. Based on (12), the
federated Gi∈[1,n] is optimal if pgi = p∗i ≈ pdata. �

VII. PERFORMANCE EVALUATION

In this section, comprehensive experiments are conducted to
evaluate that FLGAN can achieve the unbiased non-IID FL.

A. Experimental Setup

We evaluated our experiments with PyTorch running on a
six-core Ubuntu 18.04 machine with Intel i7-9750H processor
4.50 GHz and 64 GB RAM, NVIDIA GTX 3080 TI GPU.
We simulated the FL setting in a single machine with multiple
threads, each of which implements real-world PyTorch users.
The execution time reports an average time of 10 trials. We adopt
the Simple Encrypted Arithmetic Library (SEAL) homomorphic
encryption library [34] to implement the CKKS cryptosystem.
We set N = 213 to achieve the 128-bit security level with
log q = 50-bit and Δ = 230.

Non-IID datasets. We use the following four standard im-
age datasets to evaluate FLGAN, namely MNIST [35], Fashion
MNIST [36], CIFAR-10, CIFAR-100 [37], and USPS [38]. The
specified description of these dataset are shown in Table III.
Besides, we build the non-IID setting with |U | = 10 and divide
these datasets into 10 subsets, Ui holds a subset Xi. We set
a challenging non-IID setting, wherein Xi only contains data
of the same class, the data class held by each subset is non-
overlapping. For MNIST, Fashion MNIST, CIFAR-10 data, the
subsets X1, X2, . . . ,X10 contain ground-truth data samples of
{1}, {2}, . . . , {0}-th classes, respectively. For CIFAR-100 data,
the subsets X1, X2, . . . ,X10 contain ground-truth data samples
of {0− 9}, {10− 19}, . . . , {90− 99}-th classes, respectively.

Performance Metrics. The following two metrics are em-
ployed for a comprehensive evaluation of the GAN performance
in FLGAN.
� Fr é chet Inception Distance (FID) [39] computes the

distance between feature vectors of true and generated data
samples.

� Inception Score (IS) [40] judges the quality of generated
data samples, especially for synthetic data samples out-
puted by GAN models.

Training Parameters. Each user holds two components of
FLGAN including GAN and FL model. For the GAN, we utilize
the Conditional Deep Convolutional GAN (CDCGAN) model
to construct GAN in FLGAN. The generator is constructed with
deconvolution layers (Deconv), the discriminator and FL model
consists of convolutional neural networks. The specified GAN
architecture is shown in Table IV.

For the FL model, the LeNet-5 [41] model is adopted as the
FL network. The specified parameters are shown in Table V.
We compare FLGAN with two FL baselines (i.e., FedAvg and
FedSGD) to evaluate the performance of the unbiased non-IID
FL. The mini-batch size is 100. For the local GAN held by
each user, the SGD optimizer is adopted with the learning rate
of 0.0002 and the momentum term of 0.5. For the FL model,
the learning rate and the momentum term is 0.01 and 0.9,
respectively. We evaluate the test accuracy of FL models using
testing data from each dataset. We set the threadshold value
tvi = 0.8 for the local GAN selection (∀i ∈ [1, n]).

B. Experimental Results

1) GAN Augmentation: After multiple training rounds, FL-
GAN conducts the federated GAN with the privacy-preserving
generator selection scheme. To evaluate the quality of the fed-
erated GAN, we compare ground-truth data with generated data
in FLGAN. The results are depicted in Fig. 5(a)–(c). For these
datasets (i.e., MNIST, Fashion MNIST, and USPS), the last col-
umn is true samples from ground-truth data. The other columns
are generated samples from different training rounds in FLGAN.
With the growth of training rounds, we observe that synthesized
data are more and more clear. Eventually, synthesized data
are indistinguishable from ground-truth data after 50 rounds.
Especially, the CIFAR-10 dataset contains diverse data images,
making the training convergence more challenging than that of
MNIST, Fashion MNIST, and USPS. Fig. 5(d) demonstrates
the synthesized data of the “bird” class with 1-100 training
rounds. For CIFAR-10, synthesized samples can still be reused
as training samples in FL with a slight loss of accuracy, which
is demonstrated in Section 7.2.2.

As demonstrated in Fig. 5(e) and (f), we adopt FID and IS
scores to evaluate the quality of synthesized data in MNIST and
Fashion MNIST. Lower FID scores correlate well with higher
quality of synthesized images. Conversely, higher IS scores
represent well with higher quality of synthesized samples. We
randomly select 6,000 data samples from synthesized data to
calculate FID and IS scores. Fig. 5(e) plots that IS scores increase
and FID scores decrease with the growth of training rounds.
The synthesized image sample (i.e., class=“9”) gets clearer and
clearer. After 20 training rounds, the quality of a federated GAN
is gradually stabilized over MNIST data in FLGAN. Fig. 5(f)
depicts that ever-greater IS scores and ever-diminishing FID
scores are yielded with the increase of training iterations. i.e.,
The quality of a federated GAN trained on Fashion MNIST data
is gradually stabilized in FLGAN. Table VI demonstrates FID &
IS scores for each dataset.

Computation overhead. We test the computation overhead of
FLGAN, where the privacy-preserving generator selection adopts
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Fig. 5. Synthesized samples in FLGAN, “Red” square means synthesized data, and “Blue” square means ground-truth data.

TABLE V
FL ARCHITECTURES

the CKKS cryptosystem to achieve user-level privacy. The local
GAN training phase costs 23 min for a training epoch. The

TABLE VI
FID & IS SCORES

privacy-preserving selection process costs 7.3 s (i.e., 0.53% of
the total time) over 10 encrypted 10-dimensional label vectors
[[Yi∈[1,n]]] (n = 10), which guarantees user-level privacy with
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lightweight overhead. The average time of the GAN augmenta-
tion phase spends 5 min to generate 6,000 samples to balance
local non-IID data setting.

The computation overhead of the privacy-preserving selection
process relies on the size n of U and the dimension κ of label
vectors [[Yi∈[1,n]]]. Let TFHE.Mul and TFHE.Add be the computa-
tional complexities ofFHE.Mul andFHE.Add, respectively. The
computational complexity of the privacy-preserving selection
process is demonstrated as O(n2 ∗ κ ∗ (TFHE.Mul + TFHE.Add)),
where TFHE.Mul � TFHE.Add. As the numbern of users increases,
S can perform secure computations in parallel, improving the
efficiency of the privacy-preserving selection process.

Comparative experiments. To quantitatively compare FLGAN

with the proposed federated GAN schemes, we demonstrate the
FID scores in Table VII under the challenging non-IID setting,
i.e., each user holds samples belonging to a non-overlapping
class. Since the training data is non-IID, these schemes trained
with IID data [11], [12] are difficult to train a global GAN
model that can accurately capture the underlying data distri-
bution across distinct local data. Comparing the results from
these schemes [11], [12], F2A-GAN [13] shows outstanding
permance, because F2A-GAN can effectively train a global
GAN model, even when the data distributions are non-IID.
However, F2A-GAN [13] performs poorly on complex image
datasets, such as CIFAR-10 and CIFAR-100, due to complex
image data making it difficult for the generator and discrimi-
nator to learn the global data distribution and easily prone to
overfitting. For USPS data, F2A-GAN [13] outperforms with a
lower FID score. This is because the larger size of the USPS data
is larger than those in MNIST, Fashion MNIST, CIFAR-10, and
CIFAR-100. The USPS dataset has dimensions of 16× 16 pixels
compared to 28× 28 pixels for MNIST and Fashion MNIST,
and 32× 32 pixels for CIFAR-10. This larger size may make
it easier for F2A-GAN to capture fine-grained details with ex-
cellent performance. For MNIST, Fashion MNIST, CIFAR-10,
and CIFAR-100, FLGAN shows the lowest FID score compared
with the results from these schemes [11], [12], [13], demon-
strating that FLGAN clearly outperforms existing schemes. For
these schemes [11], [12], [13], the challenging non-IID setting
impedes the high-quality GAN training. Conversely, FLGAN still
can generate data with high quality for data augmentation.

2) Unbiased FL in FLGAN: With the GAN augmentation, the
federated GAN generates IID data samples to convert local non-
IID data into IID data, aiming to construct the unbiased FL in
FLGAN. We use two state-of-the-art FL baselines (i.e., FedAvg
and FedSGD) to testify the performance of the unbiased FL in
FLGAN, which compare FLGAN with FL baselines without data

TABLE VIII
ACCURACY COMPARISON BETWEEN FLGAN AND BASELINES

augmentation in terms of test accuracy and loss. To evaluate the
efficiency of FLGAN, we investigate different non-IID data on
all datasets. Figs. 6 and 7 plot the test accuracy and loss of FL
with 10 users and the mini-batch of 100. The training starts at
the initialization of a FL task and ends with the FL convergence.

FedAvg Algorithm. Fig. 6 compares the training process of
FLGAN using FedAvg with the original FedAvg algorithm. For
non-IID MNIST, the unbiased FL in FLGAN using FedAvg
achieves the test accuracy of 90.26%, while FedAvg baseline
reaches the accuracy of 11.80% after 10 iterations. Besides, Fe-
dAvg baseline converges to a test accuracy of 79.23% after 140
iterations. FLGAN has significantly improved the convergence
rate via reducing training iterations by up to 92% on the MNIST.
As depicted in Fig. 6(a), FLGAN has greatly increased the test
accuracy of 13.3% after 140 iterations. For non-IID Fashion
MNIST, the unbiased FL in FLGAN using FedAvg reaches the
test accuracy of 82.34%, while the FedAvg baseline reaches the
accuracy of 64.88% after 800 iterations. As demonstrated in
Fig. 6(b), FLGAN has significantly increased the test accuracy
by up to 17.5% compared to the FedAvg baseline. For non-IID
USPS, the unbiased FL in FLGAN using FedAvg implements
the test accuracy of 84.65%, compared with the test accu-
racy 63.75% of the FedAvg baseline after 150 iterations. The
unbiased FL in FLGAN has improved the accuracy by up to
20.9% compared to the FedAvg baseline, which is shown in
Fig. 6(c). For non-IID CIFAR-10, diverse data samples increase
the training difficulty of FL. Hence, FL requires more training
iterations for model convergence. FLGAN using FedAvg reaches
the test accuracy of 83.38% at 1,000 iterations, while the FedAvg
baseline cannot achieve the model convergence with the test
accuracy of 13.99%. As depicted in Fig. 6(d), FLGAN accelerates
the convergence by constructing unbiased FL, which can also
greatly increase the accuracy by up to 69.3% compared to the
FedAvg baseline.

FedSGD Algorithm. Under different non-IID settings, Fig. 7
and Table VIII compare the unbiased FL in FLGAN using
FedSGD with the original FedSGD baseline. Compared with
the FedAvg baseline, FedSGD baseline has a poor convergence
rate, tenfold times increasing the training iterations1. Therefore,
Fig. 7 uses a training epoch instead of a training iteration. An
epoch indicates 60 iterations for Fashion MNIST, and 80 itera-
tions for USPS, 50 iterations for CIFAR-10. As MNIST involves

1The reason is that FedSGD is based on gradient descent, which assumes that
the training data is IID. For non-IID data, FedSGD faces the problem of sample
bias, which leads to the decline of model accuracy. FedAvg aggregates the model
parameters of local models that can adapt to distinct data distributions and thus
perform better on non-IID data.



Fig. 6. Test accuracy Acc and loss with FEDAVG.

Fig. 7. Test accuracy Acc and loss with FedSGD.

fewer iterations, we still use the training iterations. Fig. 7 shows
a comparison of the convergence performance between the
unbiased FL in FLGAN using FedSGD and the original FedSGD
baseline. It can be observed that FedSGD baseline significantly
decreases the convergence speed, while the FL convergence
speed enhanced by FLGANaccelerates significantly. Therefore,
while FedSGD baseline is still in slow model convergence,
FLGAN is demonstrating high model accuracy.
� For non-IID MNIST data, the unbiased FL in FLGAN

using FedSGD achieves the test accuracy of 92.74%, while
FedSGD baseline reaches the accuracy of 29.04% after 20
training iterations. As depicted in Fig. 7(a), FLGAN has
significantly improved the convergence rate and reduced
the training iterations by up to 92% on the MNIST. Besides,
FLGAN has increased the test accuracy by up to 63.7% after
20 iterations, compared with the FedSGD baseline.

� For non-IID Fasion MNIST data, Fig. 7(b) plots that the
unbiased FL in FLGAN achieves a faster convergence after
17 epochs compared with the FedSGD baseline, which has
significantly improved the accuracy by up to 69.9%.

� For non-IID USPS data, Fig. 7(c) demonstrates that FLGAN

can reach the test accuracy of 80.56% with 18 training
epochs. Compared with the FedSGD baseline, FLGAN

has accelerated the convergence rate by greatly reducing
training epochs.

� For non-IID CIFAR-10 data, Fig. 7(d) shows that FLGAN

can achieve the test accuracy of 83.52% around 41 training
epochs, which testifies the outstanding convergence rate
and stable accuracy.

Table VIII compares the final accuracy among FLGAN, two
FL baselines and existing non-IID FL solutions [8], [18]. With
the above observations, we demonstrate that FLGAN outper-
forms these two FL baselines and existing non-IID FL solu-
tions [8], [18], in the aspect of convergence rate and test accuracy.
Specifically, the re-parameterized solution [18] can accelerate
the training convergence, but cannot achieve the accuracy im-
provement with biased local updates. The existing clustered FL
solution [8] has a significant accuracy improvement with MNIST
data, but has poor performance with other datasets. The reason
is that more skewed bias is introduced by clustering randomly
selected users. With training on IID data constructed by the
global augmentation, FLGAN provides the unbiased FL training
under different non-IID settings, which can maintain the stable
training accuracy and fast FL convergence with different FL
algorithms.

VIII. DISCUSSION OF FLGAN

A. Efficiency Optimization

We emphasize that our experiments are evaluated on an
Ubuntu 18.04 machine equipped with an Intel i7-9750H pro-
cessor boasting six cores running at 4.50 GHz, 64 GB RAM,
and NVIDIA GTX 3080 TI GPU. However, we anticipate a
significant improvement in the efficiency of FLGAN by utilizing
more powerful computers and GPUs for both users and the
server in real-world scenarios. In FLGAN, the privacy-preserving
generator selection process only costs about 0.53% of the total



overhead, while the computational overheads are mainly spent
on local GNN training.

As demonstrated in Section VII-B1, the efficiency of privacy-
preserving generator selection depends on the number of users
n and the label size κ. With the increase of n and κ, the
growth of encrypted local parameters [[Yi]] (i ∈ [1, n]) results in
higher communication and computational overheads for secure
cosine similarity. As the number n of users increases, S can
leverage parallel computation to improve the efficiency of secure
computations. This parallelization method allows for an efficient
and privacy-preserving selection process with a larger number of
users. Consequently, the scalability of FLGAN with respect to the
number of usersn is evident, making it a highly scalable solution.
Besides, the overheads arising from encrypting local generator
models [[Wgi ]] in FLGAN are recognized to be a concern. We
also address optimizing computational and communication effi-
ciency. One promising strategy is to compress local GNN models
in FLGAN, Such a strategy has been explored in [42], which seeks
to minimize both communication and computational overheads
caused by model encryption while maintaining the high perfor-
mance of GAN training in FLGAN.

For GAN training, FLGAN introduces extra training overhead
compared to traditional GAN training since the model training
is performed across multiple decentralized devices. Beyond the
scope of the current work, we still focus on the issue of GNN
acceleration on GPUs. There are several existing literature [43]
that propose adaptive and efficient running time systems for
accelerating GNNs on GPUs, which show the GNN acceler-
ation approach outperforms the state-of-the-art GNN comput-
ing frameworks (up to 3.02× faster). By leveraging enhanced
computing resources and evolving GNN architectures, we can
efficiently optimize the GAN training process in FLGAN. The
increased computational power allows for faster GAN conver-
gence and improved quality of generated samples, even for large
datasets and a substantial number of users within the FLGAN

framework.

B. Deployment in Real-World Application Scenarios

FLGAN can be deployed to serve one federation with multiple
distributed data users, where different users (e.g., mobile de-
vices, data institutions) preserve non-identical data distributions.
It poses challenges for the model-tuning component of FL. This
can result in accuracy loss and poor performance. It is significant
to improve the model accuracy in FL. In non-IID FL, there
is a trade-off between model efficiency and accuracy, that is,
improving accuracy often requires increasing model complexity
and computing resources of FLGAN, which in turn reduces model
efficiency. Therefore, real-world application scenarios must be
considered in the acceptable trade-off. For some application
tasks with high accuracy requirements, such as medical analysis
and financial prediction, etc., these applications may pay more
attention to the accuracy of the FL model but can tolerate some
loss of model efficiency.

Here are some examples of highly sensitive application sce-
narios where organizations are willing to sacrifice efficiency to
ensure FL accuracy. For example, in medical applications, each

medical institution may have its own patient population and data
collection protocols, resulting in non-IID data distributions. The
accuracy loss and poor performance of non-IID FL have severe
consequences, including incorrect diagnoses and treatment de-
cisions that negatively impact patient health. In financial appli-
cations, FL can be useful for financial institutions such as banks
or credit card companies. Each institution may have different
customer demographics and transaction patterns, resulting in
non-IID data. the consequences of FL accuracy loss can have
significant impacts on financial market and investment. If FL
accuracy decreases, it can lead to incorrect risk assessments,
investment decisions, and trade executions, resulting in financial
losses.

To mitigate these consequences, FLGAN can be deployed in
these applications, which involves federated GAN training to
significantly improve the FL accuracy. The local users may
be medical hospitals or finical institutions to train a federated
GAN model in FLGAN, which can use multiple GPUs in parallel
training to speed up the local GAN training.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented our design of FLGAN, a GAN
augmentation-driven federated learning framework that pro-
vides the GAN augmentation service for non-IID FL. To con-
struct FLGAN, we first presented a federated GAN training under
non-IID settings. Then, inspired by privacy guarantee, we pro-
posed a privacy-preserving generator selection scheme using the
CKKS cryptosystem to protect user-level privacy. Extensive ex-
periments demonstrated the outstanding performance of FLGAN.
Besides, compared with two state-of-the-art FL baselines (i.e.,
FedAvg and FedSGD), FLGAN had accelerated the convergence
rate by up to 70% on the MNIST dataset, and had improved the
test accuracy by up to 10% on MNIST, Fashion MNIST and
USPS datasets, and up to 60% on CIFAR-10.

As another promising research focus, our future work can
leverage a gradient-based image recovery approach to tackle
the computational burden involved by local GAN training. This
approach relies on inverting gradients, rather than training GAN,
to recover input data, thereby reducing computational overhead.
Meanwhile, we will resort to hardware-assisted trusted execu-
tion environments (TEEs) to create a secure environment for
performing partial computation over plaintexts.
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