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Enhancing Visual Grounding in Vision-Language
Pre-Training With Position-Guided Text Prompts
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Abstract—Vision-Language Pre-Training (VLP) has demon-
strated remarkable potential in aligning image and text pairs,
paving the way for a wide range of cross-modal learning tasks.
Nevertheless, we have observed that VLP models often fall short in
terms of visual grounding and localization capabilities, which are
crucial for many downstream tasks, such as visual reasoning. In
response, we introduce a novel Position-guided Text Prompt (PTP)
paradigm to bolster the visual grounding abilities of cross-modal
models trained with VLP. In the VLP phase, PTP divides an image
into N x N blocks and employs a widely-used object detector to
identify objects within each block. PTP then reframes the visual
grounding task as a fill-in-the-blank problem, encouraging the
model to predict objects in given blocks or regress the blocks
of a given object, exemplified by filling “[P]” or “[O]” in a PTP
sentence such as “The block [P] has a [O].” This strategy enhances
the visual grounding capabilities of VLP models, enabling them
to better tackle various downstream tasks. Additionally, we inte-
grate the seconda-order relationships between objects to further
enhance the visual grounding capabilities of our proposed PTP
paradigm. Incorporating PTP into several state-of-the-art VLP
frameworks leads to consistently significant improvements across
representative cross-modal learning model architectures and mul-
tiple benchmarks, such as zero-shot Flickr30 k Retrieval (+5.6 in av-
erage recall@1) for ViLT baseline, and COCO Captioning (+5.5 in
CIDEr) for the state-of-the-art BLIP baseline. Furthermore, PTP
attains comparable results with object-detector-based methods and
a faster inference speed, as it discards its object detector during
inference, unlike other approaches.

Index Terms—Fill-in-the-blank, position-guided text prompt,
vision-language pre-training, visual grounding.

I. INTRODUCTION

V ISION-AND-LANGUAGE pre-training (VLP) models,
such as CLIP [40], ALIGN [20], and CoCa [58], have

significantly improved cross-modal tasks like visual question
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Fig. 1. Comparison of three VLP learning frameworks and their performance.
(a) compares region feature-based VLP (RF-VLP), end-to-end VLP (E2E-VLP),
and our position-guided text prompt-based VLP (PTP-VLP). Our PTP-VLP
requires only about 15 ms for inference, which is on par with E2E-VLP and
significantly faster than RF-VLP. (b) On position-aware questions that are
commonly encountered in many downstream tasks, both RF-VLP and PTP-VLP
can accurately predict objects with masked text and image input. In contrast,
E2E-VLP struggles to pinpoint the position information of the object in the
image.

answering [4], natural language visual reasoning [46], and image
captioning [1], [9]. The success of these models can be attributed
to a two-stage learning process: pre-training on large image-
caption data to enhance generalization capabilities, followed by
fine-tuning on downstream tasks for seamless adaptation. This
efficient pre-training and fine-tuning paradigm has established
VLP models as a dominant force in the multi-modal research
domain, highlighting their potential for further development
and continued performance improvements across various cross-
modal applications.

In VLP, visual grounding plays a crucial role in various
tasks, as evidenced by previous research [3], [56]. Traditional
VLP models [3], [31], [62], depicted at the top of Fig. 1(a),
utilize a Faster R-CNN [42] pre-trained on the 1600-class Visual
Genome [23] to extract salient region features and bounding
boxes. These models then take both the bounding box and
object feature as input, allowing them to identify objects within
the salient region and determine their locations. However, by
using region features as input, the model selectively attends to
information within bounding boxes while neglecting contextual
data beyond their boundaries [17]. This limitation can result
in suboptimal performance on downstream tasks, necessitating
the use of additional object detectors to extract objects and
consequently causing significantly slower inference speeds.
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To get rid of region feature for higher efficiency, recent
works [17], [22] (the middle of Fig. 1(a)) adopt raw image as
input instead of region features, and train the model with Image
Text Matching [10] and Masked Language Modeling [12] loss
end-to-end. Despite their faster speed, these models cannot well
learn the object positions and also their relations. As demon-
strated in Fig. 1(b), a well-trained ViLT model [22] can success-
fully identify objects in an image. However, it fails to precisely
learn object positions. For instance, it incorrectly predicts “the
dog is on the right of this image.” During fine-tuning evaluation,
downstream tasks necessitate object position information for a
comprehensive understanding of the image. This gap signifi-
cantly hinders performance on downstream tasks, emphasizing
the need for improved object position and relation learning.

In this work, our goal is to address the position learning issue
in end-to-end (e2e) models while maintaining fast inference
times for downstream tasks. Drawing inspiration from recent
prompt learning methods [21], [33], [41], [57], we introduce a
novel and effective Position-guided Text Prompt (PTP) paradigm
(depicted at the bottom of Fig. 1(a)) for VLP. The core insight
is that by incorporating position-based co-referential markers
into both image and text, visual grounding can be transformed
into a fill-in-the-blank problem, significantly simplifying the
learning of object information. To establish a connection be-
tween language expressions and image, PTP comprises two
components: (1) block tag generation, which divides the image
into N ×N blocks and identifies objects within each block, and
(2) text prompt generation, which embeds the query text into a
position-based text query template. This innovative approach
facilitates more accurate position learning while retaining the
efficiency advantages of e2e models.

Integrating position information into the pre-training phase,
our PTP significantly enhances the visual grounding capabili-
ties of VLP models. We also investigate second-order relations
between objects to improve reasoning ability. Importantly, our
approach maintains fast inference times, as we do not rely on
object detectors for downstream tasks. Experimental results re-
veal that our method substantially outperforms its counterparts,
particularly in the zero-shot setting. Our proposed model, PTP-
BLIP, demonstrates exceptional performance on the zero-shot
image-to-text retrieval Recall@1 task on the COCO dataset,
achieving a 6.9% absolute accuracy gain over CoCa [58] while
using considerably less training data (4 M versus 3B) and a
smaller model size (220 M versus 2.1B). Moreover, PTP’s ef-
fectiveness extends beyond retrieval, as evidenced by its success
in other visual language tasks such as visual grounding and
image captioning. These results underline the potential of our
position-guided approach for advancing the state of the art in
cross-modal learning.

Our contributions can be summarized as follows: 1). We
introduce a novel pre-training paradigm for vision-language
models, called cross-modal prompt-based pre-training, which
explicitly incorporates position information into the prompt. To
the best of our knowledge, this represents the first attempt at
employing such an approach for pre-training vision-language
models. 2). We design and assess multiple configurations of
high-quality cross-modal prompts for our proposed model, PTP,

Fig. 2. Three widely-used categories of vision-and-language models. The
primary distinction lies in the stage at which cross-modality information fusion
occurs. One-stream models perform fusion at an early stage, while dual-stream
models fuse information at a late stage. Lastly, the third type of models inte-
grates information at a middle stage, striking a balance between the other two
approaches.

demonstrating the versatility and adaptability of our approach.
3). We carry out comprehensive experiments using four back-
bone models, showcasing the effectiveness of PTP across a range
of vision-language tasks. We expand our approach to encompass
data at the billion-level scale and demonstrate its efficacy with a
potent Large Language Model, further highlighting its potential
to advance the state of the art in cross-modal learning.

This journal paper extends our previous work [50] in sev-
eral ways: First, we propose a novel second-order prompt to
further enhance the understanding of object relationships. This
innovation leads to improved state-of-the-art results in various
downstream tasks, such as visual-text retrieval, visual ques-
tion answering, and image captioning. Second, we expand our
evaluation by including more downstream tasks, specifically
visual grounding on the RefCOCO [59] and RefCOCO+[59]
datasets. Additionally, we explore video question answering on
MSVD [55], TVQA [25], and TGIF [19], providing a more
comprehensive comparison with VLP-related works. Third, we
provide an in-depth analysis of the visual grounding ability,
enriched visualizations of masked blocks, and a thorough abla-
tion study. These elements together showcase the effectiveness
and robustness of our second-order PTP approach in advancing
the state of the art in cross-modal learning. Finally, we have
trained the PTP on the extensive DataComp-1B [14] dataset at
the billion-level and integrated it with popular Large Language
Models, thereby showcasing the versatility and broad applica-
bility of PTP.

II. RELATED WORK

A. Vision-Language Pre-Training Architectures

Existing VLP models can be roughly grouped into three
categories based on their architectures: one-stream models, dual-
stream models, and dual-stream with fusion encoder models. We
provide an overview of all three architectures:

1) One-stream: (e.g., UNITER [10], ViLT [22]) as shown
in Fig. 2(a), operates on a concatenation of image and text
inputs. 2) Dual-stream: (e.g., CLIP [40]) depicted in Fig. 2(b),
employs separate and equally expensive transformer encoders
for each modality. The two modalities are not concatenated at
the input level, with interaction between the pooled image and
text vectors occurring at a shallow layer. 3) Dual-stream with



Fusion Encoder: (e.g., BLIP [27]) illustrated in Fig. 2(c), is a
combination of one-stream and dual-stream models that allows
for intermediate interaction.

In this work, without loss of generality, we focus on prompting
all three types of VLP models due to their prevalence and
adaptability to various downstream tasks.

B. Prompt Learning for Computer Vision

Prompt learning was initially designed for probing knowledge
in pre-trained language models and adapting them to specific
downstream tasks [33], [41]. In recent years, there has been
a growing interest in studying prompt tuning for vision tasks,
including multi-modal learning and image understanding. The
pioneering work Color Prompt [57] introduces color prompts on
images and text color descriptions for visual grounding. Most re-
lated to our work is Multi-modality Prompt [21], which presents
multi-modal prompt tuning for vision-language pre-training
models, achieving promising results on various vision-language
tasks.

However, these efforts, akin to early NLP research, focus on
prompt engineering during the fine-tuning stage, leaving the
pre-training phase unaffected. In contrast, the goal of using
prompt design in our work is to equip the model with the
ability to understand semantic concepts at a finer level during the
pre-training stage, laying a stronger foundation for downstream
tasks.

C. Learning Position Information in VLP

The grounding ability has proven to be essential for multi-
ple cross-modal tasks [29], [34]. To introduce this ability into
VLP models, bottom-up and top-down [3] approaches and their
follow-up works [10], [31] concatenate region features and
bounding box vectors together as input signals. However, object
extraction is time-consuming during inference for downstream
tasks. Recently, some works [29], [34], [61] propose training
VLP models with additional object localization loss or word
patch alignment loss. These methods, however, are difficult to
extend as they are specifically designed for particular frame-
works. In contrast, we aim to propose a general framework
for learning position information. To this end, we introduce a
simple text prompt that can be easily integrated into existing
frameworks, providing a versatile solution for capturing position
information in VLP.

III. POSITION-GUIDED TEXT PROMPT

In this section, we first provide a detailed explanation of
our proposed Position-guided Text Prompt paradigm (PTP for
short). Following this, we demonstrate how to incorporate it
into existing vision-language pre-training (VLP) frameworks to
enhance their visual grounding capabilities. We use the classical
and popular models VILT [22], CLIP [40], and BLIP [27] as
examples to showcase the integration.

A. PTP Paradigm

To enhance the visual grounding ability of cross-modal
models trained using VLP, we propose a novel and effective

Fig. 3. Overview of our pipeline. Our PTP can be seamlessly integrated with
any pre-training framework, including one-stream, dual-stream, and dual-stream
with fusion encoder models, as well as most pre-training objectives. The
dashed line in the figure indicates that certain models may not be present. For
downstream tasks, we remove the text prompt and evaluate the model using
standard procedures, ensuring that the integration of PTP does not interfere
with task-specific evaluation metrics.

Position-guided Text Prompt (PTP) that helps a cross-modal
model perceive objects and align them with the relevant text.
PTP differs from conventional vision-language alignment meth-
ods, such as [3], [10], [31], [62], which concatenate object fea-
tures and bounding boxes as input to learn the alignment between
objects and relevant text. This alternative approach offers several
advantages, as discussed in Section III-B. As illustrated in Fig. 3,
PTP consists of two steps: 1) block tag generation, which divides
an input image into several blocks and identifies objects in each
block; and 2) text prompt generation, which reformulates the
visual grounding task into a fill-in-the-blank problem based on
the object position information from step 1). By solving the
fill-in-the-blank problem in PTP, one can easily integrate PTP
into a VLP model. We provide details on these steps below.

1) Block Tag Generation: As shown in Fig. 3, for each
image-text pair in the training phase, we evenly divide the input
image into N ×N blocks. Then we identify the object in each
block using one of the following two methods:

(1) Object Detector: First, we adopt a strong Faster-
RCNN [42] used in VinVL [62] to extract all objects for each
image. This Faster-RCNN version is based on ResNeXt152 and
trained on the 1600-class Visual Genome [23]. Then we select
the top-K objects, denoted by O = oi

K
i=1, with the highest pre-

diction confidence, where oi = (zi, qi) denotes an object with
a 4-dimensional region position vector z and object category q.
For each block, we select the objects whose region centers are
in that block. Finally, the block tag for this block is q of the
selected objects. In this work, we generate object tags using an
object detector by default.

(2) CLIP Model: As an alternative to using a heavy object
detector, recent works [64], [65] have attempted to generate
region supervision based on CLIP [40] due to its efficiency and



effectiveness. Inspired by these works, PTP can also generate
block-wise object supervision using the CLIP (ViT-B) model.1

First, we extract M (3000 by default) keywords/phrases that
are most frequent in the text corpus.2 These keywords/phrases
form our vocabulary V . Then, we extract the text feature ei, i ∈
[1, . . . ,M ] of all these M text embedding using the CLIP text
encoder.

Furthermore, we take the image embedding h from each
block and compute the similarity across every text feature. The
keyword/phrase with the highest similarity score is selected as
the object tag for this particular block. Formally, the index of
the object tag per block is computed as:

I = argmaxy ∈ [1, . . . ,M ]

(
exp(hT ey)∑

w ∈ V exp(hT ew)

)
, (1)

where h is the visual feature embedding of the selected block.
Compared to the object detector, the CLIP model has two
advantages. First, instead of pre-defined object categories, more
diverse object tags are produced. Second, generating block tags
is much faster with the CLIP model than with an object detec-
tor, e.g., it is 40× faster than the Faster-RCNN (ResNeXt152)
model.

2) First-Order Text Prompt Generation: For the input image
of each training pair, Section III-A1 already generate the object
tags and positions which allows us to design a simple text prompt
as follows:

′′The block [P ] has a [O].′′

Here, P ∈ 1, . . . , N2 denotes the index of the selected block,
and O denotes the object tag generated for that block. If there
are multiple objects in a block, we randomly select one object
tag for each prompt. This way, each prompt contains object
position and text, which can help the model better understand
the relationships between objects and text. More prompt design
is explored in Section IV-D.

3) Second-Order Text Prompt Generation: The first-order
relations primarily focus on identifying the position of individ-
ual objects within an image. While this approach provides a
foundation for understanding object placement, it falls short in
capturing the more complex, challenging relationships that exist
between objects. For instance, in the example shown in Fig. 3,
a flag is positioned on top of a girl, illustrating a higher-order
relationship that a first-order prompt would not capture.

To address this limitation and further enhance the learning
process, we propose exploring second-order relations by incor-
porating more sophisticated prompts. As below:
′′The block [P ] has a [O] and a [O2] in [R] of this block.′′

In this format, O2 is another randomly selected ob-
ject, and R represents the relative position, with R ∈
{top, bottom, left, right}. By employing this structure, the
model is challenged to not only recognize individual objects
but also understand their interrelationships and relative positions
within the image.

1[Online]. Available: https://huggingface.co/openai/clip-vit-base-patch16
2NLTK: ([Online]. Available: https://github.com/nltk/nltk)

We have named this method PTP2R, with 2R representing
second-order relations. This approach requires the model to
conduct reasoning over all objects in the image, allowing it
to develop a more comprehensive understanding of the visual
scene. By delving into these higher-order relationships, we aim
to improve the model’s ability to recognize and interpret com-
plex object interactions, ultimately enhancing its performance
in VLP tasks.

B. Pre-Training With PTP

In this work, we integrate our PTP into mainstream VLP
frameworks, leading to PTP-ViLT [22], PTP-CLIP [40] and
PTP-BLIP [27]. Following receipt of the PTP, we have two
options for training these models:

Integrate Into Existing Tasks: The simplest method for using
text prompt is to change the text input. As shown in Fig. 3, the
prompted text and original caption were simply padded together.
Formally, the input caption x of our method is represented as:

x = [w, q], (2)

where w is text and q is our generated text prompt. Then we
train the VLP models end-to-end with conventional objectives.
Following [22], [27], [40], we employ Language Modeling (LM)
loss, Image-text Matching (ITM), and Image-text Contrastive
(ITC) loss for our PTP-BLIP; we use ITM and Masked Language
Modeling (MLM) loss to train our PTP-ViLT; we only use ITC
loss to train our PTP-CLIP. We use this method as default for
all experiments because of its good performance.

As a New Pretext Task: Alternatively, we explore the position
prediction as an additional language modeling task. Formally,
if D is the pretraining data and y1, . . . , yT is a training token
sequence of our generated text prompt q, then at the timestep
t, we devise our model to predict a probability distribution
p(t) = p(∗|y1, . . . , yt−1). Then we regressively try to maximize
the probability of being the correct token. The object prediction
loss is computed as:

LPTP(θ) = −Ey∼D

[∑T

t=1
logPθ (yt | y<t)

]
, (3)

where θ is the trainable parameters of the model. In this way, the
model is asked to predict which block P has objects and what
object O is in this block.

Discussion: Notably, our method does not need to modify the
base network and can be applied to any VLP models without
bells and whistles. The model is designed to learn position
information from raw-pixel image. Note that only during the
pre-training stage, we would require the object’s position infor-
mation; yet on downstream tasks, we evaluate model in normal
end-to-end ways without object information to get rid of the
heavy object feature extraction.

IV. EXPERIMENTS

In this section, we empirically evaluate PTP on multiple
downstream tasks and present a comprehensive study.

https://huggingface.co/openai/clip-vit-base-patch16
https://github.com/nltk/nltk


TABLE I
STATISTICS OF THE PRE-TRAINING DATASETS

A. Experimental Settings

We first describe the pre-training experimental conditions,
including the datasets, training configurations, evaluation pro-
cedures, and baseline models used in our studies.

Statistics of the Pre-Training Datasets: In this work, we
explore beginning from both 4 M (Small) and 14 M (Base)
setting. As in earlier studies [31], [62], we begin by using
a 4 M setup made up of four popular pre-training datasets
(COCO [32], VG [23], SBU [37] and CC3M [44]). The 14 M
setting is a combination of 4 M setting and CC-12 M. Following
recent work [27], we also explore 14 M setting, which includes
additional CC12M [8] (actually only 10 M image urls available)
dataset besides 4 M datasets. We report the data statistics in
Table I. As the URLs for the CC3M and CC12 M datasets are
derived from the Internet, and given that a portion of them are
no longer valid, we have downloaded a total of 2.8 million data
instances for CC3M and 10.2 million data instances for CC12 M,
respectively. It should be noted that the BLIP baseline employs 3
million data instances for CC3M, slightly more than our model.
In terms of the number of images that contain bounding boxes,
there are 2.69 million such images for CC3M and 7 million for
CC12 M. These bounding boxs are used in our PTP. For quick
evaluation, we pre-train the BLIP model for 50 K steps rather
than the 200 K in [22], [61].

Additionally, to assess the effectiveness of our method at a
Large scale, we conducted experiments on extensive datasets,
encompassing billions of data points, which include DataComp-
1B [14], MMC4 [67], and LAION400M [43].

Training Settings: Our models are implemented in Py-
Torch [38] and pre-trained on 8 NVIDIA A100 GPUs. To ensure
a fair comparison, we adopt the optimizer and training hyperpa-
rameters from the original implementation in the baseline works.
Additionally, we investigate the use of RandAugment [11] for
data augmentation and utilize all of the original policies, except
for color inversion, as color information is crucial for our tasks.
Furthermore, we apply affine transformations to augment the
bounding boxes in a manner similar to that used for image
rotation. We take random image crops of 224× 224 during
pre-training resolution, and increase the image resolution to
384× 384 for downstream task finetuning.

Hyper-Parameters for Downstream Tasks: Table III. The
final decoder outputs of the encoder-decoder model BLIP
can be utilized for both multimodal understanding and

generation. Therefore, we evaluate its performance on popular
vision-language benchmarks, employing the same setup as
introduced in the BLIP paper [27]. Specifically, we use the
AdamW optimizer for all tasks and train the retrieval task for
only 6 epochs to increase efficiency. We believe that increasing
the number of epochs would yield better results.

In the case of the ViLT baseline, we primarily focus on three
tasks: vision-question answering, image-text retrieval, and nat-
ural language visual reasoning. The hyper-parameters for ViLT
on these downstream tasks are reported in Table IV. Finally, for
the CLIP baseline, we use the same hyper-parameter settings as
those employed in BLIP.

Baselines: We evaluate three variants of pre-training frame-
works, including one-stream ViLT [22], dual-encoder CLIP [40],
and fusion-encoder BLIP [27], for their superior performance.
For fair comparisons, we adopt the ViT-B/16 [13] as base vision
encoder and use same dataset.

B. Main Results

In this section, we integrated our PTP into existing networks
and compare to existing VLP methods on a wide range of vision-
language downstream tasks. Include five image-text tasks and
two video-text tasks.

Image Captioning: This task asks the model to describe the
input image. We consider two datasets for image captioning:
No-Caps [1] and COCO Captioning [32], [48], both evaluated
using the model finetuned on COCO with the LM loss. Similar to
BLIP, we start each caption with the phrase “a picture of,” which
yields marginally better results. Since image captioning needs a
decoding head, dual stream CLIP and one-stream ViLT architec-
tures cannot test this task directly due to missing decoding head.
We do not pre-train with COCO to avoid information leakage.
For No-Caps dataset, following BLIP, we adopts a zero-shot
setting.

As shown in Table II, related works utilizing a compara-
ble quantity of pre-training data perform significantly worse
than PTP-BLIP. The results of our method are closed to the
VinVL [62] with fewer training samples and smaller image.
Finally, with 14 M setting, our method leads to close result with
LEMON, which trained on billions data and requires two times
higher resolution image.

Image-Text Retrieval: We evaluate PTP for both image-to-
text retrieval (TR) and text-to-image retrieval (IR) on COCO
and Flickr30 K benchmarks. For PTP-BLIP, following original
implementation, we adopt an additional re-ranking strategy.
Specifically, we first select k candidates based on the image-text
feature similarity, and then rerank the selected candidates based
on their pairwise ITM scores. We set k = 256 for COCO and
k = 128 for Flickr30 K.

We first report zero-shot retrieval result on both image-to-text
and text-to-image setting in Table V. Mainstream methods in
VLP, e.g., BUTD [3], OSCAR [31] and UNITER [10], often
use object detector, e.g., Faster-RCNN that is also pretrained on
Visual Genome. Moreover, the compared methods in Table 1∼4
mostly use object detector. E.g., we use Faster-RCNN adopted
by VinVL, but our model (220 M) has better performance



TABLE II
COMPARISON WITH STATE-OF-THE-ART IMAGE CAPTIONING METHODS ON NOCAPS AND COCO CAPTION

TABLE III
HYPER-PARAMETERS FOR BLIP BASELINE

TABLE IV
HYPER-PARAMETERS FOR VILT BASELINE

than VinVL (347 M). So the comparison is fair. We find PTP
significantly improves baselines on all metrics. For example, for
ViLT [22] baseline, PTP leads to 13.8 % absolute improvement
(from 41.3 % to 55.1 %) over Recall@1 of image to text retrieval
on MSCOCO. In addition, our PTP-BLIP even outperforms
CoCa [58] on most recalls of MSCOCO with much less data.

A summary comparison of the fine-tuned settings between
different models is presented in Table VI. It is observed that:
(1) PTP outperforms the BLIP and ViLT baselines by a large
margin in both datasets. For instance, PTP-ViLT achieves an
impressive 5.3% improvement on R@1 of TR in MSCOCO. (2)
With the strong BLIP baseline, PTP-BLIP achieves state-of-the-
art performance at the same scale. Notably, the training cost of
PTP remains the same as that of the BLIP baseline, since we train
PTP with the same settings as the baseline without increasing
the maximum input text token. Moreover, we can even reduce
the gap between the 4 M setting and ALBEF [28] (14 M setting)
with a similar dual stream with fusion encoder architecture.

From all these results above, we point out UNITER [10],
OSCAR [31], VinVL [62], ImageBERT [39] all use faster-rcnn
as we used. However, our PTP leads to much better results than
these related works. Besides, we only use object detector in pre-
training stage. This indicates object detector is not the secret for
success and how to leverage the position information is essential
important for VLP models.

Visual Question Answering: In the context of visual question
answering, VQA [4] requires a model to predict an answer based
on an image and a corresponding question. For PTP-ViLT, we
approach VQA as a multi-answer classification task. On the
other hand, for PTP-BLIP, we follow the approach used in [27],
[28] and consider VQA as an answer generation task to facilitate
open-vocabulary VQA for improved performance.

The performance results are reported in Table VII. Our pro-
posed model, PTP, shows a significant improvement over the
ViLT baseline, with a gain of 1.8% on both splits. Furthermore,
with the 14 M setting, PTP-BLIP outperforms SimVLM [54],
which utilizes a ViT-Large based vision backbone and 1.8 billion
training samples.

Visual Reasoning: Natural Language Visual Reasoning
(NLVR2) [46] task is a binary classification task given triplets
of two images and a question in natural language. This task
relies on position information heavily. As shown in Table VII,
SimVLM [54] is outperformed by PTP-BLIP, which has a
reasonable model size and was pretrained on fewer instances.
Meanwhile, our method is also closed to VinVLlarge model that
adopt larger model and use object feature from strong object
detector instead of raw-pixel image as input.

Visual Grounding: We follow the approach used in ViL-
BERT [35] to evaluate our model’s visual grounding capabilities
in the Referring Expression task, which involves using text to
locate image regions. Table IX presents the results obtained for
the 4 M setting, which demonstrate the strong grounding ability
of our proposed PTP models. Notably, we observe that PTP
outperforms several related works that rely on object features
extracted using the heavy Faster R-CNN architecture. Moreover,
PTP achieves significant improvements over BLIP.

Video-Text Retrieval: In this experiment, we test the general-
ization ability of our method to video-language tasks. Specif-
ically, we perform zero-shot transfer to text-to-video retrieval
in Table VIII, where we directly evaluate the models trained



TABLE V
RESULTS OF ZERO-SHOT IMAGE-TEXT RETRIEVAL ON FLICKR30 K AND MSCOCO DATASETS

TABLE VI
FINETUNING RESULTS OF IMAGE-TO-TEXT RETRIEVAL AND TEXT-TO-IMAGE RETRIEVAL ON COCO AND FLICKR30K

on COCO-retrieval. To process video input, we simply sample
8 frames uniformly from each video and average the frame
features into a single sequence.

Our method outperforms OA-Trans [52], which is a retrieval-
focused method, demonstrating the generality capability of PTP.
Also, note that this simple approach not well explored temporal
information.

Video Question Answering: We report the video question
answering results in Table XI. Following All-in-one [49],
we explore three widely used benchmarks: MSVD-QA [55],
TVQA [25] and TGIF [19]. TGIF FrameQA and MSVD-AQ
are open-ended VQA tasks and TVQA is a multiple-choice
VQA task. Similar to video-text retrieval, we sample 8 frames
for each video. We observe that PTP-BLIP performs well in
both multiple-choice and open-ended settings. For example, out
PTP2R-BLIP outperform All-in-one [49] by 4.3% on MSVD-
QA and 8.3% on TGIF-FrameQA.

C. Scale-Up Experiments

1) Data Scale Up: In this section, we expand our re-
search methodology to encompass the extensive DataComp-1B
dataset [14], which is recognized for its exceptional data quality
when compared to the LAION dataset [43]. The DataComp-1B
dataset originally comprised 1.4 billion samples; however, it is
worth noting that certain URLs have since become unavailable,
resulting in the download of 1.17 billion data samples.

Given the substantial computational resources demanded by
the BLIP and VILT architectures, our primary evaluation is
centered around the CLIP (ViT B-16) model, chosen for its
efficiency in training. Leveraging the inherent simplicity of PTP,
which obviates the need for intricate hyperparameter selection
and operates seamlessly at the data level, we enable a com-
prehensive comparison at this considerable scale. Moreover, in
alignment with the Datacomp evaluation framework, we subject



TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS ON VQA AND NLVR2: IT IS

WORTH NOTING THAT VINVL [62] EMPLOYS A LARGER VISION BACKBONE AND

OBJECT FEATURES EXTRACTED USING FASTER R-CNN

TABLE VIII
COMPARISONS WITH RELATED WORKS FOR ZERO-SHOT TEXT-TO-VIDEO

RETRIEVAL ON THE 1 K TEST SPLIT OF THE MSRVTT

TABLE IX
COMPARISON WITH RELATED WORKS ON VISUAL GROUNDING: IT IS WORTH

NOTING THAT THESE RELATED METHODS WERE PRE-TRAINED ON OBJECT

FEATURE

the model to a comprehensive array of image classification
benchmarks, employing a zero-shot evaluation methodology.

Recognizing the significant time investment associated with
deploying an object detector model, we expedite the training
process by utilizing data generated by the CLIP model, as de-
scribed in the methods section. We summarize the comparative
performance between the original CLIP model and PTP-CLIP in
Table XII. Notably, upon closer scrutiny of the enhanced version,
we find that the experimental results remain promising even
when dealing with data at the billion-level scale.

2) Language Model Scale up: In this experiment, we vary-
ing the language model size from BERT-base(200 M) [12]
to LLAMA(7B) model [47] and analyze the impact of Large
Language Models (LLMs) in multi-modality learning. Specif-
ically, we implement our method within the open-flamingo
architecture [5]. Staying true to the original implementation,
we integrate our approach with OPT1.7B [63] and LLaMA-
7B [47] as language models, while utilizing the Open-CLIP [18]
ViT-L model as the vision encoder. The total parameter is
3B and 9B.

It’s noteworthy that due to unforeseen issues with some im-
age URLs from LAION400M [43] and MMC4 [67] datasets,
preventing access for reevaluation, the sample size is marginally
smaller than open-flamingo and we report results with our imple-
mentation. Given the document nature of MMC4, we exclusively
introduce text prompts.

The model undergoes rigorous training over a span of 6.3 days
for 3B model and 17 days for 9B models, leveraging the com-
putational power of 64 Nvidia V100 GPUs. The comprehensive
results are presented in Table X. Our focus primarily centers
around few-shot tasks, providing a nuanced understanding of
the model’s representation capabilities, as reflected in the results
showcased in the aforementioned table. It’s essential to highlight
the importance of data prompt style even for large models, as
evidenced by the downstream tasks.

D. Ablation & Design Choices

In this section, we first evaluate our method on retrieval
task over three well-known baselines under 4 M setting for
comparison. Then we train a BLIP model on CC3M as baseline
and perform various ablations.

Exploration of Diverse Architectures: In this research, we
conduct experiments utilizing three distinct baseline models,
specifically ViLT, CLIP, and BLIP, to examine the influence of
PTP on a range of performance indicators. The outcomes of
these experiments are detailed in Table XIII, demonstrating the
performance on both the COCO 5 K test set and the Flickr30 K
1 K test set. The data acquired from the baseline models indicate
that our proposed approach, PTP, substantially improves image-
to-text (i2t) and text-to-image (t2i) performance, underscoring
its adaptability and suitability for a variety of visual-language
tasks.

Furthermore, we assess the execution time of our model
relative to the baseline models. As we do not employ an object
detector or prompts for downstream tasks, the computational
overhead aligns with that of the baseline models. Impressively,
PTP is determined to be 20 times more rapid than VinVL [62],
which depends on object features. Importantly, in spite of the
considerable decrease in execution time, our model produces
results of a quality comparable to VinVL, highlighting its effi-
ciency and efficacy.

Comparing Text Prompts and Additional Pretext Tasks: This
research examines the effects of incorporating PTP as a supple-
mentary pretext task during the pre-training phase of vision-
language models. By implementing this strategy, the pretext
task does not conflict with other pre-training objectives, such



TABLE X
COMPARING WITH THE OPEN-FLAMINGO BASELINE ACROSS VARIOUS LANGUAGE MODEL SCALES

TABLE XI
COMPARISONS WITH STATE-OF-THE-ART METHODS FOR VIDEO QUESTION

ANSWERING ON MSVD, TVQA, AND TGIF-FRAME DATASETS

TABLE XII
PTP PRE-TRAINING WITH ONE BILLION DATA

as ITM and ITC, even though it may increase computational
expenses. Conversely, the prompt design modifies the textual
input, influencing all pre-training goals.

The results are presented in Table XIV. We notice that both
Pretext and Prompt approaches enhance the baseline perfor-
mance across all four tasks. Nonetheless, the prompt method
is distinctly more advantageous than the pretext approach, par-
ticularly for COCO captioning CIDER scores (127.2 vs 123.5).
Consequently, we employ the prompt design by default in this
study, owing to its superior efficiency.

Exploring Various Text Prompts: In this experiment, we in-
vestigate six distinct types of prompts: i. The [O] is in block
[P]. ii. The block [P] resembles [O]. iii. In which block is the
[O]? In [P]. iv. The [O] is situated in block [P]. v. (X1, Y1,
W , H) contains a [O]. (X1, Y1) represents the top-left point,
while W,H denote the width and height of the bounding box.
vi. The block [P] features a [O]. vii. The block [NP] includes a

[O]. NP refers to the usage of nouns to describe block positions,
e.g., from upper left to bottom right. The results are reported in
Table XV and we observe:

A precise position does not yield superior results compared to
a block, possibly because precise positioning is challenging to
learn. Furthermore, we find that utilizing block IDs (e.g., 0) or
nouns (e.g., upper left) produces similar outcomes. Ultimately,
we discover that the hybrid version does not generate the best
results. We also note that a single-word change can significantly
impact performance, a common issue in prompt learning, as
observed in GPT-3 [7]. Our work does not primarily focus on ad-
dressing this problem. Additionally, Table XV demonstrates that
using prompts to predict the exact position (four coordinates)
of an object’s bounding box results in inferior performance
compared to predicting the block.

Investigating Second-Order Prompts: Table XVII delves into
the examination of object relation prompts, where R encom-
passes terms such as “left,” “right,” “top,” and “bottom.” We
explore three distinct variations of PTP2R, including the simple
repetition of first-order relations, the relative position of the
object, and the relative position of the selected block. O2/P2

means different objects/positions. In addition, we also explore
the second-order text prompts solely based on objects and posi-
tional relationships.

Incorporating relation prompts leads to a noticeable improve-
ment in COCO text-to-image (t2i) retrieval performance. This
enhancement may be ascribed to the heightened complexity
linked to learning relation prompts, as indicated by the increase
in language mask loss from 1.29 to 1.47. The elevated language
mask loss implies that the model encounters greater difficulty
in grasping the subtleties of object relations, thus pushing it to
develop a more refined comprehension of the relationships be-
tween objects within the visual domain. Consequently, the model
becomes more adept at handling intricate tasks involving object
relations, ultimately resulting in its enhanced performance in the
COCO t2i retrieval task. We have noted a challenge encountered
by the model when attempting to determine the precise location
of the first object in cases where positional information is absent
from the initial second-order prompt. This issue primarily arises
due to the presence of recurring object classes among the top K
largest objects.



TABLE XIII
ABLATION ON DIFFERENT ARCHITECTURES UNDER 4 M SETTING

TABLE XIV
TEXT PROMPT VERSUS ADDITIONAL PRETEXT HEAD

TABLE XV
CASE STUDY OF TEXT PROMPT ON IMAGE-TEXT RETRIEVAL

Exploring Additional Prompt Designs: In our approach, an
object may span multiple blocks, and each category may encom-
pass multiple objects. To address this, we also predicts all blocks
or objects and investigate several other prompt. The model is
trained on CC3M and evaluated on three downstream tasks.
Specifically, we explore the following approaches: i. Multiple
Tags. We note that a block may contain multiple objects in many
cases. We attempt to refine the text prompt as The block [P] has
objects [O1], [O2], and [O3]. It is important to remember that
each block contains a varying number of objects. ii. Multiple
Positions. We create a multiple position setup, considering that
one object could appear in several blocks. We refine the prompt
using question-answer pairs. iii. Synonymous Substitution. We

substitute “block” with “region” and “is” with “looks like.” iv.
CPT [57] Following this work, we color the detected region for
each tag, assigning a unique color to each region.

The results are reported in Table XVI. We observe that in-
corporating multiple objects or positions does not significantly
improve the model’s performance on downstream tasks, and the
language modeling loss is higher than the baseline. This suggests
that the assignment is too difficult for the model to learn. We
also find that the outcome of simple synonymous substitution
remains consistent with the original text prompt’s outcome.
Modeling location information only requires a straightforward
prompt. CPT is designed for downstream visual grounding by
coloring region proposals for identification, while PTP is for
pretraining, which only pretrains a VLP model for numerous
downstream tasks. Since most downstream tasks do not have
region proposals available (e.g., VQA), CPT cannot generate
color prompts to boost grounding, while PTP can, as it improves
grounding during the pretraining phase. In fact, we attempted
CPT for pretraining and observed worse performance, e.g., 75.1
for CPT versus 77.8 for PTP on NLVR. For CPT, downstream
tasks like NLVR do not have color prompts (CP), while its
pretraining uses CP, leading to inconsistent phases.

We also find that selecting the top-1 predicted object and using
its corresponding bounding box provides the best performance.
It should be noted that the bounding box is rectangular, while
the actual object may have various shapes. One possible expla-
nation for this observation is that other regions or blocks may
contain excessive background noise, making them challenging
to identify.

Assessing the Role of Position in Text Prompts: In this experi-
ment, we investigate the effectiveness of prompting our PTP for
information at various granularities, such as without Positional.
We simply use [P] has [O] when removing the prompt. The
results are listed in Table XVIII. From these results we observe:
i. It is interesting to see that each component is crucial. Without
any one component, the downstream performance progressively
deteriorates. ii. Although OSCAR [31] found that using ob-
ject tags as supplementary input improved results when area



TABLE XVI
OTHER VARIATIONS OF TEXT PROMPT

TABLE XVII
COCO TEXT-TO-IMAGE RETRIEVAL RESULTS WITH THE SECOND-ORDER

RELATION OVER OBJECTS

TABLE XVIII
THE POSITION INFORMATION IS ESSENTIAL FOR PROMPT DESIGN

TABLE XIX
DIFFERENT WAYS TO GET GRID PSEUDO LABEL AND ITS CORRESPONDING

RUNNING TIME

TABLE XX
PART SAMPLES WITH POSITION INFORMATION

features were used as input, we demonstrate that object tags
are ineffective when raw pixel images are used. This highlights
the importance of devising a functional prompt for learning
alignment between object tags and image regions.

Fig. 4. We varying the number of selecting objects from 3 to 30. We report
the result on downstream tasks over BLIP and ViLT baselines.

Fig. 5. Relation between the number of blocks and the relative accuracy
improvement. We explore two baselines and show the improvements over four
different tasks.

Exploring the Number of Blocks: We investigate whether more
fine-grained position information benefits our PTP. In Fig. 5,
we vary the number of blocks from 1× 1 (removing position
information in PTP) to 4× 4 and report the relative performance
over BLIP/ViLT models. As can be seen, the results for both
backbones improve when the number of blocks is more than
1. However, when there are 16 blocks, all downstream tasks
experience a relative decline in performance. The reason may
be that the predicted bounding box deviates from the localization
of the actual object, resulting in a mesh that is too small and may
not contain the selected object. Consequently, we opt for using
3× 3 blocks, as this configuration offers better accuracy.

Determining the Optimal Number of Objects: To generate
object tags, one approach is to use Faster-RCNN and detect at
least 10 objects from an image. We varied the number of objects
from 5 to 30, exploring the effects of different object counts.
The results are shown in Fig. 4.

We observe that the BLIP baseline exhibits a slight increase in
performance at the beginning, emphasizing the significance of
data diversity for subsequent tasks. However, the results are less



promising with a larger number of objects due to the high likeli-
hood of false predictions resulting from a substantial number of
objects with low confidence scores. PTP selects objects based
on the confidence scores predicted by Faster-RCNN. A higher
number of selected objects leads to lower confidence scores and
increased noise in the tags, thus requiring a trade-off between
the number of selected objects and the associated tag noise. In
this study, we set the default number of selected objects to 10.

Partial Bounding Box Annotation: Since some URLs for the
CC3M dataset are no longer valid, we have opted to extract
objects from 2.7 million data points in the CC3M dataset and 7
million data points in the CC12 M dataset. Consequently, only
9.7 million of the pre-training samples have available objects.
We also report results for the 14 million setting, wherein we
utilize the original text without text prompts in cases where
objects are not available.

The outcomes for different sampling subsets are presented in
Table XX. Our analysis reveals that the 68.6% object availability
results in a CiDER value of 134.6 for COCO Captioning and an
accuracy of 83.2 for the NLVR test-P. These findings demon-
strate that an increased number of annotated samples contributes
to better overall performance. Additionally, this observation
supports the notion that the PTP approach is well-suited for
large-scale pre-training, further validating its applicability and
potential in the development of more advanced models.

V. DISCUSSION

Evaluating the Necessity of an Object Detector: In this work,
part of the predicted bounding box information comes from
Faster-RCNN [42]. To verify the expressive power of objects, we
also consider two variations: i. Pure CLIP similarity. This design
choice is adapted mainly for efficiency reasons, as utilizing an
object detector is time-consuming and not always easy to access.
ii. In addition to the powerful ResNext152-based object detector,
we also use a smaller ResNet101 based Faster-RCNN.

The results are reported in Table XIX. We also report the
overall feature extracting time on 8 NVIDIA V100 GPUs. Main-
stream works in VLP use object detectors, and slow preprocess-
ing is a common problem. The community tolerates this because
objects only need to be extracted once and saved on disk (our
features are downloaded from VinVL). To reduce costs further,
PTP uses CLIP as a feature extractor, which is 42 times faster
than Faster-RCNN. On 8 A100 GPUs, under the 4 M setting,
BLIP needs 19.4 hours, while PTP with CLIP requires 8 + 19.4
= 27.4 hours to train from scratch, which is affordable.

As can be seen from the table, we find that using a stronger
detector leads to better results but incurs a substantial computa-
tional cost. Moreover, we observe that the result of CLIP embed-
ding is very close to Faster-RCNN (ResNeXt152). Additionally,
it takes only around 2.3% of the time of the Faster-RCNN version
to extract pseudo labels for each grid. We conclude that a CLIP
model is a suitable alternative to an object detector in PTP.

Position Information Exploration: To explore whether model
training with the PTP framework indeed learns position infor-
mation, we design a fill-in-the-blank evaluation experiment in
this section. Following ViLT [22], we mask some key words

TABLE XXI
COMPARISON WITH BLIP BASELINE ON TWO SPLITS OF VQA DATASET. WE

REPORT ACCURACY(%)

and ask the model to predict the masked words and show its
corresponding heatmap. We design two text prompts: one given
the noun to predict the localization and the other given the
localization to predict the missing noun. We show the top-3
predictions for reference.

The results are shown in Fig. 7. Our findings reveal that
PTP-ViLT is capable of making accurate predictions by utilizing
both the block position information and its corresponding visual
concepts. Moreover, when we mask only the position noun, we
still observe a high probability of correct block prediction. For
instance, as depicted in the bottom part of Fig. 7, our model
accurately identifies all image patches resembling the object of
“man”. Based on these experiments and the insights presented
in Fig. 1, we conclude that PTP is an effective tool for facilitating
the learning of position information in a vision-language model,
using a simple yet powerful text prompt.

Furthermore, we cluster the token-level features with the K-
Means algorithm for ViLT and PTP-ViLT. Intuitively, tokens
with similar semantics should be clustered together. We show the
visualization results in Fig. 6. Comparing with the ViLT baseline,
we observe that our method can cluster similar patches more
accurately. This illustrates that our PTP has fairly accurately
learned semantic information.

What Kind of Samples Does PTP Help? We undertake a
comprehensive analysis of the visual-question answering task.
Our investigation reveals that a significant portion of the VQA
dataset samples contain position-related words, such as “top”
and “sitting in.” To further examine this observation, we con-
struct a vocabulary comprising 30 commonly occurring position
words. Subsequently, we categorize the VQA dataset into two
subsets: the position-related subset (approximately 27%) and
the position-unrelated subset (roughly 73%), based on whether
the text contains words from the aforementioned vocabulary.

Table XXI demonstrates the effectiveness of the proposed
categorization scheme and its corresponding performance on the
test-dev set. Our analysis reveals that PTP achieves an accuracy
of 78.4% on the position-related subset, which is 5.9% higher
than the BLIP baseline. This result highlights the significant
contribution of PTP towards enhancing the model’s ability to
efficiently learn position information and underscores its robust
visual grounding capability. Thus, our proposed model can serve
as a valuable asset in addressing visual question-answering
tasks.

Comparison With Direct Object Regression: Learning posi-
tion knowledge from an object detector is indeed challenging.
In this section, we consider the coordinates of predicted object
bounding boxes as ground truth labels and regress them during
pre-training. Specifically, we add a lightweight detection head



Fig. 6. Token cluster visualization. We train ViLT and PTP-ViLT with ViT-B/32 model on CC3M train set. We show the token cluster result with KMeans
algorithm from CC3M test set [44]. PTP-ViLT shows preferable clusters.

Fig. 7. Evaluation of the full-in-the-blank task, where the model is required to
predict the objects contained within a given block and identify the blocks having
a specific object.

TABLE XXII
COCO TEXT-TO-IMAGE RETRIEVAL. THE SECOND-ORDER RELATION OVER

OBJECTS

after the BLIP image encoder. Table XXII shows that PTP
performs better than the ground truth label approach in terms
of pre-training loss (ITC, ITM, MLM) and downstream task
performance (TR, IR, NLVR).

We find that the bounding boxes provided by Faster-RCNN
are not very precise, and enforcing the model to regress co-
ordinates could bias its grounding ability. Regressing objects
directly requires predicting coordinates, which are not very
precise. Such an implementation focuses only on the image
encoder and does not improve the text decoder model. More-
over, this implementation is complex and involves many tricks
to explore, making it difficult to extend to other frameworks
easily. In contrast, our block position representation for objects
is more accurate, ensuring that the model learns correct position
information. With the position-guided text prompt (e.g., giving
position/block to predict object), the model learns which blocks
contain objects and what objects are in each block. This way,
the model implicitly learns visual grounding, as experimentally
demonstrated in the previous sections.

Exploring the Feasibility of Higher-Order PTP Integra-
tion: The consideration of incorporating higher-order relations

TABLE XXIII
EXISTING OBJECT-CENTRIC DATASETS HAVE A LIMITED NUMBER OF

SIGNIFICANT OBJECTS

into image captions presents a significant point of discussion.
This deliberation is rooted in the potential extension of cap-
tion lengths, which necessitates scrutiny. Notably, conventional
Visual-Language Pretraining (VLP) models adhere to specific
maximum caption length constraints, typically set at 32 tokens,
and this constraint bears relevance in our examination.

It is pivotal to recognize that the majority of images within
the corpus exhibit a rather limited diversity of distinct objects.
To elucidate this context, we undertook an extensive analysis to
quantify the unique object classes within each image, eliminat-
ing frequent, non-discriminatory labels such as “sky,” “road,”
and “tree,” alongside objects exceeding 1/10th of the image’s
width. The results of this rigorous analysis are documented in
Table XXIII for reference.

Our findings unveil a noteworthy statistic; approximately 40%
of samples sourced from prominent pre-training datasets, such
as DataComp1B [14], encompass two or fewer unique objects.
Given this empirical insight, the endeavor to generate third-
order relations within these object-centric datasets emerges as
a formidable challenge. Therefore, the judicious selection of
second-order relations assumes a pragmatic stance within the
scope of our inquiry.

Erasing Misalignment Through PTP Implementation: A pri-
mary challenge observed in existing large-scale vision-language
pre-training datasets is the significant misalignment between
image and text pairs [14]. In other words, there is often a
substantial lack of alignment between the provided images and
their corresponding textual descriptions, making it difficult for
the model to learn effectively.

In this experiment, we set out to tackle this issue by assessing
dot product similarity scores between LAION400M [43] data
and Datacomp1B [14]. Specifically, we randomly selected 10%
subsets from both datasets for analysis. Utilizing the pre-trained
CLIP model, available at the following link,3 we calculated the
dot product similarity scores for image-text pairs. The compar-
ison results are visually presented in Fig. 10, demonstrating the

3[Online]. Available: https://github.com/mlfoundations/open_clip

https://github.com/mlfoundations/open_clip


Fig. 8. Our text prompt (in red color) and its corresponding bounding box’s mask. The block index spans a range from 0 to 8. Furthermore, we employ data
augmentation techniques on the bounding box to ensure its alignment with the transformations applied to the input image.

Fig. 9. (a) Position information is essential for mainstream downstream vision-
language tasks. (b) In the context of the VQA [4] dataset, our PTP model provides
improved predictions for position-related examples.

Fig. 10. Image-text similarity score distribution for original and revised cap-
tions using PTP.

efficacy of our method in erasing the impact of noisy image-text
pairs.

It is worth noting that in each epoch, our approach generates
distinct captions due to the random selection of positions and
objects. This not only erases the misalignment issue but also

contributes to the enhancement of the overall representation
from the data aspect.

VI. VISUALIZATION

A. Case Analysis

In this experiment, we showcase several cases involving posi-
tion information in Fig. 9. We observe that position information
is crucial for various downstream tasks, including captioning,
VQA, and retrieval. To comprehend these tasks, the trained
model needs to learn position information.

Since a large number of samples in VQA tasks typically in-
clude position information, we evaluate our model on VQA tasks
and select some representative samples. Specifically, we display
the prediction probability and predicted nouns at the bottom of
this figure. We observe that PTP provides accurate predictions in
most cases, illustrating that our PTP learns position information
more effectively.

B. Bounding Box Visualization

In this section, we present the object detection results obtained
using our generated text prompts. Specifically, we randomly
select an object from the set V and then visualize the original
image along with the corresponding bounding box mask. It is
important to note that we apply the same affine transformation
to these bounding boxes as we do to the original image, ensuring
consistency between the image and the corresponding bounding
box mask.

We randomly select some samples from the overall dataset,
and the results are reported in Fig. 8. We also observe that the
bounding box may be very large and span multiple blocks in
some examples (e.g., the first case in the third row). Since we
use RandAugment [11], some objects may be outside the border
of the input image. For such situations, we simply replace the
specific position with [X], and the final PTP is The block [X]



has a [O]. We also find that some masks may not be square, as
seen in the third row.

VII. LIMITATIONS AND CONCLUSION

Initially, we attempted to leverage position information from
existing object detectors or trained models to enhance Visual-
Language Pre-training models using simple prompts. To aid in
prompt engineering, we developed a successful practice of cross-
modal prompt settings. In addition to the first-order relation
between objects and position, we also explored more compli-
cated second-order relations between objects. Through rigorous
experiments, we demonstrated that PTP serves as a general-
purpose pipeline and improves the learning of position informa-
tion without incurring significant extra computational costs.

Although the current version of PTP has demonstrated sig-
nificant progress in its ability to process and interpret various
input data, it is essential to acknowledge the limitations that still
persist. One primary concern is that, at this time, PTP does not
possess the capability to effectively handle instances wherein
an incorrect object tag is presented. Furthermore, the present
scope of this research has not delved deeply into the intricacies
associated with more complex prompts. An in-depth exploration
of such prompts would facilitate a better understanding of the
model’s strengths and weaknesses, paving the way for further re-
finements and enhancements in future iterations. Looking ahead,
it is crucial to broaden the research horizons to evaluate PTP’s
performance across a diverse range of vision-language tasks.
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