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Abstract

Fine-grained visual classification (FGVC) involves categoriz-
ing fine subdivisions within a broader category, which poses
challenges due to subtle inter-class discrepancies and large
intra-class variations. However, prevailing approaches pri-
marily focus on uni-modal visual concepts. Recent advance-
ments in pre-trained vision-language models have demon-
strated remarkable performance in various high-level vision
tasks, yet the applicability of such models to FGVC tasks
remains uncertain. In this paper, we aim to fully exploit
the capabilities of cross-modal description to tackle FGVC
tasks and propose a novel multimodal prompting solution,
denoted as MP-FGVC, based on the contrastive language-
image pertaining (CLIP) model. Our MP-FGVC comprises
a multimodal prompts scheme and a multimodal adapta-
tion scheme. The former includes Subcategory-specific Vi-
sion Prompt (SSVP) and Discrepancy-aware Text Prompt
(DATP), which explicitly highlights the subcategory-specific
discrepancies from the perspectives of both vision and lan-
guage. The latter aligns the vision and text prompting ele-
ments in a common semantic space, facilitating cross-modal
collaborative reasoning through a Vision-Language Fusion
Module (VLFM) for further improvement on FGVC. More-
over, we tailor a two-stage optimization strategy for MP-
FGVC to fully leverage the pre-trained CLIP model and ex-
pedite efficient adaptation for FGVC. Extensive experiments
conducted on four FGVC datasets demonstrate the effective-
ness of our MP-FGVC.

Introduction
Fine-grained visual classification (FGVC) is a significant
task in the field of computer vision that aims to categorize
distinct subcategories within a given supercategory. Unlike
traditional classification tasks, FGVC faces the challenges
of subtle inter-class variations caused by similar subordinate
categories, as well as large intra-class variations due to fac-
tors such as location, scale, and deformation. Recognizing
these subtle differences between subcategories, such as dis-
tinguishing bird subcategories based on characteristics like
eye shape, flipper appearance, and coloration of the tail re-
gion, is a key aspect of human visual perception. To address

*Equal contribution.
†Corresponding author.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these challenges, deep learning methods (Yu et al. 2018;
Xu et al. 2021; Gu and Feng 2023; Tang et al. 2023; Gu
et al. 2023; Shen et al. 2023) have been proposed for FGVC,
falling into two main categories: feature-encoding methods
and part-localization methods. Part-localization methods, in
particular, have garnered significant interest due to their con-
sistency with human recognition intuition, as fine-grained
subcategory-specific discrepancies (Dong et al. 2023) often
reside in the unique properties of object parts.

Although CNN-based models have achieved satisfactory
performance for FGVC in a weakly-supervised manner, a
prominent drawback persists: CNNs tend to focus solely
on a small, irrelevant region within an image, resulting in
the captured subcategory-specific discrepancies that lack ro-
bustness and discriminability. Recently, vision transform-
ers like ViT (Dosovitskiy et al. 2021a), have recorded re-
markable performance in the image classification tasks and
are actively being employed in FGVC (He et al. 2022; Xu
et al. 2023). Compared to CNNs, ViT’s patch-by-patch pro-
cessing lends itself well to FGVC as each image patch can
be regarded as a local part. Additionally, the inherent self-
attention mechanism in ViT enables the modeling of long-
range dependencies in the entire image. However, due to the
relatively limited size of FGVC datasets, these CNN-based
and ViT-based methods often exhibit erratic behavior during
optimization and heavily rely on visual representations from
a predefined closed set during inference, which hampers the
full exploitation of these models’ potential for FGVC.

The human visual perception system possesses a unique
mechanism of top-down cognitive penetrability (Maier
and Abdel Rahman 2019) in which prior linguistic knowl-
edge (Li et al. 2023), such as appearance descriptions, is in-
stinctively used to adaptively adjust ongoing visual percep-
tual processing to stimulus features relevant to object cat-
egories, thereby facilitating the recognition of fine-grained
objects. Recently, large-scale vision-language (VL) mod-
els have been developed to connect visual representation
with high-level language descriptions, showing potential for
adaptation to various vision tasks. Thus, it raises the ques-
tion of whether the cross-modal description ability in the VL
models can be effectively utilized for FGVC tasks. Recent
studies (Bahng et al. 2022; Jia et al. 2022) have already con-
firmed the possibility of utilizing the knowledge from the
CLIP model via prompt techniques (Zhou et al. 2022b,a)
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Figure 1: The pipeline of our framework, which consists of a multimodal prompts scheme and a multimodal adaptation scheme.

for classification tasks. However, existing prompt strate-
gies are primarily designed to capture high-level category
semantics rather than the more detailed subcategory-level
discrepancies. Furthermore, the lack of specific annotations
in existing FGVC datasets hampers the widespread adop-
tion of VL models in FGVC. Fortunately, recent works (Li,
Sun, and Li 2023; Wang et al. 2023) have introduced large-
scale contrastive language-image pretraining (CLIP) (Rad-
ford et al. 2021) model to the domain of fine-grained under-
standing. However, these methods aim to associate a broader
range of visual concepts, including both pre-defined and un-
known categories (Tang et al. 2020), with their textual de-
scriptions (Yan et al. 2023), addressing the problem of fine-
grained image retrieval in open-set scenarios. Therefore, it is
worth investigating how to effectively make the pre-trained
CLIP model sensitive to subcategory-specific discrepancies
according to the semantic prompts to enhance the perfor-
mance of FGVC tasks in close-set scenarios.

To this end, leveraging the capabilities of the recently in-
troduced CLIP model, we present a multimodal prompting
solution, called MP-FGVC, for FGVC. The primary objec-
tive of MP-FGVC is to align the FGVC task with the clas-
sification task performed by the pre-trained CLIP model.
Fig. 1 illustrates the proposed MP-FGVC framework,
which consists of a multimodal prompts scheme and a multi-
modal adaptation scheme. The multimodal prompts scheme,
comprising Subcategory-specific Vision Prompt (SSVP)
and Discrepancy-aware Text Prompt (DATP), explicitly em-
phasizes the subcategory-specific discrepancies from the in-
put perspective. In particular, SSVP identifies subcategory-
specific discrepancies by selecting highly salient patches
from a set of generated image patches, employing an im-
portance ranking mechanism. On the other hand, DATP
adaptively transforms learnable text tokens using supercat-

egory names to generate subcategory-specific discrepancy
descriptions, which serve as additional discriminative cues.
To maintain semantic coherence, a multimodal adaptation
scheme is proposed to align the vision and text prompt into
a common semantic space, enabling cross-modal collabora-
tive reasoning through a Vision-Language Fusion Module
(VLFM). This further improves the performance of multi-
modal prompting on FGVC tasks. However, due to the ab-
sence of specific annotations for fine-grained images and the
availability of only subcategory labels or indexes, there is
limited supervision for optimizing MP-FGVC. Thereby, a
two-stage training strategy is proposed. In the first stage,
we keep the text encoder of the pre-trained CLIP fixed and
optimize the image encoder with the multimodal prompts
scheme. In the second stage, the image encoder, text en-
coder, and multimodal prompts scheme remain static. To-
gether, they provide subcategory-specific visual embeddings
and discrepancy-aware textual embeddings, facilitating the
multimodal adaptation scheme to effectively exploit multi-
modal prompting for FGVC.

In summary, the primary contributions of this work are
as follows: (1) We propose MP-FGVC, a novel multimodal
prompting solution for fine-grained visual classification. To
the best of our knowledge, this is the first approach that
efficiently adapts the image-text pre-trained CLIP model
to FGVC tasks in close-set scenarios. (2) Our MP-FGVC
encompasses a multimodal prompts scheme and a multi-
modal adaptation scheme. The former explicitly highlights
the subcategory-specific discrepancies from both the vision
and language perspectives, while the latter achieves cross-
modal collaborative reasoning based on the former to further
enhance multimodal prompting in FGVC. (3) MP-FGVC
employs a two-stage training strategy to fully leverage the
cross-modal description ability of the CLIP model, resulting
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in improved FGVC with a simple modification. Experimen-
tal evaluations conducted on four FGVC datasets demon-
strate the remarkable performance achieved by our proposed
MP-FGVC.

Related Wrok
Fine-Grained Visual Classification
Existing CNN-based approaches for FGVC can generally
be categorized into two groups. The first group, known as
feature-encoding methods (Yu et al. 2018; Gao et al. 2020;
Xu et al. 2021), focuses on learning more comprehensive
features by integrating higher-order information or explor-
ing various training strategies. The second group, referred
to as part-localization methods (Ge, Lin, and Yu 2019; Liu
et al. 2020; Tang et al. 2022), aims to identify multiple local
regions for capturing more discriminative features. Recently,
vision Transformers (ViTs) (Dosovitskiy et al. 2021b) have
exhibited impressive performance in image classification on
large-scale datasets and are currently being actively em-
ployed in FGVC (Hu et al. 2021; Sun, He, and Peng 2022;
Xu et al. 2023). By virtue of their patch-based processing
and powerful self-attention mechanism, ViT-based methods
can outperform CNN-based methods (Zhuang, Wang, and
Qiao 2020; Luo et al. 2019; Min et al. 2023) by solely
relying on a pure Transformer encoder architecture along
with diverse patch selection mechanisms. However, these
methods exclusively rely on uni-modal visual representation
from a pre-defined closed set and completely disregard cor-
responding high-level language descriptions that encompass
rich semantic information that can be generated by vision-
language models. In this paper, we are the first to exploit
the cross-modal description capabilities of CLIP to estab-
lish associations between subcategory-specific visual dis-
parities in images and their corresponding textual descrip-
tions. This simple but effective approach yields significant
improvements on FGVC.

Vision-Language Learning
Vision-Language (VL) models, comprising image and text
encoders, are trained in a contrastive manner using large-
scale image-text pairs to learn a common feature space
for images and textual labels. Recent advancements in
contrastive training with large-scale Internet data, such as
CLIP (Radford et al. 2021), ALIGN (Jia et al. 2021), and
FILIP (Yao et al. 2022), have further scaled up VL mod-
els. Specifically, CLIP (Radford et al. 2021) has achieved
remarkable success in zero-shot tasks by leveraging text
prompts to transfer visual concepts to downstream tasks.
Consequently, numerous subsequent approaches (Khattak
et al. 2023; Lee et al. 2023; Yang et al. 2023) have been pro-
posed to exploit pre-trained VL models for diverse down-
stream tasks. Drawing inspiration from recent develop-
ments in NLP, prompt techniques have begun to be ex-
plored in multimodal computer vision problems for trans-
ferring knowledge from large-scale VL models to down-
stream tasks. In the case of ViTs, some methods (Yu et al.
2023; Wasim et al. 2023) employ trainable prompts to guide
pre-trained ViTs. Conversely, certain methods (Zhou et al.

2022b) introduce learnable vectors into the text encoder
of CLIP for transfer learning in image recognition tasks.
For fine-grained understanding, some approaches propose
utilizing pre-trained CLIP to address the problem of fine-
grained image retrieval in open-set scenarios. However, to
the best of our knowledge, no related work has specifically
focused on how to develop a pre-trained CLIP model to
solve FGVC tasks in close-set scenarios. The primary chal-
lenge lies in existing prompt strategies tailored towards cap-
turing supercategory-level semantics rather than more de-
tailed subcategory-level discrepancies. In response, we pro-
pose a multimodal prompts scheme and a multimodal adap-
tation scheme to enhance the sensitivity of the pre-trained
CLIP model for solving FGVC tasks.

Preliminary
Review of Vision Transformer (ViT)
For the input image I, ViT architecture initially split it into
N = Nh × Nw non-overlapping patches of size P × P .
Here, Nh and Nw represent the number of patches in each
column and row of the input image, respectively. Subse-
quently, these patches are transformed into embedding to-
kens E = [E1,E2, · · · ,EN ] ∈ RN×D using a learnable
linear projection Pemb ∈ RP 2×D, where D denotes the
output dimension for each token. Lastly, the embedded to-
kens E and the class token Eclass ∈ RD are concate-
nated and combined with an additional position embedding
Epos ∈ R(N+1)×D to form the initial input token sequence
as E0 = [Eclass,E1,E2, · · · ,EN ] + Epos. The ViT en-
coder comprises L transformer layers, each consisting of
multi-head self-attention (MHSA) and multi-layer percep-
tion (MLP) blocks. Thus, when provided with the input
Ei−1, the output of the i-th layer can be expressed as:

E′
i = MHSA(LN(Ei−1)) +Ei−1,

Ei = MLP(LN(E′
i)) +E′

i.
(1)

Here, i = {1, 2, · · · , L}, and LN(·) denotes the layer nor-
malization. The first token of the last layer, E0

i , in ViT serves
as the global feature representation and is forwarded to the
classifier head to generate the final predictions.

Methodology
The overall pipeline of our proposed MP-FGVC is depicted
in Fig. 1. Obviously, our framework comprises two key com-
ponents: the multimodal prompts scheme and the multi-
modal adaptation scheme, both of which are constructed
using a pre-trained CLIP model through a two-stage training
process. In the first stage, we refine the multimodal prompts
scheme to empower the pre-trained CLIP model in recogniz-
ing subcategory-specific semantics in the vision prompt, as
well as generating discrepancy-aware descriptions in the text
prompt. Subsequently, in the second stage, we optimize the
multimodal adaptation scheme to fully exploit the benefits
derived from the multimodal prompts scheme specifically
for FGVC.
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Multimodal Prompts Scheme
Subtle yet discriminative discrepancies are widely acknowl-
edged as being crucial for FGVC. However, the conventional
ViTs employed in existing CLIP-like vision-language mod-
els are originally designed to represent common visual con-
cepts and recognize them into coarse categories, rather than
effectively capturing subtle differences to predict subordi-
nate categories of a given object. To address this, we propose
a multimodal prompts scheme that encompasses two compo-
nents: subcategory-specific vision prompt and discrepancy-
aware text prompt.

Subcategory-specific Vision Prompt. An important chal-
lenge in FGVC is accurately localizing discriminative re-
gions that capture subcategory-specific discrepancies among
confusing subcategories. However, the ViT treats all patch-
divided image regions equally, resulting in the inclusion of
much redundant patch information that can negatively im-
pact the final decision. This limitation restricts the appli-
cability of the pre-trained CLIP model in FGVC tasks. To
address this limitation, we propose a parameter-free oper-
ation called Subcategory-specific Vision Prompt (SSVP),
which can be applied to the penultimate layer of the ViT
to modify its input to the last layer. In SSVP, the impor-
tance scores generated by M heads in MHSA are consid-
ered to select discriminative tokens that reflect the attention
given to each region. Let A = [A1,A2, · · ·Am, · · · ,AM ]
denote the attention scores of the class token in the penulti-
mate layer, where Am ∈ RN represents the attention score
of the m-th head and reflects the attention degree of class
prediction towards each region. As shown in Fig. 1, we
first aggregate the attention scores of all heads and then se-
lect the top-k valuable tokens with high activation values as
id = TopK(

∑M
i=1 Ai) ∈ ZK , where TopK(·) returns the

index id of the first k tokens based on the aggregated atten-
tion scores, sorted in descending order. Instead of treating
all tokens equally, we select k tokens by id and concatenate
them along with the class token to form the input sequence
of the L-th transformer layer, denoted as:

EL−1 = [Eclass
L−1 ,E

id(1)
L−1 ,E

id(2)
L−1 , · · · ,E

id(k)
L−1 ]. (2)

By replacing the original entire input sequence of the last
transformer layer with tokens that solely cover the discrimi-
native regions of an object, the proposed SSVP encourages
the image encoder to focus more on the subtle differences
between different subcategories while disregarding less dis-
criminative regions such as background or common features,
thereby facilitating fine-grained understanding.

Discrepancy-aware Text Prompt. The prompt strate-
gies employed by existing CLIP-like VL models primar-
ily focus on capturing supercategory-level semantics rather
than detailed visual discrepancies necessary for distinguish-
ing fine-grained objects. Consequently, the acquisition of
subcategory-specific visual discrepancies in FGVC tasks
is constrained, despite the provision of concrete subcate-
gory names for text prompts. To maintain semantic coher-
ence with the subcategory-specific vision prompt, we pro-
pose a Discrepancy-aware Text Prompt (DATP) operation

that supplements the lack of textual information by per-
training a set of learnable text tokens. These tokens auto-
matically generate appropriate text descriptions about more
detailed visual discrepancies among subcategories. Specif-
ically, the text prompt template fed into T (·) is designed
as Pc

class = [X1,X2, · · · ,Xj , · · · ,XJ ,class++], where
c ∈ {1, · · · , C} and C denotes the number of subcategories.
Each Xj ∈ RD represents the j-th learnable text token,
and D represents the dimension of the token vector. No-
tably, class++ ∈ RD corresponds to the word embedding
generated by the supercategory label (e.g., bird/dog/food),
rather than specific subcategory labels. To ensure seman-
tic coherence with the subcategory-specific vision prompt,
each text prompt Pc

class serves as a discrepancy-aware tex-
tual description and shares the same supercategory name
class++ within a dataset. thereby improving the compu-
tation efficiency. Ultimately, these learnable prompt vec-
tors, in conjunction with the supercategory names, construct
a discrepancy-aware text prompt that the text encoder of
the CLIP model can understand. Consequently, this mech-
anism generates subcategory-specific discrepancy descrip-
tions, which serve as additional discriminative cues.

Multimodal Adaptation Scheme
The objective of the multimodal prompts scheme is to
enhance the sensitivity of the pre-trained CLIP model to
subcategory-specific discrepancies from the perspectives of
both vision and text prompts. To enhance the performance of
multimodal prompting on FGVC, we additionally introduce
a multimodal adaptation scheme by incorporating a Vision-
Language Fusion Module (VLFM) to align the vision and
text prompts in a shared semantic space, thereby facilitating
collaborative reasoning across modalities.

Vision-Language Fusion Module. As shown in Fig. 1,
VLFM first mutually aligns the vision prompt and text
prompts in a semantic space using a cross-modal attention
mechanism. Specifically, we consider the class token of the
ViT as the subcategory-specific visual embedding, denoted
as EV , and the textual features generated by the learned text
tokens Pclass = {P1

class,P
2
class, · · · ,PC

class} as the tex-
tual embeddings that are aware of the subcategory-specific
discrepancies, denoted as ET . With the multimodal input
[EV ,ET ], we generate three visual embeddings, namely
the query (Q0), key (K0), and value (V0), using a 1 × 1
convolution layer. Similarly, a key-value textual embed-
ding pair (Kc − Vc) is generated for each textual embed-
ding Ec

T (c ∈ {1, · · · , C}) using the same process. Thus,
the cross-modal attention vector Si is computed between
the visual query vector Q0 and all key vectors Ki (i =

{0, 1, · · · , C}) as Si = Softmax(Q0K
T
i√

D
), where D de-

notes the embedding dimension and T represents the trans-
pose operation. Utilizing the cross-modal attention Si, the
subcategory-specific descriptions from the text prompts are
transformed into subcategory-specific visual discrepancies,
given by E′

V =
∑C

i=0 Si ⊗ Vi, which aims to recover the
missing discrepancies and form a discriminative and gener-
alized visual embedding. Furthermore, to incorporate more
complete discrepancies into the VLFM, we introduce two
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1 × 1 convolution layers that constitute a translation layer
denoted as Trans(·). This layer is applied to E′

V to obtain
ÊV = Trans(E′

V ). The first convolution layer, which has an
expansion factor of 4, serves as an expansion layer, while the
second layer maps the feature dimension back to the original
input dimension.

Optimization
In this paper, we aim to fully exploit multimodal prompting
for FGVC by utilizing the recently introduced CLIP model.
However, in most FGVC tasks, only subcategory labels or
indexes are available, which lack specific textual descrip-
tions for fine-grained understanding. As a result, the adop-
tion of CLIP-like VL models in FGVC has been limited. To
address this issue, we propose a two-stage training strategy
illustrated to enhance the sensitivity of the proposed MP-
FGVC to subcategory-specific discrepancies, thereby facili-
tating efficient adaptation for FGVC tasks.

The first training stage. In this stage, we fix the parame-
ters of T (·) and optimize only the parameters of the image
encoder I(·) and the learned tokens in DATP are optimized.
Similar to CLIP, we employ the image encoder I(·) and the
text encoder T (·) to obtain the visual embeddings Vi ∈ RD

and the textual embeddings Ti ∈ RC×D. However, instead
of using the original text as input to T (·), we replace it with
Pclass, where Pclass =

[
P1

class,P
2
class, . . . ,P

C
class

]
. Here,

we use Tc
i to indicate the textual feature of subcategory c.

To optimize I(·), we simply utilize Vi to generate subcate-
gory predictions ŷ1 and compute the cross-entropy loss Lv

as follows:
Lv = CrossEntropy(ŷ1, y), (3)

where y is the one-hot label. By minimizing Lv , we aim
to project the semantic features into a new space where
subcategory-specific discrepancies are highlighted. Further-
more, to generate discrepancy-aware textual features, we
employ the image-to-text contrastive loss Li2t learnable to-
kens in DATP. This loss is computed as:

Li2t = −
C∑

c=1

yc · log
exp(cos(Vi,T

c
i )/τ)∑C

k=1 exp(cos(Vi,Tk
i )/τ)

, (4)

where τ is the temperature parameter and is set to 0.07.
By minimizing both Lv and Li2t, the gradients are back-
propagated through the unfixed I(·) and fixed T (·) to iden-
tify subcategory-specific semantics in the vision prompt and
generate discrepancy-aware descriptions in the text prompt.
Thus, the overall loss function of the first stage is formulated
as:

Lstage1 = Lv + Li2t. (5)

The second training stage. In this stage, we fix the pa-
rameters of I(·) and T (·), and only optimize VLFM to align
the vision prompt and text prompts in the semantic space,
in order to fully exploit the advantages of the multimodal
prompts scheme for final classification. We utilize the visual
features ÊV output by VLFM to predict the subcategory la-
bel ŷ2 and calculate the cross-entropy loss Lvlfm as in Eq. 3.
Hence, the loss for the second training stage is:

Lstage2 = Lvlfm = CrossEntropy(ŷ2, y). (6)

Method Backbone CUB Dogs

MRDMN CNN 88.8 89.1
FDL CNN 89.1 84.9

MSHQP CNN 89.0 90.4
API-Net CNN 90.0 90.3

PRIS CNN 90.0 90.7
CAL CNN 90.6 88.7

TransFG* ViT-B-16 91.1 90.5
IELT* ViT-B-16 90.9 90.6

SIM-Trans* ViT-B-16 91.3 89.2
MP-FGVC (Ours) ViT-B-16 91.8 91.0

Table 1: Comparisons with competitive methods on CUB-
200-2011 and Stanford Dogs, * indicates the result repro-
duced according to the source code.

Experiments
Experiments Setup
Dataset. CUB-200-2011 (Wah et al. 2011) comprises
11, 788 bird images from 200 bird species, which are offi-
cially split into 5, 994 training images and 5, 794 test im-
ages.

Stanford Dogs (Khosla et al. 2011) consists of 20, 580
images depicting 120 dog variants, with 12, 000 images al-
located for training and 8, 580 images designated for testing.

NABirds (Horn et al. 2015) contains 48, 562 im-
ages showcasing North American birds across 555 sub-
categories. It is split into 23, 929 training images and 24, 633
test images.

Food101 (Bossard, Guillaumin, and Gool 2014) encom-
passes 101 different kinds of foods, totaling 101, 000 im-
ages. Within each class, 250 images are for testing, while
the remaining 750 images are for training.

Implementation details. We employ the VIT-B-
16 (Dosovitskiy et al. 2021a), as our image encoder
I(·). The text encoder T (·), is a pre-trained Transformer
model from CLIP (Radford et al. 2021). All input images
are resized to a resolution of 448× 448. In the first training
stage, we initialize the learning rate as 3e-2, except for
Stanford Dogs where it is initialized as 3e-3. The number
of training epochs is set to 30 for both CUB-200-2011 and
Stanford Dogs, while the remaining datasets are trained for
10 epochs. For the second training stage, we initialize the
learning rate as 1e-3, except for Stanford Dogs where it is
initialized as 1e-4. The number of training epochs is set to
10 for both CUB-200-2011 and Stanford Dogs, while the
other datasets are trained for 3 epochs. Both training stages
utilize the SGD optimizer and employ cosine annealing as
the optimization scheduler.

Comparison with State-of-the-Art Methods
The comparison results for CUB-200-2011 and Stanford
Dogs datasets are presented in Table 1, while the results
for the NABirds dataset can be found in Table 2. Further-
more, the comparison results for the Food101 dataset are
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Method Backbone NABirds

Cross-X CNN 86.4
DSTL CNN 87.9
GHRD CNN 88.0

API-Net CNN 88.1
PRIS CNN 88.4

MGE-CNN CNN 88.6

TransFG* ViT-B-16 90.5
IELT* ViT-B-16 90.1

SIM-Trans* ViT-B-16 90.3
MP-FGVC (Ours) ViT-B-16 91.0

Table 2: Comparisons with competitive methods on
NABirds.

Method Backbone Food101

DCL CNN 88.9
SGLANet CNN 89.7
IG-CMAN CNN 90.4
MSMVFA CNN 90.6
PRENet CNN 91.1

TransFG* ViT-B-16 92.1
IELT* ViT-B-16 91.4

SIM-Trans* ViT-B-16 91.9
MP-FGVC (Ours) ViT-B-16 93.0

Table 3: Comparisons with competitive methods on
Food101.

provided in Table 3. From these tables, it can be observed
that our proposed method outperforms other state-of-the-
art methods across all datasets. Specifically, our method
achieves an improvement of 0.5%, 0.3%, 0.5%, and 0.9% in
terms of the Top-1 Accuracy metric compared to the second-
best results on the CUB-200-2011, Stanford Dogs, NABirds,
and Food101 datasets, respectively. Notably, our method ex-
hibits substantial improvements over the ViT-based meth-
ods, which solely rely on visual training. These findings
serve as compelling evidence of the effectiveness of our pro-
posed MP-FGVC.

Ablation Studies and Analysis
Efficacy of various components. The proposed MP-
FGVC comprises three essential components: SSVP and
DATP from multimodal prompts scheme, and VLFM from
multimodal adaptation scheme. We conducted ablation ex-
periments on these components, and the results are reported
in Table 5, with the Baseline representing the pure ViT.
The introduction of DATP led to a 0.5% improvement in
multimodal prompting performance on the CUB-200-2011
dataset and a 0.4% improvement on the NABirds dataset. By
utilizing VLFM to enhance FGVC with language modal-
ity, further performance gains were achieved on both CUB-
200-2011 and NABirds datasets. This observation indicates
that DATP incorporates subcategory-specific discrepancy

Text Prompt Templates CUB NABirds

“a photo of a class” 91.5 90.7
“a photo of X1, · · · , XJ , class” 91.7 90.9
“a photo of X1, · · · , XJ , class++” 91.8 91.0
“X1, · · · , XJ , class++” 91.8 91.0

Table 4: Comparisons with different text prompt design of
accuracy (%) on CUB-200-2011 and NABirds.

Method CUB NABirds

Baseline 90.8 90.0
Baseline + DATP 91.3 90.4
Baseline + DATP + VLFM 91.5 90.6
Baseline + SSVP 91.2 90.3
Baseline + SSVP + DATP 91.5 90.8
Baseline + SSVP + DATP + VLFM 91.8 91.0

Table 5: The accuracy (%) results of component ablation
study on CUB-200-2011 and NABirds.

Strategies CUB NABirds

One stage 91.1 90.3
Two stage 91.8 91.0

Table 6: Comparison of different training strategies on CUB-
200-2011 and NABirds.

descriptions that complement the image content, thereby im-
proving the performance. Moreover, the inclusion of SSVP
in all model variations improved their performance on the
CUB-200-2011 and NABirds datasets, demonstrating the ef-
fectiveness of selecting discriminative regions to identify
subcategory-specific discrepancies.

Comparison of various text prompt templates. We con-
duct a comparative experiment to analyze the impact of dif-
ferent text prompt templates in DATP. Specifically, class
denotes the concrete subcategory name and class++ de-
notes the ambiguous supercategory name. The results in
Table 4 demonstrate that learnable text tokens for the text
prompt outperform handcrafted prompt templates such as ”a
photo of a class”. This indicates that our DATP can learn a
set of words that describe the subcategory-specific discrep-
ancies between subcategories, leading to improved perfor-
mance on FGVC. Moreover, the performance is not signifi-
cantly affected by whether ”a photo of a” is used as a prefix
or if the subcategory name is used as a suffix.

Number of selected visual tokens in SSVP. The perfor-
mance comparison of different values of k, representing the
number of selected visual tokens in SSVP, is presented in
Figure 2. From the analysis, it is observed that performance
degrades when k exceeds 14. This performance drop may
be attributed to the fact that as the number of selected tokens
increases, the vision prompt may highlight the locations of
objects or parts instead of the subcategory-specific differ-
ences, rendering it ineffective for FGVC. Consequently, we

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2575



7 14 28 56
90.4

90.8

91.2

91.6

92.0

Ac
cu

ra
cy

 (%
)

NABirds CUB-200-2011

Figure 2: Analyses of hyper-parameter k on CUB-200-2011
and NABirds.
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Figure 3: Analyses of hyper-parameter J on CUB-200-2011
and NABirds.

have chosen to set k to 14 for all datasets.

Number of learnable text tokens in DATP. What is the
appropriate number of learnable tokens in DATP for accu-
rately summarizing subcategory-specific discrepancies? We
conduct analyses on the length J of the text prompt tem-
plate, and present evaluation results in Fig. 3. The perfor-
mance gradually increases with the number of learnable to-
kens but decreases when the prompt length exceeds 32. One
potential explanation for this observation is that as the length
of the text prompt reaches 32, the model tends to prioritize
optimizing DATP itself, hindering the optimization process
for the subcategory-specific vision prompt. Thus, we set the
token number in DATP to 16 for all datasets.

Necessity of two-stage training strategy. Our proposed
MP-FGVC employs a two-stage training strategy to align
and fuse embeddings from text and image domains. It is
worth noting that integrating the learning of vision prompt,
text prompt, and multimodal adaptation into single-stage
training, similar to CLIP-like VL models, is possible. To de-

Input Image Subcategory-specific 
Vision Prompt

Baseline w/o
MP-FGVC

Baseline w
MP-FGVC

Figure 4: Visualization of MP-FGVC on CUB-200-2011.

termine the effectiveness of each strategy, we conduct com-
parison experiments between the two-stage training and the
one-stage training. Table 6 demonstrates that the one-stage
training strategy performs less effectively. The inadequate
description of subcategory-specific discrepancies by the ran-
domly initialized text tokens during the early training stage
hinders the overall optimization of the model. Therefore, we
adopt the two-stage training to retain the hidden states of the
pre-trained image encoder and text encoder, enabling CLIP
to maintain its advantages on FGVC.

Visualization of MP-FGVC. We conduct visualization
experiments to illustrate the effectiveness of MP-FGVC, as
shown in Fig. 4. The input images are depicted in the first
column, followed by the second column which represents
the selected vision tokens (k=14) in our SSVP. The third and
fourth columns display the class activation maps computed
using GradCAM for the baseline model with and without our
proposed MP-FGVC, respectively. The visualization results
demonstrate that MP-FGVC enhances the baseline model’s
ability to focus on a more comprehensive region, particularly
in capturing more detailed discrepancies specific to subcat-
egories, such as the head, back, and abdomen.

Conclusion
In this paper, we introduce MP-FGVC, a novel multimodal
prompting solution designed to improve fine-grained visual
classification through the utilization of the cross-modal ca-
pabilities of the pre-trained CLIP model. By employing
a multimodal prompts scheme and a multimodal adapta-
tion scheme, MP-FGVC effectively highlights subcategory-
specific discrepancies and achieves cross-modal reasoning,
ultimately leading to improved FGVC performance with
minimal modifications. Experimental evaluations conducted
on four FGVC datasets validate the effectiveness of MP-
FGVC. As the pioneer effort to extend the applicability of
large-scale vision-language models to FGVC, MP-FGVC
incorporates novel prompting and adaptation techniques. It
is our aspiration that our findings serve as inspiration and
facilitate further research on efficient adaptation methods of
large-scale vision-language models for FGVC tasks.
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