
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

CMD: Co-Analyzed IoT Malware Detection and
Forensics via Network and Hardware Domains

Ziming Zhao , Zhaoxuan Li , Student Member, IEEE, Jiongchi Yu , Fan Zhang , Member, IEEE, Xiaofei Xie ,
Haitao Xu , and Binbin Chen , Member, IEEE

Abstract—With the widespread use of Internet of Things (IoT)
devices, malware detection has become a hot spot for both academic
and industrial communities. Existing approaches can be roughly
categorized into network-side and host-side. However, existing
network-side methods are difficult to capture contextual semantics
from cross-source traffic, and previous host-side methods could
be adversary-perceived and expose risks for tampering. More im-
portantly, a single perspective cannot comprehensively track the
multi-stage lifecycle of IoT malware. In this paper, we present
CMD, a co-analyzed IoT malware detection and forensics system by
combining hardware and network domains. For the network part,
CMD proposes a tailored capsule neural network to capture the
contextual semantics from cross-source traffic. For the hardware
part, CMD designs an entire file operation recovery process in a
side-channel manner by leveraging the Serial Peripheral Interface
(SPI) signals from on-chip traces. These traffic provenance and
operating logs information could benefit the anti-virus counter-
measures for security practitioners. By practical evaluation, we
demonstrate that CMD realizes outstanding detection effects (e.g.,

Manuscript received 21 February 2023; revised 30 July 2023; accepted 25
August 2023. Date of publication 1 September 2023; date of current version
4 April 2024. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 62227805, 62072398, and 62172405,
in part by the SUTD-ZJU IDEA Grant for visiting professors under Grant
SUTD-ZJUVP201901, in part by the National Key R&D Program of China
under Grant 2020AAA0107700, in part by Alibaba-Zhejiang University Joint
Institute of Frontier Technologies, in part by Zhejiang Key R&D Plan under
Grant 2021C01116, in part by the Leading Innovative and Entrepreneur Team
Introduction Program of Zhejiang under Grant 2018R01005, in part by the
Research Institute of Cyberspace Governance in Zhejiang University, in part by
the National Key Laboratory of Science and Technology on Information System
Security under Grant 6142111210301, in part by the State Key Laboratory of
Mathematical Engineering and Advanced Computing, and in part by the Key
Laboratory of Cyberspace Situation Awareness of Henan Province under Grant
HNTS2022001. Recommended for acceptance by X. Yuan. (Corresponding
author: Fan Zhang)

Ziming Zhao, Fan Zhang, and Haitao Xu are with the College of Com-
puter Science and Technology, Zhejiang University, Hangzhou 310027, China,
also with ZJU- Hangzhou Global Scientific and Technological Innova-
tion Center, Hangzhou 311200, China, also with the Key Laboratory of
Blockchain and Cyberspace Governance of Zhejiang Province, Hangzhou
310027, China, also with Jiaxing Research Institute, Zhejiang University,
Hangzhou 314000, China, and also with Zhengzhou Xinda Institute of Advanced
Technology, Zhengzhou 450001, China (e-mail: zhaoziming@zju.edu.cn;
fanzhang@zju.edu.cn; haitaoxu@zju.edu.cn).

Zhaoxuan Li is with the State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing
100093, China, and also with the School of Cyber Security, UCAS, Beijing
100049, China (e-mail: lizhaoxuan@iie.ac.cn).

Jiongchi Yu and Xiaofei Xie are with the School of Computing and Informa-
tion Systems, Singapore Management University, Singapore 188065 (e-mail:
jcyu.2022@phdcs.smu.edu.sg; xfxie@ntu.edu.sg).

Binbin Chen is with Advanced Digital Sciences Center, Singapore 138632,
and also with Singapore University of Technology and Design, Singapore
B96049 (e-mail: binbin_chen@sutd.edu.sg).

Digital Object Identifier 10.1109/TMC.2023.3311012

∼99.88% F1-score) compared with seven state-of-the-art meth-
ods, and recovers 96.88%∼99.75% operation commands even if
against adaptive adversaries (that could kill processes or tamper
with operation log files). A by-product benefit of such an external
monitor is CMD introduces zero latency on the IoT device, and
incurs negligible IoT CPU utilization. Also, since SPI focuses on
file operations, the proposed hardware trace forensics does not have
the data explosion problem like previous work, e.g., recovered logs
of CMD only take up limited extra space overhead (e.g., ∼0.2 MB
per malware). Furthermore, we provide the model interpretability
for the capsule network and develop a case study (Hajime) of the
operation logs recovery.

Index Terms—Forensic analysis, IoT malware detection,
multi-stage lifecycle, SPI bus.

I. INTRODUCTION

MALWARE continues to be prevalent in Internet infras-
tructure nowadays and has drawn the attention of many

security professionals [1], [2], [3], [4], [5], [6], [7], [8]. Al-
though malware is not a new threat, the boom in the Internet
of Things (IoT) broadens and amplifies its attack surface. In
other words, the recent surge in embedded device adoption and
the IoT revolution is rapidly changing the malware landscape.
Unfortunately, compared to desktop and mobile, IoT devices
are often highly vulnerable due to limited resources, improperly
configured, unpatched, and headless nature (e.g., lack a graphical
user interface), thereby they might be used to create large,
powerful botnets [9]. Most famously, Mirai was used to launch
vast volumetric DDoS [10], e.g., Dyn (a DNS provider) suffered
a 1.2 Tbps attack. Recently, the new variant Hajime has come
into view of the security community as it infected no less than
millions of devices based on the P2P protocol [11]. Although
Hajime has not launched any DDoS attacks to date, it could
become a severe threat if its full potential is realized.

To detect malware, researchers present a series of solutions
with respect to the network-side or host-side. On the one hand,
the former intends to profile the network traffic fingerprint when
the IoT devices are accessed [12], [13], [14]. On the other
hand, the latter aims to detect malware based on the runtime
information, such as the operation log [15], system call [16], and
performance counters [17], [18], [19]. Although these methods
have achieved good results, there are some limitations when
security practitioners put most existing proposals into practice.
We summarize them as the following challenges.

1© Lack of lifecycle tracking for IoT malware: Previous
research reveals the threat lifecycle of IoT malware, which

DOI: 10.1109/TMC.2023.3311012

https://orcid.org/0000-0003-1455-4330
https://orcid.org/0000-0002-2195-0799
https://orcid.org/0000-0002-2888-4499
https://orcid.org/0000-0001-6087-8243
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-0353-3879
https://orcid.org/0000-0002-9584-0082
mailto:zhaoziming@zju.edu.cn
mailto:fanzhang@zju.edu.cn
mailto:haitaoxu@zju.edu.cn
mailto:lizhaoxuan@iie.ac.cn
mailto:jcyu.2022@phdcs.smu.edu.sg
mailto:xfxie@ntu.edu.sg
mailto:binbin_chen@sutd.edu.sg

involves the infection vectors, payload properties, persistence
methods, capabilities, C&C infrastructure, etc [9]. Either the
network-side or host-side approaches can only provide insights
into the partial phases of the IoT malware. For instance, the
network-side methods are not enabled to precisely locate the
malicious script path and grasp the concrete behavior, e.g.,
binary file execution. While the host-side methods may not know
the provenance of malicious binary and how it was planted,
such as scanning and infection stages. We will introduce the
detail of the IoT malware lifecycle and our motivations in
Section II. Incomplete information may hinder effective anti-
virus countermeasures, or lead to the semantic gap [20], [21]
between the model inference results and operations of the net-
work administrator. Furthermore, there are still some challenges
in network-side or host-side unilaterally.

2© Hard to capture contextual semantics from cross-source
traffic: The previous network-side methods generally propose
to discover malicious interactions at the session level or source
level. They provide a local characterization of traffic patterns
but are not very applicable to IoT-centralized network topolo-
gies. For example, Hajime [11] utilizes the peer-to-peer (P2P)
distributed hash table (DHT) to disseminate software updates
to its bots. This means that it is difficult to capture these con-
textual semantics from the session-level or source-level traffic.
Moreover, producing a dataset with session-level or source-level
labels is inappropriate and labor-intensive in this scenario, e.g.,
it is not easy to define the P2P node lookup traffic as benign or
malicious.

3© Host-side analysis could be adversary-perceived and ex-
pose risks for tampering: Using host-side analysis to obtain
details of malware is a viable scheme, such as causality analysis
for system logs [22], [23], [24], [25], [26]. Some investigation
approaches will adopt system hooking or adding extra logic [27]
as Anti-Viruses core processes usually run with administrator
privileges [28]. However, these proposed techniques have some
limitations. On the one hand, these above processes could be
adversary-perceived, e.g., the attacker may detect the existence
of a running monitor by checking some dynamic fields [29].
On the other hand, internal monitors (such as the ones using
existing hardware features) are prone to be subverted, e.g., the
attacker could try to inject fake state data into the system [30].
If leveraging hardware design knowledge to develop an external
monitor, such as a bus-connected System-on-a-Chip (SoC), it
will tend to be tamper-proof [21].

In this paper, we advance a comprehensive solution to bridge
the network-side and host-side. To this end, we present CMD,
a co-analyzed system by combining the network with hardware
domains to track the IoT malware lifecycle (coping with the
challenge 1©). Among them, the network-side focus on detecting
malicious behaviors while the host-side emphasizes fine-grained
forensic analysis. Moreover, we design a tailored capsule neural
network [31] to extract cross-source contextual semantics and
identify the attack traffic (coping with the challenge 2©). For the
host side, we propose an entire file operation recovery process
by leveraging the Serial Peripheral Interface (SPI) signals from
on-chip traces. This side-channel-manner forensic analysis, as
an external monitor, will not be perceived by the adversary and

has the advantage of tamper-proof properties (coping with the
challenge 3©).

In a nutshell, we make the following contributions:
� We carefully examine the problems in the current IoT mal-

ware landscape and propose a novel system, named CMD,
to achieve efficient detection and fine-grained forensics.

� For the network part, CMD presents a capsule neural
network to identify the malicious behavior to adapt to the
cross-source traffic characterization.

� For the hardware part, CMD leverages the SPI bus to
monitor and extract the on-chip traces. And we design
the inlined operating logs recovery method to benefit the
anti-virus countermeasures. Moreover, this side-channel-
manner hardware forensics process will not be perceived
by adversaries and it is tamper-proof.

� By practical evaluation, we demonstrate that CMD re-
alizes the predominant traffic detection effect (e.g.,
∼99.88% F1-score), compared with seven state-of-the-art
(SOTA) traffic classification models. Also, CMD recov-
ers 96.88%∼99.75% operation commands, even if against
adaptive adversaries (that could kill processes or tamper
with operation log files). Particularly, the recovered logs
only take up limited extra space overhead (e.g., ∼0.2 MB
per malware). Results in the integration test show that CMD
introduces negligible CPU utilization in the IoT device. In
addition, we conduct a case study of the Hajime attack
for log recovery, and interpretability experiments for the
capsule network to provide deep insights.

II. BACKGROUND AND MOTIVATION

In this section, we give a brief overview of Mirai’s operation
to provide a background on IoT malware. We then discuss the
motivation behind our proposed system.

Background: Different from desktop and mobile malware,
IoT malware can be a bigger threat given its limited resources,
improperly configured, unpatched, and headless nature (e.g.,
lack a graphical user interface) [9]. In addition, IoT malware has
already incorporated advanced polymorphic and anti-analysis
tactics such as self-induced malicious script deletion, process
killing, or system log tampering [32], [33], [34], [35].

The summary of Mirai’s operation [10] is shown in
Fig. 1, which contains multiple phases. First, the compromised
device performs scanning to find new vulnerable devices, and
a brute-force login will be conducted as soon as identifying the
potential victim. Then, it will send the victim device IP and as-
sociated credentials to a hardcoded report server after successful
login. Subsequently, a separate loader program asynchronously
infected the device by determining the underlying system envi-
ronment. Next, this victim device downloads and executes the
architecture-specific malware to complete the infection. Finally,
these bots will listen for attack commands to launch DDoS
attacks, etc.

Motivation: As mentioned above, the IoT malware involves
multi phases [10] in its lifecycle [9], including 1© scanning and
brute-force, 2© report server, 3© loader program, 4© download-
ing and executing, 5© command & control (C2) and attack.

Fig. 1. Infection process of Mirai.

For early detection, the traffic analysis techniques are more
concerned with phases 2©∼ 4© before the attack is launched.
However, the identification results only provide users with which
flow is malicious without fine-grained investigation such as
detailed script location in the devices. The host-side technologies
enable runtime information analysis based on the system API
call (or logs) yet lack the mastery of the infection provenance.
If we could bridge the network-side and host-side, more attack
details will be collected to facilitate the anti-virus countermea-
sures in the entire IoT ecosystem. This is the main motivation
to combine the network and hardware domains.

Furthermore, our design principles for network and hardware
parts are also derived from the latest trends in IoT malware
nowadays. (i) For the network part, recent IoT malware tends to
be decentralized manner based on P2P protocol so that their
dissemination process could be hidden in multiple sessions
and even multiple sources. Therefore, we develop the tailored
feature map production to capture cross-source contextual se-
mantics. This process naturally correlates adjacent packets from
the arrival sequence, which is different from the typical traffic
identification solutions such as session-level or flow-level. Then,
based on the generated feature map, we leverage the capsule
neural network to extract those key behaviors manifested by
malicious events.

(ii) For the hardware part, the existing forensic analysis could
be adversary-perceived and expose risks for tampering. The
adversary perception refers to the attacker who could realize
the existence of a running monitor by checking patterns of some
dynamic fields [29]. Subsequently, they may perform a series of
tampering to disrupt normal operations or evade detection [30].
That is to say, internal monitors (such as the ones using existing
hardware features) are prone to be subverted, while external
monitors, such as a bus-connected System-on-a-Chip (SoC),
tend to be tamper-proof [21].

An observation is that the evolution of IoT malware tends to
use many persistence methods, such as installing themselves
as either a service, a startup script, a system module, or a
backdoor [9]. This persistent malware usually implants malware
viruses into the Electrically Erasable Programmable Read-only
Memory (EEPROM) instead of in-memory to achieve persis-
tence on IoT devices. In addition, even typical malware that
infects Random Access Memory (RAM) will perform a series

of file operations on Read Only Memory (ROM). For example,
Mirai can read the executable binary into RAM for malicious
activities, while it also involves some operations on ROM such
as using cat to analyze architecture (e.g., e_machine field);
using wget, tftp, or echo to transfer the payload [36]. These
file operations on ROM can be captured by Serial Peripheral
Interface (SPI), so we intend to leverage SPI signals to analyze
on-chip traces.

III. DESIGN SPACE AND THREAT MODEL

Problem Space: The vulnerabilities of IoT devices are mainly
in terms of two aspects: (i) The attackers access the IoT devices
and invade them by remote exploitation or default credentials,
such as weak passwords. Subsequently, the malicious loader
program or malware binary could be implanted through the
network. (ii) The malware programs in compromised devices
execute the pre-designed commands to complete the infection.
Among them, the former usually produces some corresponding
network traffic fingerprints. And the latter mainly involves a
series of file operations [10], [11], e.g., file creation, writing,
permission modification, and self-induced deletion. Therefore,
the main goal of CMD is to detect the aforementioned malicious
behaviors and forensic analysis to report operation details.

Adversary Model: We consider strong adversaries that adopt
dynamic attack strategies with abundant IoT malware resources.
On the one hand, the attackers can access IoT devices and
implement malicious activities, such as brute-force password
cracking and ARP sniffing. On the other hand, they could implant
malware loader and binary into the IoT devices’ built-in chips
to achieve infection. We consider centralized IoT malware (e.g.,
Mirai [10]), and also decentralized ones (e.g., Hajime [11]).

For defenders, the hardware access of the IoT device and its
traffic are available. However, a single perspective may lack a
complete portrait of the attack (i.e., the lifecycle of malware).
Specifically, if only the network-side traffic is used for analysis,
it may not be possible to grasp the infection location and the
specific malicious behaviors performed by the malware on the
device. While only the host-side forensics lacks knowledge of
the attack source, such as who performs the brute force and
where the executable binary is from. Therefore, we tend to
combine the network and hardware domains to advance mal-
ware detection and forensics. Meanwhile, we do not assume
additional collaborations from other Internet entities, such as IP
blacklists provided by security vendors.

Assumptions: We explain some assumptions here. Given the
fact that the hardware-part design of CMD needs to collect SPI
signals for the protected device, so physical access is required.
We admit that physical access may not be convenient sometimes,
but as a novel external monitor, CMD can bring new directions
and perspectives for forensic analysis. Meanwhile, a feasible
direction is to devise integrated customized solutions for indus-
trial production to advance this side-channel-manner analysis.
Furthermore, we intend to enable both network traffic detection
and hardware trace analysis before infection to avoid missing
some malicious behavior (the discussion of data explosion is
in Section IV-A and the evaluation of log data overhead is in

Fig. 2. Overview of CMD. It combines both the hardware and network perspectives.

Fig. 3. High-level detection logic of CMD.

Section V-E). In fact, the assumptions about the active state
of the CMD are similar to typical anti-virus software, which
practitioners are usually running anti-virus programs in advance
to detect potential malware [37], [38], [39].

IV. DESIGN DETAILS OF CMD

In this section, we first introduce the high-level detection logic
of CMD. Then we elaborate on the design details in terms of the
hardware part and network part.

A. Overview

In Fig. 2, we depict the architecture overview of CMD,
including the hardware trace perspective and network traffic
perspective. (i) Hardware perspective: Consider a running IoT
device, in which the Serial Peripheral Interface (SPI) bus can
be used to dump content for the Flash chip. We connect the
SPI bus in parallel with a logic analyzer that parses the digital
signals to the Flash traces. The Flash traces could be used
to structure the file system (e.g., JFFS2 [40]) and recover the
operating system logs, thereby realizing the host-side analysis.
(ii) Network perspective: An upper computer is employed to
capture traffic through the device. As a network-side detection,
it can quickly detect malicious behavior in communication so as
to cooperate with the host-side analysis to tackle the multi-stage
IoT malware.

Specifically, we provide an illustrative explanation of detec-
tion logic in Fig. 3. We feed the network traffic to a tailored
capsule network to identify attacks. The IoT device will run
normally if the traffic classification result is “benign”. Other-
wise, the infected sources will be reported to the anti-virus
software when the model reports malicious behaviors. Mean-
while, the hardware-part forensic analysis is designed to recover

file operation logs, which could provide fine-grained intrusion
information (e.g., location and behavior) to benefit the anti-virus
countermeasures. Overall, CMD identifies the malicious behav-
iors of IoT malware lifecycle in a co-analyzed manner from
network traffic and hardware traces.

Notably, running hardware trace analysis does not need to
wait for the network traffic alarm, instead, both network traffic
detection and hardware trace forensics are active before infection
(as stated in assumptions of Section III), so as to avoid missing
some malicious behavior. Readers may concern about whether
the long-term collection will cause the forensic data explosion,
which is mentioned in previous research [24], [41], [42]. We
clarify here that the hardware part of CMD is designed to focus
on recovering file operation commands (such as wget, cat, and
other commands commonly used by malware), non-volatile data
content, and file storage locations. Compared to previous work
that analyzes causality analysis graphs of system kernel calls,
these logs generated by CMD do not take up much space, e.g., the
forensic analysis results only occupy ∼0.2 MB space overhead
for each malware in Section V-E, which is acceptable.

B. Design of Network Part

We introduce here the network-part design used to detect mali-
cious traffic. Our intention is to capture the contextual semantics
of traffic packets to discover attack behaviors at various stages
of the IoT malware.

Traffic Capture and Preprocessing: The protected IoT device
with CMD captures the passing traffic (based on libpcap library)
and mirrors them to the upper computer. Note that the traffic
will be temporarily stored in the volatile memory regions (e.g.,
\tmp in Linux) that will not produce interfering SPI signals
in subsequent hardware forensics. On the upper computer, it
runs tshark API to capture the raw packets. Considering the
malicious behaviors could be from the different sessions even
various IPs (e.g., P2P broadcast), we manufacture traffic into
multiple snapshots in order of arrival timestamp to form a series
of feature maps. As Fig. 4 shows, the PCAP file will be split
according to the number of packets Np. The last snapshot will
be padded with zero if it is not enough Np packets. We truncate
the first Nb bytes in each packet, so that a series of Np ×Nb

(e.g., 512× 512) feature matrixes could be generated.
Model Architecture: To characterize the contextual semantics

of packets in malicious traffic, we leverage the capsule com-
ponent to design our model. In Fig. 5, the architecture mainly
contains five parts, namely input, convolution, primary capsule,

Fig. 4. Cross-source traffic feature map production.

Fig. 5. Architecture of traffic detection model based on capsule network.

label capsule, and fully connected. Specifically, the 512× 512
input is concatenated with three convolutional layers (with the
ReLU activation), whose feature maps are [252× 252× 4],
[61× 61× 64], [18× 18× 256] respectively. The Ch × Cd ×
Cc output (i.e., [18× 18× 256]) of convolution expresses the
activities of local feature detectors, and will be fed to the primary
capsule layer.

The primary capsule layer includes 8 parallel convolution
units whose kernel is 9× 9, the stride is 2, and the out channel
is set Pc = 32. It generates Ph × Pd × Pc capsule outputs (each
output is an 8D vector) and its receptive fields overlap with the
location of the capsule center. Particularly, each capsule of the
Ph × Pd grid in the same channel shares the weights.

The label capsule layer maintains one 16D capsule for each
classification label. Between the primary and label capsule
layers, it is equipped with a routing mechanism (clarifying
subsequently) iteratively to build appropriate connection weight.
The output of the label capsule layer can be used to classify
result prediction, as well as be fed to the fully connected
layer for reconstruction (more details in the loss function
section).

Dynamic Routing between Capsule Layers: The r-
iteration (i.e., τ ∈ {1, . . . , r}) routing mechanism is shown in
Algorithm 1, the output ui of a primary capsule i will be
multiplied by a weight matrix Wij to get the “prediction vec-
tors” ûij for a label capsule j, i.e., ûij = Wij × ui. For label
j, sτj =

∑
i c

τ
ij ûij refers to the weighted sum over all ûij at

the τ -th iteration, where the cτij are coupling coefficients be-
tween capsule. Particularly, it is calculated as “routing softmax”

cτij = Softmax(bτij) =
exp(bτij)∑
k exp(bτkj)

, and bτij denotes the log prior

probabilities for primary capsule i should be coupled to label
capsule j. Therefore,

∑
k c

τ
kj = 1 is satisfied. Furthermore, the

magnitude (i.e., 2-norm) of the label capsules’ output vector

Algorithm 1: Function Routing(ui, r).
Require: Output ui of the primary capsule i, the number of
iterations τ

Ensure: The predicted label Cpre of instance X
1: ûij←Wijui, b1ij←0 for all primary and label capsule i,

j
2: for all label capsule j do
3: for all τ ∈ {1, . . . , r} do
4: cτij ← Softmax(bτij) for all capsule i
5: aτj ← Squash(sτj) = Squash(

∑
i c

τ
ij ûij) (c.f., (1))

6: bτ+1
ij ← bτij + aτj · ûij for all capsule i

7: end for
8: end for
9: return Cpre ← Label(‖vj‖) = Label(‖arj‖) (c.f., (3))

is associated with the probability of the represented category.
Specifically, it will be mapped by a non-linear “Squash” function
described in (1) to ensure that short vectors get shrunk to
almost zero, and long vectors get shrunk to a length slightly
below 1.

aτj =
‖sτj ‖2

1 + ‖sτj ‖2
sτj
‖sτj ‖

, ‖sτj ‖ =
√ ∑

k∈[1,Lp]

sτj [k]
2 (1)

Among them, aτj is the squashed vector of capsule j at τ -th
iteration. During iteration, the probability bτij will be updated
based on the dot product of the current result aτj , thus making
the label capsule focus on the prediction vectors ûij that coincide
with the direction of its output vector.

bτij = bτ−1ij + aτ−1j · ûij , b
1
ij = 0, τ ∈ [1, r] (2)

All initial probabilities (b1ij) are set to zero, so that each primary
capsule’s output is initially sent to all label capsules with equal
probability. After r iterations, each label capsule will output a
1× Lp vector vj (i.e., vj = arj), which carries potential informa-
tion from traffic features such as semantics. The predicted label
Cpre is represented as the capsule with the maximum-magnitude
outputs.

Cpre = argmax
j

Softmax(‖vj‖) = argmax
j

exp(‖vj‖)∑
kexp(‖vk‖)

(3)
Loss Function: In Fig. 5, the loss function includes two parts:

(i) the reconstruction loss Lr of the fully connected layer and
(ii) the sum of the predicted loss Lk for each label capsule k.

Lall =
∑
k

Lk + γLr, Lr = ‖X, X̃‖2 =

√∑
i

(Xi − X̃i)2

(4)
where γ = 5e−4 is used to balance the numerical difference
between the two losses. The reconstruction loss refers to the �2
distance between the output X̃ from the fully connected layer
and the flattening vector of the input sampleX . For the predicted
loss, we intend to give a significant magnitude for the output
vector of the label capsule if and only if the prediction is the
ground-truth label k. Therefore, we set the separate margin loss

Fig. 6. Processing pipeline of the hardware part.

Lk for each label capsule k:

Lk=Tk ·max(0,μ0−‖vk‖)2+λ(1−Tk) ·max(0,‖vk‖−μ1)
2

(5)
where Tk = 1 if the inference result is right. The thresholds
μ0 = 0.9 and μ1 = 0.1 refer to acceptable differences to guide
the model to more stable and rapid loss convergence. Mean-
while, the λ = 0.5 down-weighting of the loss for misidentified
categories stops the initial learning from shrinking the activity
vector lengths of all label capsules.

Details in Model Training and Testing: In the model training
phase, we slice natively the dataset according to the timestamp to
form a series of feature maps for input. Those feature maps that
contain malicious behavior are considered positive instances.
Some hyperparameter settings reference the batch_size = 10,
the epoch is set to 50, and the learning rate is 1e-3. During
testing, the trained model outputs either “benign” or “malicious”
for the test samples. If the inference result is malicious, then the
timestamp and IP in the corresponding feature map are recorded,
and the information can facilitate anti-virus countermeasures, as
discussed in Section IV-A.

C. Design of Hardware Part

The hardware part is designed to externally recover the op-
eration log in the file system. The so-called “externally recover
logs” refers to the external monitor (e.g., leveraging SPI signals),
not the internal monitor, which echoes back to the challenge 3©
in Section I (so as to make the adversary imperceptible and
tamper-proof). We clarify here the hardware part processing in
Fig. 6.

Collect the Digital Signals: To acquire digital signals from
the Flash chip of the IoT device, we connect the logic analyzer
with the pins of the SPI bus in parallel. The logic analyzer lies as
a physical probe that mounts on the SPI pins and performs peri-
odic sampling with the frequency Fl. Note that Fl > 2× Fmax

o

should be satisfied according to the Nyquist-Shannon sampling
theorem, where Fmax

o denotes the maximum frequency of the
original signals. Particularly, according to product reports of
the chip manufacturer, the maximum frequency of common SPI
Flash chips is 80∼133 MHz [43]. Modern logic analyzers sup-
port a sampling rate of 500 MS/s [44], which means that it could
achieve 3∼6 times oversampling (satisfies Nyquist-Shannon
sampling theorem). We set Fl = 500 in experiments, and these
sampling data will be saved in the upper computer.

Fig. 7. Write status register-1/2/3 instruction of W25Q128FV chip.

Extract the Flash Traces: The collected digital signals mainly
consist of the chip instructions1 and the content written into
Flash (i.e., the non-volatile data). The chip instructions are
related to the chip type and the physical state. For instance,
the W25Q128FV [45] chip we used has read status register
instructions shown in Fig. 7. The instruction is entered by driving
/CS low and shifting the instruction code “05 h” for Status
Register-1, “35 h” for Status Register-2, or “15 h” for Status
Register-3 into the DI pin on the rising edge of CLK. The
status register bits are then shifted out on the DO pin at the
falling edge of CLK with the most significant bit (MSB) first,
as shown in Fig. 7.

In general, we focus on the operations involving reading,
writing, etc., and some corresponding instruction hexadecimal
of W25Q128FV are as follows:
� 0x01: Write Status Register Instruction
� 0x02: Page Program Instruction
� 0x03: Read Data Instruction
� 0x04: Write Disable Instruction
� 0x05: Read Status Register Instruction
� 0x06: Write Enable Instruction
These chip instructions can help us analyze the SPI trace, and

we can determine the performed operations (such as “Read”
and “Write”), as well as the written non-volatile data content
and corresponding address. As shown in Fig. 6(b), we can
extract the Flash traces, e.g.,< a1, a2, a3 > represents the 24-bit
address and the following < f11, f12, . . . , f1 M > refers to the
written content segment into Flash. Particularly, these hexadec-
imal SPI instructions are related to the chip product number, so
the specific instruction hex can be confirmed according to the
corresponding chip manual.

Structure the File System: Considering the write operations
could be in arbitrary positions due to the Linux blocks implemen-
tation in the kernel, we will structure the file system to assemble
segments in this step. Take the Journalling Flash File System
(JFFS2) [40] log structure as an instance2, which is an append-
only file system. JFFS2 system has mainly two data entities

1The chip instructions here refer to the SPI instruction set and are fully
controlled through the SPI bus, e.g., the W25Q128FV contains 45 basic in-
structions [45].

2We choose JFFS2 because it is designed from the outset for embedded
devices, and provides a robust file system to allow reliable use of Flash devices
as data storage [40]. For example, JFFS2 allows recovery when the system
has failed abnormally, without the file system itself being left in an unusable
state, even if power is disconnected at the moment the Flash device is in the
middle of being written to. Meanwhile, JFFS2 is also widely used in IoT
devices. Such as [46] mentioned that 333 firmware was collected from Axis
Communications (a network camera device manufacturer), and about 85% of
them use the JFFS2 file system. In addition, if other file systems are used, it only
needs to change the mapping process of the storage address to the file directory
and the decompression algorithm of the non-volatile data.

Fig. 8. Compression algorithm and corresponding hexadecimal.

closely related to file operations, named jffs2_raw_dirent
and jffs2_raw_inode as Fig. 6(c).

We can distinguish these two entities according to pa-
rameter magic+ nodetype, and determine the entity length
based on parameter totlen. Among them, jffs2_raw_dirent
can describe the file location (parent directory), and
jffs2_raw_inode stores the file management information.
Particularly, jffs2_raw_inode carries the written content of
Flash in its parameter data and usesmode to record the file types
& mode. For example, {S_IXOTH: 01} denotes the execute
or search permission bit for other users, and {S_IWOTH: 02}
denotes the write permission bit for other users [47]. Based on
these two entities, we mount corresponding nodes to structure
the tree-shaped file system. Note that the content might be
compressed to reduce space overhead as shown in Fig. 8, we
execute the corresponding decompression algorithm (stored in
the compr of jffs2_raw_inode) to get the complete data. For
example, {LZO: 0x07}3 is the default compression algorithm
in our testbed that is very common and popular given its quite
competitive compression ratio and extremely fast decompres-
sion [48].

Recover the Operation Logs: After structuring the file system,
we will obtain information such as the file type, name, per-
mission, content, access time, etc. Then these available nodes’
information can be used to recover the operating system behavior
logs. For example, emerging instances of entities→ file creation;
changing the entities’ contents → file writing; mounting the
entities to the garbage collection node→ file deletion. Finally,
these recovered logs include file creation, deletion, read, writing
(including content), permission modification, last modification
time, soft link, etc. Readers could concern that whether the log
recovery process will be affected if adversaries delete the binary
scripts (i.e., the self-induced malicious script deletion mentioned
in Section II). As long as SPI signal collection is run in advance,
CMD can recover the operation log even if the malicious script
is deleted. This is because the CMD’s hardware part is designed
as an external monitor, and all file operations (e.g., reading,
permission modification, deletion, etc.) will be recorded and
saved in the upper computer (for log recovery).

V. EVALUATION

In this section, we comprehensively evaluate CMD in terms of
the detection performance and operation recovery forensics. For

3LZO is a portable lossless data compression library written in ANSI C.
It offers pretty fast compression and extremely fast decompression. We can
download the LZO executable [48] and call the interface to perform data
decompression.

Fig. 9. Physical IoT device of CMD testbed.

TABLE I
DATASETS OF IOT MALWARE USED IN OUR EVALUATION

the network part, we compare SOTA methods, as well as provide
deep insights of interpretability from the aspect of traffic behav-
ior. For the hardware part, we evaluate the command recovery
effect and depict the file operation portrait. Moreover, we con-
duct the integration test for CMD and the overhead evaluation.
Finally, a typical case study for Hajime will be introduced. Our
code is available online.4 Overall, the experiments are designed
to answer the following research questions:

RQ1: How effective is network traffic detection of CMD
compared to SOTA methods (Section V-B)?

RQ2: Against adaptive adversaries, does hardware trace
forensics of CMD work (Section V-C)?

RQ3: Considering the multi-stage attack, what is the integra-
tion test effect of CMD (Section V-D)?

RQ4: How much is the overhead of CMD on the IoT device
and the upper computer respectively (Section V-E)?

RQ5: Can CMD analyze a typical malware example to provide
more insights (Section V-F)?

A. Experiment Setup

Testbed: Our testbed is established with a wireless router (in-
stalled the W25Q128FV Flash chip [45], SPI bus, and MT7620
SoC chip that is MIPS-EL architecture), a logic analyzer (the
Saleae Logic Pro 8 [44], supports a maximum sampling rate
of 500 MS/s), an upper computer (installed an i7-9700 CPU, a
GTX 1070 GPU, and 64 GB memory), and three client hosts.
Among them, the router is the victim IoT device, and the upper
computer runs CMD. One end of the logic analyzer is probed on
pins 1, 2, 4, 5, and 6 of the Flash chip (Fig. 9), while the other
end is connected to the upper computer. In addition, the three
hosts act as benign users and attackers alternately with a period.
Particularly, the wireless router runs OpenWrt [49] which the
file system is JFFS2.

Datasets: The datasets used for evaluation are summarized in
Table I, including network traffic from IoT-23 [50] and binary
executables from BadThings [9]. (i) Network traffic: the IoT-
23 captures malicious traffic when running common malware

4See code repository on https://github.com/Secbrain/CMD/

https://github.com/Secbrain/CMD/

such as Mirai, Hajime, Gafgyt, etc. It contains the traffic of
scanning, brute-force login, file downloading, C2, DDoS, and so
on. Together with benign flows generated by three different IoT
devices: a Philips HUE smart LED lamp, an Amazon Echo home
intelligent personal assistant, and a Somfy smart Doorlock. All
these IoT devices are physical hardware and allow to capture
real-world communication behavior on an underlying network
with unrestricted connections. In addition, we also enrich benign
background traffic by bringing legitimate instances from the B-
Profile system5 of IDS2017 [51].

(ii) Binary executables: the BadThings possesses more than
166 K malware samples collected across a series of popular
architectures, e.g., ARM, PPC, SH4, etc. Among them, 15,906
binary executables of MIPS-EL architecture are used for evalu-
ation since our testbed is MIPS-EL architecture. These samples
exist in the form of executable files (e.g., ELF) that we can
run to perform the specific infection process. The command
quantities involved in each malware binary are obtained by
reverse engineering [9].

Baselines: Some state-of-the-art (SOTA) models are briefly
introduced as follows: (i) Mousika [52] proposes the binary
decision tree that is translated from the deep neural network
with knowledge distillation. (ii) FlowLens [53] devises a com-
pact representation of packet length and adjusts the granularity
of the flow’s frequency distribution intervals to classification
with machine learning (ML) models. (iii) Whisper [54] utilizes
sequential information based on the frequency domain features
to detect malicious traffic. (iv) Kitsune [14] discovers abnormal
behavior by using AutoEncoder to examination on each packet.
(v) FS-Net [55] uses the bi-GRU model to learn sequence
features and classify common applications. (vi) ET-BERT [56]
handles raw packets in hexadecimal and deploys a pre-trained
transformer to represent and learn the contextualized datagram-
level information. (vii) FlowPic [57] processes packet length
and timestamp fields and converts them into pictures and uses
Convolutional Neural Networks (CNNs) to identify traffic.

Additionally, we also explore the advantages of CMD’s
hardware trace forensics by comparing to the internal moni-
tor. Specifically, we choose the representative internal monitor
Syslog [58] which is a commonly used management tool for
system logs. Meanwhile, many existing forensic schemes lever-
age Syslog to collect system logs [59], [60], [61], [62].

B. Network Traffic Detection Effect (RQ1)

Compare with SOTA: We first compare the detection ef-
fect of CMD with a series of SOTA models from ML and
deep neural network (DNN). In the experiments, the dataset
division ratio refers to train : test = 7:3, and the per-group
division & experiment will be randomly performed 10 times.
The results are summarized in Table II, including accuracy
Acc, precision Pre, recall Rec, F1-score F1, and the Area
Under Curve (AUC). The overall detection effect, in terms of
the Acc and F1, is DNN-based > ML-based methods. For

5Including multiple protocols (TCP, UDP, ICMP, etc.) and multiple applica-
tions (FTP, HTTP, DNS, NetBIOS, Mail, SNMP, SSH, etc.).

TABLE II
TRAFFIC DETECTION EFFECT (%) OF CMD AND SEVEN SOTA MODELS

Fig. 10. ROC results of network traffic detection.

ML-based approaches, Mousika shows more accuracy loss since
it mainly focuses on per-packet characterization. And Whisper,
as a frequency domain analysis-based model, performs better
results than FlowLens, e.g., Acc of the former is 97.74% and the
latter is 97.04%. Meanwhile, Whisper and Kitsune are evenly
matched in accuracy and F1-score, i.e., a∼0.07% difference. In
five DNN-based models, the detection effect CMD outperforms
others in terms of various metrics. For example, the F1 scores
of CMD, Kitsune, FS-Net, ET-BERT, and FlowPic are 99.88%,
97.79%, 98.74%, 99.42%, and 97.82% respectively.

Moreover, we plot the Receiver Operating Characteristic
(ROC) curve in Fig. 10. It is clear that CMD has fewer false
positives while achieving a higher true positive rate. For the
Area Under Curve (AUC) metric in Table II, the models refer
to CMD > ET-BERT > FS-Net > Kitsune > FlowPic >
Whisper > FlowLens > Mousika. ET-BERT is a competitive
baseline given it is based on a pre-trained large model, while it
needs more inference time as stated in Section V-E. Particularly,
FlowPic also converts traffic to pictures and leverages the CNN
model for classification, but there is still some performance gap
between FlowPic and the capsule network of CMD. This can be
attributed to the rich representation of extracted feature maps and
the dynamic routing of capsule networks to capture contextual
semantics. We next provide some deep insights into network
traffic semantic identification.

Deep Insights for Interpretability: To further understand how
CMD identifies these attack behaviors based on features, we
use the Integrated Gradients method [63] from the Captum [64]
to generate the attribution matrix to provide the model in-
terpretability. Fig. 11 shows four behavior instances involv-
ing Gafgyt, Hajime, and Mirai three widespread malware. We
provide more interpretability instances of identification with

Fig. 11. Attribution maps are based on the network-part model in CMD. The captured contextual semantics from traffic involved four typical behaviors.

Fig. 12. DHT message of P2P broadcasts in Hajime.

attribution maps in our online repository (the aforementioned
URL).

In subfigure (a), we find that CMD captures a series of
snippets for ARP sniffing in Gafgyt’s traffic, e.g., around
187-th, 227-th, 311-th, 351-th packets. From subfigure (b), it
is clear that exists a very obvious traffic slice for the UDP
data field in the range 277-th∼298-th. Specifically, the IP
192.168.100.111 sends multiple DHT broadcast packets by
Hajime and gets a response from 210.103.70.224. As shown
in Fig. 12, the 288-th packet is a request for peer host acquisi-
tion “get_peer”, the message refers to {“id”: “..E......̂6..>*.+..̂”,
“info_hash”: “.*G.bo)CN...+Z.?.x#.”}. And the 295-th packet
responses the message with {“id”: “.*.o.......KL..$].’.”, “nodes”:
“.*M.:)P...L0O.” (omitted, 208 bytes in total), “token”: “[..-
_I.1F.........k.”}, it indicates to return the closest node.

Fig. 11(c) displays the brute-force login process of Gafgyt,
the encrypted packets of SSH and TCP appear alternately thus
the corresponding attribution map presents intermittently salient
areas, and finally, the 173-th SSH packet achieves successful
login. For Fig. 11(d), the attribution matrix presents sporadic
significant pixels corresponding to the TCP payload positions
that record the transferred bytes during download. Particularly,
the 131-th packet means the HTTP GET request, and sub-
sequently, the multiple response segments contain the related
binary content. Noteworthy that we find that Mirai will disguise

Fig. 13. HTTP message for binary downloading in Mirai.

itself as a system file, such as ntpd, sshd, slav.mips, and
slav.arm7 in Fig. 13.

Overall, the capsule network design realizes extracting the
contextual semantics from the traffic feature map even in cross-
source scenarios (e.g., decentralized DHT). The above experi-
mental observations cater to our design intentions for the net-
work part of CMD.

C. Hardware Trace Forensic Evaluation (RQ2)

Malware Command Recovery: In the aspect of hardware
traces, we record the recovered file operations including spe-
cific commands and corresponding quantities. We use ∼15 K
malware of MIPS-EL architecture to conduct and capture the
SPI traces to recover operation logs. Meanwhile, Syslog [58] is
deployed as an internal monitor to record operations since many
previous forensic schemes are based on it [59], [60], [61], [62].
To evaluate the tamper-proof capabilities of CMD and Syslog,
we consider adaptive attackers in two types of settings. For one
thing, the attacker directly kills the internal monitor process.
This is very possible, given that the adversary could have ad-
vanced privileges on compromised IoT devices and then typical
malware does perform a series of process kill operations [32],
e.g., Hajime could involve killall /sbin/telnetd, pkill -9 cron, etc.
operations [33]. For another, the attacker tampers with operation
log files which are mentioned in many existing works [34], [35].
Specifically, we only save the first 50 lines of generated logs
after each malware execution to simulate adversary tampering,

TABLE III
COMMAND RECOVERY RESULTS AGAINST ADAPTIVE ADVERSARIES

Fig. 14. Sankey diagram for file operations.

e.g., cat /dev/null> /var/log/syslog, execute the malware binary,
and cat /var/log/syslog | head -n 50 > save.txt.

The results are shown in Table III. For common seven com-
mands involved in malware (i.e., wget, chmod, echo, cp, cat,
mv, rm), CMD all realizes 100% recovery by the hardware-part
design. In other words, if the malware calls the corresponding
command, CMD will perceive in the forensic analysis. About
the number of each command, the recovery results by CMD
vary from∼97% to∼99%. When the adversary kills the internal
monitor process (the top part of Table III),Syslog cannot record
any operations while CMD is not affected. Specifically, CMD’s
recovery results of wget, chmod, and rm are relatively high,
achieve 99.69%, 99.15%, and 99.75% respectively. Although
the effect of echo and cat is slightly inferior, the results are still
more than 97%. When the adversary tampers with the operation
log (the bottom part of Table III),Syslog can record part of logs,
e.g., the recovery of the per-command quantity is 45%∼80%.
Actually, recovery result by Syslog is related to the adversary’s
tampering strategy, for example, if the attacker deletes more log
entries, the recovery rate of Syslog will be lower. For CMD, log
tampering slightly changes the recovery result, mainly including
wget, echo, cp, and cat given that the adversary’s tampering
process may involve these commands. Nevertheless, the impact
is less than 0.5%. Overall, CMD is tamper-proof compared to
typical internal monitors when an adversary may kill processes
or modify logs, this echoes our original design intention stated
in Section II.

File Operation Portrait: Moreover, we portray the proportions
and relationships of these commands in Fig. 14. It is a Sankey
diagram in which the depth sequence references create→
write→ read→ chmod→ link → move→ delete. First, it
is clear that a large fraction (i.e.,∼96.7%) of malware will create

Fig. 15. Dynamic performance of CMD on multi-stage IoT attacks.

and write files. After writing the file, ∼42.6% malware will use
chmod to modify permissions (i.e., a part of 57.3%, and another
part is after the read), some malware (45.9%) will call read file
to further production or obfuscation, and a fraction of the rest
could perform the delete operation (1.6%) or nothing (6.6%).
Noteworthy that a large percentage of malware will execute file
deletion to hide and destroy traces. This is one of the reasons why
IoT malware is tricky for security practitioners. We provide more
operation details by using the case of Hajime in Section V-F.

D. Integration Test for Multi-Stage Attacks (RQ3)

In this section, we conduct the integration test with the multi-
stage process that mimics real-world IoT attacks. It considers 6
stages (4 malicious + 2 benign) in which the adversary deploys
dynamic malware intrusion strategies. Specifically, in Stage 1,
the users perform a series of normal routine operations (includ-
ing disconnecting the wireless, connecting into the wireless,
operations of automated browsers by Selenium [65]). In Stage 2,
the administrator modifies the configuration file (e.g., DNS) of
the IoT device with authentication. In Stage 3, the device suffers
some scanning and sniffing (e.g., PortSpider [66]). In Stage
4, the attacker adopts brute-force login to password cracking
(e.g., Hydra [67]). In Stage 5, the adversary implants (via FTP
transmission) the malware scripts or binaries into the device
after successful login. In Stage 6, those malicious files will be
executed on the IoT device.

Fig. 15 depicts the accuracy curve with the dynamic at-
tacks. Overall, CMD achieves ∼99.9% Acc that outperforms
the performance of only using network traffic detection given
the hardware trace forensics could facilitate results fine-tuning.
For instance, when the network part model incorrectly reports
a legitimate HTTP download as malicious, the hardware part
analysis further validates the downloaded sample and conducts
forensics. If the forensics result is benign,6 this false positive
will be corrected and thus improve the integration accuracy.

In stage 1, there is almost no false positive. While in stage 2
it emerges some slight fluctuation (∼0.1%) due to some DNS
configuration file modifications. For stages 3 and 4, CMD could
stably detect >99.7% sniffing, scanning, and brute-force behav-
iors. However, the identification effect shows some improvement
in stages 5 and 6 since the corresponding file operations are
verified by SPI traces. In general, our co-analyzed design from
network and hardware domains could cope with the multi-stage
malware lifecycle and bridge the detection and forensics.

6For example, if the downloaded sample does not contain any chmod, cat,
cd commands, etc., it is most likely not malware [32].

Fig. 16. CPU utilization of the IoT device.

Fig. 17. Inference time for network traffic detection.

E. Overhead Evaluations (RQ4)

To further analyze the overhead introduced by CMD, we
measure here the CPU utilization and time/space overhead.

CPU Utilization of IoT Device: Fig. 16(a) shows the scene
(including benign and malicious behaviors) without detection
whose CPU utilization is universal in 10%∼70%. Particularly,
the CPU utilization reaches about 100% at t = 210 due to
suffering brute-force password cracking. Fig. 16(b) refers to that
uses CMD to detect malware and forensic analysis, and its CPU
curve is very similar to Fig. 16(a) that indicates CMD introduces
negligible CPU utilization.

The Overhead of Network Traffic Detection: For the network
traffic detection part of CMD and seven baseline models (Sec-
tion V-B), we measure model inference time. Note that they are
all running on the upper computer instead of IoT devices. As
illustrated in Fig. 17, the inference time of the ML-based model
is indeed less than DNN-based. Three ML-based methods take
about < 1 ms. Among the DNN-based models, CMD and Flow-
Pic require the least inference time (∼ 2.48 ms), while ET-BERT
has the most time overhead, about 6.83 ms. Considering that
it usually has a long interval between the infection phase and
attack phase of IoT malware, the ms-level detection latency is
acceptable. Such as Mirai infection is used to create a large-scale
botnet to aggregate the ability for bandwidth overflow, while the
attack launch depends on the specific purpose. Therefore after
detection and forensics, we could perform anti-virus counter-
measures when the compromised device listens to command &
control commands. In addition, for space overhead, ET-BERT is
also the largest, requiring >500 MB, while the capsule network
of CMD is about 30 MB, which is acceptable since the model is
stored in the upper computer instead of the IoT device.

The Overhead of Hardware Trace Forensics: For the overhead
of the hardware forensics part, we plot the time vs. SPI signal
file size in Fig. 18. The log recovery time is approximately
linear with the file size, and the slight fluctuation is because the
compression ratio of the algorithm may be different for diverse
file contents. Specifically, it takes about 0.04 s to analyze 10 MB

Fig. 18. Log recovery time of the hardware trace forensics in CMD.

TABLE IV
SPACE OVERHEAD OF THE RECOVERY LOG IN EACH STAGE OF SECTION V-D,

THE LAST TWO COLUMNS RECORD OCCUPIED SPACE ON AVERAGE FOR EVERY

10 MALWARE

SPI signals, which is acceptable due to usually there are not so
many traces generated (see subsequent explanation). We also
measure the space utilization for recovered logs (given previous
work mentions the data explosion problem [24], [41], [42]), and
statistical results for Section V-D are shown in Table IV. In
stage 1, we find that no SPI trace is generated. While appearing
about additional 30.45 KB of space utilization when the IoT
configuration files are modified in stage 2. This means that
routine operations that do not involve file operations hardly incur
extra space overhead. For scanning and brute-force login, there
is also no operation log required to analyze in stages 3 and 4.
When downloading and executing the binary, it will produce
corresponding SPI signals. The last two columns in Table IV
record the occupied space by 10 malware on average. It needs
∼793.82 KB and ∼1801.96 KB of space in stages 5 and 6.
In previous works for forensic analysis [22], [42] whose extra
space is generally more than dozens of MB, such a small space
overhead for recovered logs in CMD (∼0.2 MB per malware) is
acceptable.

F. Case Study of the Operation Logs Recovery (RQ5)

Motivated by the enormous potential threat of Hajime [11]
that is spread based on P2P protocol, we elaborate here on a
case study for its file operation recovery. As shown in Fig. 19,
the attack process of Hajime can be divided into three stages:
infection, execution, and spread. (i) In the infection stage, the
attacker will implant the loader program after successful login.
The brute-force login process and script transmission can be
detected by the network-part model of CMD (given the assump-
tion of enable CMD before infection in Section III). And the
content of the loader program can be recovered by hardware-part
forensics when it is written in the chip.

(ii) In the execution stage, it will run the pre-designed com-
mands consisting of closing the port, downloading the binary,
etc. Among them, CMD can forensics to the file creation and
writing (wget), file creation and permission setting (cp), file
writing (cat), script content (busybox), and file deletion (rm).
Particularly, when making the malicious executable file, it adopts
cp+ cat to avoid using chmod command (existing the exposed
risk). Nonetheless, these operations will be tracked by CMD

Fig. 19. Log recovery case study of Hajime attack.

given they trigger corresponding SPI signal generation. (iii) In
the spread stage, a series of scanning and sniffing behaviors
are conducted that can be detected in CMD based on network
traffic. Overall, almost all stages of IoT malware can be detected
by CMD, which benefits security practitioners to adopt early
countermeasures before the attack is launched.

VI. DISCUSSION

Robustness and Extensibility: We admit that it exists some
imperfections in the ML model such as misclassification, yet
CMD would mitigate these problems since its co-analyzed de-
sign. When customers have a low tolerance for false negatives,
we can improve the positive probability of the classification or
perform a model ensemble (e.g., voting result is negative only
if no positive), thereby more instances will be verified by the
hardware-part operation recovery. The high-level detection logic
in CMD can be extended according to specific business scenar-
ios. For example, we could increase the priority of hardware-part
forensic analysis for security applications that centered on file
operations, i.e., alarm immediately as soon as appear suspect
SPI signal.

Limitations and Future Works: Our work has a few limitations.
(i) First, the SPI signal collection of CMD needs the instrument
for the side-channel-manner analysis, and a feasible direction
is to devise integrated customized solutions for industrial pro-
duction. (ii) Then, as part of future work, we would explore
which traffic could be analyzed in parallel to improve efficiency
in multi-device scenarios.

(iii) In addition, hardware trace collection and operation log
recovery may also be combined with existing solutions based
on the causality analysis graph [22], [23], [24], [25], [26]. For
example, a variant of CMD may be to design the hardware part
as an independent detection module that can identify malicious
operation logs. In this way, the detection results of the network
part and the hardware part can be mutually verified.

(iv) Finally, the hardware part of CMD focuses on the on-chip
file operations given the existing persistence technologies in
the IoT malware landscape nowadays. For those malware that
infect memory, on the one hand, as long as the infection process

involves file operations on ROM, corresponding SPI signals can
be captured by CMD. And for malware that infects RAM, file
operations in ROM are common during the intrusion process. For
example, Mirai [36] needs to use cat to analyze the architecture,
and use wget, echo, etc. to transfer the payload (mentioned
in Section II). On the other hand, combining some memory
detection approaches [68], [69], [70] could further enhance IoT
protection.

VII. RELATED WORK

We explain several SOTA baseline models in Section V-A and
here introduce briefly some other related work.

Network Traffic Detection: To profile the traffic pattern, some
works [57], [71], [72], [73], [74] design supervised learning
methods based on statistical features, e.g., random forests. And
some other arts utilize Markov [75], [76] or recurrent neural
networks [77], [78], [79] to portray the sequential features (e.g.,
packet length sequence) of attacks. For the IoT devices, Gu
et al. [12] present IoTGaze to discover the threats by sniffing
event interaction in wireless traffic. Wang et al. [80] perform
a cross-analysis for mobile companion apps to evaluate IoT
devices’ security. IoTArgos [13] characterizes the communica-
tions data based on TCP/IP and IoT protocol stacks. CMD is
more concerned with capturing contextual semantics from the
cross-source traffic feature map.

Hardware-Based Solutions: The hardware-based methods
aim to extract the processor information from different programs
running on the devices. Some previous arts [17], [18], [19],
[81] propose to detect malware based on Hardware Performance
Counters (HPC) runtime information. The hardware part design
of CMD is different from the HPC-based method in the following
two aspects. For one thing, the previous methods use HPC to de-
tect malware, which is the classification problem. Our hardware-
part design focuses on recovering operation logs for forensic
analysis. Log recovery using HPC could be difficult because the
available events are very limited (e.g., cpu-cycles, cpu-clock,
L1-dcache-loads, etc.) and the count results are usually numeric
variables. For another, more importantly, the process (e.g., perf
tool [82]) for statistics HPC can be killed by adaptive adversaries
like that the attacker kills internal monitors (mentioned in Sec-
tion V-C). In addition, the number of available HPCs is limited
on today’s microprocessors. And HPCs rely on the OS kernel,
e.g., the measured results inside a VM differ from the hardware.
PREEMPT [83] re-purposes the Embedded Trace Buffer (ETB)
to identify malware. Costin et al. [84] conduct a large-scale
firmware analysis for embedded devices. Different from them,
CMD introduces a new direction that utilizes side-channel SPI
signals to recover logs.

Forensic Analysis: For forensic analysis and attack investiga-
tion, a series of causality analysis methods [22], [23], [24], [25],
[26] are proposed based on the system events or log auditing.
Meanwhile, some technologies such as data compaction [41] and
alternative tag propagation semantics [42] are presented to com-
bat dependence explosion in long-term monitoring. Moreover,
Wang et al. [15] design a selection algorithm to identify ma-
licious parts based on the OS-level provenance. IoTGuard [27]

implements a code instrument to collect the app’s information at
runtime by adding extra logic. Pagani et al. [85] suggest using
automated algorithms to evaluate and design memory forensics
techniques. The forensics of CMD is specially designed for the
IoT malware, as an external monitor, that cannot be perceived
by adversaries and has the advantage of being tamper-proof.

VIII. CONCLUSION

In this paper, we propose CMD, a novel IoT malware de-
tection and forensics system combining the network and hard-
ware domains. For the network part, CMD presents a tailored
capsule neural network to capture the cross-source contextual
semantics from the traffic feature map. For the hardware part,
CMD leverages the SPI bus to monitor the on-chip traces
to recover file operations in a side-channel manner, such an
external monitor is tamper-proof against adaptive adversaries.
CMD realizes almost the whole-lifecycle detection that benefits
security practitioners to adopt anti-virus countermeasures before
the attack is launched. Our experiments demonstrate that CMD
could achieve remarkable detection results, take up limited space
overhead for recovered logs, and only introduce negligible CPU
utilization in the IoT device. We also provide deep insights for
model interpretability and malware operation portrait, as well as
a case study for Hajime. Our research bridges the hardware and
network perspectives which advances the multi-stage tracking
of IoT malware lifecycle.

ACKNOWLEDGMENTS

We are grateful to the reviewers for their very constructive
feedback and insightful comments.

REFERENCES

[1] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding
Linux malware,” in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 161–175.

[2] D. Kumar et al., “All things considered: An analysis of IoT devices on
home networks,” in Proc. USENIX Secur. Symp., 2019, pp. 1169–1185.

[3] B. Vignau et al., “The evolution of IoT malwares, from 2008 to 2019:
Survey, taxonomy, process simulator and perspectives,” J. Syst. Archit.,
vol. 116, 2021, Art. no. 102143.

[4] D. D. Chen et al., “Towards automated dynamic analysis for Linux-based
embedded firmware,” in Proc. Netw. Distrib. Syst. Secur. Symp., The
Internet Society Soc., 2016, pp. 1–8.

[5] C. Fu, Q. Zeng, and X. Du, “Hawatcher: Semantics-aware anomaly de-
tection for appified smart homes,” in Proc. USENIX Secur. Symp., 2021,
pp. 4223–4240.

[6] T. Abera et al., “Invited - things, trouble, trust: On building trust in IoT
systems,” in Proc. 53rd Annu. Des. Automat. Conf., 2016, pp. 1–6.

[7] A. Sadeghi et al., “Security and privacy challenges in Industrial Internet
of Things,” in Proc. Annu. Des. Automat. Conf., 2015, pp. 1–6.

[8] S. Ahn et al., “Hawkware: Network intrusion detection based on behavior
analysis with ANNs on an IoT device,” in Proc. Annu. Des. Automat. Conf.,
2020, pp. 1–6.

[9] O. Alrawi et al., “The circle of life: A large-scale study of the IoT malware
lifecycle,” in Proc. USENIX Secur. Symp., 2021, pp. 3505–3522.

[10] M. Antonakakis et al., “Understanding the Mirai botnet,” in Proc. 26th
USENIX Secur. Symp., 2017, pp. 1093–1110.

[11] S. Herwig et al., “Measurement and analysis of Hajime, a peer-to-peer IoT
botnet,” in Proc. Netw. Distrib. Syst. Secur. Symp., The Internet Society,
2019, pp. 1–15.

[12] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra, “IoTGaze:
IoT security enforcement via wireless context analysis,” in Proc. IEEE
Conf. Comput. Commun., 2020, pp. 884–893.

[13] Y. Wan, K. Xu, G. Xue, and F. Wang, “IoTArgos: A multi-layer security
monitoring system for Internet-of-Things in smart homes,” in Proc. IEEE
Conf. Comput. Commun., 2020, pp. 874–883.

[14] Y. Mirsky et al., “Kitsune: An ensemble of autoencoders for online network
intrusion detection,” in Proc. Netw. Distrib. Syst. Secur. Symp., The Internet
Society, 2018, pp. 1–15.

[15] Q. Wang et al., “You are what you do: Hunting stealthy malware via
data provenance analysis,” in Proc. Netw. Distrib. Syst. Secur. Symp., The
Internet Society, 2020, pp. 1–17.

[16] M. Graziano et al., “Needles in a haystack: Mining information from public
dynamic analysis sandboxes for malware intelligence,” in Proc. USENIX
Secur. Symp., 2015, pp. 1057–1072.

[17] N. Patel et al., “Analyzing hardware based malware detectors,” in Proc.
Annu. Des. Automat. Conf., 2017, pp. 1–6.

[18] H. Sayadi et al., “Ensemble learning for effective run-time hardware-based
malware detection: A comprehensive analysis and classification,” in Proc.
Annu. Des. Automat. Conf., 2018, pp. 1–6.

[19] J. Demme et al., “On the feasibility of online malware detection with
performance counters,” in Proc. ACM Annu. Int. Symp. Comput. Architect.,
2013, pp. 559–570.

[20] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Proc. IEEE Symp. Secur.
Privacy, 2010, pp. 305–316.

[21] M. Botacin et al., “Who watches the watchmen: A security-focused review
on current state-of-the-art techniques, tools, and methods for systems and
binary analysis on modern platforms,” ACM Comput. Surv., vol. 51, no. 4,
pp. 1– 34, 2018.

[22] R. Yang et al., “Uiscope: Accurate, instrumentation-free, and visible attack
investigation for GUI applications,” in Proc. Netw. Distrib. Syst. Secur.
Symp., The Internet Society, 2020, pp. 1– 18.

[23] P. Fang et al., “Back-propagating system dependency impact for attack
investigation,” in Proc. USENIX Secur. Symp., 2022, pp. 2461–2478.

[24] P. Fei et al., “SEAL: Storage-efficient causality analysis on enterprise logs
with query-friendly compression,” in Proc. USENIX Secur. Symp., 2021,
pp. 2987–3004.

[25] L. Yu et al., “ALchemist: Fusing application and audit logs for precise
attack provenance without instrumentation,” in Proc. Netw. Distrib. Syst.
Secur. Symp., The Internet Society, 2021, pp. 1–18.

[26] Q. Wang et al., “Fear and logging in the Internet of Things,” in Proc. Netw.
Distrib. Syst. Secur. Symp., The Internet Society, 2018, pp. 1–15.

[27] Z. B. Celik et al., “IoTguard: Dynamic enforcement of security and safety
policy in commodity IoT,” in Proc. Netw. Distrib. Syst. Secur. Symp., The
Internet Society, 2019, pp. 1–15.

[28] M. Botacin et al., “Antiviruses under the microscope: A hands-on perspec-
tive,” Comput. Secur., vol. 112, 2022, Art. no. 102500.

[29] W. Cui et al., “Protocol-independent adaptive replay of application dialog,”
in Proc. Netw. Distrib. Syst. Secur. Symp., The Internet Society, 2006,
pp. 1–15.

[30] L. Babun et al., “The truth shall set thee free: Enabling practical forensic
capabilities in smart environments,” in Proc. Netw. Distrib. Syst. Secur.
Symp., The Internet Society, 2022, pp. 1–17.

[31] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 3856–3866.

[32] H. Li et al., “Understanding and detecting remote infection on Linux-
based IoT devices,” in Proc. Asia Conf. Comput. Commun. Secur., 2022,
pp. 873–887.

[33] J. Haseeb, M. Mansoori, and I. Welch, “A measurement study of IoT-based
attacks using IoT kill chain,” in Proc. IEEE 19th Int. Conf. Trust, Secur.
Privacy Comput. Commun., 2020, pp. 557–567.

[34] R. Paccagnella et al., “Logging to the danger zone: Race condition attacks
and defenses on system audit frameworks,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2020, pp. 1551–1574.

[35] H. N. Noura et al., “DistLog: A distributed logging scheme for IoT
forensics,” Ad Hoc Netw., vol. 98, 2020, Art. no. 102061.

[36] ”Mirai-source-code,” 2017. [Online]. Available: https://github.com/
jgamblin/Mirai-Source-Code

[37] Y. Miretskiy et al., “AVFS: An on-access anti-virus file system,” in Proc.
USENIX Secur. Symp., 2004, pp. 73–88.

[38] D. Arp et al., “DREBIN: Effective and explainable detection of Android
malware in your pocket,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
The Internet Society, 2014, pp. 1–12.

[39] C. Wu et al., “Airbag: Boosting smartphone resistance to malware infec-
tion,” in Proc. Netw. Distrib. Syst. Secur. Symp., The Internet Society, 2014,
pp. 1–13.

https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code

[40] W. David, “JFFS: The journalling flash file system,” in Proc. Ottawa linux
Symp.,” 2001, pp. 1–12.

[41] M. N. Hossain et al., “Dependence-preserving data compaction for
scalable forensic analysis,” in Proc. 27th USENIX Secur. Symp., 2018,
pp. 1723–1740.

[42] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence explo-
sion in forensic analysis using alternative tag propagation semantics,” in
Proc. IEEE Symp. Secur. Privacy, 2020, pp. 1139–1155.

[43] “Code storage flash memory,” 2023. [Online]. Available: https://www.
winbond.com/hq/product/code-storage-flash-memory/?__locale=en

[44] “Saleae logic analyzer,” 2023. [Online]. Available: https://www.saleae.
com/

[45] “W25Q128FV datasheet,” 2023. [Online]. Available: https://www.pjrc.
com/teensy/W25Q128FV.pdf

[46] K. Liu et al., “On manually reverse engineering communication protocols
of Linux-based IoT systems,” IEEE Internet Things J., vol. 8, no. 8,
pp. 6815–6827, Apr. 2021.

[47] “The GNU C, library reference manual,” 2023. [Online]. Available: https:
//www.gnu.org/software/libc/manual/pdf/libc.pdf

[48] “LZO,” 2023. [Online]. Available: http://www.oberhumer.com/
opensource/lzo/

[49] “OpenWrt Porject,” 2021. [Online]. Available: https://openwrt.org/
[50] “A labeled dataset with malicious and benign IoT network traffic,” 2020.

[Online]. Available: https://www.stratosphereips.org/datasets-iot23
[51] C. I. for Cybersecurity, “Intrusion detectionevaluation dataset (CI-

CIDS2017),” [EB/OL], 2018, Accessed: Nov. 27, 2020. [Online]. Avail-
able: https://www.unb.ca/cic/datasets/ids-2017.html

[52] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika:
Enable general in-network intelligence in programmable switches by
knowledge distillation,” in Proc. IEEE Conf. Comput. Commun., 2022,
pp. 1938–1947.

[53] D. Barradas et al., “FlowLens: Enabling efficient flow classification for
ML-based network security applications,” in Proc. Netw. Distrib. Syst.
Secur. Symp., The Internet Society, 2021, pp. 1–18.

[54] C. Fu et al., “Realtime robust malicious traffic detection via fre-
quency domain analysis,” in Proc. Conf. Comput. Commun. Secur., 2021,
pp. 3431–3446.

[55] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “FS-net: A flow sequence
network for encrypted traffic classification,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 1171–1179.

[56] X. Lin et al., “ET-BERT: A contextualized datagram representation with
pre-training transformers for encrypted traffic classification,” in Proc. Int.
Conf. World Wide Web, 2022, pp. 633–642.

[57] T. Shapira and Y. Shavitt, “FlowPic: Encrypted internet traffic classifi-
cation is as easy as image recognition,” in Proc. IEEE Conf. Comput.
Commun. Workshops, 2019, pp. 680–687.

[58] “Syslog,” [Online]. Available: https://en.wikipedia.org/wiki/Syslog
[59] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-

evident logging,” in Proc. USENIX Secur. Symp., 2009, pp. 317–334.
[60] J. Oberheide et al., “CloudAV: N-version antivirus in the network cloud,”

in Proc. USENIX Secur. Symp., 2008, pp. 91–106.
[61] G. D. L. T. Parra et al., “Interpretable federated transformer log learning

for cloud threat forensics,” in Proc. Netw. Distrib. Syst. Secur. Symp., The
Internet Society, 2022, pp. 1–16.

[62] J. Zeng et al., “WATSON: Abstracting behaviors from audit logs via
aggregation of contextual semantics,” in Proc. Netw. Distrib. Syst. Secur.
Symp., The Internet Society, 2021, pp. 1–18.

[63] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 3319–3328.

[64] “Captum: Model interpretability for PyTorch,” 2023. [Online]. Available:
https://captum.ai/

[65] “Selenium automates browsers,” 2023. [Online]. Available: https://www.
selenium.dev/

[66] “A lightning fast multithreaded network scanner framework with mod-
ules,” 2019. [Online]. Available: https://github.com/xdavidhu/portSpider

[67] “Hydra,” 2023. [Online]. Available: https://github.com/vanhauser-thc/
thc-hydra

[68] F. Pagani and D. Balzarotti, “Back to the whiteboard: A principled ap-
proach for the assessment and design of memory forensic techniques,” in
Proc. USENIX Secur. Symp., 2019, pp. 1751–1768.

[69] M. Botacin et al., “Near-memory & in-memory detection of fileless mal-
ware,” in Proc. Int. Symp. Memory Syst., 2020, pp. 23–38.

[70] R. Bhatia et al., “Tipped off by your memory allocator: Device-wide user
activity sequencing from Android memory images,” in Proc. Netw. Distrib.
Syst. Secur. Symp., The Internet Society, 2018, pp. 1–15.

[71] A. Saha, N. Ganguly, S. Chakraborty, and A. De, “Learning network traffic
dynamics using temporal point process,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 1927–1935.

[72] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, “Understanding mobile traffic
patterns of large scale cellular towers in urban environment,” IEEE/ACM
Trans. Netw., vol. 25, no. 2, pp. 1147–1161, Apr. 2017.

[73] F. Liu, J. Guo, X. Huang, and J. C. S. Lui, “eBA: Efficient bandwidth
guarantee under traffic variability in datacenters,” IEEE/ACM Trans. Netw.,
vol. 25, no. 1, pp. 506–519, Feb. 2017.

[74] C. Xu, J. Shen, and X. Du, “A method of few-shot network intrusion
detection based on meta-learning framework,” IEEE Trans. Inf. Forensics
Secur., vol. 15, pp. 3540–3552, 2020.

[75] M. Korczynski and A. Duda, “Markov chain fingerprinting to clas-
sify encrypted traffic,” in Proc. IEEE Conf. Comput. Commun., 2014,
pp. 781–789.

[76] M. Shen, M. Wei, L. Zhu, and M. Wang, “Classification of encrypted traffic
with second-order Markov chains and application attribute bigrams,”
IEEE Trans. Inf. Forensics Secur., vol. 12, no. 8, pp. 1830–1843, Aug.
2017.

[77] F. Ciucu, F. Poloczek, and J. B. Schmitt, “Sharp per-flow delay bounds
for bursty arrivals: The case of FIFO, SP, and EDF scheduling,” in Proc.
IEEE Conf. Compute. Commun., 2014, pp. 1896–1904.

[78] Z. Zhao et al., “ERNN: Error-resilient RNN for encrypted traffic detection
towards network-induced phenomena,” IEEE Trans. Dependable Secure
Comput., early access, Feb. 03, 2023, doi: 10.1109/TDSC.2023.3242134.

[79] Z. Song et al., “I2RNN: An incremental and interpretable re-
current neural network for encrypted traffic classification,” IEEE
Trans. Dependable Secure Comput., early access, Feb. 28, 2023,
doi: 10.1109/TDSC.2023.3245411.

[80] X. Wang et al., “Looking from the mirror: Evaluating IoT device security
through mobile companion apps,” in Proc. USENIX Secur. Symp., 2019,
pp. 1151–1167.

[81] M. Botacin and A. Grégio, “Why we need a theory of maliciousness:
Hardware performance counters in security,” in Proc. Int. Conf. Inf. Secur.,
2022, pp. 381–389.

[82] “Perf Tutorial,” 2023. [Online]. Available: https://perf.wiki.kernel.org/
index.php/Tutorial

[83] K. Basu et al., “PREEMPT: Preempting malware by examining embedded
processor traces,” in Proc. Annu. Des. Automat. Conf., 2019, pp. 1–6.

[84] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in Proc. USENIX Secur.
Symp., 2014, pp. 95–110.

[85] F. Pagani et al., “Back to the whiteboard: A principled approach for the
assessment and design of memory forensic techniques,” in Proc. USENIX
Secur. Symp., 2019, pp. 1751–1768.

Ziming Zhao is currently working toward the PhD
degree with Zhejiang University, Hangzhou, China.
He has authored or coauthored more than five papers
in international journals and conference proceedings,
including TIFS, TDSC, and AAAI. His research inter-
ests include machine learning, traffic identification,
and privacy-preserving.

Zhaoxuan Li (Student Member, IEEE) is currently
working toward the PhD degree with the State Key
Laboratory of Information Security (SKLOIS), In-
stitute of Information Engineering (IIE), Chinese
Academy of Sciences (CAS), Beijing, China. He
has authored or coauthored more than ten papers in
international journals and conference proceedings,
including TIFS, TDSC, COMNETS, ESE, and ICWS.
His research interests include traffic identification,
blockchain security, formal methods, and privacy-
preserving.

Jiongchi Yu received the bachelor’s degree from Zhe-
jiang University, Hangzhou, China. He is currently
working toward the PhD degree with the School
of Computing and Information Systems, Singapore
Management University (SMU), Singapore. His re-
search focuses on traditional software testing and
security issues of cloud native infrastructures.

https://www.winbond.com/hq/product/code-storage-flash-memory/{?}__locale$=$en
https://www.winbond.com/hq/product/code-storage-flash-memory/{?}__locale$=$en
https://www.saleae.com/
https://www.saleae.com/
https://www.pjrc.com/teensy/W25Q128FV.pdf
https://www.pjrc.com/teensy/W25Q128FV.pdf
https://www.gnu.org/software/libc/manual/pdf/libc.pdf
https://www.gnu.org/software/libc/manual/pdf/libc.pdf
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
https://openwrt.org/
https://www.stratosphereips.org/datasets-iot23
https://www.unb.ca/cic/datasets/ids-2017.html
https://en.wikipedia.org/wiki/Syslog
https://captum.ai/
https://www.selenium.dev/
https://www.selenium.dev/
https://github.com/xdavidhu/portSpider
https://github.com/vanhauser-thc/thc-hydra
https://github.com/vanhauser-thc/thc-hydra
https://dx.doi.org/10.1109/TDSC.2023.3242134
https://dx.doi.org/10.1109/TDSC.2023.3245411
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial

Fan Zhang (Member, IEEE) received the PhD de-
gree from the Department of Computer Science and
Engineering, University of Connecticut, Storrs, CT,
USA, in 2011. He is currently a full professor with the
College of Computer Science and Technology, Zhe-
jiang University, Hangzhou, China, and also with the
Alibaba–Zhejiang University Joint Institute, Fron-
tier Technologies, Hangzhou. His research interests
include system security, hardware security, network
security, cryptography, and computer architecture.

Xiaofei Xie received the BE, ME, and PhD degrees
from Tianjin University, Tianjin, China. He is cur-
rently an assistant professor with Singapore Man-
agement University, Singapore. His research inter-
ests include program analysis, traditional software
testing, and quality assurance analysis of artificial
intelligence. He was the recipient of the three ACM
SIGSOFT Distinguished Paper Awards in FSE’16,
ASE’19, and ISSTA’22.

Haitao Xu received the PhD degree in computer
science from the College of William and Mary,
Williamsburg, VA, USA, in 2015. He is currently an
assistant professor with the School of Cyber Science
and Technology, Zhejiang University, Hangzhou,
China. His research interests include intersection of
cyber security, privacy, and data analytics.

Binbin Chen (Member, IEEE) received the BSc de-
gree in computer science from Peking University,
Beijing, China, and the PhD degree in computer
science from the National University of Singapore,
Singapore. Since July 2019, he has been an associate
professor with the Information Systems Technology
and Design (ISTD) pillar, Singapore University of
Technology and Design (SUTD), Singapore. He cur-
rently also holds a joint appointment as a principal
research scientist with Advanced Digital Sciences
Center, which is a University of Illinois Research

Center, Singapore. His current research interests include wireless networks,
cyber-physical systems, and cyber security for critical infrastructures.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

