
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2024

Meta-Interpretive LEarning with Reuse Meta-Interpretive LEarning with Reuse

Rong WANG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Cong TIAN

Zhenhua DUAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
WANG, Rong; SUN, Jun; TIAN, Cong; and DUAN, Zhenhua. Meta-Interpretive LEarning with Reuse. (2024).
Mathematics. 12, (6), 1-20.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8728

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8728&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Citation: Wang, R.; Sun, J.; Tian, C.;

Duan, Z. Meta-Interpretive LEarning

with Reuse. Mathematics 2024, 12, 916.

https://doi.org/10.3390/

math12060916

Academic Editor: Radu Tudor Ionescu

Received: 19 February 2024

Revised: 16 March 2024

Accepted: 19 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Meta-Interpretive LEarning with Reuse
Rong Wang 1,2,* , Jun Sun 3, Cong Tian 1,2 and Zhenhua Duan 1,2

1 School of Computer Science and Technology, Xidian University, Xi’an 710126, China;
ctian@mail.xidian.edu.cn (C.T.); zhhduan@mail.xidian.edu.cn (Z.D.)

2 Institute of Computing Theory and Technology (ICTT), Xidian University, Xi’an 710126, China
3 School of Computing and Information Systems, Singapore Management University,

Singapore 178902, Singapore; junsun@smu.edu.sg
* Correspondence: bilywr@163.com

Abstract: Inductive Logic Programming (ILP) is a research field at the intersection between machine
learning and logic programming, focusing on developing a formal framework for inductively learning
relational descriptions in the form of logic programs from examples and background knowledge.
As an emerging method of ILP, Meta-Interpretive Learning (MIL) leverages the specialization of a
set of higher-order metarules to learn logic programs. In MIL, the input includes a set of examples,
background knowledge, and a set of metarules, while the output is a logic program. MIL executes a
depth-first traversal search, where its program search space expands polynomially with the number
of predicates in the provided background knowledge and exponentially with the number of clauses
in the program, sometimes even leading to search collapse. To address this challenge, this study
introduces a strategy that employs the concept of reuse, specifically through the integration of
auxiliary predicates, to reduce the number of clauses in programs and improve the learning efficiency.
This approach focuses on the proactive identification and reuse of common program patterns. To
operationalize this strategy, we introduce MILER, a novel method integrating a predicate generator,
program learner, and program evaluator. MILER leverages frequent subgraph mining techniques
to detect common patterns from a limited dataset of training samples, subsequently embedding
these patterns as auxiliary predicates into the background knowledge. In our experiments involving
two Visual Question Answering (VQA) tasks and one program synthesis task, we assessed MILER’s
approach to utilizing reusable program patterns as auxiliary predicates. The results indicate that, by
incorporating these patterns, MILER identifies reusable program patterns, reduces program clauses,
and directly decreases the likelihood of timeouts compared to traditional MIL. This leads to improved
learning success rates by optimizing computational efforts.

Keywords: meta-interpretive learning; program synthesis; inductive logic programming; frequent
subgraph mining

MSC: 68T27

1. Introduction

Symbolic artificial intelligence, which emerged in the 1950s and was probably the
predominant approach until the late 1980s [1], aims to imitate human thinking by encoding
knowledge in symbols and manipulating these symbols with logical rules to understand
and solve complex problems. A symbolic AI system operates through logic-based steps
on symbolic representations. These representations, often in the form of propositions,
establish relationships between objects. Reasoning steps involve deriving new relations
from existing ones, guided by a set of formal inference rules. Inductive logic programming
(ILP) [2–4], is a subfield that synthesizes logic programs from observed data (usually a
small number of examples) and empirical data (background knowledge). Meta-interpretive
learning (MIL) is a newly proposed ILP technique capable of generating human-readable

Mathematics 2024, 12, 916. https://doi.org/10.3390/math12060916 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060916
https://doi.org/10.3390/math12060916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5368-1829
https://doi.org/10.3390/math12060916
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060916?type=check_update&version=2

Mathematics 2024, 12, 916 2 of 20

logic programs from a set of examples, a set of metarules (a restricted form of higher-order
Horn clauses) and background knowledge. The novelty of MIL lies in its support for the
predicate invention and learning of recursive programs. In practical applications, MIL has
been successfully applied in areas such as synthetic biology [5], grammatical inference [6],
text classification [7], and visual concept learning [8–10], demonstrating its powerful logical
reasoning and pattern recognition capabilities.

MIL constrains the structure of the program to be synthesized using metarules as
templates, with the MIL learner performing a depth-first traversal search. This process
involves essentially generating programs by evaluating the different combinations of the
primitive predicates, which in turn results in a vast potential program search space. This
expansive search space is a direct consequence of MIL’s inherent learning mechanism.
Existing approaches to mitigate these problems heavily rely on significant human guidance
in the form of metarules and specific domain knowledge related to the goal program.
For instance, the work in [11] introduces layered bias reformulation in a multitask inductive
programming setting. The work in [12] introduces higher-order operations involving an
alternation between abstraction and invention to reduce the complexity of the learned
programs. The work in [13] optimizes the search space by introducing types into predicates.
These approaches primarily focus on enhancing the learning efficiency by introducing
constraints or guidance during the learning phase. However, a more cost-effective strategy
emerges from extensively mining existing examples before the learning process even begins.

Based on this, we propose a method called MILER (Meta-Interpretive Learning with
Reuse), aimed at identifying frequently occurring programming patterns in existing exam-
ples and reusing them. This approach helps reduce the risk of crashes due to excessively
large program search spaces, thereby increasing the efficiency and success rate of the learn-
ing process. However, extracting and utilizing these program patterns through symbolic
machine learning techniques poses its own set of challenges, especially in some application
areas where there may be a large amount of multimodal data. Inspired by how program-
mers solve coding problems in the real world, we designed a structured approach to
problem-solving, actively seeking opportunities for reuse based on the structure of existing
program patterns. MILER consists of three main components: a predicate generator based
on frequent subgraph mining algorithms, a program learner as in MIL and a program
evaluator. Specifically, MILER employs frequent subgraph mining technology to extract
reusable program patterns from existing training examples and adds these patterns as
new auxiliary predicates into the background knowledge of program learner. Once these
auxiliary predicates are captured by the program learner, programs with fewer clauses can
be generated, allowing the learning process to conclude at shallower depths during the
depth-first search iteration. This approach enables MILER to traverse a smaller program
search space, enhancing efficiency and effectiveness in program synthesis. To validate
the effectiveness of MILER, we conducted experiments on two Visual Question Answer-
ing (VQA) tasks [14,15], as well as a program synthesis task [16]. The results show that,
compared to the original MIL, MILER can effectively identify reusable program patterns,
and these patterns as auxiliary predicates can significantly reduce the number of clauses
in the learned programs, decrease the occurrence of timeouts, and thus enhance the suc-
cess rate of learning. Moreover, it is important to emphasize that our method maintains
robust learning efficiency, even with very few training examples (only dozens of samples).
The main contributions of this study include the following:

• Utilizing frequent subgraph mining technology to extract reusable program patterns
from a limited number of training examples;

• Enriching the existing information in the background knowledge by adding auxiliary
predicates, thereby enhancing the extensibility of the background knowledge (BK);

• Reducing the occurrence of timeouts during the learning process and increasing the
learning efficiency by enabling MILER to learn programs containing fewer clauses.

The rest of this paper is organized as follows. In Section 2, we discuss other rele-
vant works in the field. In Section 3, we introduce the fundamental symbols, concepts,

Mathematics 2024, 12, 916 3 of 20

and principles that underpin our work. In Section 4, we begin with the motivation of this
work, followed by an in-depth exposition of our algorithm, the improvements we have
incorporated, and the overarching MILER framework. Section 5 presents an exploration of
our experiments. Section 6 provides a comprehensive summary and outlines the future
direction of our research.

2. Related Work

In this section, we study the existing research that mostly relate to ours.

2.1. Meta-Interpretive Learning

The origins of Inductive Logic Programming (ILP) can be credited to early signifi-
cant contributions that laid the groundwork for its evolution. Pioneering efforts in the
domain [17–20] provided a critical foundation, guiding the direction for future research in
ILP. Initial ILP research concentrated on core theories like predicate invention and inverse
resolution, leading to the creation of influential systems including FOIL [21], Golem [22],
Progol [23], TILDE [24], and Aleph [25]. Meta-interpretive learning (MIL) is a newly
proposed ILP method [6] for automatically synthesizing programs through optimized
searching, which is further applied to learn higher-order dyadic datalog programs [26].
One core feature of MIL is that it supports user-specified metarules. Cropper et al. [27]
show that the selection of metarules determines the structure of learnable programs and
proves that the entailment reduction algorithm can be applied to automatically explore the
irreducible sets of metarules. Later, Cropper et al. [28] proposed another reduction algo-
rithm based on derivation to reduce the metarule sets of MIL, thus reducing the program
space. Unlike these methods introducing constraints or guidance during the learning phase
to enhance MIL’s learning efficiency, our approach focuses on mining reusable program
patterns from existing training examples before the MIL learning stage.

Building upon early ILP methods utilized for concept learning from images [29,30],
the development of the logical vision (LV) model [31], based on MIL, marks a significant
advancement. LV extracts polygon edges as low-level symbols and learns high-level
structured geometrical notions. Then, the work in [8,9] proposed a noise-robust version
of LV. Unlike these methods, our approach uses frequent subgraph mining to generate
auxiliary predicates as an extension of the background knowledge.

2.2. Visual Question Answering

Visual Question Answering (VQA) [32–34] is an active research area which aims to
build a computer system to automatically answer questions (in natural language) regarding
information that can be inferred from an image. VQA typically requires an understanding
of vision, language and certain common knowledge (e.g., simple geometry). Popular
VQA datasets, such as CLEVR [14], provide a set of primitive functions (i.e., the primitive
predicates in MIL) which can be combined to answer the questions. Existing methods for
VQA [15,35,36] work by training a neural network as a generator to produce a program,
and then execute the program by an execution engine to answer the question. The ap-
proaches in this way often require a fairly large set of sample question-programs pairs as
the training set, which hinders these approaches from being widely applied. Our approach
aims to address the VQA problem by significantly reducing the size of the required training
set. That is, by extracting frequent reusable program patterns from a small set of training
samples, we are able to leverage the optimized searching capability of MIL to automatically
synthesize the program. That is, MILER can achieve a similar performance to that of
the state-of-the-art VQA methods with a much smaller training set and often generates
programs that are smaller in size.

2.3. Program Pattern Reuse

The reuse of program patterns is an important aspect in the areas of code generation
and program synthesis. Numerous research papers have dealt with this topic and explored

Mathematics 2024, 12, 916 4 of 20

various methods and technologies to improve the efficiency and quality of software de-
velopment. CARLCS-CNN [30], for example, uses a co-attention mechanism (learning
interdependent representations for embedded code and directly querying their semantic
correlation) to improve the efficiency of the search process and the reuse of existing code
from large code bases. SkCoder [37] is a sketch-based code generation approach that mimics
the behavior of developers when reusing code. It searches for a similar code snippet for a
given natural language requirement, extracts relevant parts as a code sketch, and reworks
the sketch into the desired code. In contrast to these methods, which focus on the semantic
correlation between code parts, our approach places more emphasis on the structure of
reusable program patterns, utilizing them as predicates. This significantly enhances the
scalability of logical programming.

3. Preliminaries

This section briefly presents the concepts and terminologies used throughout this paper.

3.1. Logical Notations

A variable is indicated by an uppercase letter followed by a sequence of lowercase
letters and digits, whereas a function symbol and a predicate symbol are indicated by a
lowercase letter followed by a sequence of lowercase letters and digits. Let V , F , and Π
denote a set of variables, function symbols, and predicate symbols, respectively. An atom
is of the form p(t1, · · · , tn) with p/n ∈ Π and ti ∈ T (F ,V) (the term set constructed
by using symbols from F and variables from V) for i ∈ {1, · · · , n}. Here, predicate p is
called an n-arity predicate. The set of all predicate symbols is referred to as the predicate
signature. A constant is a function or predicate symbol with an arity of zero. The set of all
constants is referred to as the constant signature and denoted by C. Both an atom A (referred
to as a positive literal) and its negation ¬A are literals. A clause is represented by a
finite set of literals. A Horn clause is a clause that contains at most one positive literal.
A definite clause has the form head ← body, where the head is a positive literal and the
body is a conjunction of literals. In Prolog, a definite clause is written as Head :- Body.
A collection of clauses is referred to as a clausal theory, which conveys the conjunction of its
constituent clauses. A fact is a definite clause with an empty body which can be viewed as
a ground atom. A rule is a definite clause with a non-empty body, and it can be written as
head← body1, body2, · · · , bodyn where body1, body2, · · · , bodyn are literals. A logic program
is a finite set of facts and rules. A ground instance of a logic program is obtained by replacing
each variable in the program with constants. A goal is a special type of clause that has an
empty head and is written as← body. The process of proving a goal from a given set of
clauses is known as resolution.

A Well-Formed Formula (WFF) is a formula that adheres to the syntactic rules of a
particular logical system. Literals, clauses, and clausal theories are all well-formed formula
(wffs) in which the variables are assumed to be universally quantified. A wff is said to be
higher-order whenever it contains at least one higher-order variable or a predicate symbol
as an argument of a term. Let E be a wff. E is said to be datalog if it contains no function
symbols other than constants. The set of all ground atoms constructed from P and C
is called the datalog Herbrand Base. θ = {v1/t1, · · · , vn/tn} is a substitution in the case
that each vi is a variable and each ti is a term. Eθ is formed by replacing each variable vi
from θ found in E by ti. µ is called a unifying substitution for atoms A and B in the case
of Aµ = Bµ. We say clause C θ-subsumes clause D or C ⪰θ D whenever there exists a
substitution θ such that Cθ ⊆ D.

3.2. Metarule

Definition 1 (Metarules). A metarule is a higher-order wff

∃σ∀τP(s1, · · · , sm)← · · · , Qi(t1, · · · , tn), · · ·

Mathematics 2024, 12, 916 5 of 20

where σ and τ are disjoint sets of variables, P, Qi ∈ σ ∪ τ ∪ P and s1, · · · , sm, t1, · · · , tn ∈
σ ∪ τ ∪ C. Metarules are denoted concisely without quantifiers as

P(s1, · · · , sm)← · · · , Qi(t1, · · · , tn), · · ·

Metarules play a central role in the MIL process. The chain metarule P(x, y) ←
Q(x, z), R(z, y) in Table 1, for example, includes existentially quantified second-order variables,
denoted by the capital letters P, Q, and R, and universally quantified first-order variables,
represented by the lowercase letters x, y, and z. An order constraint associated with each
metarule ensures the termination of the proof process.

Table 1. Metarule examples.

Name Metarules Order Constraint

Curry3 P(x, y)← Q(x, y, R) P ≻ Q, P ≻ R
Precon P(x, y)← Q(x), R(x, y) P ≻ Q, P ≻ R
Postcon P(x, y)← Q(x, y), R(y) P ≻ Q, P ≻ R
Chain P(x, y)← Q(x, z), R(z, y) P ≻ Q, P ≻ R
Tailrec P(x, y)← Q(x, z), P(z, y) P ≻ Q, x ≻ z ≻ y
Ifthenelse P(x, y)← i f thenelse(x, y, Cond, Then, Else) P ≻ Cond, P ≻ Then, P ≻ Else

3.3. Meta-Interpretive Learning

Definition 2 (MIL Problem [12]). An MIL problem is a tuple Input = ⟨B, E+, E−, M⟩ where
the background knowledge B is a set of primitive predicates; E+ (and E−) is a set of positive (and
negative) examples; and M is a set of metarules. A solution to the MIL problem is a program H
such that B, H |= e+ for ∀e+ ∈ E+ and B, H ̸|= e− for ∀e− ∈ E−.

Figure 1 shows the framework of MIL. The MIL learner is based on an adapted
Prolog meta-interpreter, which attempts to prove a goal by repeatedly fetching first-order
clauses or higher-order metarules whose heads match the goal [38]. For an MIL learner,
after proving a set of examples, a program is formed by applying the meta-substitutions
onto the corresponding metarules. Table 2 shows a Prolog program generated by MIL.

Figure 1. The framework of MIL.

Mathematics 2024, 12, 916 6 of 20

Table 2. Prolog program of generalized meta-interpreter.

Generalized Meta-Interpreter

prove([],G,G).
prove(Atom | Atoms,G1,G2):-

prove_aux(Atom,G1,G3), prove(Atoms,G3,G2).
prove_aux(Atom,G,G):- call(Atom).
prove_aux(Atom,G1,G4):-

metarule(Name,MetaSub,(Atom:-Body)), OrderTest,
save_subset(metasub(Name,MetaSub),G1,G3),
prove(Body,G3,G2).

To illustrate the principle of MIL, a brief introduction to the application of a task is
given. Figure 2 shows a task taken from the well-known CLEVR dataset [14]. There are
some objects in the scene graph, a question that refers to the scene graph, an answer to
the question, and a program that describes the reasoning process from the question to the
answer. We now use the MIL method to accomplish this task.

Question:

What is the large gray

cylinder made of?

Answer:

rubber

Program:

scene

filter_size

filter_color

filter_shape

unique

query_material

Figure 2. A VQA task from the CLEVR dataset.

Example 1. For the VQA task shown in Figure 2, the MIL problem is a tuple input = ⟨B, E+, E−, M⟩,
where B, E+, E−, and M are shown in Table 3. The solution to the MIL problem is to generate a
program H that satisfies B, H |= e+ for ∀e+ ∈ E+ and B, H ̸|= e− for ∀e− ∈ E−.

Table 3. MIL setting for Example 1.

Symbol Name MIL Setting

B Background knowledge scene/2, filter_color/2, filter_size/2, filter_shape, · · ·

E = ⟨E+, E−⟩ Example set Positive example set E+ = { f (Question, Answer)}
Negative example set E− = ∅

M Metarule set chain metarule P(X, Y) :- Q(X, Z), R(Z, Y).
i f thenelse metarule P(A, B) :- i f thenelse(A, B, Cond, Then, Else).

To accomplish this task, i.e., to generate a program that can account for how the
Answer corresponding to the Question is derived, we first need to define the primitive
predicates as the background knowledge, e.g., filter_shape and filter_size. With this basis,
some examples in the form of task(Question, Answer) about the task can be proven by MIL
learner with the guidance of metarules, such as the chain metarule. Finally, these metarules
will be instantiated into a logic program H.

Mathematics 2024, 12, 916 7 of 20

MIL learners specifically use metarules to provide templates for learnable programs
and leverage background knowledge to guide the hypothesis construction. The learning
process is directed by SLD-resolution (selective linear definite clause resolution) [39],
which implements a depth-first traversal search in the search space and iteratively refines
hypotheses based on the provided positive and negative examples. Upon finding a program
that satisfies the constraints, the MIL learner will halt and return the program it has learned.
Table 4 demonstrates that the program generated by MIL consists of four clauses, where f 1,
f 2, and f 3 are invented predicates. Intuitively, with the capability of predicate invention,
a Prolog program that answers the above question would first execute the predicates
filter_size, filter_color, and filter_shape to filter all the large, grey, cylinder items in the
picture. It will then check whether the object set is unique using the predicate unique.
If so, the program will query and return the material of the target item using the predicate
query_material. Given that the scene information has been encoded into the variables of the
aforementioned predicates, no predicate named scene occurs in this program.

Table 4. Programs generated by MIL and MILER. Notes: for the programs generated by MILER,
aux_f1 and aux_f2 are not predicates invented by the program learner, but rather auxiliary predicates
captured by the predicate generator for reuse.

Program Learned by Original MIL

f(A,B) :- filter_size(A,C), f1(C,B).
f1(A,B) :- filter_color(A,C),f2(C,B).
f2(A,B) :- filter_shape(A,C), f3(C,B).
f3(A,B) :- unique(A,C), query_material(C,B).

Program Learned by MILER

f(A,B) :- filter_size(A,C), f1(C,B).
f1(A,B) :- aux_f1(A,C), aux_f2(C,B).

Auxiliary Predicates

aux_f1(A,B) :- filter_color(A,C), filter_shape(C,B).
aux_f2(A,B) :-

ifthenelse(unique(A,C),query_material(C,B),halt).

3.4. Frequent Subgraph

Now, we will discuss how to encode programs into graphs and how to identify
substructures within them. To do so, some useful definitions are presented.

Definition 3 (Substructures of programs [40]). Let Ps = {pi} be a program set. Each program
pi can be encoded as a graph Gi = (Vi, Ei) where the node set is composed of functions and edges
represent the sequence between functions. A subgraph of Gi is defined as Gs = (Vs, Es) iff Vs ⊆ Vi
and Es ⊆ Ei ∧ (vi, vs) ∈ Es → vi ∈ Vs and vs ∈ Vs. If there is a path between any two nodes in
Gs, we refer to it as a substructure of program pi.

Definition 4 (Reusable program patterns). Let Ps be a set of programs. A graph database
is defined as G = {G1, G2, · · · , Gn} where each graph Gi is encoded according to the program
pi ∈ Ps. If there are two different programs pi and pj in the graph database G such that the graph
Gs is a substructure of both programs pi and pj, it is said that the graph Gs is a reusable program
pattern in the program set Ps.

Definition 5 (Frequency of a program pattern). Let GS = {Gs|Gs be a reusable program
pattern in the program set Ps}. For each graph Gs, the times program pi (which satisfies that the
graph Gs is a pattern of program pi) occurs in Ps is defined as the frequency of Gs, denoted by
f req(Gs), in the program set Ps.

Mathematics 2024, 12, 916 8 of 20

4. Method

In this section, we introduce the motivation behind integrating frequent subgraph
mining into MIL firstly, and then detail the framework and algorithm of MILER. Finally,
we conduct a theoretical analysis of MILER.

4.1. Motivation

Considering the output program of Example 1 as shown in Table 4, although the invented
predicate (f 1, f 2, f 3) provides a hierarchical representation for MIL, they are still based on
the primitive predicates filter_size, filter_color, filter_shape, unique, and query_material, which
means that the learning cost associated with the invented predicates can be quite substantial.
Especially when the number of primitive predicates is large, the program search space will
exhibit exponential growth, and MIL will struggle in a vast search space and ultimately fail.
In the VQA task discussed in Example 1, when the number of primitive predicates exceeds 10,
the MIL will fail, while this task actually includes 22 primitive predicates.

An observable fact is that the conjunctions of predicates filter_size and filter_color resem-
ble phrases, which frequently appear in other programs. With this basis, the intuitive idea
is that we can actively look for opportunities to reuse recurring program patterns, namely
auxiliary predicates which typically represent patterns that occur frequently (e.g., aux_f1 and
aux_f2 shown in Table 4). This idea is not trivial, as many programs contain identifiable
and reusable program patterns that can be reused, contributing to the scalability of MIL.
It is natural that we can mine sub-structures allowed by the metarules from a small set of
training samples for reuse and treat them as auxiliary predicates to expand the background
knowledge of MIL.

4.2. MILER Problem

We now define the problem of Meta-Interpretive Learning with Reuse (MILER Problem).

Definition 6 (MILER Problem). An MILER problem is defined as Input = ⟨⟨B, E+, E−, M⟩,
{(xi, yi)}⟩. Here, ⟨E+, E−, M⟩ is configured in the same way as in MIL problem and B is the
background knowledge that additionally includes auxiliary predicates. {(xi, yi)} refers to a collection
of task-related examples which have been solved (often referred to as the training set). In this context,
yi represents the solution (program) to the case xi. The task of MILER is to learn a program H such
that B, H |= E+ for ∀e+ ∈ E+ and B, H ̸|= e− for ∀e− ∈ E−.

Example 2. For the VQA problem described in Example 1, the MILER setting is a pair ⟨⟨B, E+, E−, M⟩,
{(xi, yi)}⟩. Here, E+, E−, and M are the same as those in Example 1. B is the background knowledge
that additionally includes auxiliary predicates {aux_ f1, aux_ f2}. {(xi, yi)} = {((si, qi, ai), pi)} is
the training set used by the predicate generator of MILER to extract reusable programs. An example
of ((si, qi, ai), pi) is shown in Figure 2, where si, qi, ai, and pi represent Scene, Question, Answer,
and Program, respectively.

For the given MILER problem, our strategy is two-fold. First, we aim to enhance the
background knowledge B by automatically extracting frequent program patterns from
the training set ((si, qi, ai), pi). Then, we apply optimized searching to solve the MIL
problem. However, the process of identifying reusable program structures presents a
significant challenge due to the difficulty in determining which structures are potentially
reusable. To address this issue, we utilize the frequent subgraph mining algorithm to
construct auxiliary predicates. This approach provides a systematic method for enriching
our background knowledge, thereby facilitating the solution of the MIL problem.

4.3. Framework of MILER

Figure 3 illustrates the framework of MILER, which is composed of three components:
predicate generator is responsible for identifying reusable program patterns from a small set
of training samples and preserving them in the form of auxiliary predicates; program learner

Mathematics 2024, 12, 916 9 of 20

is responsible for accepting the auxiliary predicates in addition to learning the program
with the related example set, metarule set, and background knowledge; program evaluator is
responsible for providing an estimate of the accuracy of the learned program by testing set.

Figure 3. Framework of MILER.

4.3.1. Predicate Generator

Let {pi|i = 1, 2, · · · , ntrain} be a training program set. Then, we obtain an encoded
graph set G = {gi|i = 1, 2, · · · , ntrain}. By using frequent subgraph mining, we identify
all the reusable program patterns Gs within the graph set G and their corresponding
frequencies f req(Gs). After sorting them based on the frequency of program patterns in
descending order, we select the top 3 program patterns as the candidate set G f to achieve a
balance between efficiency and cost in MIL.

The elements of G f , once further decoded into predicates known as auxiliary predi-
cates, are then passed to the program learner.

Definition 7 (Auxiliary predicates). Let G f = (Vf , E f) be a graph which describes a frequent
program pattern. An auxiliary predicate can be defined based on the metarules as well as the
functions { f1, · · · , fk} related to the set of nodes Vf = {v1, · · · , vk}.

Example 3 (Auxiliary predicates). Given a graph G f = (Vf , E f) which describes an extracted
frequent program pattern, where

Vf = { f ilter_color, f ilter_shape}

and
E f = {(f ilter_color, f ilter_shape)}.

An auxiliary predicate

aux_ f 1(X, Y) : − f ilter_color(X, Z),

f ilter_shape(Z, U).

can be extracted based on the chain metarule

P(X, Y) : −Q(X, Z), R(Z, Y).

Theorem 1 (Complexity of predicate generator). For a graph database G = {G1, G2, · · · , Gn},
the maximum complexity of the predicate generator is O(n ∗ l2) + O(n); here, l is the maximum
number of nodes of a graph in G.

Mathematics 2024, 12, 916 10 of 20

Proof. The predicate generator includes two stages: mining all reusable program patterns
and sorting them according to frequency. Let the number of programs in training set be n,
and the size of the program (the number of functions) be l. Since the program database
only contains two structures (sequence and tree), then for any program, the complexity for
mining all of the reusable program patterns is O(l2). There are n programs in total, and
thus, the maximum complexity of the predicate generator is O(n ∗ l2) + O(n).

4.3.2. Program Learner

In MILER, the program learner is essentially a basic MIL learner that accepts auxiliary
predicates and adds them to the background knowledge B as auxiliary background knowledge Baux.

Definition 8 (Auxiliary background knowledge). In the MILER problem, Input = ⟨⟨B, E+, E−,
M⟩, {(xi, yi)}⟩, the background knowledge B = {Baux, Bcpl, Bint} consists of auxiliary back-
ground knowledge Baux, compiled background knowledge Bcpl, and interpreted background knowl-
edge Bint.

The compiled background knowledge Bcpl (compiled Prolog code) and interpreted
background knowledge Bint (higher-order definitions) are defined in [12]. In MILER,
the program learner will place auxiliary background knowledge Baux in the prioritized
position for searching the target program.

While the depth-first search mechanism of the MIL learner ensures that the program
is minimal in terms of clause size, it does not guarantee that the program will be optimal
in efficiency. Moreover, the learned program could even be incorrect, as it may only be
valid for the in-sample data. Therefore, it is necessary to evaluate the learned program to
demonstrate the effectiveness of our algorithm.

4.3.3. Program Evaluator

We utilize the case testing method, which is commonly used in the field of software
engineering to evaluate the learned programs. Given that the learned programs of MILER
are task-specific, aligning each program with the correct test set is critical to ensure the
validity of the program evaluation. For each of the learned programs H, we collect test
cases that match the program’s task. We then check these cases against the definition
of program H, subsequently calculating the proportion of test cases that conform to the
definition. This proportion is used to measure the accuracy of the learned program.

4.4. Algorithm of MILER

To sum up, the pseudocode of the proposed algorithm MILER is illustrated in Algo-
rithm 1. In the first phase, the predicate generator selects a number of programs from the
training set T and encodes them into graphs, resulting in a set of graphs G. Subsequently,
a frequent subgraph mining algorithm is applied to this set of graphs, returning the top 3
most frequently occurring program patterns topG. These program patterns are then de-
coded into predicates, referred to as auxiliary predicates Paux. The generated auxiliary
predicates serve as broader background knowledge, enhancing the scalability of the MILER
learner. During the program learning phase of MILER, these auxiliary predicates are as-
signed priorities. The learned program H will prioritize the use of auxiliary predicates if
they are available; otherwise, it will continue to try other predicates. Once the program
learner returns a program H, the program evaluator will match the corresponding test set
Tth based on the task and calculate the accuracy of the learned program AccH .

Mathematics 2024, 12, 916 11 of 20

Algorithm 1: Algorithm for MILER
Initialize :Example set E = ⟨E+, E−⟩; metarule set M, compiled background knowledge

Bcpl, interpreted background knowledge Bint, Baux = ∅
Input :Background knowledge B, example set E, metarule set M, training set

T = {(xi, yi)|i = 1, · · · , ntrain}, test set Tt = {(x′i , y′i)|i = 1, · · · , ntest}.
Output :Program H.

1 begin
2 // Predicate generator.
3 T = {(xi, yi)} = {((si, qi, ai), pi)};
4 Baux = ∅,G = ∅,top = 3;
5 for pi ∈ subset(T) do
6 Gi = graph(pi);
7 G = G ∪ Gi;
8 end
9 topG = f requentSubgraph(G, top);

10 Paux = predicate(topG);
11 Baux = Paux;
12 B = Baux ∪ Bcpl ∪ Bint;
13 // Program learner.
14 for e− ∈ E− do
15 for e+ ∈ E+ do
16 B, H |= E+;
17 end
18 B, H ̸|= e−;
19 end
20 // Program evaluator.
21 if H exists then
22 Tt = {(x′i , y′i)} = {((s

′
i , q′i , a′i), p′i)};

23 Tth = matchset(H, Tt);
24 Count = 0;
25 for t ∈ Tth do
26 if instance(t, H) then
27 Count = Count+1
28 end
29 end
30 AccH = Count/|Tth|;
31 end
32 return H, AccH ;
33 end
34 Function f requentSubgraph(G, top):
35 G = {gi};
36 GS = ∅;
37 for each pair (gi, gj) ∈ G do
38 Gs = subgraph(gi, gj);
39 if reusable(Gs) then
40 GS = GS ∪ {Gs};
41 end
42 end
43 t(G) = {Gs : f req(Gs)};
44 topG = sortby f req(t(G), top);
45 return topG;
46 end

4.5. Theoretical Analysis of MILER

In this section, we analyze the advantages of the MILER system theoretically.

Mathematics 2024, 12, 916 12 of 20

Lemma 1 (MIL program space [12]). Given p predicate symbols and m metarules in the fragment
Mi

j, a metarule is in Mi
j if it has at most j literals in the body and each literal has at most i arities.

The number of programs expressible with n clauses is at most (mpj+1)n.

Compared with the original MIL system, our MILER system can reduce the number of
clauses required in the program by adding t auxiliary predicates and reducing the range of
primitive predicates according to the examples in the training set. Since MIL performs the
depth-first traversal search, MILER is more likely to learn the program with fewer clauses
than the MIL system. Based on Lemma 1, suppose that the MILER system can reduce k
clauses, then the program space of MILER will follow Lemma 2.

Lemma 2 (MILER program space). Given p′ + t predicate symbols and m metarules in the
fragment Mi

j, a metarule is in Mi
j if it has at most j literals in the body and each literal has at most i

arities. The number of programs expressible with n− k clauses is at most (m(p′ + t)j+1)n−k.

Example 4 (Program space of MIL and MILER). Following Example 1, given the informa-
tion of the image (shown in Figure 2), question, answer, program, and scene, we can define the
input as Input = ⟨B, E+, E−, M⟩ for the MIL setting, where E = ⟨E+, E−⟩ denotes the exam-
ple set, and M denotes the set of metarules. The background knowledge of the MIL setting is
defined as BMIL = { scene/2, filter_color/2,filter_shape/2, filter_size/2, filter_material/2, · · · },
and the background knowledge of the MILER setting is defined as BMILER = Paux ∪ BMIL, where
Paux = {aux_ f 1, aux_ f 2}.

We can see that the programs learned by MIL and MILER are presented in Table 4.
The number of primitive predicates is p = 19 and the number of auxiliary predicates is t = 3.
Here, we utilize the chain metarule and i f thenelse metarule, with m = 2, j = 3, and i = 2.
By Lemma 1, the program space of MIL with n = 4 clauses is (mpj+1)n = 2 ∗ 194)4 at most.
By Lemma 2 and p′ ≤ p, the program space of MILER with n− k = 2 clauses is at most
(m(p′ + t)j+1)n−k ≤ (2 ∗ (22)4)2. Obviously, the program space of MIL is much larger than
that of MILER.

5. Experiments

In order to evaluate the proposed approach MILER, we use the original MIL system as
the baseline and measure the performance improvement of MILER through the availability
ratio and the clause reduction ratio. These experiments were conducted using SWI-Prolog
(v8.4.1 for x64-win64), a widely used software tool in the field, to aid our analysis. We
evaluate MILER on two VQA tasks (i.e., those used in [14,15]) and one string program
synthesis task [16]. The experiments are carried out on a Windows system with Intel
processors running at 2.80 GHz and 32 GB RAM.

For the three sets of experiments, we designed 1000, 500, and 40 tasks for them to
learn programs, respectively. When the number of training samples is set to 50, the number
(percentage) of tasks successfully learned by MIL is 584 (58.4%), 122 (24.4%), and 26 (65%),
while the number (percentage) of tasks successfully learned by MILER is 779 (77.9%),
255 (51.0%) and 34 (85%).

We now define the evaluation metrics: availability ratio and clause reduction ratio. Note
that these metrics are computed without considering timeout cases.

availability ratio =
NMILERaux

p

NMIL
p

(1)

Mathematics 2024, 12, 916 13 of 20

Here, NMILERaux
p denotes the number of programs learned by MILER with auxiliary

predicates, and NMIL
p denotes the number of programs learned by MIL.

clause reduction ratio =
NMIL

c − NMILER
c

NMIL
c

(2)

Here, NMIL
c and NMILER

c indicate the number of clauses contained in the programs
learned by MIL and MILER, respectively.

5.1. CLEVR Dataset

CLEVR [14,41] is a dataset comprising synthetic images of 3D primitives with multiple
attributes: shape, color, material, size, and 3D coordinates. Each image has a set of questions,
each corresponding to a program (a set of symbolic modules) generated by machines based
on 90 logic templates.

We randomly select x samples from 150,000 program samples, where x ranges from 20
to 400, to form the training set. We extract the top 3 auxiliary predicates from the training
set by the subgraph mining algorithm. Subsequently, we choose 100 related programs as
the test set to evaluate the accuracy of the learned programs. We set a timeout termination
of 60 s and repeat the experiment 10 times to calculate the average values of the availability
ratio, the clause reduction ratio of MILER, and the average accuracy of the program learned
by MILER.

Figure 4 demonstrates the availability ratio and clause reduction ratio of MILER for
CLEVR. It can be seen from the results that when the sample size of the training set is
around 100, MILER can achieve a stable availability rate of over 70% and a clause reduction
ratio around 10% when the auxiliary predicates can be reused. The higher availability ratio
suggests that MILER indeed identifies reusable program patterns from a small dataset.
The clause reduction ratio implies that the program learned by MIL possesses fewer clauses
compared to the original MIL. Figure 5 shows that the program accuracy rate ranges from
87% to 98%, which is consistent with the original MIL method. This is because the programs
that contain auxiliary predicates learned by MILER are logically equivalent to the programs
learned by MIL.

Figure 4. Availability ratio and clause reduction ratio of MILER for CLEVR.

Mathematics 2024, 12, 916 14 of 20

Figure 5. Average accuracy of programs learned by MILER in CLEVR.

We also explore cases where the MIL learning failed (due to timeouts), while MILER
learning succeeded, facilitated by the introduction of auxiliary predicates. Table 5 displays
some of the cases generated by MIL and MILER. For the CLEVR dataset, the first example in
the table No. 1 shows that, when MIL fails (timeout) to learn a program due to a vast search
space, MILER can still generate the program using auxiliary predicates. Other examples
(No. 2∼5) indicate that the MILER system can generate more compact programs than MIL.
On the other hand, according to our observation, even if the extracted auxiliary predicates
are unavailable for a program, the MILER system can still generate the same program as the
original MIL system, as demonstrated in the last case No. 6 of Table 5. In this experiment,
as illustrated in No. 2 of Table 5, it shows that, with the addition of auxiliary predicates,
MILER may incur extra time overhead.

5.2. Minecraft World

We now discuss another VQA dataset that features objects and scenes from Minecraft
World. To generate the dataset, we use the dataset generation tool provided by [42] to
render 600 Minecraft World scenes, building upon the Malmo interface [43]. We utilize
the same configuration details as suggested by Wu et al., except that we do not render the
images, which are not part of the input of MIL. Each scene consists of 5–10 objects, and each
object is sampled from a set of 12 entities. Our structural representation has the following
fields for each object: category (12-dim), position in the 2D plane (2-dim, {x, z}), and the
direction the object faces front, back, left, right.

The questions and programs associated with each Minecraft World image are gener-
ated based on the objects’ categorical and spatial attributes (position, direction). We use
600 scenes with 1800 question–program pairs, and randomly select x ∈ (20,300) samples as
the training set, and another 600 programs from the remaining program samples as the test
set to calculate the availability ratio and clause reduction ratio of the generated auxiliary
predicates. We set a timeout termination of 60 seconds and obtain the results after repeating
the experiment 10 times.

Mathematics 2024, 12, 916 15 of 20

Table 5. Partial cases of the learning time and size of programs generated by MIL and MILER.

No.

CLEVR Minecraft World String Program Synthesis

Learning Time (Seconds) Program Size Learning Time (Seconds) Program Size Learning Time (Seconds) Program Size

MIL MILER MIL MILER MIL MILER MIL MILER MIL MILER MIL MILER

1 Timeout 0.046875 - 2 Timeout 0.015625 - 2 Timeout 0.0625 - 2
2 0.375 0.0625 5 3 0.0625 0.046875 3 2 0.0625 0.046875 2 1
3 0.046875 0.0625 3 1 0.078125 0.0625 3 2 0.078125 0.046875 2 1
4 0.03125 0.046875 3 1 0.0625 0.046875 2 1 0.0675 0.046875 2 1
5 0.078125 0.0625 2 1 0.03125 0.046875 3 1 0.078125 0.046875 3 2
6 0.0625 0.0625 4 4 0.0625 0.046875 3 2 0.0625 0.046875 2 1

Mathematics 2024, 12, 916 16 of 20

Figure 6 shows that, when the size of the training set is 20∼300, MILER can achieve a
stable availability ratio of auxiliary predicates and a clause reduction ratio of approximately
50% and 10%, respectively. The mediocre availability ratio is attributed to the diversity
of entities and attributes contained in this dataset, which complicates the task of mining
reusable program patterns. Figure 7 shows the average accuracy of programs learned
by MILER in Minecraft, and the accuracy of the programs ranges from 93% to 98.9%,
consistently with the original MIL method.

For Minecraft World dataset, we also explored cases where MIL learning failed while
MILER learning succeeded. For example, in Table 5, the first case No.1 shows the timeout of
MIL and the success of MILER. As for the cases where both methods succeeded in learning,
like No. 2∼6, they indicate that MILER can typically reduce the clause from {2, 3} to {1, 2},
aligning with our theoretical clause reduction ratio.

Figure 6. Availability ratio and clause reduction ratio of MILER for Minecraft World.

Figure 7. Average accuracy of programs learned by MILER in Minecraft.

Mathematics 2024, 12, 916 17 of 20

5.3. String Program Synthesis

String program synthesis is a task in the field of program synthesis and artificial
intelligence, where the goal is to automatically generate a program that can correctly
process and manipulate string data based on the given specifications.

We use the dataset from Euphony [16]. The String benchmarks comprise 205 tasks,
divided into two parts: 108 problems from the 2017 SyGus competition PBE string track
(involving transformations from string to string) and 97 problems from StackOverflow
and Exceljet (either have a non-string parameter or the synthesis of a numeric or Boolean
expression). Table 6 shows two examples of string programs from the dataset. In the
MILER setting

⟨⟨B, E+, E−, M⟩, {((si, qi, ai), pi)}⟩,

where {((si, qi, ai), pi)} = {(([], input_string_list, out_string_list), string_program)}.

Table 6. Examples of string program from the dataset.

(define-fun f((name String)) String
(str.substr name 0 (- (str.len name) 3)))

(define-fun f((_arg_0 String) (_arg_1 String) (_arg_2 String)
(_arg_3 String)) Bool

(str.contains _arg_0 _arg_3))

In this string program synthesis experiment, we divide the programs into a training
set and a learning set according to a ratio of 4:1. In order to convert the programs in the
training set into medium-scale graphs, we reserve the position of variables in the string
program and replace them with constants. After 10 rounds of repetition and with a timeout
termination set at 60 s, we obtained the results regarding the availability ratio and clause
reduction ratio.

In Figure 8, the results show that, when the training size is around 20, MILER can
achieve the best availability ratio and clause reduction ratio of auxiliary predicates in the
field of string program synthesis, e.g., 60% and 18.3%. Table 7 provides the examples of
the reusable auxiliary predicates extracted by MILER and the program learned by MILER
contains an auxiliary predicate aux_ f 1. Figure 9 shows the average accuracy of programs
learned by MILER in String Program Synthesis. The average accuracy of programs reaches
100%, which is consistent with the original MIL method.

Table 7. Examples of the extracted auxiliary predicates and program learned by MILER for String
Program Synthesis.

Extracted Reusable Structure

define f arg_zero int string int_to_str arg_zero
define f arg_zero string bool str_contains arg_zero

Auxiliary Predicates Generated by MILER

aux_f1(A,B) :- int(A,C), string(C,B).
aux_f2(A,B) :- string(A,C), str_contains(C,B).

Program Learned by MILER

f(A,B) : - aux_f1(A,C), int_to_str(C,B).

Mathematics 2024, 12, 916 18 of 20

Figure 8. Availability ratio and clause reduction ratio of MILER for String Program Synthesis.

Figure 9. Average accuracy of programs learned by MILER in String Program Synthesis.

For the results of String Program Synthesis in Table 5, the first case No. 1 exhibits MIL
learning fails, whereas MILER can generate a program with the help of auxiliary predicates.
According to the observation, such as the examples No. 2∼6, MILER can typically reduce
the program by 1∼2 clauses.

6. Conclusions

In this paper, we introduce a new approach, MILER, to enhance the scalability of
MIL. MILER first uses subgraph mining to search for reusable program patterns from the
training set, which is composed of program sequences, and then sorts them according to
the frequency of these program patterns in the training set. It selects the top three program
patterns and represents them in the form of auxiliary predicates allowed by metarules.
After incorporating the auxiliary predicates into the background knowledge, MILER will
try to learn more compact programs with the assistance of auxiliary predicates. We use test
samples to evaluate the accuracy of learned programs. We also theoretically demonstrate
that the addition of auxiliary predicates can reduce the complexity of the program space.
To evaluate the effectiveness of our approach, we conducted three experiments: two VQA
tasks and a string program synthesis task. The experimental results show that MILER is
able to mine the structural information in the training set and represent it in the form of

Mathematics 2024, 12, 916 19 of 20

auxiliary predicates. MILER can learn from a small number of training data and extract
useful auxiliary predicates that can be used to optimize the learning process. Additionally,
MILER can learn a more compact program with fewer clauses.

Our approach has two main limitations. First, the auxiliary predicates introduced de-
pend on a small set of training examples, which may lead to a lack of robustness, especially
on different tasks where the performance may vary significantly. Second, the number of
auxiliary predicates introduced is based on empirical settings, which requires a balance
between efficiency and cost, making it a challenging task. Future efforts will focus on
refining the form of metarules, such as introducing the specialized metarules better aligned
with auxiliary predicates, to enhance the MIL learner’s ability to prioritize searches within
these predicates.

Author Contributions: Methodology, R.W.; supervision, J.S., C.T. and Z.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China with Grant
No. 62192734.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be
found here: https://cs.stanford.edu/people/jcjohns/clevr/ and https://github.com/jiajunwu/nsd
(accessed on 19 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Garnelo, M.; Shanahan, M. Reconciling deep learning with symbolic artificial intelligence: Representing objects and relations.

Curr. Opin. Behav. Sci. 2019, 29, 17–23. [CrossRef]
2. Muggleton, S.; De Raedt, L. Inductive logic programming: Theory and methods. J. Log. Program. 1994, 19, 629–679. [CrossRef]
3. Cropper, A.; Dumančić, S.; Muggleton, S.H. Turning 30: New ideas in inductive logic programming. arXiv 2020, arXiv:2002.11002.
4. Muggleton, S.; De Raedt, L.; Poole, D.; Bratko, I.; Flach, P.; Inoue, K.; Srinivasan, A. ILP turns 20. Mach. Learn. 2012, 86, 3–23.

[CrossRef]
5. Dai, W.Z.; Hallett, L.; Muggleton, S.H.; Baldwin, G.S. Automated Biodesign Engineering by Abductive Meta-Interpretive

Learning. arXiv 2021, arXiv:2105.07758.
6. Muggleton, S.H.; Lin, D.; Pahlavi, N.; Tamaddoni-Nezhad, A. Meta-interpretive learning: Application to grammatical inference.

Mach. Learn. 2014, 94, 25–49. [CrossRef]
7. Milani, G.A.; Cyrus, D.; Tamaddoni-Nezhad, A. Towards One-Shot Learning for Text Classification using Inductive Logic

Programming. arXiv 2023, arXiv:2308.15885.
8. Muggleton, S.; Dai, W.Z.; Sammut, C.; Tamaddoni-Nezhad, A.; Wen, J.; Zhou, Z.H. Meta-interpretive learning from noisy images.

Mach. Learn. 2018, 107, 1097–1118. [CrossRef]
9. Dai, W.Z.; Muggleton, S.; Wen, J.; Tamaddoni-Nezhad, A.; Zhou, Z.H. Logical vision: One-shot meta-interpretive learning from

real images. In Proceedings of the International Conference on Inductive Logic Programming, Bari, Italy, 13–15 November 2017;
pp. 46–62.

10. Cyrus, D.; Trewern, J.; Tamaddoni-Nezhad, A. Meta-interpretive Learning from Fractal Images. In Proceedings of the International
Conference on Inductive Logic Programming, Bari, Italy, 13–15 November 2017; pp. 166–174.

11. Lin, D.; Dechter, E.; Ellis, K.; Tenenbaum, J.B.; Muggleton, S.H. Bias reformulation for one-shot function induction. Front. Artif.
Intell. Appl. 2014, 263 , 525–530. . [CrossRef]

12. Cropper, A.; Muggleton, S.H. Learning Higher-Order Logic Programs through Abstraction and Invention. In Proceedings of the
IJCAI, New York, NY, USA, 9–15 July 2016; pp. 1418–1424.

13. Morel, R.; Cropper, A.; Ong, C.H.L. Typed meta-interpretive learning of logic programs. In Proceedings of the Logics in Artificial
Intelligence: 16th European Conference, JELIA 2019, Rende, Italy, 7–11 May 2019; pp. 198–213.

14. Johnson, J.; Hariharan, B.; Van Der Maaten, L.; Fei-Fei, L.; Lawrence Zitnick, C.; Girshick, R. Clevr: A diagnostic dataset for
compositional language and elementary visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2901–2910.

15. Yi, K.; Wu, J.; Gan, C.; Torralba, A.; Kohli, P.; Tenenbaum, J. Neural-symbolic vqa: Disentangling reasoning from vision and
language understanding. Adv. Neural Inf. Process. Syst. 2018, 31, 1.

16. Lee, W.; Heo, K.; Alur, R.; Naik, M. Accelerating search-based program synthesis using learned probabilistic models. ACM
SIGPLAN Not. 2018, 53, 436–449. [CrossRef]

17. Plotkin, G.D. A note on inductive generalization. Mach. Intell. 1970, 5, 153–163.
18. Plotkin, G. Automatic Methods of Inductive Inference. Ph.D. Thesis, Univerzitet u Edinburghu, Edinburgh, UK, 1972.

https://cs.stanford.edu/people/jcjohns/clevr/
https://github.com/jiajunwu/nsd
http://doi.org/10.1016/j.cobeha.2018.12.010
http://dx.doi.org/10.1016/0743-1066(94)90035-3
http://dx.doi.org/10.1007/s10994-011-5259-2
http://dx.doi.org/10.1007/s10994-013-5358-3
http://dx.doi.org/10.1007/s10994-018-5710-8
.
http://dx.doi.org/10.3233/978-1-61499-419-0-525
http://dx.doi.org/10.1145/3296979.3192410

Mathematics 2024, 12, 916 20 of 20

19. Shapiro, S. Conservativeness and incompleteness. J. Philos. 1983, 80, 521–531. [CrossRef]
20. Sammut, C.; Banerji, R.B. Learning concepts by asking questions. Mach. Learn. Artif. Intell. Approach 1986, 2, 167–192.
21. Quinlan, J.R.; Cameron-Jones, R.M. Induction of logic programs: FOIL and related systems. New Gener. Comput. 1995, 13, 287–312.

[CrossRef]
22. Muggleton, S.H.; Feng, C. Efficient Induction of Logic Programs; Turing Institute: London, UK, 1990.
23. Muggleton, S. Inverse entailment and Progol. New Gener. Comput. 1995, 13, 245–286. [CrossRef]
24. Blockeel, H.; De Raedt, L.; Ramon, J. Top-down induction of clustering trees. arXiv 2000, arXiv:cs/0011032.
25. Srinivasan, A. The aleph manual. 2001, 1, 1–66.
26. Muggleton, S.H.; Lin, D.; Tamaddoni-Nezhad, A. Meta-interpretive learning of higher-order dyadic datalog: Predicate invention

revisited. Mach. Learn. 2015, 100, 49–73. [CrossRef]
27. Cropper, A.; Muggleton, S.H. Logical Minimisation of Meta-Rules Within Meta-Interpretive Learning. In Proceedings of the

Revised Selected Papers of the 24th International Conference on Inductive Logic Programming, Nancy, France, 14–16 September
2014; pp. 62–75. [CrossRef]

28. Cropper, A.; Tourret, S. Derivation reduction of metarules in meta-interpretive learning. In Proceedings of the International
Conference on Inductive Logic Programming, Ferrara, Italy, 1 September 2018; pp. 1–21. [CrossRef]

29. Cohn, A.G.; Hogg, D.C.; Bennett, B.; Devin, V.; Galata, A.; Magee, D.R.; Needham, C.; Santos, P. Cognitive vision: Integrating
symbolic qualitative representations with computer vision. In Cognitive Vision Systems; Springer: Berlin/Heidelberg, Germany,
2006; pp. 221–246.

30. Antanas, L.; Van Otterlo, M.; Mogrovejo, J.O.; Tuytelaars, T.; De Raedt, L. There are plenty of places like home: Using relational
representations in hierarchies for distance-based image understanding. Neurocomputing 2014, 123, 75–85. [CrossRef]

31. Dai, W.Z.; Muggleton, S.H.; Zhou, Z.H. Logical vision: Meta-interpretive learning for simple geometrical concepts. In Proceedings
of the ILP (Late Breaking Papers), Kyoto, Japan, 20–22 August 2015.

32. Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zitnick, C.L.; Parikh, D. Vqa: Visual question answering. In Proceedings of
the IEEE international Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2425–2433.

33. Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-up and top-down attention for image
captioning and visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 6077–6086.

34. Tan, H.; Bansal, M. Lxmert: Learning cross-modality encoder representations from transformers. arXiv 2019, arXiv:1908.07490.
35. Johnson, J.; Hariharan, B.; Van Der Maaten, L.; Hoffman, J.; Fei-Fei, L.; Lawrence Zitnick, C.; Girshick, R. Inferring and executing

programs for visual reasoning. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 2989–2998.

36. Vani, A.; Schwarzer, M.; Lu, Y.; Dhekane, E.; Courville, A. Iterated learning for emergent systematicity in vqa. arXiv 2021,
arXiv:2105.01119.

37. Li, J.; Li, Y.; Li, G.; Jin, Z.; Hao, Y.; Hu, X. Skcoder: A sketch-based approach for automatic code generation. arXiv 2023,
arXiv:2302.06144.

38. Cropper, A.; Tamaddoni-Nezhad, A.; Muggleton, S. Meta-Interpretive Learning of Data Transformation Programs. In Proceedings
of the Inductive Logic Programming, Bordeaux, France, 5–8 July 2016; pp. 46–59. [CrossRef]

39. Mukaidono, M.; Kikuchi, H. Foundations of fuzzy logic programming. In Between Mind and Computer: Fuzzy Science and
Engineering; World Scientific: Singapore, 1993; pp. 225–244.

40. Elseidy, M.; Abdelhamid, E.; Skiadopoulos, S.; Kalnis, P. Grami: Frequent subgraph and pattern mining in a single large graph.
Proc. VLDB Endow. 2014, 7, 517–528. [CrossRef]

41. Bahdanau, D.; de Vries, H.; O’Donnell, T.J.; Murty, S.; Beaudoin, P.; Bengio, Y.; Courville, A. Closure: Assessing systematic
generalization of clevr models. arXiv 2019, arXiv:1912.05783.

42. Wu, J.; Tenenbaum, J.B.; Kohli, P. Neural scene de-rendering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 699–707.

43. Johnson, M.; Hofmann, K.; Hutton, T.; Bignell, D. The Malmo Platform for Artificial Intelligence Experimentation. In Proceedings
of the IJCAI, New York, NY, USA, 9–15 July 2016; pp. 4246–4247.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2307/2026112
http://dx.doi.org/10.1007/BF03037228
http://dx.doi.org/10.1007/BF03037227
http://dx.doi.org/10.1007/s10994-014-5471-y
http://dx.doi.org/10.1007/978-3-319-23708-4_5
http://dx.doi.org/10.1007/978-3-319-99960-9_1
http://dx.doi.org/10.1016/j.neucom.2012.10.037
http://dx.doi.org/10.1007/978-3-319-40566-7_4
http://dx.doi.org/10.14778/2732286.2732289

	Meta-Interpretive LEarning with Reuse
	Citation

	Introduction
	Related Work
	Meta-Interpretive Learning
	Visual Question Answering
	Program Pattern Reuse

	Preliminaries
	Logical Notations
	Metarule
	Meta-Interpretive Learning
	Frequent Subgraph

	Method
	Motivation
	MILER Problem
	Framework of MILER
	Predicate Generator
	Program Learner
	Program Evaluator

	Algorithm of MILER
	Theoretical Analysis of MILER

	Experiments
	CLEVR Dataset
	Minecraft World
	String Program Synthesis

	Conclusions
	References

