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Efficient Unsupervised Video Hashing with
Contextual Modeling and Structural Controlling

Jingru Duan, Yanbin Hao, Bin Zhu, Lechao Cheng, Pengyuan Zhou, Xiang Wang

Abstract—The most important effect of the video hashing tech-
nique is to support fast retrieval, which is benefiting from the high
efficiency of binary calculation. Current video hash approaches
are thus mainly targeted at learning compact binary codes to
represent video content accurately. However, they may overlook
the generation efficiency for hash codes, i.e., designing lightweight
neural networks. This paper proposes an Efficient Unsupervised
Video Hashing (EUVH) method, which is not only for computing
compact hash codes but also for designing a lightweight deep
model. Specifically, we present an MLP-based model, where
the video tensor is split into several groups and multiple axial
contexts are explored to separately refine them in parallel.
The axial contexts are referred to as the dynamics aggregated
from different axial scales, including long/middle/short-range
dependencies. The group operation significantly reduces the
computational cost of the MLP backbone. Moreover, to achieve
compact video hash codes, three structural losses are utilized. As
demonstrated by the experiment, the three structures are highly
complementary for approximating the real data structure. We
conduct extensive experiments on three benchmark datasets for
the unsupervised video hashing task and show the superior trade-
off between performance and computational cost of our EUVH
to the state of the arts.

Index Terms—Video hashing, Deep Neural Network, Data
Structure, Large-scale retrieval.

I. INTRODUCTION

With the development of information technology, the Inter-
net is filled with a large amount of video data. There’s an
increasing demand for effective and efficient video retrieval
techniques. Hashing technology, which has the characteristics
of low memory cost and fast retrieval speed, shows great po-
tential for real-time content-based retrieval [1]-[7]. This paper
studies unsupervised video hashing and focuses on fast video
retrieval. Compared to the supervised scenario, unsupervised
video hashing eliminates the necessity for manual annotations.
It is thus challenging as approaches generally require approxi-
mating underlying video similarities for content-based retrieval
(81, [9].

Video hashing aims to represent video content with a set
of binary codes and achieve fast retrieval using Hamming
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distance. The hash codes are thus expected to embody the
informative content of a video. It gives the first challenge of
capturing video content as much as possible. This is also the
main concern of existing methods. To meet this challenge,
previous video hashing approaches make diligent efforts to
extract rich visual features and build various sophisticated
mathematical models. For example, MFH [10] and SMVH [11]
combine the global color feature HSV [12] and local texture
pattern LBP [13] for near-duplicate video retrieval. The more
recent BTH [8] proposes to use the advanced bidirectional
transformer network to well capture the long-range visual
dependencies from both forward and backward directions.
Generally, these works concern the high retrieval accuracy
most. They have largely ignored the need for an efficient hash
code generation model.

Another challenge is the data structure approximation. This
is essential for a content-based retrieval task. Unsupervised
video hashing requires to be able to approximate the in-
herent video relevance structure and reproduce it based on
hash codes. Data structures over a video dataset can vary
from global to local similarity patterns. In earlier studies,
hashing approaches, e.g., SMVH [14], self-supervised video
hashing (SSVH) [15], and neighborhood preserving hashing
(NPH) [16], mainly focus on capturing local neighborhood
relationships. It is usually beneficial to top-k retrieval preci-
sion, especially for a small k, e.g., k=1,2,5,10. However, the
distribution of the holistic samples could not be well captured
within a small group of neighbors when considering local
neighborhood only [11], [17]. Late on, hashing methods [8],
[9] takes the cluster as a complementary to the local neighbor-
hood, which captures statistics reflecting cohort characteristics
of whole samples. Actually, data structure modeling is still an
open question for unsupervised video hashing methods.

In this paper, we propose an efficient unsupervised video
hashing (EUVH) method, where efficiency here refers to the
lightweight model. Specifically, we adopt the MLP-Mixer [18]
as the model backbone and equip it with the group contextu-
alization (GC) [19], named GC-MLP. In fact, GC-MLP shares
some spirit with multi-granularity contextualized MLP (MC-
MLP) [9] but possesses its uniqueness and can achieve higher
model efficiency and retrieval accuracy. The model efficiency
is achieved by using the channel splitting mechanism. As
demonstrated by [19], the group contextualization decomposes
the feature channels into several groups and separately uses
different feature calibration operations to refine plain video
features in parallel. It not only results in a lightweight neural
network model but also enables the efficient use of multi-
granularity contexts. Particularly, three kinds of axial contexts
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are exploited for EUVH, including long/middle/short-range
dependencies. These video content dependencies are referred
to as dynamic statistics aggregated over different time scales
and can probably acclimatize various video activities.

EUVH addresses the second challenge by introducing three
distinct data structures, including cluster, local neighborhood
similarity, and contrast relation. The learning pipeline of
hashing is to approximate these structures in the original
video feature space and reconstruct them in the hash code
space. We call it structural controlling. The three structures
consider different structural information. Particularly, cluster
shows the global cohort characteristics of whole samples, local
neighborhood similarity reflects the local relationship within
a small group of neighbors [20]-[22], while contrast relation
emphasizes the relationship comparison between positive and
negative examples [23]. As demonstrated by our experimental
results, the combination of three structures leads to more
discriminative hash codes, which also verify their complemen-
tarities in modeling real data distribution.

We summarize the contributions of our paper below:

o A lightweight MLP-based video hashing neural network
GC-MLP is proposed, which explicitly exploits three
kinds of axial contexts and separately refines video fea-
ture groups in parallel. The channel grouping operation
significantly reduces the computation cost.

o Three distinct structures are constructed to reflect the
real video data distributions, covering the global cohort
characteristics, the local neighborhood similarity, and the
contrast information. Accordingly, three loss functions
are designed to control the structure transformation be-
tween the original feature space to the hash code space.

« Extensive experiments are conducted on three bench-
marked video datasets for content-based video retrieval.
The results show that our EUVH not only achieves better
or more competitive performances but also significantly
reduces the computation cost (number of parameters and
FLOPs).

II. RELATED WORK

In this section, we briefly review some existing hashing
works, most of which are adopted for data representation
learning. We refer to these works as learning-based hashing
in contrast to data-independent hashing. Since our hashing
method targets video content processing, we thus give a more
detailed review for video hashing.

A. learning-based hashing

The learning-based hashing generally designs a data-
dependent framework to learn binary hash code representation.
According to the learning fashion, it can be classified into two
categories: supervised hashing and unsupervised hashing.

Supervised hashing learns semantically discriminative hash
codes by using manual annotations. CCA-ITQ [24] uses the
Canonical Correlation Analysis (CCA) to maximize the corre-
lation between semantically similar features and utilizes ITQ
to minimize the quantization loss. Kernel-based supervised
hashing (KSH) [25] performs a kernel function to map the data

to compact binary codes by minimizing the distance of similar
pairs and maximizing the distance of dissimilar pairs. Super-
vised discrete hashing (SDH) [26] proposes a discrete cyclic
coordinate descent algorithm to solve the discrete optimization
without any relaxations. Deep supervised hashing (DSH) [27]
learns hash codes using pairs of samples and proposes a
regularizer to reduce the disparity between real-valued vectors
and discrete binary vectors. Deep asymmetric pairwise hash-
ing (DAPH) [28] and Asymmetric deep supervised hashing
(ADSH) [29] use the asymmetric hashing approach to learn
the semantic information rich hash functions.

Unsupervised hashing mainly discovers the relationship be-
tween data by exploring data structure. Spectral hashing (SH)
[30] and self-taught hashing (STH) [31] learn hash functions
by binarizing the eigenvectors of the graph. PCA-ITQ [24]
utilizes Principal Component Analysis (PCA) to reduce the
dimension and minimizes the quantization loss by a rota-
tion matrix. K-means hashing (KMH) [32] proposes a novel
quantization algorithm to encode and quantize, considering
both quantization and distance approximation. Anchor graph
hashing (AGH) [33] uses anchor graphs to detect the data’s
inherent neighborhood similarity and learn compact hash
codes. To learn hash codes, deep hashing (DH) [34] develops a
deep neural network that seeks multiple hierarchical non-linear
transformations. Similarity-adaptive discrete hashing (SADH)
[35] proposes a similarity graph updating phase to preserve the
data similarities and solves the non-smooth discrete hashing
problem with the efficient alternating direction method of
the multipliers algorithm. Deep ordinal hashing (DOH) [7]
explores the ranking structure from both local and global views
to generate ranking-based hash codes for images. The work [6]
proposes instance-aware image representations for achieving
both semantic and category-aware hashing.

B. video hashing

Video hashing is to compress high-dimensional and complex
video content into simple binary codes. Multiple feature hash-
ing (MFH) [10] is based on spectral factorization for model
optimization and learns hash function by weighting multiple
features of different types. Submodular video hashing (SVH)
[36] learns hash function based on a selection of relevant
frames from the video. Video hashing with both discriminative
commonality and temporal consistency (VHDT) [37] takes
into account the temporal consistency when learning the hash
codes. Stochastic multiview hashing (SMVH) [14] and its
extension t-distributed SMVH (t-SMVH) [11] use Kullback-
Leibler (KL) divergence to achieve similar structure preserva-
tion from feature space to Hamming space (i.e., the hash code
space).

In recent years, thanks to the development of powerful
computation machines, deep learning techniques, e.g., RNNs,
CNNs [38], MLPs [18], and transformers [39], have been
applied in various fields and achieved improved achievements.
Deep video hashing (DVH) [40] learns the hash function by
maximizing the inter-class distance and minimizing the intra-
class distance of video pairs. Similarity-preserving deep tem-
poral hashing (SPDTH) [41] utilizes an end-to-end supervised
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video retrieval framework to learn discriminative hash codes
and solves the slow convergence problem by enabling positive
pairs to be compared with all corresponding negative pairs.
Self-supervised temporal hashing (SSTH) [42] constructs an
unsupervised deep video hashing model and reconstructs the
original frame features from the relaxed hash codes. Self-
supervised video hashing (SSVH) [15] improves SSTH by
building a neighborhood structure to capture the neighborhood
similarity information between videos. Joint appearance and
temporal encoding (JTAE) [43] combines two kinds of infor-
mation to facilitate video hashing by collectively learning two
encoders. [44] takes CNN features and then uses deep learning
to learn hash function, while [45] explores video information
by additionally extracting optical flow features, which prove
to be useful in video understanding. Unsupervised variational
video hashing (UVVH) [46] selects CNN encoder to generate
hash codes and reconstructs the frame-level features from hash
codes by CNN-LSTM decoder, and uses a probabilistic latent
loss to approximate the posterior distribution to a prior. Neigh-
borhood preserving hashing (NPH) [16] proposes a neigh-
borhood attention mechanism to promote hash codes to cap-
ture the neighborhood-relevant content under the guidance of
each input video’s spatio-temporal neighborhood information.
structure-adaptive neighborhood preserving hashing (SNPH)
[17] extends NPH by using two-layer LSTMs to leverage the
hierarchical structure of the video and takes cluster assignment
into account to learn more discriminative hash codes. Hashing
method based on bidirectional transformers (BTH) [8] utilizes
the bidirectional transformers to exploit the long-range bidi-
rectional correlations between frames and introduces a new
similarity to distinguish boundary samples. Multi-Structure
preserved Hashing (MCMSH) [9] designs three self-gating
modules to explore multiple axial contexts and integrates
them into MLP-Mixer for feature contextualization and adopts
three types of data structures to investigate video content
for discriminative video hash codes. Dual-stream knowledge
preserving hashing (DKPH) [47] constructs a dual-stream
structure to investigate video information for the semantic
dependent binary codes generation, and proposes a Gaussian-
adaptive similarity graph to preserve semantic similarity in the
Hamming space.

III. PROPOSED METHOD

In this section, we elaborate on the proposed Efficient
Unsupervised Video Hashing (EUVH) method. An overview
of the proposed EUVH is illustrated in Figure 1. First, we
introduce the structure of the proposed model. The structural
exploration of video data is then presented. Finally, we provide
the formula for model optimization.

A. Contextual Modeling

Given N videos V = {Vi}f\il, we sample 7" frames from
each video and process each frame with VGG [22] to generate
CNN features. The i-th video is thus represented by a feature
matrix V; = [v}, v}, ,'uiT]T € RT*C, where C' denotes
the channel dimension corresponding to a frame. The extracted
feature matrix V; is regarded as the input of EUVH. Our goal

is to learn a binary code b; € {—1,1}" for each video input,
where K is the length of the code.

1) Overview of GC-MLP: GC-MLP adopts the MLP-Mixer
[18] as its model backbone and is equipped with group con-
textualization [19], which achieves higher retrieval accuracy
and model efficiency. MLP-Mixer takes “patchesx channels”
as input and employs a channel-mixing MLP layer and a
token-mixing MLP layer to interact between distinct channels
and tokens successively, achieving equivalent performance
to CNNs and transformers but at a reduced computational
cost. Although MLP-Mixer can communicate between chan-
nels and between tokens, we believe it will benefit feature
learning when further investigating different axial contexts.
Specifically, MC-MLP proposes to utilize three kinds of self-
gating modules, a long-range dependency (L-RD) module, a
middle-range dependency (M-RD) module, and a short-range
dependency (S-RD) module, to model achieve video feature
contextualization. The three dependency modules focus on
the use of statistical dynamics. To improve model efficiency,
we adopt the grouping strategy to achieve parallel feature
contextualization. We present the three dependency modeling
modules and the grouping strategy in detail below. It should be
noted that due to the high channel dimension C' (4,096 here)
of the input CNN feature, we utilize a fully connected (FC)
layer followed by the activation function ReLU to reduce C
to a smaller number D (e.g., 256) before feeding the feature
to the model.

2) Group Contextualization: The group contextualization
[19] divides the feature channels into several groups and
separately refines them in parallel using different axial de-
pendencies. Unlike MC-MLP, which utilizes each self-gating
module to handle the entire features and then merges the re-
sults, GC-MLP employs the three self-gating modules L/M/S-
RD to separately process feature groups in parallel and then
concatenates the results, resulting in a less computationally
intensive model. In the implementation, we split the feature
channels into four groups, then utilize the L/M/S-RD modules
to separately process the first three groups in parallel, keep the
fourth group unprocessed, and finally connect them together
to feed into the next layer of the neural network.

The detailed architectures of L/M/S-RD modules are
depicted in Figure 2. They share a similar bottleneck
structure of “Pooling/None — FC/Convolution+ReLU —
FC/Convolution+Sigmoid” that achieves different scales of
context modeling with pooling operations. Specifically, the
L-RD module obtains the global axial context by processing
the feature group through a global 1D average pooling layer
along the time/token axis. Then it uses the FC layer to
achieve dimensional reduction and channel/token interaction.
The M-RD module handles the feature group via an average
pooling layer with a smaller kernel to retrieve the middle-range
content. Different from L-RD, M-RD processes the resulting
tensor using two 1D convolutions with a 3 kernel instead of
the FC layer based on the tensor size. Finally, unlike L-RD
and M-RD, S-RD focuses on local information without using
average pooling operation. It directly uses a 1D convolution
with a 3 kernel to capture context from 3 neighborhood tokens.
Note that we use 7 to reduce the feature dimension in the first
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Fig. 1. Overall structure of the proposed EUVH. The orange dashed box represents the channel-mixing FC layer, and the green dashed box represents the
token-mixing FC layer. The input is a feature matrix V, and the output is a binary code vector b.
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Fig. 2. The structure of the Group Contextualization.

convolution or FC layer.

In addition, we add an FC layer before and after the gating
unit, respectively. It should be noted that MLP-Mixer has
two kinds of layers: the channel-mixing FC layer (i.e., the
orange dashed box in Figure 1) and the token-mixing FC
layer (i.e., the green dashed box in Figure 1). In the token-
mixing FC layer, “patches x channels” will be transposed
to “channels X patches”, but the above formula is still
applicable, only the reduction ratio r will be applied with
a different value. Particularly, the feature group D; X D5 is
Tx % in the channel-mixing FC layer and % x T in the token-
mixing FC layer. In practice, the first self-gating modules share
a similar spirit with the squeeze-and-excitation network (SE-
Net) [48], where the axial contexts are dynamics aggregated
statically within a length-fixed axial duration.

3) Hash layer: We can obtain the latent video feature
matrix E; = [e},eb,---,ei]" € RT*P by feeding the
input video feature matrix V; into the proposed GC-MLP.
Next, we design a hash layer to reduce the dimension and
discretize the latent embedding matrix E;. We firstly use
a FC layer to project E; to a real-valued feature matrix
H; = [hi, A}, - ,hﬂT € RT*K_ where K denotes the
length of hash code. Then, we fuse H; through mean pooling,
and map it to the range of (—1, 1) through the Tanh function
to get a relaxed binary vector h;. Finally, we utilize Sgn to
discretize h; to a binary vector b;. The calculation is as follows

H; = FC(E;), (1)
1,
h, = Tanh(TZh;), )
t=1
b, = Sgn(h;), 3
where Sgn(z) = 1 if x > 0 and Sgn(x) = —1 otherwise.

For activation function Tanh, we follow [49]-[51] to use the
scaled Tanh function as follows
1 X

hi = Tanh(p- ;ht), 4)
where the p keeps increasing during training. In mathematics,
there is a relationship between the Sgn function and the scaled
Tanh function: lim,_,, Tanh(pz) = Sgn(z), where p > 0.
Thus, as p — oo, the scaled Tanh function addresses the
optimization problem of the Sgn function very well.

B. Structural Controlling

To capture the real video data distributions and learn more
discriminative hash codes, we construct three distinct data
structures, including cluster, local neighborhood similarity, and
contrast relation.
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1) Cluster: Clustering is the process of dividing a data set
into several classes based on a certain standard (e.g., distance)
in order to maximize the similarity of data items in the same
class and minimize the difference of data objects not in the
same class. Therefore, the clustering algorithm can naturally
form a pseudo-label for unlabeled data and cluster structure
displays the global cohort characteristics of entire samples. In
the implementation, we first apply average pooling to the input
video feature matrix V; and the latent feature matrix E; to
produce the video vector embedding v; = % Zthl v? and the
latent video representation €; = % Zthl e’ respectively. After
that, we use K-means to cluster N video vector embeddings
to generate M cluster centers {u;}}L,, and then apply PCA
to decrease dimension C' of cluster centers {u; }Jle to the
same dimension D as €;. Finally, we align the learnt video

representation €; with its the nearest class center u%, and
calculate the cluster 10Ss L jyster @S shown below
1B
_ 12
‘Ccluster = E Z ||61 —u; ||Za (5)
i=1

where B is the training batch size.

2) Local neighborhood similarity: The relationship be-
tween a sample and its class center is the primary emphasis
of cluster structure, which does not consider the correlation
between data pairs. The goal of local neighborhood similarity
structure is thus to construct a pairwise similarity graph
S € RVXN with each element reflecting the similarity of two
samples.

We follow the works [8], [33] to build a similarity graph
S. Specifically, we first calculate m nearest cluster centers
{ul,u? -+ u"} for each video vector embedding v; and
calculate a truncated similarity matrix P € RY*M by the
following formula

exp(—||5; — u! |2 /o ;
oo —wlBfo)
Pij=q 2L exp(—[v; — uil3/0) ©)
0, otherwise,

where || ||2 denotes the [o-norm, and o is a bandwidth param-
eter. Then, we calculate a adjacency matrix A = PA~'P7 ¢
RV*N ‘where A = diag(PT1) € RM*MAnd we construct a
binary similarity matrix A" according to Aj; = 1if A;; >0
and A;j = —1 otherwise, and the binary similarity matrix
A’ are determined by the number of nearest cluster centers.
In practice, we follow [8] and set three numbers my,mo, m3
(m1 < me < mg) for m, and obtain three corresponding
matrices A1), A’() and A’®). Finally, we construct the
ultimate similarity matrix S as

1, A/(l) =1,
Sij =4 -1, A/®=_1and A’®) =1, O
0, otherwise.

For local neighborhood similarity structure, positive and nega-
tive samples are easily confused and misjudged at the bound-
ary. So obtaining reliable pairwise similarity at the boundary is
more advantageous for learning discriminative hash codes. In
addition, due to a large number of negative samples, compared

with the binary similarity matrix A’, the ultimate similarity
matrix S adds a new similarity degree of O to differentiate
boundary cases and also reduce the possible bias caused by
too many negative samples.

Since the Sgn function makes the optimization intractable,
we compute the cosine similarity between the relaxed binary
vectors h; and h; as %ﬁiTl_zj and involve a quantization
error as a penalty term to narrow the gap between the relaxed
binary vectors and the binary vectors. The local neighborhood
similarity loss is shown as follows

B

Loim =35 3 (hThy =S, 422 3 [bi— Rl ®)
Si;€8 i=1

The coefficient ¢ is set to 0.1 following [9]. Since the hash

code vector b; is computed by Sgn which is non-differentiable,

we use straight-through estimator (STE) [52] to deal with the

problem of non-differentiable during back-propagation.

3) Contrast relation: People frequently learn to discrim-
inate between objects by comparing them. Similarly, con-
trastive learning requires the model to learn high-level features
that are sufficient to differentiate objects rather than precise
details. The purpose of contrast relation structure is to bring
the augmented data of the same sample close to each other
while pushing different samples away in the embedding space.
Due to the great success of [23], we leverage contrast relation
for structural control to allow the model to learn more dis-
criminative hash codes. The difficulty of contrastive learning
is how to construct positive and negative samples. In the field
of images, there are some general methods such as rotation and
cropping, and in the field of text, frequently used methods such
as back-translation, character insertion or deletion. Because
each video comprises several frames, positive samples can
be created by extracting varying quantities of frames. The
real-valued vector {h!}L ; contains T frames feature vector
of a video, in the implementation, we randomly extract 7"
frames from the 7" frames and then fuse them through average
pooling. Finally, we can obtain the augmented sample A/
corresponding to the relaxed binary vector h;. Using the data
augmentation strategy described above, we can get 28 data
points in a batch of B samples. Similar to [23], we have a
positive pair and treat the other 2(B — 1)_/as negative samples
in a batch. We use sim(h;, hl) = m to represent the
cosine similarity of h; and ﬁ;, and f0110\;v InfoNCE [53] to
design the contrastive loss as follows

T/
_ 1 .
h, = Tanh(—; > hih, ©)

t=1

B -
Leontrast = 7? Z IOg T 7 T 1\
= 7 Yz €(hi hi) + 37 €(hi, hy)

o - (10)

where €(h;, h;) = exp(sim(h;, h)/7) and the tempera-

ture parameter 7 is set 0.5 following [23].

4) Discussion: The three data structures, i.e., cluster, local

neighborhood similarity, and contrast relation, exhibit various

structural controls in hash function learning. Specifically,
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Algorithm 1: The training of EUVH

Input: Input video feature {Vi}fil, epoch numbers
Epoch, hyperparameters

Output: Network parameters of EUVH

// Initialization
1fori=11t N do
2 Obtain video embedding v; by applying average
pooling on input video feature V;
3 Gain cluster centers {u; }94:1 by employing
K-means on video embedding v;;
4 Build similarity matrix S with Eq. 6 and Eq. 7;
Initialize network parameters of EUVH;

/ Training

~

6 for epoch =1 to Epoch do

7 for i =11t N do

8 Generate latent video feature E; =
GC-MLP(V;);

9 Compute real-valued feature H; by Eq.1;

10 Calculate relaxed binary vector h; with Eq.2;

11 Obtain hash code b; by Eq.3;

12 Gain e; by applying average pooling on latent
video feature E;;

13 Calculate h/ with Eq. 9;

14 Update network parameters by minimizing the
overall loss (Eq.11);

local neighborhood similarity structure takes into account the
pairwise similarity within a small region, reflecting a local
neighborhood relationship. However, when only local neigh-
borhood similarity structure is considered, the distribution of
the entire sample cannot be fully captured. As complementary
to local neighborhood similarity, cluster captures the global
cohort characteristics of total samples, encouraging a sample
to congregate its allocated cluster centers. Thus, the cluster and
local neighborhood similarity are primarily concerned with
the relationship between samples. While the contrast relation
structure focuses on the compared information between sample
pairs, that is, the similarity of the anchor sample to its positive
target should be larger than that to the negative target. Besides,
our experimental results show that the combination of three
structures leads to superior retrieval performance and also
demonstrate the complementarity nature of the three structures.

C. Model optimization

GC-MLP models the input video features by exploiting
three different types of axial contexts to generate latent video
features, and then three complementary structures are em-
ployed to approximate the inherent video relevance structure
and reflect the real video data distributions. The training of
EUVH is illustrated in Algorithm 1. The model optimization is
based on a multi-objective formulation that combines the three
different loss functions, and the overall loss for optimization
is as follows

Eall = Oﬁcclustcr + 6£31m + 7£contrast7 (11)

where «, (3, and y are hyper-parameters that balance above-
mentioned three loss functions. We perform backpropagation
on the above formula to optimize our model.

IV. EXPERIMENT

We conduct extensive experiments to verify the effective-
ness and efficiency of our proposed method, including compar-
ison with MCMSH, ablation study, and the comparison with
the state of the arts, as well as some extension experiments.

A. Datasets

e FCVID. Fudan-Columbia Video Dataset [54] includes
91,223 YouTube videos manually annotated into 239
categories. The videos in this dataset depict a variety
of activities, scenes, events, etc. We follow [15] to use
91,185 videos, with 45,585 videos used for training and
the remaining 45,600 videos used for evaluation.

o ActivityNet. ActivityNet [55] offers 28k videos of 203
activity categories collected from YouTube. We follow
[16] to use 9,722 videos for training and 4,758 videos
for evaluation, with 1,000 videos serving as queries and
the rest 3,758 videos serving as retrieval databases.

e YFCC. Yahoo Flickr Creative Commons 100 Million
Dataset [56] consists of 0.8M videos divided into 80 cate-
gories from Flickr. We follow [42] to use 101,256 videos,
where 409,788 videos are for training and 101,256 videos
are for evaluation.

B. Evaluation Metrics

We follow [42] to employ Average Precision at top-k
retrieval videos (AP@Xk) to evaluate the retrieval performance
[57]. AP@k is defined as m Zl;:l RT X I;, where R
denotes the number of relevant videos in the database, R;
represents the number of relevant videos in the top-i videos,
and I; = 1 if the i-th video is relevant and I, = 0 otherwise.
Then, we use the mean of AP@k over all queries (mAP@k)
as the final evaluation metric.

C. Implementation Details

In the preprocessing stage, to be consistent with the setting
of previous work, we sample 7" = 25 frames for each video in
FCVID and YFCC datasets and utilize VGG-16 [22] network
pre-trained on ImageNet [58] to extract 4096-D (C' = 4096)
frame features. For ActivityNet dataset, we follow [43] to
sample 7' = 30 frames per video and use ResNet-50 [38]
to generate 2048-D (C' = 2048) frame features. The FCVID
and YFCC datasets features are provided directly by [15] and
the features of the ActivityNet dataset are provided directly
by [8]. For model architecture, we set the reduced feature
dimension to D = 256, and set the reduction ratio r used
in L/M/S-RD modules as 8 for the channel-mixing layer and
4 for the token-mixing layer. For loss functions, we set the
number of clusters as 2,000 and the number of nearest cluster
centers m; = 3,me = 4,mg = 5 following [8], and the
randomly extracted number of frames 7" = 20 from T = 25
or T' = 30 frames. The balancing parameters «, 3, used in
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Eq. (11) are set as « = 0.8,5 = 0.1,y = 0.1. During the
training stage, we set batch size as 256 for FCVID and YFCC
datasets and 64 for ActivityNet datasets, epochs as 60, the
learning rate as 0.0003, and use Adam [59] algorithm with
momentum 0.9 to update parameters. The code is available at
https://github.com/duanjr666/EUVH.

D. Comparison with MCMSH

In this section, we compare our EUVH with the most
relative method MCMSH in terms of retrieval accuracy and
model complexity using FCVID dataset with hash code length
of 64 bits.

TABLE I
PERFORMANCE (MAP@K) COMPARISON WITH MCMSH oON FCVID
DATASET WITH 64 BITS CODES.

Model k=5 k=20 | k=40 | k=60 | k=80 | k=100
MCMSH 0.494 | 0.335 | 0.288 | 0.263 | 0.245 0.230
MCMSH (Lg;;) | 0.506 | 0.349 | 0.302 | 0.277 | 0.259 | 0.243
EUVH 0.506 | 0.351 | 0.305 | 0.280 | 0.261 0.245
TABLE 1T
MODEL COMPLEXITY COMPARISON ON FCVID DATASET WITH 64 BITS
CODES.

Model Param. | FLOPs | Average Encoding Time

BTH 3.17M 0.05G 0.53ms

MCMSH | 1.76M 0.05G 0.47ms

EUVH 1.37M 0.04G 0.20ms

Table I illustrates the performance of EUVH, the original
MCMSH, and the modified MCMSH under the overall loss
function Eq.(11), with the balancing parameters settings to
a =08, =01 and v = 0.1. We observe that EUVH
and the modified MCMSH have similar performances (EUVH
performs relatively better than MCMSH for k > 5). Compared
with the original MCMSH, both EUVH and the modified
MCMSH can significantly improve performance. Since we
replace the triplet loss used by the original MCMSH with the
contrastive loss for EUVH and the modified MCMSH, it thus
demonstrates the superiority of modeling contrast relation.

Table II compares EUVH and the two current the-state-of-
the-art methods BTH and MCMSH in terms of the numbers
of parameters and FLOPs, and the average encoding time. We
observe that EUVH has 22% fewer parameters than MCMSH
and only 43% as much as BTH’s. In terms of FLOPs, EUVH
is also lower than BTH and MCMSH, indicating that EUVH is
less computationally expensive than BTH and MCMSH. The
average encoding time counts the time cost of converting a
video feature to a hash code vector. It can be found that EUVH
is much faster than BTH and MCMSH (0.20ms vs. 0.53ms of
BTH and 0.47ms of MCMSH). By jointly taking into account
the retrieval performance and computational costs, our EUVH
achieves the best trade-off between performance and model
complexity. This meets our intention of designing a more
lightweight neural network model but without losing (actually
improving) retrieval performance.

E. Ablation Study

In this section, we study the effect of hyperparameters,
including the three self-gating modules L/M/S-RD, the di-
mension reduction ratio r used in the self-gating modules,
the number of randomly extracted frames 7" from T frames
in one video and the balancing parameters «, 3, used in Eq.
(11), using the FCVID dataset.

Effect of different axial contexts. We first verify the
effect of the three context learning modules (also known
as self-gating modules) L/M/S-RD, which capture long-
range, middle-range and short-range dependencies respec-
tively. EUVH is compared to the following variants: (1) MLP-
Mixer: the original MLP-Mixer architecture but with only one
block (one channel-mixing layer and one token-mixing layer);
(2) with L-RD. We use the MLP-Mixer as a backbone and
only process the first feature group using the L-RD module;
(3) with M-RD. Similar to (2), we employ the MLP-Mixer
as a backbone and only handle the second feature group with
the M-RD module; (4) with S-RD. As (2) and (3), the S-
RD module is used to process the third feature group. The
performances of these model variants are shown in Table III.
Firstly, we observe that MLP-Mixer with a single context,
e.g., L-RD, M-RD, or S-RD, can surpass the original MLP-
Mixer, showing that calibrating video features with the axial
context is useful for video content capturing. Based on these
findings, we can conclude that the three self-gating modules
can effectively model the data from various axis contexts.
Then, when combining all three modules, EUVH obtains the
best performance, indicating that the three self-gating modules
can work together to improve performance.

Effect of dimension reduction ratio r. Secondly, we
examine the effect of the dimension reduction ratio r used
in the three self-gating modules. It should be noted that since
there are only 7' = 25 frames in a video, we fix the setting
of r = 4 following MCMSH for the token-mixing layer. So,
we here only test different r settings for the channel-mixing
layer, e.g., r = 2,4,8,16,32. Table IV lists the retrieval
results and the number of parameters for the model variants
with varying dimension reduction ratios 7. We can see that
the number of parameters decreases with r increases, but the
performance fluctuates within a certain range. Considering the
trade-off between the model size and the performance, we set
the dimension reduction ratio r to 8 in the channel-mixing
layer.

Effect of the number of randomly extracted frames
T’. Thirdly, we test the effect of the number of randomly
extracted frames 7" from T frames used in Eq.10. The random
selection strategy extracts 7" (7" < T') frames randomly from
T frames during training. Here we conduct experiments to
test which 7" is suitable for our model. Table V shows the
performance of the various settings for 7”. We can notice that
when the number of randomly extracted frames 7" increases,
the performance has a trend of increasing first and decreasing
then. As a result, we finally choose 77 = 20 for our model.

Effect of different structures and their combinations.
Finally, we explore the effect of the constructed data structures
by varying the balancing parameters «, 3, in Eq. (11). The
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TABLE III
PERFORMANCE (MAP@K) COMPARISON WITH DIFFERENT EUVH VARIANTS ON FCVID WITH 32 BITS AND 64 BITS HASH CODES.

Model 32 bits 64 bits

k=20 | k=40 | k=60 | k=80 | k=100 | k=20 | k=40 | k=60 | k=80 [ k=100

MLP-Mixer | 0.294 | 0.250 | 0.228 | 0.212 | 0.199 | 0.341 | 0.294 | 0.270 | 0.252 | 0.237

with L-RD | 0.300 | 0.254 | 0.230 | 0.212 | 0.197 | 0.349 | 0.302 | 0.276 | 0.257 | 0.241

with M-RD | 0.298 | 0.253 | 0.230 | 0.213 0.199 | 0.343 | 0.297 | 0.273 | 0.254 | 0.238

with S-RD 0.297 | 0.251 | 0.228 | 0.211 0.197 | 0342 | 0.295 | 0.271 | 0.253 | 0.238

EUVH 0.305 | 0.260 | 0.237 | 0.219 | 0.204 | 0.351 | 0.305 | 0.280 | 0.261 | 0.245

TABLE 1V 0.4,0.6,0.8,1.0,1.2, 8 = 0.025,0.05,0.1,0.2,0.4, and v =

PERFORMANCE (MAP@K) COMPARISON OF EUVH WITH DIFFERENT
DIMENSION REDUCTION RATIO r ON FCVID WITH 64 BITS CODE

LENGTHS.
T k=5 k=20 | k=40 | k=60 | k=80 | k=100 | Param.
2 | 0504 | 0.348 | 0301 | 0.276 | 0.257 | 0.242 | 1.377M
4 | 0501 | 0346 | 0.300 | 0.275 | 0.257 | 0.241 1.372M
8 | 0.506 | 0.351 | 0.305 | 0.280 | 0.261 | 0.245 | 1.370M
16 | 0.504 | 0.347 | 0300 | 0.276 | 0.257 | 0.242 | 1.369M
32 | 0.506 | 0.350 | 0.304 | 0.279 | 0.260 | 0.244 | 1.369M

TABLE V

PERFORMANCE (MAP@K) COMPARISON OF EUVH WITH THE RANDOMLY
EXTRACTED DIFFERENT NUMBERS OF FRAMES T ON FCVID WITH HASH
CODE LENGTH 64 BITS.

T’ k=5 k=20 | k=40 | k=60 | k=80 | k=100
5 0.505 | 0.348 | 0.301 | 0.276 | 0.257 | 0.241

10 | 0.505 | 0.348 | 0.301 | 0.276 | 0.257 | 0.242
15 | 0.505 | 0.348 | 0.301 | 0.276 | 0.258 | 0.242
20 | 0.506 | 0.351 | 0.305 | 0.280 | 0.261 | 0.245
25 | 0.506 | 0.350 | 0.303 | 0.278 | 0.260 | 0.244

three losses in Eq. (11) represent three kinds of structural
information. They are the cluster controlled by «, local
neighborhood similarity controlled by 3, and contrast relation
controlled by ~. Here, we first examine the performance of
every single structure, and then their combinations. As shown
in the first three rows of Table VI, the model with cluster
loss only (i.e., & = 1) achieves the best performance among
the three structures. This is consistent with observations from
BTH and MCMSH. One potential reason could be that the
cluster provides the pseudo-label and thus makes the model
training in a supervised fashion which can speed up the model
convergence. Either the local neighborhood similarity or the
contrast relation alone cannot result in satisfactory results. we
secondly show the results of different structure pairs in the
second three rows of Table VI. In general, all the structure
pairs can significantly improve the performance compared
with their corresponding single-structure counterparts. For
example, when combining L.jyser and Lg;,,, the mAP@5
is improved from 0.458 (Lciyser only) and 0.416 (Lgim
only) to 0.491. Another significant performance improvement
(0.458/0.386—0.503) is also observed when combing L.y ser
and L¢opirqst- Finally, when merging all three losses, EUVH
obtains the best performance on all mAP@k (e.g., 0.506 on
mAP@5). These performance trends show strong evidence that
the three structures are complementary to each other and their
combinations can greatly improve the performance.

In addition, we also show the fine-grained tuning for the
three hyperparameters {«, 3,~v}. Specifically, we set «

0.025,0.05,0.1,0.2, 0.4, respectively. We test the performance
change of one hyperparameter (e.g., a) by fixing the other
two (e.g., 8 and ~). Figure 3 shows their corresponding
performance changes. As observed, the setting of &« = 0.8, 8 =
0.1, = 0.1 can provide the best performance, which is also
the ultimate setting of EUVH. In the following experiments,
all results are obtained by using this ultimate setting.
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Top-k
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Fig. 3. Performance changes varying « (a), 8 (b) and ~y (c) on FCVID with
64 bits hash codes.
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TABLE VI
PERFORMANCE (MAP@K) COMPARISON WITH A SINGLE DATA STRUCTURE AND THEIR COMBINATION USING FCVID DATASET WITH 64 BITS CODES.
Loss k=5 | k=20 | k=40 | k=60 | k=80 | k=100
Totaster (@ =1) 0458 | 0.292 | 0.243 | 0.218 | 0.201 | 0.186
Leim(B =1) 0416 | 0.254 | 0209 | 0.186 | 0.169 | 0.156
Leontrast(y = 1) 0386 | 0.197 | 0.147 | 0.125 | 0.110 | 0.100
0.8Lciuster + 0-1Lgim 0491 | 0334 | 0.288 | 0.263 | 0243 | 0.226
0.8Lepuster + 0.1Lcontrast 0.503 | 0.345 | 0297 | 0271 | 0.252 | 0.237
0.1Lsim + 0.1 Lcontrast 0413 | 0247 | 0204 | 0.184 | 0.170 | 0.159
0.8L ctustor & 0-1Lsim + 0.1 contrast(EUVH) | 0.506 | 0.351 | 0.305 | 0.280 | 0.261 | 0.245

FE. Comparison with State-of-the-arts

We compare our EUVH with various state-of-the-art
(SOTA) unsupervised hashing methods, including Multiple
Feature Hashing (MFH) [10], Deep Hashing (DH) [60],
Joint Temporal Appearance Encoder (JTAE) [43], Self-
Supervised Temporal Hashing (SSTH) [42], Self-Supervised
Video Hashing (SSVH) [15], Unsupervised Hashing method
based on Bidirectional Transformers (BTH) [8], Dual-stream
Knowledge Preserving Hashing (DKPH) [47] and Multi-
granularity Contextualized and Multi-Structure preserved
Hashing (MCMSH) [9]. Particularly, the image hashing
method DH is extended to video hashing by using the same
CNN features. These methods cover different network back-
bones and data structures. We make comprehensive compar-
isons and show the results on three datasets with hash code
lengths of 16, 32, and 64 bits in Figure 4.

Results on FCVID. Figure 4(a-c) presents a comparison
of EUVH and SOTAs on the FCVID dataset. Overall, our
EUVH achieves the best performance among all competing
methods under all hash code lengths (i.e., 16, 32, and 64 bits).
Compared to the transformer-based methods BTH and DKPH,
which achieve long-range dependency modeling by multi-head
attention mechanism, both MCMSH and EUVH, which can
model not only the long-range dependency but also the middle-
range and short-range dependencies jointly, significantly im-
prove the performance by a large margin (1.2%-4% under
all hash code lengths). This verifies that capturing multiple
temporal contexts can benefit video content modeling indeed.
In comparison to the strongest competitor MCMSH, EUVH
also performs slightly better with respect to short hash code
lengths of 16 and 32 bits but has considerable improvement
for 64 bits (e.g., 0.335—0.351 mAP@20). The results show
that adopting group contextualization can not only reduce the
size of the model but also improve performance, proving the
effectiveness of our strategy.

Results on ActivityNet. The performance comparison on
ActivityNet dataset is shown in Figure 4(d-f). Compared with
other SOTAs, EUVH has obvious improvement, e.g., at least
1%, 2.5% and 2.5% for mAP@5 absolute performance im-
provement on 16-bits, 32-bits, and 64-bits respectively. Com-
pared with FCVID which has ~91k videos, ActivityNet has
only 28k videos. As observed that our EUVH is a lightweight
model that has only 1.37M parameters compared to BTH’s
3.17M and MCMSH’s 1.76M so as to be easily trained
to process small datasets. The relatively larger improve-
ments compared with those on FCVID have demonstrated
this argumentation. It is also worth noting that the related

MCMSH performs relatively worse than DKPH, while EUVH
considering similar contexts outperforms DKPH significantly.
This in a sense further verifies the effectiveness of group
contextualization and structural controlling used by EUVH.

Results on YFCC. Figure 4(g-i) depicts the results of
different methods on YFCC dataset. YFCC is a much larger
dataset (a million-scale dataset) than FCVID and ActivityNet.
We observe a different performance trend compared with those
on the small datasets YFCC and ActivityNet. That is, EUVH
does not achieve consistently better performance than current
SOTAs, e.g., DKPH, MCMSH, and BTH. For the setting of 16
bits, EUVH even performs relatively worse than the current
SOTA DKPH on mAP@20-100 with 16 bits. We speculate
that this may be because the small size of the model might
limit the model capacity. By jointly comparing the results on
the three datasets, the performance improvements on small
datasets are much more noticeable than that on the large one.
However, considering the trade-off between performance and
model size, EUVH achieves competitive performance.

Results with different hash code lengths. To clearly show
the performance changes with different hash code lengths, we
draw the curves of performance changes in Figure 5. It is not
surprising that increasing the hash code length can improve the
retrieval performance. Because more hash codes can enlarge
the capacity of storing video content. But the improvement
gradually decreases with hash code length increases. These
curves provide us with a clear view to select an appropriate
hash code length for a retrieval task.

G. Cross-dataset Performance Comparison

We investigate the generalization of EUVH by conducting
across-dataset retrieval that trained on FCVID and tested on
YFCC with 64 bits. Table VII displays the performance of
mAP@20 of various methods. We can see that all methods
have a performance degradation and our EUVH degrades
slightly. This is because the FCVID and YFCC have different
scenes, quality, duration, etc., which will cause the distribution
of the two datasets to be different. Therefore, training on
one dataset and testing on another will cause performance
degradation. In comparison to MCMSH, our EUVH has less
generalization. However, when compared to other approaches,
our EUVH has better generalization. Particularly, compared
to the transformer-based BTH, the MLP-based MCMSH and
EUVH equipped with multiple axial contexts show a better
generalization.
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Fig. 4. Performance (mAP@k) comparison with state-of-the-arts on FCVID (a-c), ActivityNet (d-f) and YFCC (g-i) datasets.

TABLE VII
CROSS-DATASET MAP @20 GAIN WHEN TRAINING ON FCVID AND TEST ON YFCC WITH 64 BITS.
Method SSTH SSVH NPH BTH MCMSH EUVH
mAP@20 | —6.3%J | —7.8%J) | —6.0%] | —5.7%{ | -32% ] | —3.5% |

H. Qualitative Results

In this section, We further evaluate the proposed EUVH
by visualization results, including the visualization for learned
hash code distribution and retrieval examples. We first apply
t-SNE [61] to project the 64-bit hash codes generated with a
single loss (Lciysters Lsim O Leontrast) into a 2D space for
visualization. As shown in Figure 6, it is consistent with the re-
sults listed in Table VI that the cluster loss shows better results
than the other losses. This again demonstrates the predomi-
nance of cluster structure in model learning. Also, we compare
the hash code distributions of MCMSH and EUVH in Figure

7. As observed, EUVH shows a better visualization result than
MCMSH. By taking the visualization results with a single loss,
the combined loss (i.e., 0.8 L jyster + 0.1 L gi0m + 0.1 Lcontrast)
shows the most distinguishable distribution, which verifies the
strong complementarity of the three structures.

We also visually compare the top-5 retrieved videos of
MCMSH and EUVH with 64 bits hash codes on ActivityNet
dataset. The results list in Figure 8. Here, we manually
select four video categories that describe human-performing
actions, e.g., “scuba diving”, “playing drums”, “calf roping”,
and “removing ice from car”. Retrieving these actions not
only needs recognizing visual objects from the query and
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Fig. 5. mAP curve with different hash code length (K bits) on FCVID (a),
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candidates, e.g., “scuba”, “calf”, “drum”, “ice” and “car”,
but also requires capturing interactions between human and
object or between objects. As shown in the four results, for
the “scuba diving” that prefers the static scene rather than
the motions, both MCMSH and our EUVH perform well.
For the other three activities “playing drums”, “calf roping”,

11

Fig. 7. Visualizing feature distributions of MCMSH and EUVH.

Scuba diving

Calf roping
B ,;g»,.

EUVH

MCMSH

Fig. 8. Top-5 retrieved results of MCMSH and EUVH on ActivityNet with
64 bits codes. Videos in green squares are retrieved correctly, while videos in
red squares are wrong.

and “removing ice from car” which focus more on short-
term motions/interactions. We can see that both MCMSH and
EUVH can model the interactions. This can be attributed to the
nature of the multi-context modeling of MCMSH and EUVH.
However, most of the top-5 returned results of MCMSH are
wrong. For example, MCMSH outputs “horse riding” and
“bullfighting” for the “calf roping”, “playing congas™ rather
than “playing drums”, and “hand car wash” not “removing
ice from car”. While EUVH successfully does it. We guess
that it is because EUVH leaves a channel group to not do
time contextualization so that it can retain the visual object
information largely. In addition, our EUVH also retrieves
wrong videos for some queries. For example, for the query
“Calf roping” EUVH gets the failed videos showing “Disc
dog” or “Powerbocking”. We speculate that these unsuccessful
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results can largely be attributed to the limitations of model size
and the training dataset. Looking ahead, we envision the po-
tential for enhancing the method’s semantic understanding by
harnessing both large-scale pretrained vision-language models
and large language models (LLMs).

V. CONCLUSION

This paper has presented an efficient unsupervised video
hashing method, EUVH, which not only achieves better or
comparable retrieval performance but also reduces the com-
putation cost largely. EUVH splits the video tensor into four
groups along the channel dimension and separately refines
three of them by three self-gating modules L/M/S-RD in
parallel and leaves one group to do nothing. The three self-
gating modules focus on feature contextualization by con-
sidering different scales of axial contexts, i.e., long-range
dependency (L-RD), middle-range dependency (M-RD) and
short-range dependency (S-RD). The last non-contextualized
one is expected to pay attention to the visual objects appeared
in the video. Due to the channel grouping operation, EUVH is
much more lightweight than MCMSH with about 22% fewer
parameters. In the model training, we proposed to combine
three data structures to approximate the real data structure as
accurately as possible, including cluster, local neighborhood
similarity, and contrast relation. The three structures show
different structure preferences, global cohort information, local
neighborhood relations, and contrast Information, respectively.
We verify our EUVH thoroughly by conducting extensive
experiments on three benchmark datasets. Although EUVH
achieves satisfactory performance in all experiments, there
is still room for improvement. For example, in the current
EUVH, we fix a channel group to receive a specific context,
so can a channel automatically decide the kind of context or as-
sign variable weights to different contexts. In the future work,
we will pay attention to selective feature contextualization.
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