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Abstract—Nowadays, Vision Transformer (ViT) is widely uti-
lized in various computer vision tasks, owing to its unique self-
attention mechanism. However, the model architecture of ViT is
complex and often challenging to comprehend, leading to a steep
learning curve. ViT developers and users frequently encounter
difficulties in interpreting its inner workings. Therefore, a visual-
ization system is needed to assist ViT users in understanding its
functionality. This paper introduces EL-VIT, an interactive visual
analytics system designed to probe the Vision Transformer and
facilitate a better understanding of its operations. The system
consists of four layers of visualization views. The first three
layers include model overview, knowledge background graph,
and model detail view. These three layers elucidate the operation
process of ViT from three perspectives: the overall model
architecture, detailed explanation, and mathematical operations,
enabling users to understand the underlying principles and the
transition process between layers. The fourth interpretation view
helps ViT users and experts gain a deeper understanding by
calculating the cosine similarity between patches. Our two usage
scenarios demonstrate the effectiveness and usability of EL-VIT
in helping ViT users understand the working mechanism of ViT.

Index Terms—Vision Transformer, Education Tool, Explain-
able AI, Visual Analysis

I. INTRODUCTION

Deep learning has become an integral part of our daily lives,
with its application spanning across various industries. While
deep learning models have continuously improved in terms
of performance, they have also grown in complexity, which
raises the learning curve. This paper focuses on the Vision
Transformer (ViT) model, a deep learning architecture that
incorporates principles from natural language processing into
computer vision. ViT [1] has demonstrated its superiority over
Convolutional Neural Networks (CNN) in various computer
vision downstream tasks, including image classification, ob-
ject detection, semantic segmentation, and image captioning.
Consequently, the ViT model has generated significant interest
among practitioners, students, and experts, prompting many
individuals to explore this technology. However, for novices,
understanding the inner workings of the ViT model can be
challenging, given its intricate layer structures, inter-layer data
transmission methods, convolution, and multi-head attention
mechanisms. Taking image classification as an example, be-
ginners may struggle to comprehend the journey from initial
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image data to the ultimate classification prediction. Similarly,
computer vision students may feel difficult to understand
concepts such as Query, Key, and Value, and experts may also
be perplexed by the inner workings of ViT and the principles
underlying its classification. Therefore, the development of
a visualization system to facilitate the understanding and
application of this technology for both beginners and experts
is important.

To ensure a positive user experience with the visualization
system, we encountered several challenges during the design
of the visualization tool. Firstly, the layer structure of ViT is
highly intricate, accompanied by a vast number of parameters.
It not only possesses a deep layer structure (e.g., the simplest
ViT model, ViT-B/16, comprises 12 Transformer blocks), but
also incorporates various types of layers (such as Query, Key,
Value, Glue, etc.), each involving distinct mathematical oper-
ations. Comprehensive guidance is necessary to assist users
in gaining a thorough understanding of the ViT model. Sec-
ondly, existing visualization tools lack a unified overview of
educational aids and interpretability explanations. Nowadays,
numerous visualization systems employ interactive visualiza-
tions to assist users in exploring and learning deep learning
models, such as CNN Explainer [2] and DNN Genealogy [3],
which respectively aid beginners in understanding convolu-
tional neural networks and deep neural networks. Addition-
ally, some visualization systems are dedicated to providing
interpretability explanations for deep learning models, aiding
experts in understanding and diagnosing these models [4], [5].
Both aspects are crucial, and EL-VIT is proposed to address
these challenges with the aim of facilitating the understanding
and learning of the ViT model for both experts and non-
experts.

The major contributions of this paper are as follows:
• We introduce an interactive visualization tool, EL-

VIT, to help ViT learners and users to explore
ViT models. Currently, many visualization tools cater to
experts, with limited availability of educational-focused
visualization tools. The proposed visualization platform
in this paper aims to fill this research gap and serves
educational purposes.

• We utilize a multi-view visualization system design,
each view providing unique insights into the model.
This approach fosters a holistic comprehension of the
ViT model and promotes the acquisition of model-related
knowledge. EL-VIT is web-based, requiring no backend
programming or the need for users to install specific
software. Users can explore the operations of ViT simply
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Fig. 1. The overview diagram of the visualization system.

by accessing the web page. EL-VIT also incorporates
various interactive visualization methods, providing users
with a seamless experience and aiding in their better
comprehension of ViT.

• We offer an innovative approach to enhancing the
interpretability of the ViT model. Rather than concen-
trating on visualizing attention weights, EL-VIT calcu-
lates cosine similarity for the outputs of each Transformer
block. It reveals that patches corresponding to the same
object tend to exhibit higher similarity, and the token used
for classification, CLS token, often demonstrates greater
similarity to the patches associated with the classified ob-
jects. By providing interpretation view, EL-VIT facilitates
convenient model exploration for users.

II. BACKGROUND

Within this section, we present a concise retrospective
analysis of the Vision Transformer model, delivering a suc-
cinct exposition of the foundational principles and technical
specifics of the ViT model. This segment lays the groundwork
for the subsequent visualization chapter of this paper.

Fig. 2. The architectural diagram of the ViT-B/16 model.

Transformer [6] has achieved significant success in the
field of natural language processing, leading to its applica-
tion in computer vision. On large-scale datasets, ViT has
outperformed CNN and demonstrated favorable transferability
in downstream tasks. Specifically, as illustrated in Fig. 2,
within the ViT model, when provided with an input image
X ∈ RH×W×C , where H, W, and C represent the image’s
height, width, and number of channels, respectively, the image
is divided into N patches. Any patch’s shape is P × P × C
with N = HW/P 2. The number of convolutional kernels
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is denoted as D. Subsequently, a linear transformation is
performed using D convolutional kernels, each of shape is
P×P×C, applied to N patches, resulting in a two-dimensional
matrix. This matrix is concatenated with a CLS token, and
position encoding is added. This process yields the embedding
layer, as illustrated in Equation 1. z0 precisely corresponds
to the input of the Transformer encoder. The Transformer
encoder consists of L layers of Transformer blocks, each
of which comprises various distinct layers. These layers en-
compass LayerNorm, Multi-Head Self-Attention (MSA), and
Multi-Layer Perceptron (MLP) blocks. Prior to each block,
LayerNorm (LN) is applied, and after each block, residual
connections are introduced, as explicitly defined in Equations
2 and 3. Following these steps, the results are extracted with 0
dimension, and the CLS token is obtained. Subsequently, layer
normalization, as demonstrated in Equation 4, yields the output
y, where z0L represents the CLS token. The dimensionality of y
is 1×D. Finally, classification predictions are obtained through
a linear transformation.

z0 = [xcls;x
1
pE;x2

pE; ...;xN
p E] + Epos, Epos ∈ R(N+1)×D

(1)

z′l = MSA(LN(zl−1)) + zl−1, l = 1...L (2)

zl = MLP (LN(z′l)) + z′l, l = 1...L (3)

y = LN(z0L) (4)

Within the ViT forward process, the attention mechanism
assumes a crucial role. As outlined in Fig. 2, it resides
within the multi-head attention layer of the Transformer block.
Following normalization in the preceding layer, the resultant
matrices are subject to separate multiplications with WQ,
WK , and WV , yielding Q, K, and V. Consequently, self-
attention can be computed:

Attention(Q,K, V ) = A · V = softmax(
Q ·KT

√
dk

) · V (5)

Within this paper, A ∈ RN×N denotes the attention weights,
which determine the significance of relationships between
different positions in the input sequence. Given that this paper
employs the ViT-B/16 model, it follows that H = W = 224, C
= 3, P = 16, D = 768, and N = 196.

III. RELATED WORK

A. Visualization for Deep Learning Education

As researchers continually develop visualization systems,
the number of visualization systems designed for educational
purposes has gradually increased. These systems aim to assist
beginners in better understanding concepts related to deep
learning models. For example, the web-based MNIST demo
on ConvNetJS [7] dynamically illustrates the training pro-
cess and intermediate results of digit recognition. Teachable

Machine [8] is a web-based GUI tool that enables users to
learn about machine learning classification by creating and
using their own classification models. DNN Genealogy [3]
serves as an educational tool that provides visual analytical
guidance for understanding and applying deep neural net-
works through interviews, surveys, and summarization and
analysis of 66 representative DNNs. TensorFlow Playground
[9] allows users to experiment with neural networks through
direct manipulation, making it accessible to users unfamiliar
with deep learning. GAN Lab [10] enables interactive training
of generative models for learning and experimenting with
adversarial neural networks. CNN Explainer [2] uses real
image data to explain the model structure and mathematical
operations of CNNs, addressing common issues encountered
by beginners learning CNNs through interactive visualization.
Furthermore, interactive online scientific journals like Distill
[11], [12] encourage us to move beyond traditional academic
formats, making interactive articles with interactive visualiza-
tions explaining deep learning models increasingly popular.

It is noteworthy that EL-VIT is developed based on CNN
Explainer. However, for comparative purposes, our visual-
ization system offers more advanced features, with two key
distinctions. Firstly, as an educational tool, the inclusion of
a systematic architectural diagram of the model is essential,
particularly for complex models. This allows users to grasp
the entire process from input to output comprehensively.
Additionally, the system incorporates explanations of termi-
nology and source code to assist users in learning relevant
concepts. Secondly, EL-VIT provides an alternative approach
to enhancing the interpretability of the ViT model. This allows
users not only to acquire knowledge about ViT but also to gain
insights into ViT’s classification decisions.

B. Visual Analysis for Deep Learning Model

As the field of deep learning visualization continues to
evolve, in addition to serving as educational tools, there are
numerous visualization systems designed to assist experts
in analyzing their models and predictions, explaining how
models respond to their datasets. For example, CNNVis [4]
is employed to aid experts in comprehending, diagnosing, and
refining deep CNN models. LSTMVis [13] and RNNVis [14]
provide tools for users to explore the hidden states of RNNs.
DeepNLPVis [5] effectively identifies and diagnoses issues in
deep NLP models used for text classification. GNNExplainer
[15] offers interpretability for predictions of any GNN-based
model in any graph-based machine learning task. CorGIE [16]
is designed to check whether Graph Neural Networks (GNNs)
learn significant features from graphs, and GNNLens [17]
facilitate the prediction error analysis of GNNs. Some tools
allow users to diagnose models during training. For example,
DeepEyes [18] progressively analyzes DNNs during training
by sampling subregions of the input space. DGMTracker [19]
enables experts to diagnose and monitor the training process of
generative models by visualizing time-series data on data flow
graphs. GANViz [20] offers a comprehensive understanding
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Fig. 3. Model Overview. (A) illustrates the overall structure of the ViT
model. (B) showcases the 12 layers of the Transformer encoder. (C) details
the composition of each Transformer block at every layer.

of the adversarial process of GAN models, helping experts
assess and explain training results through multiple views.

The aforementioned work has achieved significant success
in the field of deep learning visualization. Additionally, there
are several interpretability methods to help us understand
Transformer models. For instance, interpretability has been
achieved by employing attention mechanisms to explain the
model [21]–[24]. Attribution through self-attention has been
used to elucidate the internal information interactions of the
Transformer, aiding in the identification of critical attention
heads [25]. The allocation of local correlations through deep
Taylor decomposition principles, followed by the propagation
of these correlations across layers, has been employed [26].
Visual explanations have been provided by assessing the
similarity between two regions of images [27]. In comparison,
our approach introduces a novel perspective by analyzing only
the output obtained from a single image through Transformer
blocks, specifically by comparing the cosine similarity be-
tween any two patches of the output.

IV. DESIGN GOAL

EL-VIT endeavors to create a visual platform for users to
learn about and explore ViT. Nonetheless, diverse user types
possess distinct demands for visualization systems. Conse-
quently, we seek to have the visualization system accomplish
the following goals:

• Catering to both global and detailed exploration of the
model simultaneously. The ViT model possesses a deep
layer structure, for example, in the case of the relatively

simpler ViT-B/16 model, it consists of three modules:
the Embedding layer, Transformer Encoder, and MLP
Head. In particular, the Transformer Encoder consists
of 12 layers of Transformer blocks, with each block
comprising LayerNorm, MLP, and multi-head attention
components. Furthermore, the multi-head attention itself
encompasses various types of layer structures. Hence,
there is a need for a dual approach encompassing both
global and detailed exploration, ensuring that users do
not feel lost while navigating the system.

• Illustrating the complete data flow process of the
ViT model. The model structure of ViT is highly in-
tricate, with various types of layers involving distinct
mathematical operations. Users often find it challenging
to comprehend the transformations occurring between
these layers. Given these considerations, EL-VIT aims to
provide a comprehensive data flow process, aiding users
in understanding how image data undergoes step-by-step
transformations to yield classification predictions.

• Achieving the interpretability of ViT. Certain users aim
to gain insight into both the practical application and
the underlying reasons for the effectiveness of ViT. We
propose an innovative approach that involves visualizing
the cosine similarity among the patch of outputs of
Transformer blocks. This visualization empowers users
to independently delve into the associated content.

• Providing a variety of interactive visualization meth-
ods to support user exploration. To deliver an excep-
tional user experience, it is crucial to thoughtfully utilize
diverse interactive visualization techniques. For example,
when users have limited knowledge of convolutions,
a combination of overview and detailed visualizations
can facilitate knowledge exploration. The inclusion of
animated elements can also captivate users, making it
easier for them to grasp the underlying principles and
implementation processes.

• Deploying the proposed approach as a web-based
application. In order to expand the system’s accessibility
to a wider audience, we have implemented the visualiza-
tion tool on a web-based platform. This eliminates the
necessity for any software installations, allowing users to
easily access it through a web browser. This approach
simplifies the process of acquiring essential knowledge
about ViT and provides users with the opportunity to
experience the operational procedures.

V. INTERFACE

The visualization system in this paper is primarily composed
of four layers of visual views: Model Overview, Knowledge
Background Graph, Model Detail View, and Interpretation
View. An overview of the system is shown in Fig. 1. The
first three layers of views explain the operational flow of
ViT from the perspectives of overall structure, detailed inter-
pretation, and mathematical operations. They enable users to
comprehend the underlying mathematical operations and the
transformation processes between layers in the model. The
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Fig. 4. Knowledge Background Graph. (A) depicts as a force-directed graph,
visualizing crucial concepts and the code’s architecture. (B) displays the
specific content of the node through modal box.

fourth layer, the Interpretation View, is designed to provide
in-depth understanding of the ViT model by calculating the
cosine similarity between patches. Users need to click on
“Interpretation View” in the top right corner of the Model
Detail View.

A. Model Overview

When beginners first encounter a model, it’s essential to
begin with an understanding of the model’s overall structure
before delving into the details. Therefore, EL-VIT incorporates
a Model Overview, as illustrated in Fig. 3, which assists users
in constructing a mental model of the model. This aids users in
gaining a better understanding of the entire process, clarifying
how the input from image data ultimately leads to the output
classification.

For user convenience, the model overview incorporates
tooltip functionality, as depicted in Fig. 3(A). When a user
hovers the mouse pointer over a specific intermediate step in
the ViT model, a tooltip appears to provide a brief explanation
of the term. This prevents users from feeling puzzled when
encountering new terminology. Given the deep layer structure
of the ViT model, representing the entire process in a single
image could become cluttered. Therefore, the visualization
system employs an interactive approach that combines fo-
cus+context. When a user clicks on “transformer encoder”,
the interface displays its 12-layer structure. Clicking on one of
the layers reveals the composition of the Transformer block,
while clicking in a blank area will navigate the user to the

previous level. The specific effects are illustrated in Fig. 3(A),
Fig. 3(B), and Fig. 3(C).

B. Knowledge Background Graph

In the process of learning about the ViT model’s opera-
tion, users must not only acquire theoretical knowledge but
also understand its practical implementation. Therefore, EL-
VIT incorporates a Knowledge Background Graph, primarily
showcasing the concepts of relevant terms and the source code
used for image classification by the ViT model. The conceptual
explanations of terms assist users in understanding ViT-related
content, while the source code aids users in comprehending
the ViT model through its implementation process.

For example, the scenario where users encounter difficulties
in comprehending the image classification implementation
process of ViT. In such cases, users can refer to the Knowledge
Background Graph within the visualization system. Since the
model is organized by class in the source code, each node
in this view corresponds to a specific class, and each edge
can signify the presence of call relationships between nodes
representing classes. The nodes within the view are generated
using a force-directed layout algorithm. When users click on
nodes of interest, a modal box appears, displaying the pytorch
source code implementation process corresponding to that
node. As illustrated in Fig. 4(A), if a user wishes to understand
the implementation process of “VITLayer”, they can click on
the corresponding node to reveal its internal implementation
details, as depicted in Fig. 4(B). This process helps users gain
insights into the code and its interactions with other classes.

For the purpose of enhancing the visual quality of the
graphics, and to avoid any overlap between text and graphics,
in the design of force-directed graphs in this paper, text infor-
mation is incorporated as nodes in the force-directed graph,
participating in the computation of the force-directed layout.
Additionally, text node forces are introduced, which represent
attractive forces between nodes and text. The combined action
of multiple forces ensures that labels and actual nodes are
mutually repulsive, preventing overlap, while also exerting
attractive forces to bring text and nodes closer together.

C. Model Detail View

In the process of learning about the ViT model, beginners
frequently grapple with understanding the detailed data flow,
the transformations between layers, and the specific mathemat-
ical operations within each layer. Hence, EL-VIT introduces
a Model Detail View.

1) Visualization: Fig. 5 demonstrates the utilization of
a focus+context visualization approach in the Model Detail
View, systematically guiding users through each layer. This
view offers insights into the internal structure of each layer
and the vector transformation processes. Users can conve-
niently navigate backward through the layers by clicking on
empty spaces, facilitating a clear understanding of the data’s
transformation from the initial 224×224×3 image format to
a 1×10 matrix, serving as the final classification prediction.
To aid users in observing classification predictions, this paper
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Fig. 5. Model Detail View. (A) depicts the overall model process of
parameters visualization. (B) displays parameter visualizations of the outputs
from 12 Transformer blocks. (C) illustrates parameter visualizations for each
internal layer within a Transformer block. (D) visualizes parameters of the
internal layers within the Multi-Head Attention layer.

employs iconography to highlight the class with the highest
prediction probability.

To effectively visualize the graphical results, EL-VIT does
not directly visualize parameters. For instance, in the embed-
ding layer, as observed in Fig. 2, a vector of size 197×768
is obtained through previous layer operations. This paper
transposes the vector, resulting in a 768×197 vector, which

Fig. 6. The resulting 2D matrix reshaped from an original vector. The number
within each cell indicates the original index of each element in the original
vector.

can be perceived as 768 individual 1×197 vectors. Each of
these individual vectors is reshaped into a 2D matrix, where
the shape of the 2D matrix and the corresponding element
locations are shown in Fig. 6. Finally, the parameter values xi

are subject to transformation according to Equation 6, normal-
izing them within the [0, 1] range to fulfill the input criteria for
color interpolation, culminating in the effect depicted in Fig. 6.
In this context, xi denotes the parameter value associated
with the i-th patch, range denotes the difference between the
maximum and minimum values among these 197 patches, and
min represents the minimum value among these 197 patches.

xi =
xi − range

min
(6)

2) Interactive View: Users need to comprehend not only
the overall structure of the model but also the underlying prin-
ciples and mathematical operations of each layer. Therefore,
this paper presents the internal workings of each layer in the
form of modal boxes to enhance the interactive exploration
experience for users.

For the visualization of convolution operations, as illustrated
in Fig. 7(A), the input image is 224×224×3, divided into
196 patches, with each patch sized at 16×16×3. Each patch
is subjected to convolution using a 16×16×3 kernel and is
subsequently augmented with bias terms, yielding a final
14×14 matrix. EL-VIT utilizes animation to illustrate the
complete convolution procedure, demarcating the currently
convolving patch with a rectangular frame for user clarity.

For the visualization of the non-linear activation function
gelu, as illustrated in Fig. 7(B), the view initially provides a
visualization of the gelu function. When the input value is
greater than 0, the gelu function essentially produces linear
output, whereas when the input value is less than 0, the
gelu function generates non-linear but continuous output. This
view also employs animation to visualize details, with textual
information accompanying the movement of the rectangular
box, thus aiding users in observing data changes.

For the visualization of the embedding layer, as illustrated
in Fig. 2, the embedding layer is a result of the concat
layer combined with positional embedding, as demonstrated
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Fig. 7. Interactive Views. (A) illustrates the convolution process. (B) presents the graph of the gelu function along with its input and output results. (C)
depicts the embedding process while visualizing positional information. (D) shows the computation process of attention scores in the first head. (E) displays
the operation of LayerNorm.

in Fig. 7(C). Initially, the magnitudes of vector values are
visually represented through a heatmap. To facilitate users
in comprehending positional embedding more effectively, this
visualization method employs a heatmap to illustrate the
similarities in size between a particular patch and others. For
instance, inputting “6” in the text box will reveal the positional
information for the sixth patch. Upon observation, users will
notice that the colors are deeper in the row and column
corresponding to this patch, aligning with their understanding
of positional information.

For the visualization of attention scores, as illustrated in
Fig. 7(D), attention scores are presented in the form of a
heatmap, positioned to the right of the modal box. Animated
sequences are employed to guide users in comprehending the
computation between Q and K for an individual head, thereby

providing insight into the origin of the attention score matrix.
This view also incorporates an exploratory feature designed
to assist users in extracting specific patch information for
the current head, enabling users to understand the knowledge
acquired by the current patch during the forward process. For
example, when the number “6” is input into the text box, it
reveals the weight information associated with the vector of
the 6th patch and presents it visually in image format.

For the visualization of LayerNorm, which normalizes dif-
ferent features for each patch to ensure a stable distribution,
as illustrated in Fig. 7(E), the black small square outlines the
region representing the normalization of the current patch’s
768-dimensional features. It calculates the mean and vari-
ance of the current distribution, where γ and β denote the
standard deviation and mean after normalization. Due to
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the high dimensionality, only a subset of features can be
visually displayed in this paper. The red square frames the
region representing the normalization of a specific dimension
within the current patch, aligning textual information with the
corresponding computational formula and moving along with
the red frame. To further emphasize the visualization effect,
this paper employs a large rectangular box to highlight the
dimensions being computed. This view is presented through
animation, aiming to engage users in the learning process.

3) Text Detail: In the case of certain basic operations, EL-
VIT opts not to employ interactive views for explanations but
rather employs simple text annotations for visualization, as
illustrated in Fig. 8. The image on the right is obtained by
adding a CLS token to the left one. Users can simply hover
their mouse over the image to access text annotations for
explanation. Additionally, bounding boxes within the image
highlight the position where CLS is added. Throughout this
visualization system, several similar annotations exist to assist
users in exploring information.

Fig. 8. Text annotation visualization.

D. Interpretation View

EL-VIT adopts a novel perspective for model interpretation.
For the Transformer encoder, it consists of 12 layers of
Transformer blocks, and our focus lies on the output of these
12 Transformer blocks. As depicted in Fig. 5(B), the output of
any layer in the Transformer block is a vector of size 197×768.
We assume that β ∈ R768 represents an arbitrary token, such
that the cosine similarity between any two tokens βi and βj

is given by:

s(βi, βj) =
βi · βj

∥βi∥ · ∥βj∥
(7)

For the original 197×768 vectors, this paper divides them
into two parts: the CLS token and the remaining 196×768
vectors. Subsequently, cosine similarity calculations are per-
formed between the CLS token and the other 196 tokens to
obtain a 1×196 vector. Finally, this vector is reshaped into
a 14×14 image. The specific results are shown in Fig. 9.
The heatmap representation visually conveys the magnitude
of cosine similarity values, with bluer hues signifying greater
similarity.

E. Web-based Implement

EL-VIT is a web-based implementation that does not in-
volve any backend programming languages. We have em-
ployed TensorFlow.js [28] in conjunction with d3.js [29] to
realize the visualization of the model. Users can experience
ViT simply by accessing the webpage on the frontend. The
model used in this paper [30] has been imported from Hugging

Fig. 9. Interpretation View. This view allows for the alteration of text box
values, facilitating the observation of the similarity relationship between a
particular patch and the remaining 196 patches.

Face and is a fine-tuned ViT model on the cifar10 dataset,
employed for image classification.

VI. USAGE SCENARIOS

A. Learning the Forward Process

When computer vision students, who are learning about im-
age classification, discover that the classification performance
of ViT is superior to CNN, they decide to enhance the accuracy
of image classification by learning and applying ViT since they
are not very familiar with the ViT model. Consequently, they
embark on exploring EL-VIT.

Firstly, the students begin their exploration of the visu-
alization system by starting with the model overview, as
shown in Fig. 3. This initial step provides them with a
general understanding of the entire operational process of
ViT, helping them establish a mental model. Subsequently, the
students seek to delve deeper into the details, encountering
difficulties while exploring the model detail view. They are
uncertain about why a 224×224×3 image data is transformed
into 196×768 after patch embedding. By clicking on the
corresponding image to reveal a modal box, as illustrated
in Fig. 7(A), they swiftly comprehend that this is a convo-
lutional process. Through animations and their foundational
knowledge, they efficiently calculate the output dimensions
to be precisely 196×768, aligning with the intended content
of the visualization. Continuing their exploration through the
subsequent layers, the students ultimately gain insight into the
step-by-step calculation of classification predictions. Due to
the model’s complexity, the students face challenges during
code replication. Consequently, they delve into the knowledge
background graph to understand the code’s construction, as
shown in Fig. 4. For instance, if a user aims to create “VIT-
Model”, it consists of components such as “VITEncoder” and
“VITEmbedding”, with each layer housing various sub-layers.
The students find that this interactive tool makes exploring ViT
more engaging than traditional learning methods like lectures
or video tutorials.

B. Interpreting the Workings

In terms of Transformer interpretability, in most cases,
users analyzed attention weights. Take the attention scores in
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Fig. 10. Similarity view of patch. (A) illustrates the similarity map between
the first patch (CLS) and the 196 patches related to the image. (B) displays the
similarity map between the 45th patch (patch corresponding to the dog) and
the 196 patches related to the image. (C) shows the similarity map between
the 82nd patch (patch corresponding to the cat) and the 196 patches related
to the image.

Fig. 7(D) as an example. For a 197×197 vector, this paper
extracts the CLS (0th dimension) 1×197 vector, then reshapes
the subsequent 196 parameters into a 14×14 image. However,
this approach may not always be effective. Therefore, users
can activate the interpretation view, as illustrated in Fig. 9.
For a single entity image, users can clearly see that the
patch corresponding to the dog has relatively dark colors,
indicating that CLS is very similar to the patch corresponding
to the dog and dissimilar to the background. For multiple
entities, as shown in Fig. 10(A), CLS is similar to the patches
corresponding to both the cat and the dog, resulting in high
probabilities for both cat and dog outputs.

As shown in Fig. 10(B), when we changed the patch in the
lower right corner to 45, corresponding to the dog, all patches
associated with the dog become quite similar. Similarly, when
we replaced the patch with the one corresponding to the cat,

there was a corresponding effect, as shown in Fig. 10(C). This
observation aligns well with the findings of Nguyen et al [31].
We believed that it was precisely the spatial similarity among
patches of the same object that leads to dimension reduction
and clustering effects. Moreover, by closely examining the
data, we hypothesized that shallow-layer patches interact with
the surrounding patches, resulting in high similarity among
patches corresponding to the cat in the vicinity. It is only in the
deeper layers that all patches corresponding to the cat become
similar.

Fig. 11. The left, middle, and right figures represent the calculated prediction
probability maps for the 0th patch (CLS), the 45th patch (corresponding to
the dog), and the 82nd patch (associated with the cat), respectively.

To further explore, we opened the model detail view and
clicked on the label tags to reveal hidden views, as shown
in Fig. 11. The left, middle, and right panels represent the
probabilities of various classes computed for the 0th patch
(CLS), the 45th patch (patch corresponding to the dog ob-
ject), and the 82nd patch (patch corresponding to the cat
object), respectively. We observed that when using the patch
associated with the dog object instead of CLS for the final
classification prediction, the probability of predicting as a
dog increased, while the probability of predicting as a cat
decreased. Similarly, when using the patch corresponding
to the cat object instead of CLS for the final classification
prediction, the probability of predicting as a cat increased,
while the probability of predicting as a dog decreased.

VII. LIMITATIONS AND FUTURE WORK

Lacking of training process and backpropagation. In
the process of learning deep learning models, backpropagation
also plays a vital role. However, in EL-VIT, all the parameters
are imported, and the lack of a backpropagation process makes
it challenging for beginners to understand how these parame-
ters are derived. In the future, we plan to enrich the content of
EL-VIT and gradually visualize the backpropagation process.

Extending visualization form. Due to the high dimension-
ality and large number of parameters in ViT, it is challenging to
visualize all the details adequately. To address this, we aim to
extend our visualization methods in the future by incorporating
greater interactivity. This approach will better assist users in
exploring and gaining detailed insights into specific aspects of
interest.

Further exploring the interpretability of the model.
While we have explored the interpretability of the model from
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another perspective, whether through the model’s outputs or
by investigating its interpretability through attention weights,
it is essential to recognize that neither approach can provide a
complete explanation of the model. Both of these methods only
represent a small portion of the entire model. We hope that in
the future, further research will enable us to comprehensively
understand these black-box models.

Evaluation of the educational effectiveness. EL-VIT pro-
vides interpretability explanations and serves as an educational
tool, aiding both experts and novices in knowledge acquisition.
Future plans include incorporating surveys to further explore
the learning experiences of beginners.

VIII. CONCLUSION

In this paper, we introduce a user-friendly interactive visu-
alization tool that employs intuitive visualization techniques
to assist users in exploring ViT models. It caters to both
experts and beginners, facilitating the acquisition of necessary
knowledge. By employing cosine similarity on the output
of each layer of the Transformer, we observe that patches
corresponding to the same object exhibit higher similarity, and
the CLS token also shares high similarity with patches corre-
sponding to objects. Finally, we demonstrate the effectiveness
of the visualization system through two usage scenarios.
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