
SeqAdver: Automatic Payload Construction
and Injection in Sequence-based

Android Adversarial Attack

1st Fei Zhang
College of Intelligence and Computing

Tianjin University
Tianjin, China

zhangfei@tju.edu.cn

2nd Xiaofei Xie
School of Computing and Information Systems

Singapore Management University
Singapore

xfxie@smu.edu.sg

1st(co) Ruitao FENG
School of Computing and Information Systems

Singapore Management University
Singapore

rtfeng@smu.edu.sg

3rd Xiaohong Li
College of Intelligence and Computing

Tianjin University
Tianjin, China

xiaohongli@tju.edu.cn

4th Lianshuan Shi
School of Information Technology and Engineering

Tianjin University of Technology and Education
Tianjin, China

shilianshuan@sina.com

Abstract—Machine learning has achieved a great success in
the field of Android malware detection. In order to avoid being
caught by these ML-based Android malware detection, malware
authors are inclined to initiate adversarial sample attacks by
tampering with mobile applications. Although machine learn-
ing has high capability, it lacks robustness against adversarial
attacks. Currently, many of the adversarial attacking tools not
only inject dead code into target applications, which can never be
executed, but also require the injection of many benign features
into a malicious APK. This can be easily noticeable by program
analysis techniques. In this paper, we propose SeqAdver, an
automatic payload construction and injection tool, which aims
to bring the adversarial attack to the next level by injecting a
payload that allows execution without breaking the app’s original
functionalities. These payloads are obtained from benign APKs
at the Smali level and normalized into usable code snippets.
The extracted Smali codes are carefully selected by filtering out
‘user-visible’ APIs and Intents. Therefore, payloads are able to be
executed without any visible change noticed by the user. Besides,
extracted payloads can be injected into different locations of
the file based on sequence position or on the launcher class.
Experiments were conducted to prove that randomly extracted
payloads from benign apps are able to execute without causing
any ‘user-visible’ behaviors or crashing the app when running
the app in Android emulators.

Index Terms—Android malware, Adversarial attack, Payload
injection

I. INTRODUCTION

The past few years have witnessed a huge increase in mobile

apps providing various facilities for personal and business use.

As the most popular operating system on mobile devices,

Android has more than 2.5 billion active users spanning

over 190 countries [1]. However, various apps brought not

only convenience but also security threats through Android

malware. So, the classification of Android malware is becom-

ing more and more important. Various learning-based works

on Android malware detection [2]–[7] have achieved great

success. Correspondingly, adversarial attacks [8] against ML-

based detection have also become popular.

Feature space perturbation [9] is one of the most common

adversarial attacks, where features of a certain class (e.g.,

class A) are randomly inserted into features from the other

class (e.g., class B), such that it causes a misclassification

(i.e., B→A). Studies [10] have shown that even state-of-

the-art classifiers such as DREBIN [11], can be susceptible

to such attacks. In addition, studies [10] have also shown

an exponential relationship between the number of features

inserted and the size of the repackaged app. However, the

methods mentioned above have several disadvantages.

Firstly, a larger app with many newly added features will

slow down the app and may lead to the loss of users. In

addition to larger apps, there were no considerations of the

features invisible to the user. Another disadvantage is the

injection of unreachable code, which is also known as dead

code. Current advanced program analysis techniques can easily

detect dead code, even though using the Opaque Predicates

Generation technique to hide them [12]. This causes learning-

based detectors to ignore them and result in an unsuccessful

adversarial attack. Lastly, the study above randomly selected

2023 IEEE International Conference on Data Mining Workshops (ICDMW)

DOI: 10.1109/ICDMW60847.2023.00172 



features to inject, which may result in unusual behavior visible

to the user, such as a crash of the app. Therefore, it is important

to create a more optimized tool for perturbation where a lesser

number of features are required to be injected for successful

misclassification. We also need to consider selecting features

with behaviors invisible to the user as well as ensure no dead

code injection.

Considering all the above limitations, this paper creates a

tool that manipulates Android APKs with effective payloads

that bypass ML-based Android malware detectors. The tool

extracts code from benign APKs based on the effective subse-

quences leading to misclassification. The tool can modify the

extracted code into a usable payload that can execute in the

targeted APK without causing any side effects such as a crash

of the repackaged app. A list of features that is not usable

will also be created. These features in the list are the features

that may result in unwanted side effects that disrupt the app’s

original functionalities. Verification shall be done to test the

usability of the repackaged app by the tool.

In summary, this paper makes the following contributions:

• Providing an automated adversarial sample generation

tool, SeqAdver, which uses the features based on ‘user-

invisible’ Android APIs and Intents to bypass traditional

program analysis techniques.

• A method to extract Smali snippets from APKs especially

from benign APKs for adversarial attacks. Windows size

of subsequence in benign APK is also analyzed using an

explanatory method to determine the most effective sub-

sequence for misclassification. Thereafter, Smali methods

which contain the desired subsequence are extracted

before normalized into usable payload for adversarial

attacks.

• A method to craft a usable payload that is able to exe-

cute without crashing the app despite injecting into any

location. Normalization of payload with five factors were

considered before crafting a usable payload. ACVTool

[13] and Monkey [14] were used to verify the execution

of the payload.

• Generated lists of visible APIs and Intents allow others

to filter away ‘user-visible’ Android APIs and Intents,

which cause user visible behaviors that make the user

suspicious. These lists were generated through the ex-

traction of the Android developers’ documentation.

II. BACKGROUND AND PRELIMINARIES

This section briefly introduces the background of Android

apps, the usage of Smali files, some examples of adversarial

attacks, and the considerations required during a repackaging

process.

A. Android APK

Android applications are presented in the form of Android

Application Packages (APKs) before installing on Android

mobile phones. APKs are in the form of a zip file that contains

many files, such as the binary AndroidManifest XML file,

classes DEX files, resources, assets, and certificates. APKs

can easily be obtained from the third-party websites such as

APKmirror [15], APKpure [16], and Aptoide [17].

The AndroidManifest file (i.e., AndroidManifest.xml) in-

volves all the metadata of the APK, such as the Android API

level, the package name of the application, the permission re-

quired, Intent filters, services and activities in the app. Besides,

when an app starts up, the information about which activity

was first launched is also included in the AndroidManifest file.

Classes DEX files (i.e., classes.dex) are Dalvik executable

code that can be executed in Dalvik virtual machine (DVM).

Classes DEX files contain Dalvik bytecode that consists of

class information, the data, and instruction sets for execution.

The classes DEX file can be disassembled into Smali files

which will be covered in more detail in section II-B. An APK

may contain more than one class’s DEX file. However, a single

class DEX file is more commonly seen.

B. Smali files

Smali files are files obtained when disassembling the classes

DEX file using disassembler tools such as baksmali [18].

Smali files consist of human-readable assembly instructions,

class information, and data in each class. Each Smali file has a

certain structure that involves the class name, the super class’s

name, the interfaces that the class implements, the annotations,

the instance fields, the direct methods, and the virtual methods.

We will mainly be focusing on the class name, the direct

methods, and the virtual methods.

The class names are always in the full file path which has

a forward slash, ‘/ ’, as a separator between each directory.

All class names have to begin with a capital letter ‘L’ and

end with a semicolon ‘;’. An example of the class name is

“Lcom/socialnmobile/colornote/activity/NormalActivity;”.

The start of the direct methods section and virtual methods

section can be seen after the line ”#direct methods” and

”#virtual methods” respectively. Direct methods consist of

the class’s constructor and private access modifier methods.

Virtual methods consist of event methods such as onCreate(),
as well as protected and public access modifier methods. They

are both sorted in ascending order based on the method names

in the direct or virtual methods section.

In Smali files, there are a number of registers ranging from

v0 to v15. Each register begins with a small letter ‘v’. Besides

the normal registers, there is also the parameter register which

starts with the small letter ‘p’. The parameter p0 always

consists of the current instance of the current class. This is

often accessible by the “this” keyword in Object Oriented

Programming (OOP) languages such as Java.

The parameters of each method in Smali are very different

from the syntax of many high-level programming languages.

For non-primitive types, the full class name beginning with a

capital letter ‘L’ and ending with a semicolon ‘;’ is indicated.

An example is “Landroid/app/Activity;”. For primitive types

such as integer, float, etc, they are represented in a single

letter. The representation for primitive types can be seen in

Table I.



TABLE I
PRIMITIVE TYPES REPRESENTATION IN SMALI

Primitive types Smali representation
Void V
Byte B
Short S
Char C
Integer I
Long J
Float F
Double D
Boolean Z

C. Adversarial attack

An adversarial attack is a type of attack that specifically

aims at learning-based detectors. One of the most common

adversarial attacks is based on feature addition, where features

of a certain classification group (e.g., class A) are randomly

inserted into features from the other classification group (e.g.,

class B), such that it causes a misclassification (i.e., B→A).

Alternatively, an adversarial attack can also be based on

feature elimination where we remove features that define a

class (e.g., class B). The remaining features are the ones

usually determined as another class (e.g., class A). As a result,

misclassification (i.e., B→A) also occurs.

D. Repackaging process

Repackaging of APKs requires a number of steps. Firstly,

as a compressed file, an APK file has to be unzipped into a

folder. This can be easily accomplished by using 7Zip [19] or

the ZipInputStream [20] library in Java programming. After

unzipping the APK, baksmali [18] can be used to disassemble

the classes.dex file into Smali files. Modifications to the Smali

files can be made such as injecting a payload before assem-

bling back to classes.dex using smali [18]. Similarly, injecting

required permissions to the binary AndroidManifest file is also

feasible by using xml2axml [21]. Next, the folder that contains

all the APK’s content can be zipped back using 7Zip [19]

recursively into the .zip extension. The .zip extension should

then be renamed into the .apk extension. If modifications were

made to any of the files in the APK, it would be required to be

signed using tools such as Jarsigner [22] or Apksigner [23].

A key might be required to be created using Keytool [24] that

will be used by jarsigner [22] or Apksigner [23] to sign the

APK. Lastly, Zipalign [25] is required to optimize the files in

the signed APK.

E. Interpretable method

The interpretable methods help researchers understand how

a ML-based model works and which features play a more

important role in the decision-making process of the model.In

a ML-based detector, decisions are made if an APK is benign

or malicious. By treating the detector as a black box, the

interpretable method can be used to determine what causes

the learning-based detector to make a detection. These in-

terpretable methods can be applied to different models such

as Decision Trees [26], Model Agnostic [27], and K Nearest

Neighbours [28]. With the use of the interpretable method, an

effective feature can be chosen to use as a payload for adver-

sarial attacks on learning-based Android malware detectors.

III. APPROACH

In this section, the overview of the SeqAdver (Fig. 1) will be

introduced, as well as considerations when creating SeqAdver.

A. Overview

SeqAdver is a tool that was created to automate the pro-

cess of repackaging Android APK to conduct adversarial

attacks. SeqAdver is written in Java which supports platform-

independent and high modularity. As seen in Fig. 1, SeqAdver

can be divided into two main subsystems which are (A)

Payload Preparation and (B) Malware Manipulation. In (A)

Payload Preparation subsystem, there are more subsystems

such as (A1) Adversarial Sequence Analysis, (A2) Locating

Code, and (A3) Normalization. In (B) Malware Manipulation,

there are also a few subsystems which are (B1) Injection

Location Selection, (B2) Payload Injection, (B3) Recompiling

and Repackaging, and (B4) Validation. These subsystems will

be discussed in more detail in the next few sections.

B. Payload Preparation

During the preparation of the payload, a pre-trained model

must be required (in step 1©) as well as a dataset of benign

applications (in step 2©) to conduct Adversarial Sequence

Analysis (in step A1). Different weights of different sequence

elements will be produced using Local Interpretable Model-

agnostic Explanations (LIME) [27]. The sequence elements

with higher weight play a more important role in making

the app to be benign by a ML-based malware detector. A

window size of 3 sequence elements will be used to find the

highest weight subsequence. A larger window size does not

result in higher weight after experiments were tested using

LIME [27]. Moreover, a higher window size of subsequence

may cause a lower possibility of finding suitable Smali code

to be used as they may face issues such as cross classes which

will be further explained in section III-B2. Therefore, the

most effective subsequence with a window size of 3 sequence

elements will be generated and used in step 4©.

1) Locating Code: In order to extract the Smali code from

the Smali files that were obtained from the benign APK (in

step 3©), we must first obtain the file’s order to know which

Smali files we have to extract its content. This will allow us

to know which classes (e.g., class b) contain the subsequence

elements (e.g., 4th, 5th, and 6th elements of a sequence) in

order. To know the order of the files to extract their Smali code,

we can utilize Dexdump [29] to extract information from the

code section from the classes.dex file. We can then filter the

output by obtaining the class order starting from the top.

After obtaining the order of the classes, we need to verify

which files contain the class we require. Despite the class’s

name (e.g., Lcom/a/activity/b) containing the directory’s full

path to it, there are some exceptions. For example, there is a



Fig. 1. Overview of SeqAdver

misconception that class A’s file name will be A.smali while

class A’s file name is a.smali. However, the actual file name

for class A is a.smali while class A’s file name is a.1.smali.
Therefore, it is important for us to verify if the supposed

file contains the class we are searching for. As a result, it

is required to search for the supposed file, check the class

in it, and search for other files in the same directory and

subdirectory until the file that contains the class is found.

After obtaining the files in order, we are then able to extract

the information of the class in the file such as the class name,

the file location of this class, the Smali code of each method

in the class, the sequence’s elements in each method if there

is, whether the sequence’s element is ‘user-visible’, and the

position of the sequence’s element in the sequence list of the

benign app.

Based on the list of entity objects that consist of all the

Smali information, the Smali method(s) that contains the

Adversarial Subsequence (in step 4©) is extracted and will

be normalized in step A3.

2) Normalization: In order to make sure the extracted

Smali code is useful, it must be normalized into a payload in

step A3 (see Algorithm 1). During the normalization process,

we need to consider many aspects, such as removing the

comments, the considerations when the payload only consider

one method, subsequence spreading across multiple class with

no method call to the next, and finally the extracted method

are event methods (e.g., onCreate()).
Regardless of different situations to handle when normal-

izing the code, they have the same fundamentals which are

to remove comments and unwanted lines of Smali code. The

removal of unwanted lines of Smali code can help to reduce

the dependencies needed. For example, there could be a line

of Smali code that invokes a method call to another user-

defined method in the same class or another class. This causes

more issues as we will need to normalize those methods

being called. Therefore, normalization of the payload involves

removing as much unnecessary code as possible. To determine

if a line of code is required, we are able to use the backward

traversal technique to determine if any of our subsequences

requires those lines of Smali code (see Algorithm 2).

1 .method public a()V
...

6 invoke-virtual {v1}, Lcom/a/c/q;->h()Z
7 move-result v2
8 invoke-virtual v2,

Landroid/app/Activity;
->setActionBar(Landroid/widget/Toolbar;)V

9 return-void
10 .end method

Listing 1. Example of the backward traversal technique

The backward traversal technique (see Algorithm 2) heavily

relies on the registers used by our subsequence. Based on the

registers used, the registers will be saved in a set of registers

(i.e., set R in Algorithm 1). An algorithm is used to traverse

upwards and determine where each register in set R (e.g R =

{v0, v3, v4}) obtains its value from. This is known as register

dependencies. If any of the lines of code writes to any of the

registers in set R, that line of Smali code will be saved. If that

line of Smali code requires any other registers, those registers

will be added to set R. This example is shown on Listing 1

where setActionBar() is part of our subsequence. Register v2
is added to set R and backward traversal occurs. Once we

discover that h() writes to v2 in line 7, we will save both lines

6 and 7. Register v1 from line 6 will be added to set R while

v2 is removed. Backward traversal will continue to traverse

upwards till the start of the method. In line 17 of Algorithm

2, separated Table II is created as the algorithm to parse the

strings to obtain the registers are different. The rest of the



algorithms for these two tables are the same, starting from

line 18 in Algorithm 2.

Algorithm 1: Normalize extracted Smali methods

Input: List of line number to check for dependency

LD; Smali code in a method SC; Class name

CN
Output: Hashmap that may contain normalized

payload and dependency file/class to be

injected HM
1 DR ←− () // Set of non-removed Smali

lines
2 BR ←− () // Set of removed Smali lines
3 R ←− () // Set to store registers for

backwards tracking technique
4 DC ←− () // Set of dependency class to

be injected later
5 RT ←− () // Hashmap of result to be

returned as output
6 Append LD to DR;

7 for L ∈ LD do
8 if “ invoke-” ∈ SML then
9 if “ move” ∈ SML+2 then

10 if SML+2 consist of event parameters then
11 Add (L + 2) to BR; // Remove

line that writs result
to parameter register

12 else
13 Add (L + 2) to DR; // Safe to

save this line of Smali
code

14 Append dependency register in SML to R;

15 SC ←− Result from Algorithm 2;

16 for i = 0 to (SCs - 1) do
17 if “ invoke-” ∈ SCi and “ invoke-” /∈ CN then
18 Append class of method being invoked to DC;

19 Add SC to RT ;

20 Add DC to RT ;

21 return RT ;

There will be situations where our extracted codes are event

methods during normalization. As a result, we will first be

required to rename these methods into a random string (line

8 in Algorithm 3). Retaining the method names may result in

errors when injecting into the targeted APK as there may be

another event method with the same name as the methods in

our payload. If there is more than one event method as our

payload, we will need to inject method calls in subsequent

order (from lines 10 to 13 in Algorithm 3). Listing 2 shows

an example of injecting the invoke method B statement into the

end of method A just before the method RETURN statement

on line 11. Injecting of invoke statements also occurs in

handling normal methods that do not have method calls in

Algorithm 2: Backward traversal (during normaliza-

tion)

Input: List of line number to check for dependency

LD; Smali code in a method SC; Set of lines

of Smali code not to be removed DR; Set of

Smali lines to be removed BR; Set of

dependency registers during backwards

traversal R; Current line number to check for

dependency L
Output: Normalized Smali code SC

1 for i = (L - 1) to 0 do
2 if “ invoke-” ∈ SCi or “ filled-new-array” ∈ SCi

then
3 if “ move-result” ∈ SCi+2 then
4 if (register ∈ SCi+2) ∈ R then
5 Remove register in R; // Remove

found dependency
register

6 Append (i, i + 2) to DR; // Add
line numbers to be saved

7 Remove (i, i + 2 from BR;

// In-case wrong line
added

8 Append registers in SCi to R; // Add
new dependency registers

9 else if (i, i + 2) /∈ DR then
10 Append (i, i + 2) to BR;

11 else if “;-><init>(” ∈ SCi then
12 if (register ∈ SCi) ∈ R then
13 Append i to BR;

14 Remove i from DR;

15 else if i /∈ DR then
16 Append i to BR;

17 else if Any string in Table II ∈ SCi then
18 if (register that is being written RW ∈ SCi)

∈ R then
19 Remove RW from R;

20 Append new dependency register to R;

21 Append i to DR;

22 Remove i from BR;

23 else if i /∈ DR then
24 Append i to BR;

25 else if “ iget-” ∈ SCi or “ sget-” ∈ SCi then
26 if (register ∈ SCi) ∈ R then
27 return NULL; // Reject code

depend on class’s field

28 else
29 Append i to BR;

30 else if “ iput-” ∈ SCi or “ sput-” ∈ SCi then
31 Append i to BR;

32 if Any register ∈ R is parameter register then
33 return NULL; // Reject code if

parameter register used



34 for i ∈ BR do
35 SCi = “ nop”; // Change to NOP

instruction instead of deleting

36 M ←− Maximum value in DR;

37 N ←− Minimum value in DR;

38 MN ←− Method name from SC0

39 Remove Smali lines from SCM+1 to SCs;

40 Remove Smali code from SC0 to SCN ;

41 Prepend “.method public ” + M + “()V” SC0;

42 Append “ ” to SCs;

43 Append “ return-void” to SCs;

44 Append “.end method” to SCs;

45 return SC;

TABLE II
LIST OF STRINGS FOR COMPARISON

const- const/ const check-cast array-lengt
aget instance-of new-instance new-array filled-array-data

move move/ neg- int- long-
float- double- add- sub- rsub-
mul- div- rem- and- or-
xor- shl- shr- ushr-

subsequent order.

During normalization, if there are any dependency meth-

ods (methods in the Smali code that are not allowed to

be deleted) that have ‘user-visible’ functionalities (in step
5©), the extracted code will be rejected and step 4© will be

repeated. When repeating step 4©, SeqAdver will search for

the subsequence in another area of the benign APK before

extracting the methods that have the same subsequence.

1 .method public A()V
...

10 invoke-virtual , Lcom/test;->B()V
11 return-void
12 .end method
13
14 .method public B()V

...

Listing 2. Injecting invoke method B statement into method A

Besides rejecting ‘user-visible’ features, extracted codes are

also rejected if they contain dependency lines of Smali code

(lines of code that cannot be deleted) that use the parameter

registers or use any values from the fields of the class. This is

due to the fact that it is difficult to know what values will be

supplied to the parameters as well as to the fields of the class.

C. Malware Manipulation

The Malware Manipulation (in step B) focus on modifying

the malware APK for adversarial attack. In this subsystem, a

malware APK will be decompiled to obtain Smali files from

classes.dex and also obtained the binary Android Manifest file

after unzipping the APK (in step 7©). In step 8©, the user

can decide to inject the payload in the launcher class or any

Algorithm 3: Normalize event APIs

Input: Class Information instance CI; List of

subsequence S; List of event method names

EN
Output: Usable payload UP

1 LD ←− [] // Line numbers to check for
dependency

2 SM ←− Get list of Smali methods from CI based on

S;

3 for i = 0 to (SMs - 1) do
4 S ←− SMi; // Get Smali codes of each

Smali method
5 for j = 0 ∈ Si do
6 if “.method” ∈ Sj then
7 if Any EN ∈ Sj then
8 Generate a new method name and

replace the method name in Sj ;

9 OS ←− SMi-1;

10 if previous method in CI(i - 1) do not have
call to this method then

11 Insert invoke call to SMi−3;

// Insert before return
statement

12 Append (i + 3) to LD;

13 Insert “ ” at SMi−3; // Empty
line between invoke and
return statement

14 else
15 for (k = OSs - 1) to 0 do
16 if OSk contains invoke call to SMi

then
17 Remove invoke call arguments;

18 Append k to LD;

19 Append S to LD;

20 UP ←− Result of Algorithm 1;

21 return UP ;

location based on the sequence position of the malware APK.

Permissions are then added to the binary Android Manifest

file based on the payload (in step 11©). The modified APK

will then be recompiled and repackaged in step B3 before

validation is conducted in step B4 which will be explained in

detail in section IV. After validation, we can then conclude if

the adversarial attack is successful in step 12©.

1) Payload injection: There are currently two methods to

inject a payload in SeqAdver. The first method is to inject the

payload into the launcher class. The second method is to inject

into the class that consists of the sequence position we would

like to inject our payload into.

a) Injection of payload in the launcher class: This

is a very commonly used method especially in injecting

malicious payload into benign APK. This is because it ensure



the execution of the payload. When the app first started, the

launcher class which is an Activity class will definitely be

executed. As a result, we can inject our payload into the

launcher class and add an invoke statement in our payload

in the onCreate() method. During the start-up of Activity,

the onCreate() is definitely executed. Therefore, putting the

payload in the launcher class and adding the payload into

the onCreate() method will guarantee the execution of our

payload. This is especially useful when we would like to

test if our payload is able to execute successfully without

crashing the app. Experiments and results have shown that

our crafted payload was able to execute without crashing the

app during code instrumentation in section IV. We can obtain

the launcher class from the binary AndroidManifest file where

the Activity will consist of an intent filter with <action>
and <category> tags that have “android.intent.action.MAIN”

and “android.intent.category.LAUNCHER” in their

attributes respectively. This example can be seen in

Listing 3, which shows that the launcher class is

“com.appyet.activity.SplashActivity” (font in red) as it

has <intent-filter> tag with “android.intent.action.MAIN”

and “android.intent.category.LAUNCHER” (font in blue) in

the <action> and <category> tags respectively.

<activity android:label="@string/app_name" android:
launchMode="singleTask" android:name="
com.appyet.activity.SplashActivity" android:
theme="@android:style/Theme.NoTitleBar">

<intent-filter>
<action android:name=
"android.intent.action.MAIN"/>
<category android:name=
"android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

Listing 3. Example of launcher activity in AndroidManifest.xml

b) Injection based on the requested position of the APK’s
sequence: The injection position can be specified by an exter-

nal module using SeqAdver. The injection position is usually

injected in the most optimal position where that is a higher rate

of misclassification if injected in a certain area. To inject into

specified position, we need to rename our payload methods as

the methods are sorted in lexicographically ascending order

according to method names. To rename our payload method

names, the name of the method (e.g., method public az()) will

be used and appended with the letter ‘a’ (e.g., method public
aza()). If there is more than one method in our payload, the

letter will increment by one (e.g., ‘a’→‘b’) for each payload

method. It is also important to update the method name in the

subsequent method call to the next payload’s method. These

can be seen in Listing 4 where the blue font is the payload

methods injected after method az().
Besides changing the method name, we also need to modify

the accessor modifier to private or public, depending on the

method we would like to inject our payload into, is in the direct

or virtual methods sections (see the orange font in Listing 4).

After modifying the accessor modifier to private or public, we

need to change the invoking statement of the payload methods

to direct or virtual. An invoke statement will also be added

to the end of onCreate() or the constructor (i.e., <init>()) to

invoke the start of the payload. This can be seen in the red

font in Listing 4.

2) Permission injection: After injecting the payload into the

targeted APK (step B2.1), it is important to inject the required

permission into the AndroidManifest file in the targeted APK

(in step B2.2). After injecting the payload into the targeted

APK (step B2.1), it is important to inject the required per-

mission into the AndroidManifest file in the targeted APK (in

step B2.2). However, there are no official tools from Google

that allow us to obtain the permission required based on APIs

and Intents. There were a number of tools such as PScout [30]

and Arcade [31] which were no longer maintained or available.

There are also a number of newer tools but the tools are not

available for others to use as only the results are available after

running on the Android Open Source Project (AOSP). These

tools are Axplorer [32] [33] and Arcade [31] [34]. There are

also results of permission mapping from PScout and PScout

II [35] available on Github sources. As a result, the permission

mappings of multiple sources are combined into a few lists

categorizing them based on the API level, followed by API

and Intents. There are some limitations as most of the results

available online only have permission mapping between API

8 to 19 and 21 to 25. Therefore, those APKs below API 8 will

be using API 8’s permission mapping, APKs with API 20 will

be using API 19, and those APKs above API 25 will be using

API 25’s permission mapping. Table III shows a summary of

the API level permission being mapped based on the API level

of the APK, the API, and the Intent.

.method public constructor <init>()V
...

invoke-direct , Lcom/a/b;->aza()V
return-void

.end method

.method private az()
...

.end method

.method private aza()
...

invoke-direct , Lcom/a/b;->azb()V
return-void

.end method

.method private azb()
...

.end method

Listing 4. Injecting payload methods into direct methods section

TABLE III
PERMISSION MAPPING FROM API 1 TO 30

API Level of APK API Intent
1-8 API 8 API 8
9-18 API 9-18 API 9-18
19-20 API 19 API 19
21-24 API 21-24 API 21-24
25-30 API 25 API 25



Fig. 2. ACVTool report of successful injection and execution of the payload

When inserting permissions into the binary AndroidMani-

fest using Xml2axml [21], it is important to take note of the

current permissions that already exist in the targeted APK. It

is not ideal to insert permission that already exists. Having

duplicated permission(s) might cause detectors to suspect that

the app has been repackaged [36].

3) Recompiling and repackaging: After modifications are

done, we will have to zip the folder back into an APK file

(.apk extension) in step 8© from Fig. 1. Zipping of the folder

must be done recursively. If the zipping process is not done

recursively, there will be errors when executing the app on the

mobile phone where it will not be able to retrieve the resources

in the APK. This can easily be checked by unpacking APK

files using tools such as APKtool [37]. This will be further

explained in section IV. Luckily, there are a number of tools

that make zipping recursive easier such as 7Zip [19] and the

zip command-line tool [38] in GNU/Linux.

After zipping the file, the APK file must be signed. This

can be done using Jarsigner [22] or APKsigner [23]. SeqAdver

uses Keytool [24] to create a key before using the key to sign

the APK with Jarsigner [22].

Finally, the signed APK file must be optimized through

archive alignment. During this process, the uncompressed data

will be relatively aligned to the start of the file in the 4-byte

boundary. This process can be done using Zipalign [25].

IV. EXPERIMENTS AND RESULTS

In this section, the goal of our experiment is to: (1)

Verification the usability of the ‘user-invisible’ list; and (2)

Evaluation on the injection success rate; Based on verification

and results, we further evaluate the testing on different API

version mobile emulation to test the success rate.

A. Verification the usability of the ‘user-invisible’ list

The lists available in SeqAdver only consist of ‘user-visible’

lists. As a result, experiments are conducted with different va-

riety of sequence elements to test if the repackaged application

causes changes visible to the user such as a sudden change

in the Graphical User Interface (GUI). Besides verifying the

change in GUI, experiments were also conducted to test if the

application crashes when the payload executes. If the execution

of the experiment results in the results mentioned above,

this means that the lists of ‘user-visible’ sequence elements

are incorrect as not all ‘user-visible’ sequence elements are

included in it. As a result, tests were done using Monkey [14]

and manual testing.

Before conducting the experiment, a few conditions were

set. Firstly the payloads were injected at the launcher class and

invoked by onCreate() right before the RETURN statement is

called. This allows quicker manual testing to validate if the

application crashes. Next, different extracted code from the

different benign APKs was extracted to inject into the same



targeted APK. This allows a variety of extracted code with

different possible subsequences used as payload and consistent

results where the targeted APK should not have a change in

behavior.

After manual and the use of Monkey [14], 89.47% of the

applications tested did not crash and were able to execute

without any issues. The remaining application crashes were

mainly due to the normalization process where some parsing

Smali lines of code were not considered but none of them were

due to the sequence’s elements in the payload. As a result, the

lists of ‘user-visible’ sequence elements are usable for payload

injections.

B. Evaluation on the success rate of injection

The evaluation of the success rate involves testing of ex-

tracting different payloads from different benign APKs and

injecting them into the different APKs. The end goal of this

evaluation is to check if the payload will be successfully

injected into the supposed injection location. After injecting

a payload into a targeted location, compilation will be on all

the Smali files in the targeted APK to form classes.dex using

tools such as smali [18]. After compilation, the classes.dex

can be decompiled again to check if the payload is still

at the injected location. Alternatively, experiments were also

tested using instrumentation techniques by using tools such as

ACVTool [13] to test if the payload has been executed. If the

payload is not successfully injected, the location that should

contain the payload and the invoke statement to invoke the

payload will not be injected. This can be noticed when decom-

piling the previously compiled classes.dex file. Alternatively,

the payload will not be instrumented during the ACVTool [13]

analysis phase and can be noticed in the report generated by

ACVTool [13]. An example can be seen in Fig. 2.

C. Verification across multiple API level phones

The further extend the previous experiments, the next ex-

periment tested on different API levels of Android to test

if SeqAdver is still able to inject ‘user-invisible’ payloads

only where the payloads were executed and no crash occurred

after the payload was executed. Five different API versions

of Android emulators were tested in the experiment. They are

Android 4.1 Jelly Bean (API 16), Android 4.4 KitKat (API

19), Android 7.0 Nougat (API 24), Android 9.0 Pie (API

28), and Android 11.0 R (API 30). In the experiment, all the

repackaged APKs used in section IV.A were tested on these

five versions of Android in emulators to test if the functionality

was affected.

The results have shown that the repackaged APKs that were

able to be executed in section IV-A, were also able to execute

in all of these five versions of Android. As a result, the

rate of success is still 89.47% as the repackaged APKs that

crashed in section IV.A, crashes in other versions of Android

as well. When testing Android 9.0 Pie (API 28) and Android

11.0 R (API 30), a permission prompt will appear when the

application runs for the first time. This prompt will tell the user

the application is trying to access those requested services,

which may result in users noticing additional permissions

required. Besides this prompt, the list of ‘user-invisible’ list is

usable as there are no crashes or additional changes in GUI

behavior when launching the app since the payload is injected

at the launcher class.

V. LIMITATIONS AND FUTURE WORK

This section will introduce the limitations in the current

version of SeqAdver and the future works that can be done to

further improve SeqAdver.

A. Limitations

1) Subsequence cross classes: During code location, areas

of the code that contain subsequence are extracted to be

used as a payload. However, there are situations where the

subsequence spreads across more than one class. Currently,

SeqAdver ignores areas of code that are spread across more

than one class. This is due to the complexity of knowing what

are the values of the parameters required for the other class’s

constructor and the method(s) to be called that continues our

subsequence.

2) Extracted code having parameter registers dependen-
cies: During code normalization, the backward traversal tech-

nique is used as stated in section III-B2. During backward

traversal, there may be dependency lines of Smali code that

use the parameter registers (e.g., register p1). The value to

supply values to the parameters has too many possibilities

which makes it NP-hard. However, there are possible solutions

to this limitation which will be stated in section V-B1.

3) Test ‘user-invisible’ adversarial samples on real Android
phone: The Android adversarial samples generated by SeqAd-

ver were only tested on Android emulators and did not cause

any changes in GUI. However, there are still some differences

between Android real phones and emulators, which may lead

to ‘user-visible’ behavior. This is because we need to ensure

that the malicious samples can not damage the testing phone.

B. Future work

1) Extracted code having parameter registers dependen-
cies: An algorithm can be created to search for all methods

in all files that call the payload method. The method (e.g

classZ::pb()) that calls the payload method (e.g classA::ab(Z))
can also be included in the list extracted methods and nor-

malization will be done to that method (e.g classZ::pb()).
Using this technique, the need to guess the possible value

needed to pass as an argument to call the payload method

(e.g., classA::ab(Z)) will be eliminated.

2) Train a robust detection model against SeqAdver: With

the help of SeqAdver, we can generate some adversarial

samples that can bypass traditional analysis techniques. We

will add these adversarial samples to the training set to train

a more robust ML-based model in the future.



VI. CONCLUSION

Our work builds a tool, SeqAdver, for the automatic gen-

eration of Android adversarial samples. SeqAdver provides

a new technique by injecting executable payloads that are

’user-invisible’ based on Android APIs and Intents instead of

inserting dead code. As a result, traditional program analysis

techniques will be bypassed leading to a successful adversarial

attack. We speculate that it might be useful for other research

on adversarial attacks.

REFERENCES

[1] (2021) Android statistics (2021). [Online]. Available:
https://www.businessofapps.com/data/android-statistics/

[2] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” arXiv preprint arXiv:1612.04433,
2016.

[3] R. Feng, Y. Liu, and S. Lin, “A performance-sensitive malware detection
system on mobile platform,” in Formal Methods and Software Engi-
neering, Y. Ait-Ameur and S. Qin, Eds. Cham: Springer International
Publishing, 2019, pp. 493–497.

[4] R. Feng, S. Chen, X. Xie, L. Ma, G. Meng, Y. Liu, and S.-W. Lin,
“MobiDroid: A Performance-Sensitive Malware Detection System on
Mobile Platform,” in 2019 24th International Conference on Engineering
of Complex Computer Systems, 2019.

[5] R. Feng, J. Q. Lim, S. Chen, S.-W. Lin, and Y. Liu, “SeqMobile: An
Efficient Sequence-Based Malware Detection System Using RNN on
Mobile Devices,” in 2020 25th International Conference on Engineering
of Complex Computer Systems, 2020.

[6] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A
Performance-Sensitive Malware Detection System Using Deep Learning
on Mobile Devices,” IEEE Transactions on Information Forensics and
Security, 2020.

[7] Q. Qiao, R. Feng, S. Chen, F. Zhang, and X. Li, “Multi-label classifica-
tion for android malware based on active learning,” IEEE Transactions
on Dependable and Secure Computing (TDSC), 2022.

[8] H. Li, S. Zhou, W. Yuan, J. Li, and H. Leung, “Adversarial-example at-
tacks toward android malware detection system,” IEEE Systems Journal,
vol. 14, no. 1, pp. 653–656, 2019.

[9] N. Inkawhich, W. Wen, H. H. Li, and Y. Chen, “Feature space perturba-
tions yield more transferable adversarial examples,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 7066–7074.

[10] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ml attacks in the problem space,” in IEEE
Symposium on Security & Privacy (Oakland), 2020. [Online]. Available:
https://arxiv.org/abs/1911.02142

[11] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket,” 02 2014.

[12] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk, “A multi-
study investigation into dead code,” IEEE Transactions on Software
Engineering, vol. 46, no. 1, pp. 71–99, 2018.

[13] A. Pilgun, O. Gadyatskaya, Y. Zhauniarovich, S. Dashevskyi, A. Kush-
niarou, and S. Mauw, “Fine-grained code coverage measurement in
automated black-box android testing,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 4, pp. 1–35, 2020.

[14] (2020) Ui/application exerciser monkey. [Online]. Available:
https://developer.android.com/studio/test/monkey

[15] (2021) Apkmirror. [Online]. Available: https://www.apkmirror.com/
[16] (2021) Apkpure. [Online]. Available: https://apkpure.com/apk-

install.html
[17] (2021) Aptoide. [Online]. Available: https://en.aptoide.com/
[18] (2021) smali/baksmali. [Online]. Available:

https://github.com/JesusFreke/smali
[19] (2021) 7zip. [Online]. Available: https://www.7-zip.org/
[20] Zipinputstream. [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/util/zip/ZipInputStream.html
[21] (2020) xml2axml. [Online]. Available:

https://github.com/hzw1199/xml2axml

[22] (2020) Jarsigner. [Online]. Available:
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html

[23] (2021) Apksigner. [Online]. Available:
https://developer.android.com/studio/command-line/apksigner

[24] (2020) keytool - key and certifi-
cate management tool. [Online]. Available:
https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html

[25] (2021) zipalign. [Online]. Available:
https://developer.android.com/studio/command-line/zipalign

[26] D. P. Kuttichira, S. Gupta, C. Li, S. Rana, and S. Venkatesh, “Explaining
black-box models using interpretable surrogates,” in PRICAI 2019:
Trends in Artificial Intelligence, A. C. Nayak and A. Sharma, Eds.
Cham: Springer International Publishing, 2019, pp. 3–15.

[27] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”:
Explaining the predictions of any classifier,” 2016.

[28] E. Wallace, S. Feng, and J. Boyd-Graber, “Interpreting neural
networks with nearest neighbors,” in Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP. Brussels, Belgium: Association for
Computational Linguistics, Nov. 2018, pp. 136–144. [Online]. Available:
https://www.aclweb.org/anthology/W18-5416

[29] (2018) Android sdk build tools 28. [Online]. Available:
https://aur.archlinux.org/packages/android-sdk-build-tools-28/

[30] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
217–228. [Online]. Available: https://doi.org/10.1145/2382196.2382222

[31] Y. Aafer, G. Tao, J. Huang, X. Zhang, and N. Li, “Precise android
api protection mapping derivation and reasoning,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 1151–1164. [Online]. Available:
https://doi.org/10.1145/3243734.3243842

[32] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and
S. Weisgerber, “On demystifying the android application framework:
Re-visiting android permission specification analysis,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin,
TX: USENIX Association, 2016, pp. 1101–1118. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/backes android

[33] (2017) Axplorer permission mapping result. [Online]. Available:
https://github.com/reddr/axplorer/tree/master/permissions

[34] (2020) Arcade permission mapping result. [Online]. Available:
https://github.com/arcade-android/arcade

[35] (2015) Pscout permission mapping result. [Online]. Available:
https://github.com/zyrikby/PScout

[36] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and
L. Cavallaro, “Understanding android app piggybacking: A systematic
study of malicious code grafting,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 6, pp. 1269–1284, 2017.

[37] (2020) Apktool. A tool for reverse engineering Android apk files.
[Online]. Available: https://ibotpeaches.github.io/Apktool/

[38] (2008) zip(1) - linux man page. [Online]. Available:
https://linux.die.net/man/1/zip


